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Trunk stability

Trunk postural control (TPC) has been investigated in several populations and tasks. Previous work
observed targeted training of TPC via isolated trunk control tasks may improve performance in other
activities (e.g., walking). However, the nature of this relationship remains unknown. We therefore inves-
tigated the relationship between TPC, at both the global (i.e., response to finite perturbations) and local
(i.e., resistance to continuous perturbations) levels, during walking and unstable sitting, both at varying
levels of task demand. Thirteen individuals (11 Male, 2 Female) with no recent history (past 12 months)
of illness, injury, or musculoskeletal disorders walked on a dual-belt treadmill at four speeds (—20%,
—10%, +10%, and + 20% of self-selected walking speed) and completed an unstable sitting task at four
levels of chair instability (100, 75, 60, and 45% of an individual’s “neutral” stability as defined by the grav-
itational gradient). Three-dimensional trunk and pelvic kinematics were collected. Tri-planar Lyapunov
exponents and sample entropy characterized local TPC. Global TPC was characterized by ranges of motion
and, for seated trials, metrics derived from center-of-pressure time series (i.e., path length, 95% confi-
dence ellipse area, mean velocity, and RMS position). No strong or significant correlations (—0.057 < p
<0.206) were observed between local TPC during walking and unstable sitting tasks. However, global
TPC declined in both walking and unstable sitting as task demand increased, with a moderate inter-
task relationship (0.336 < p < 0.544). While the mechanisms regulating local TPC are inherently different,
global TPC may be similarly regulated across both tasks, supporting future translation of improvements
in TPC between tasks.

Published by Elsevier Ltd.

1. Introduction

global TPC has been indirectly quantified by characterizing seg-
mental motions, such as trunk position variability (Dingwell and

Physical pathologies including stroke (Verheyden et al., 2006),
lower limb loss (Hendershot and Nussbaum, 2013), and low back
pain (Lamoth et al., 2006) can adversely influence trunk postural
control (TPC). While TPC has been studied extensively, reported
measures vary between tasks and specific features of dynamic sys-
tems (i.e., global and local). Here, we consider global TPC as the
ability of a system to respond to finite (“global”) perturbations
(e.g., slip or trip), while local TPC is the ability to resist infinitesimal
(“local”) perturbations (e.g., natural gait fluctuations). During gait,
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Marin, 2006) and ranges of motion (ROM). Meanwhile, non-
linear measures, including Lyapunov exponents (Asgari et al.,
2015, Dingwell and Marin, 2006) and sample entropy (SampEn;
Lamoth et al., 2010), have characterized local TPC. During unstable
sitting, global TPC is often characterized using metrics derived
from center-of-pressure (CoP) time series (Hendershot and
Nussbaum, 2013; Radebold et al., 2001) and ROM (Lariviére
et al., 2015); while local TPC has also been characterized by non-
linear analyses of CoP (Lariviére et al., 2015; Van Dieén et al,,
2010). In both walking and unstable sitting, TPC generally declines
with increasing task demand as evidenced by larger values of TPC
measures described previously (Dingwell and Marin, 2006;
Radebold et al., 2001).
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Altered TPC can adversely influence performance in functional
activities (e.g., walking), particularly given the relative mass and
position of the trunk. Indeed, TPC deficits are associated with an
increased risk of falls (Grimbergen et al., 2008, Tinetti et al., 1988)
and musculoskeletal injury (Zazulak et al., 2007). Trunk-specific
exercise regimens are therefore often proposed or utilized to help
mitigate these risks and, in populations with impaired TPC, incorpo-
rated into rehabilitation efforts (e.g., Karthikbabu et al., 2011). Such
isolated TPC tasks have been shown to reduce pain and functional
disability scores in individuals with LBP (O’Sullivan et al., 1997,
Carpes et al., 2008) and improve gait parameters in patients after
stroke (Karthikbabu et al., 2011). These observations suggest that
improvements to TPC may translate between tasks, but there
remains a limited understanding of the effectiveness of such reha-
bilitation paradigms since the relationship between TPC mecha-
nisms in isolated (e.g., unstable sitting) and functional (e.g.,
walking) activities has not been investigated thoroughly. Evidence
comparing local TPC in two upright tasks (standing and walking)
observed little-to-no correlation between them (Kang and
Dingwell, 2006). However, only a single level of demand was inves-
tigated, and TPC during an isolated task (i.e., unstable sitting) was
not determined. We thus explored the relationships between TPC
during two distinct tasks, walking and unstable sitting, when both
are performed at varying levels of task demand. As TPC has been
observed to decrease with increasing demand in both tasks, we
hypothesized that increases in respective task demands of walking
and unstable sitting would be similarly reflected in decrements to
TPC, as evidenced by strong inter-task correlations among TPC mea-
sures at each level of demand.

2. Methods
2.1. Study design and procedures

Thirteen participants with no current or recent history of ill-
ness, injury, or musculoskeletal disorders within the past 12
months (Table 1) completed walking and unstable sitting trials at
varying demand levels. For walking trials, participants walked on
an instrumented dual-belt treadmill (Bertec, Columbus, OH) at four
speeds relative to self-selected walking speed (SSWS; Table 1),
determined from the mean velocity of five over-ground trials
across a 15 m walkway: —20%, —10%, +10%, and +20% SSWS. Rela-
tive (vs. absolute) speeds were chosen to better normalize task
demand across participants, with the expectation that faster
speeds increase demand (Dingwell and Marin, 2006). At each
speed, a 30-s acclimation period was provided before two minutes
of data collection. For seated trials, participants sat on an unstable
chair (Hendershot and Nussbaum, 2013) with eyes open at four
levels of instability, relative to an individual’s gravitational gradi-
ent (VG): 100, 75, 60, and 45% VG (with instability increasing as
%V G decreased). VG was calculated using previously established
methods (Slota et al., 2008) and determined neutral seated stabil-
ity. Participants completed four 60-s trials per condition. However,
only the final (i.e., fourth) trial was used for data analyses; the prior
three practice trials were used to attenuate learning effects (Van
Daele et al., 2007). By the final trial, all participants successfully
completed the unstable sitting task (i.e., the seat did not contact
the base of support). Participants were asked to keep the chair level
and arms crossed throughout trials.

An 18-camera motion capture system (Qualisys, Goteborg, Swe-
den) collected (120 Hz) 10 surface-marker locations to estimate
three-dimensional trunk and pelvic kinematics for all tasks. Mark-
ers were placed over the T10 and C7 spinous processes, sternal
notch, xiphoid, and bilaterally over the acromion, ASIS, and PSIS.
During seated trials, kinetic data were collected (1200 Hz) using
a force platform (AMTI, OR6-7-2000, Watertown, MA) mounted
beneath the chair. Task and condition order were randomized
and counterbalanced, respectively, with 60-s rests provided
between trials. Prior to data collection, participants gave informed
consent to protocols approved by the local Institutional Review
Board.

2.2. Pre-processing

Data were analyzed using Visual3D (C-motion, Germantown,
MD) and MATLAB (Mathworks, Natick, MA). Kinematic and kinetic
data were low-pass filtered (Butterworth, 4th order, cut-off fre-
quencies 6 and 10 Hz, respectively). Three-dimensional trunk
angles (relative to pelvis) were determined using 6DOF inverse
dynamics in Visual3D. For each walking trial, 75 strides of data
were analyzed and resampled to 101 points per stride (i.e., 0-
100% gait cycle). For unstable sitting trials, the first and last five
seconds of data were removed to account for initial and anticipa-
tory adjustments respectively.

2.3. Global TPC analyses

For both tasks, tri-planar trunk-pelvic ROM were determined.
Though ROM does not directly quantify global TPC (i.e., response
to a perturbation), increases in trunk ROM have been observed in
populations with impaired TPC such as fall-prone populations
(Tinetti et al., 1988, Grimbergen et al., 2008). Thus, though partic-
ipants were not perturbed in the current protocol, ROM provided
an indirect characterization of global TPC. For seated trials CoP
path length, mean velocity, 95% confidence ellipse area (CEA),
and RMS positions in the anteroposterior and mediolateral direc-
tions were also determined (Prieto et al., 1996).

2.4. Local TPC analysis

Maximum short-term Lyapunov exponents (is; Rosenstein
et al., 1993) and SampEn (Richman and Moorman, 2000) were used
to characterize local stability of trunk-pelvic angles. A5 quantifies
the rate of convergence/divergence of initially neighboring trajec-
tories. Negative and positive A5 values respectively indicate conver-
gence (i.e., stability) and divergence (i.e., instability); larger
positive values represent a decreased ability to resist local pertur-
bations (i.e., decreased local TPC). Here, tri-planar As were calcu-
lated via state spaces reconstructed from trunk-pelvic angles and
their time-delayed copies (Dingwell et al., 2001). Global false near-
est neighbor and mutual average information analyses respectively
determined embedding dimensions (m = 6) and time delays (t =10
and t=100 samples for walking and seated conditions,
respectively).

Unlike %5, SampEn does not directly characterize the response to
local perturbations. Rather, it characterizes the prevalence of local
perturbations within the system by quantifying its regularity
(Richman and Moorman, 2000). Larger values of SampEn indicate

Table 1

Mean (standard deviation) participant demographic information and self-selected walking speeds (SSWS).
N Age (years) Stature (cm) Mass (kg) SSWS (m/s)
13 (11 M, 2F) 28.7 (7.2) 177.1 (6.3) 74.6 (11.4) 1.46 (0.18)
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low regularity (i.e., high prevalence of local perturbations) while
lower values indicate high regularity (i.e., low prevalence of local
perturbations). Similar to As, SampEn was determined via state-
spaces reconstructed from trunk-pelvic angles. For SampEn calcu-
lations, state-spaces were reconstructed with m = 2 (Yentes et al.,
2013).

2.5. Statistical analyses

Single-factor, repeated-measures ANOVAs (SPSS Inc., Chicago,
IL) assessed the effect of task demand (i.e., speed or VG) on each
outcome measure, with significance concluded when P < 0.05. Lin-
ear correlation analyses related local and global TPC measures
between tasks (e.g., M As, waiking VS As, seated) USINg Spearman’s
rho (p) as data were not normally distributed. Correlation strength
was assessed qualitatively (Portney and Watkins, 2009): 0-0.25
(little or no relationship), 0.25-0.50 (weak-moderate), 0.50-0.75
(moderate-strong), and >0.75 (strong-excellent).

3. Results
3.1. Walking

Ls increased with increasing walking speed in all planes
(Table 2). SampEn increased with speed in the sagittal and trans-
verse planes. Although only approaching significance, SampEn also
increased in the frontal plane. Sagittal and frontal plane trunk-
pelvic ROM were similar between speeds, but transverse plane
ROM increased with walking speed.

3.2. Unstable sitting

All CoP-based metrics were inversely related with #VG. In all
planes, As remained similar across %VG levels. While not statisti-

Table 2

cally significant, SampEn tended to decrease with %¥VG in the
transverse plane. Decreasing %#VG led to increased sagittal and
frontal plane ROM (Table 2).

3.3. Correlation analyses

No strong or significant inter-task correlations were observed in
local TPC measures (i.e., SampEn and Xs). However, measures of
global TPC were weakly-to-moderately correlated (Fig. 1). Trans-
verse plane ROM while walking was correlated with sagittal (p =
0.424, P=0.002) and frontal plane (p=0.433, P=0.001) ROM,
CEA (p=0.527, P<0.001), and both anteroposterior (p = 0.470, P
<0.001) and mediolateral (p=0.544, P<0.001) RMS positions
while seated. Frontal plane ROM while walking was correlated
with frontal plane ROM (p = 0.345, P =0.012), CEA (p=0.336, P =
0.015) and mediolateral RMS position (p = 0.417, P = 0.002) while
seated. Although sagittal plane ROM while walking was not corre-
lated with seated ROM in any plane, it was weakly correlated with
mediolateral RMS position (p = 0.382, P = 0.005) while seated.

4. Discussion

Increases in A5, SampEn, and transverse plane trunk ROM with
increased walking speed are consistent with previous work
(Asgari et al.,, 2015, Dingwell and Marin, 2006, Lamoth et al,,
2010, Van Emmerik et al., 2005), and suggest both local and global
TPC declines with increasing task demand. Specifically, the
increases in As; and SampEn suggest that as walking speed
increased, participants became less able to resist local perturba-
tions while simultaneously experiencing more of these perturba-
tions. During unstable sitting trials, the increases in CoP-based
measures with decreased chair stability are also consistent with
prior reports (e.g., Radebold et al., 2001) and suggest that global
TPC declines with increasing task demand during unstable sitting.

Mean (standard deviation) ranges of motion (ROM), maximum short-term Lyapunov exponents (%), sample entropy (SampEn), and CoP-based metrics for walking and unstable
sitting conditions (SSWS = self-selected walking speed; VG = gravitational gradient, AP = anteroposterior, ML = mediolateral, VT = vertical). Asterisks (*) indicate a significant

effect of task demand (P < 0.05).

Walking
—20% SSW —10% SSW +10% SSW +20% SSW F3.48) P n?
ROM AP (degrees) 10.6 (4.5) 10.23 (3.5) 10.7 (3.1) 11.0 (3.4) 0.174 0914 0.011
ROM ML (degrees) 16.3 (4.3) 16.82 (4.5) 18.8 (4.8) 18.7 (4.2) 1.448 0.241 0.083
ROM VT (degrees) 16.4 (4.5) 17.63 (5.8) 20.3 (5.4) 22.5(7.9) 5.057 0.004 0.240
hs AP 1.27 (0.09) 1.31 (0.10) 1.37 0 15) 1.44 (0.09) 5.333 0.003" 0.250
s ML 1.04 (0.11) 1.10 (0.13) 1.18 (0.16) 1.28 (0.20) 6.116 0.001" 0.278
s VT 1.17 (0.15) 1.27 (0.15) 1.30(0.12) 1.38 (0.14) 4.880 0.005 0.234
SampEn AP 0.27 (0.06) 0.28 (0.06) 0.33 (0.08) 0.35 (0.08) 4401 0.008" 0.216
SampEn ML 0.22 (0.04) 0.23 (0.04) 0.24 (0.04) 0.26 (0.04) 2.708 0.056 0.145
SampEn VT 0.17 (0.03) 0.18 (0.04) 0.21 (0.04) 0.23 (0.04) 7.349 <0.001 0.315
Unstable Sitting
100% VG 75% VG 60% VG 45% VG F(3.48) P n?

ROM AP (degrees) 3.8 (2.7) 5.5 (3.20) 5.6 (2.6) 8.4 (3.2) 5.127 0.004 0.243
ROM ML (degrees) 1.8 (1.1) 2.0 (0.7) 24(1.2) 4.5 (1.0) 19.457 <0.001" 0.549
ROM VT (degrees) 2.8(1.9) 2.5 (0.6) 2.6 (1.0) 3.3(1.3) 0.993 0.404 0.058
As AP 0.12 (0.06) 0.10 (0.04) 0.10 (0.02) 0.09 (0.02) 1.235 0.307 0.072
As ML 0.11 (0.04) 0.09 (0.04) 0.11 (0.04) 0.10 (0.03) 0.657 0.583 0.039
s VT 0.13 (0.03) 0.12 (0.04) 0.10 (0.04) 0.11 (0.02) 1.987 0.128 0.110
SampEn AP 0.05 (0.03) 0.05 (0.02) 0.06 (0.02) 0.06 (0.04) 0.656 0.583 0.039
SampEn ML 0.04 (0.02) 0.04 (0.02) 0.05 (0.02) 0.04 (0.02) 0.783 0.784 0.220
SampEn VT 0.04 (0.02) 0.07 (0.02) 0.06 (0.04) 0.04 (0.02) 2276 0.092 0.124
Path Length (cm) 43.66 (12.27) 45.49 (11.13) 61.90 (19.72) 84.74 (17.79) 15.498 <0.001 0.569
Mean Velocity (cm/s) 0.84 (0.48) 1.21 (0.59) 2.84 (1.95) 5.26 (2.77) 9.051 <0.001 0.492
95 %CEA (cm”2) 0.84 (0.26) 0.87 (0.19) 1.17 (0.35) 1.62 (0.34) 18.221 <0.001 0.361
RMS AP (cm) 0.26 (0.07) 0.34 (0.12) 0.47 (0.15) 0.61 (0.14) 18.221 <0.001" 0.532
RMS ML (cm) 0.18 (0.09) 0.20 (0.06) 0.31 (0.11) 0.46 (0.15) 21.614 <0.001 0.575

n?: small = 0.01, medium = 0.06, large = 0.14 (Cohen 1988).
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Fig. 1. Trunk-pelvic ranges of motion (ROM), 95% confidence ellipse area (CEA), and RMS positions for unstable sitting plotted against trunk-pelvic ROM while walking. Linear
fits and corresponding correlation coefficients (p) are displayed. (SSWS = self-selected walking speed; VG = gravitational gradient, AP = anteroposterior, ML = mediolateral).

However, no significant differences were observed in non-linear
metrics between levels of instability in seated conditions suggest-
ing local TPC was not affected by increases in task demand. More-
over, and contrary to our hypothesis, no strong correlations were
observed between non-linear TPC measures of walking and unsta-
ble sitting, suggesting that local TPC mechanisms differ between
seated and walking tasks. This is likely due to the relatively static
nature of sitting (vs. walking), evidenced by smaller ROM. Further-
more, while the unstable sitting task required dynamic movements
to correct for global perturbations, local perturbations and fluctua-
tions of movement were less prominent given the ultimate goal to
remain “still”, likely leading to increased local TPC (i.e., smaller s
and SampEn) regardless of demand (Table 2). Prior work observed
similar results when comparing local stability in static and
dynamic tasks (Kang and Dingwell, 2006).

Notably, non-linear metrics exhibited higher variance in seated
versus walking tasks. Coefficients of variation for these metrics
while walking were 6-24%, and in sitting were 23-64%; high
inter-subject variability in the latter was perhaps due to task nov-
elty. Participants may thus have adopted different strategies while
adapting to the unstable sitting task, possibly contributing to poor
inter-task correlations. Additionally, treadmill (vs. overground)
walking can artificially reduce &g (Dingwell et al., 2001). Changes
in gait parameters also persist for five minutes while acclimating
to a dual-belt treadmill (Zeni and Higginson, 2010). Our relatively
short acclimation period may therefore have influenced trunk
kinematics, though all trials were performed under the same con-
ditions and no order effects were observed (P > 0.301).

While transverse plane ROM during unstable sitting remained
similar across task demands, this may be a result of the unstable

chair design. The springs mounted beneath the chair, while allow-
ing for the control of instability level, also limit rotations about the
vertical axis. Future work could therefore consider using an appa-
ratus that allows for tri-axial rotations (Van Daele et al., 2009).
Additionally, although moderate inter-task correlations were
observed, future work could also investigate more “extreme” levels
(or spacing) of task demand to further assess this relationship.
Despite little evidence relating local TPC in walking and unsta-
ble sitting, recent work suggests that a relationship between global
TPC mechanisms exists between tasks. Persons with LBP reported
decreased pain and functional disability scores after targeted TPC
training (Carpes et al., 2008, O’'Sullivan et al., 1997) with changes
persisting in a 30-week follow-up (O’Sullivan et al., 1997). Trunk-
specific training has improved gait parameters (e.g., gait speed,
symmetry, etc.) and functional outcomes in patients post-stroke
(Karthikbabu et al., 2011), with more pronounced improvements
when trunk-specific exercises were performed on an unstable (ver-
sus stable) surface (Karthikbabu et al., 2011, Jung et al., 2016).
These results, along with the positive correlations among global
TPC measures in the present study, establish a tentative relation-
ship by which improvements in TPC via unstable sitting may trans-
late to other functional activities, though it is presently unclear if
this relationship persists among individuals with impaired TPC.
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