GRG-Schema v4.0

The GRG Team:
Russell Bent, Carleton Coffrin, Ferdinando Fioretto,
Terrence W.K. Mak, Patrick Panciatici, Pascal Van Hentenryck *

May, 2018

Abstract

This document describes the Grid Research for Good (GRG) schema to represent transmission networks. Time
series data, stochastic time series data, and contingencies will also be discussed.

1 Basic Concepts

This section defines the basic concepts used to model grid data. We first define data types for representing numerical
values, variables, and object statuses. Then we define data types used to represent electrical values.

Throughout the document we adopt the symbol j to denote the complex imaginary unit, which satisfies the equa-
tion: j2 = —1. For a complex number x € C we write Z to denote the conjugate of x. Additionally, for a list of
elements A = (a1, ...,a,), we use the notation A[k] to indicate the k' element of A, a.

For a JSON attribute, the keyword $ref describes a JSON Reference, i.e., a reference to an object whose fragment
part is a URI encoded JSON Pointer. In this document, references are local to the schema, and their values reflect the
document hierarchy. To allow ease of format extension in the future and ease of format conversion between GRG and
other file formats in the power system community, we set ‘additionalProperties’ to ’true’ in our schema to allow users
define additional properties.

1.1 Values
Extended Number

An extended number is a numeric data type whose value is either a number or one of the following: Inf, denoting co,
-Inf denoting —oo, NaN, standing for “not a number” and representing an undefined or unrepresentable value, or Null,
to denote a value which is missing.

extended_number definition

"extended_number": {
"oneOf": [
{"type": "number"},
{llenum": ["Infll, "_Inf", "NaN", "Null"] }

The following example illustrates the above concept by where x is assigned a numeric value, and y to a —oo.

Example: extended-number
"x": 10.23,

myms M_Ipgn

*Contacts: Terrence W.K. Mak: wmak @umich.edu, Pascal Van Hentenryck: pvanhent@umich.edu


mailto:wmak@umich.edu
mailto:pvanhent@umich.edu

Extended Positive Number

An extended positive number restricts the notion of extended number to non-negative values and the special values Inf,
NaN, and Null.

extended_positive_number definition

"extended_positive_number": {
"oneOf": [
{"type": "number", "minimum": O},
{"enum": ["Inf", "NaN", "Null"]}
1
}
Domain

A domain is a collection of values used to describe valid assignments for a variable. We define three types of domains:
o Finite domains describing a collection of strings.

o Finite domains describing a collection of numbers.

e Bound domains describing a range [Ib, ub] C R.

GRG schema: domain

"domain": {
"type" : "object",
"required": ["var"],
"properties": {
"var": {
"oneOf": [
{
"type" : "array",
"items" : {"type": "string"},
"minItems": 1
beo A
"type" : "array",
"items" : {"type": "number"},
"minItems": 1
bro A
"type" : "object",
"required": ["1b", "ub"],
"properties": {
"1b" : {"Sref": "#/values/extended_number"},
"ub" : {"Sref": "#/values/extended_number"}
}y
"additionalProperties": true

H

}I
"additionalProperties": true

Following are examples of finite string domain (x), finite numerical domain (y), and bound domain (z).

Example: domain

"X": { "var": ["a", "b"’ "c"] },
"yUio{ "war": [1, 2, 3] },
"le: { "var": {lllb": 0’ llubll: 10} }

Positive Domain

A positive domain restricts the notion of domain to non-negative values.

GRG schema: positive_domain

"positive_domain": {
"type" . "object",
"required": ["var"],



"properties": {

var": {
"oneOf": [
{
"type" : "array",
"items" : {"type": "string"},
"minItems": 1
b A
"type" : "array",
"items" : {"type": "number", "minimum": 0},
"minItems": 1
boo A
"type" : "object",
"required": ["1b", "ub"],
"properties": {
"1b" : {"Sref": "#/values/extended_positive_number"},
"ub" : {"Sref": "#/values/extended_positive_number"}
} 4
"additionalProperties": true
H1
}
I
"additionalProperties": true
}
Abstract Value

An abstract value is an extended numeric data type which can describe either a numeric value or a variable.

GRG schema: abstract_-value

"abstract_value": {
"oneOf": [
{"Sref": "#/values/extended_number"},
{"Sref": "#/values/domain"}

In the following code, x is a variable abstract value, and y is a numeric abstract value.

Example: abstract-value

"X": { "Var": {lllbll: 0, llub": 10} },
"y": 3.56

Abstract Positive Value

An abstract positive value restricts the notion of abstract value to non-negative numeric values and non negative
variables.

GRG schema: abstract_positive_value

"abstract_value": {
"oneOf": [
{"Sref": "#/values/extended_positive_number"},
{"S$ref": "#/values/positive_domain"}
1
}
Status

A status is a special boolean variable whose domain elements are “on” and “off™.

GRG schema: abstract_status

"status": {
"oneOf": [
("enum" . ["off", "on"l},



"type" : "object",

"required": ["var"],
"properties": {
"var": {
"type" . "array"’
"items" : {"enum": ["on", "off"]},
"minItems": 2, "maxItems": 2, "uniqueltems": true
}
}!
"additionalProperties": true

In the following examples, x represents an unassigned status variable, and y represents a status element whose value
is ‘on’.

Example: status

"X": { “Var": ["OI'I", "Off"] )
ngns monn,
GRG Pointer

A GRG pointer is a string used to identify an object’s value in the GRG document. A GRG pointer extends a JSON
pointer by adopting the following prefixes:

e #, which refers to the document root.

e @, which refers to a JSON object in the same scope as the pointer itself.

If the pointer does not start with either # or @, we assume the pointer refers to a component by its unique ID.

GRG schema: grg.pointer
" 3 n
grg_pointer": {

"type": "string",

"pattern": ll.*"

In the following examples, the GRG pointers pl, p2, and p3 refer to the same value (voltage_id ALH_2). The
GRG pointer p3 uses the global GRG id of the component object for referencing. In GRG format, we assume all GRG
ids (1d) are global and unique for all the components (i.e. GRG ids are global identifiers of components). The pointer
p4 refers to the first value of the array var in the object status of switch_example.

Example: grg._pointer

"network: {
"components": {
"switch_example" : {
"type" : "switch",
"subtype" : "breaker",
"idll . "SW ’722",
"link_1" : "voltage_id_ ALH_2",
"link_2" : "voltage_id_ ALH_3",
"status" : {"var" : ["off", "on"]},
"pl" . "@/lil’lk_l"
}
}
br
"p2": "#/network/components/switch_example/link_1",
"p3": "sw_722/1link_1",
"p4": "sw_722/status/var/0




Table

A table is an object linking a list of GRG elements (e, ..., ex) to a set of tuples {T1,...,T,}, where each T; =
(v1,...,vx) has values v; (i=1, ..., k). The elements are referred to as table arguments, and the set of value tuples
as table values. In other words, a table expresses the relation between a list of elements and the set of possible values
for such elements.

GRG schema: table

"table": {
”type" . "object",
"required": ["arguments", "values"],
"properties": {
"arguments": {
"type" . "arrayvv,
"items" : {"Sref": "#/values/grg_pointer"},
"minItems": 1, "uniqueltems": true
by
"values": {
"type" : "array":
"items": {
"typell . "array",
"items": {
"oneOf": [
{"type": "#/values/abstract_value"},
{"type": "string"}
]
I
"minTtems": 1
br
"minTtems": 1

The following example describes three assignments for the elements x, v, and z:
x=1,yvy=12, z=13

x=2,vy=6, z=20
x=3,y=10, z =31

Example: table

"table_1" : {
"arguments": ["#/x", "#/y", "#/z"],
"walues" : [[ 1, 12, 131,
[ 2, 6, 20 1,
[ 3, 10, 31 1]

1.2 Electrical Values

This section defines the electrical values adopted by the GRG schema.

Impedance

Electrical impedance measures the opposition of a circuit to a current when a given voltage is applied. Impedance is
represented as a complex quantity Z:
Z =R+ jX, (1)

where R denotes the resistance, and X the reactance.
Table | maps the real and imaginary components of impedance to their GRG schema counterparts.



GRG name Symbol [ Unit \

impedance Z Ohm ()
resistance | R Ohm (2)
reactance X Ohm (2)

Table 1: Impedance: representation in the GRG impedance element and units.

GRG schema: impedance

"impedance": {
"type" : "object",
"required" : ["resistance", "reactance"],
"additionalProperties": true,
"properties": {
"resistance": {"S$ref": "#/values/abstract_value"},
"reactance" : {"Sref": "#/values/abstract_value"}

Though the schema definition may seem complicated, the following example shows how simple it is to use:

Example: impedance

"impedance" : {
"reactance" : 6.52,
"resistance" : 2.39

}

Admittance

Electrical admittance is a measure of how much a circuit allows current to flow. Admittance is represented by a
complex quantity Y:
Y =G+ jB, )

where GG denotes conductance, and B denotes susceptance. These real and imaginary components are mapped to the
GRG admittance object as shown in Table 2.

’ GRG name \ Symbol \ Unit ‘
admittance Y Siemens (5)
conductance | G Siemens (.5)
susceptance | B Siemens (S)

Table 2: Admittance: representation in the GRG admittance element and units.

GRG schema: admittance

"admittance": {
"type" : "object",
"required" : ["conductance", "susceptance"],
"additionalProperties": true,
"properties": {
"conductance" : {"Sref": "#/values/abstract_value"},
"susceptance" : {"Sref": "#/values/abstract_value"}

The following example shows how to define an admittance in GRG format:

Example: admittance

"shunt" : {
"conductance" : 0,
"susceptance" : 2.3e-05




Power

Electric power is the rate at which electrical energy is transferred by an electric circuit. We define the complex power
S as:

S=P+jQ, 3)
where P is the active (or real) power, and () is the reactive power. Table 3 shows how these quantities are encoded in
the GRG format.

| GRG name [ Symbol | Unit \

power S
active P MegaWatt (MW)
reactive | @ MegaVolt-Ampere Reactive (MVAR)

Table 3: Power: representation in the GRG format and units.

GRG schema: power

"power": {
"type" : "object",
"required" : ["active", "reactive"],
"additionalProperties": true,
"properties": {
"active" : {"Sref": "#/values/abstract_value"},
"reactive" : {"Sref": "#/values/abstract_value"}

Active and reactive power are defined as variables with bound domains in the following example:

Example: power

"power" : {
"active" : { "var" {"1lb": 0, "ub": 30.0} 1},
"reactive" : { "var" {"1lb": -14.0, "ub": 14.0} }
}
Voltage

Voltage is the difference in electric potential energy between two points per unit electric charge. We define the voltage
phasor V as: '

V=uv-é?, 4)
where v is the voltage magnitude, and 6 is the voltage phase angle. Table 4 connects the phasor components and units
to their GRG representations.

’ GRG name \ Symbol \ Unit ‘

voltage 1%
magnitude | v kiloVolt (kV)
angle 0 Degrees

Table 4: Voltage: representation in the GRG format and units.

GRG schema: voltage

"voltage": {
"type" : "object",
"required" : ["magnitude", "angle"],
"additionalProperties": true,
"properties": {
"magnitude" : {"Sref": "#/values/abstract_value"},
"angle" : {"Sref": "#/values/abstract_value"}




In the following example, magnitude and phase angle are defined as variables:

Example: voltage

"voltage" : {
"magnitude" : { "var" {"1lb": 210, "ub": 250.0} },
"angle" B { "var" {"lb": "_Inf"’ Hub": "Inf"} }

1.3 Limits

Current Limits

Transmission lines (see section AC Line) and transformers (see section Transformers) have limited current-carrying
capacity, described as ranges of current values [[™", I™%") that may be sustained for a duration d.
A current limit is represented in GRG format according to Table 5.

| GRG name | Symbol [ Unit \

min min Ampere (A)
max mer Ampere (A)
duration | d Seconds (sec)

Table 5: Current Limits: representation in the GRG format and units.

A current limit object is expressed as an array of individual limits. Each individual limit is a JSON object containing at
least four fields: duration, min, max, and report. The extra report field is a boolean field, indicating whether
the status of the branch should be signaled to the operator (‘on’) or not (‘off”).

GRG schema: current_limits

"current_limits": {
"type": "array",
"items" : [{
"type": "object",
"required": ["duration", "min", "max", "report"],
"additionalProperties": true,
"properties": {
"duration": {"Sref": "#/values/basic_values/extended_number"},
"min": {"Sref": "#/values/basic_values/extended_number"},
"max": {"Sref": "#/values/basic_values/extended_number"},
"report": {"enum": ["on","off"]}
}
I
"minItems": 1,
"additionalItems": false

An example of current limits is provided below. The branch can (1) carry up to 563 A indefinitely, or (2) carry between
563 A and 746 A indefinitely, but with a signal to the system operators, or (3) carry current in excess of 746 A for at
most 6300 seconds before tripping the branch.

Example: current_limits

"current_limits" : [

{"duration": "Inf", "min": 0, "max": 563, "report": "off"},
{"duration": "Inf", "min": 563, "max": 746, "report": "on"},
{"duration": 6300, "min": 746, "max": "Inf", "report": "off"}

Thermal Limits

Transmission line and transformer limits can also be described in terms of power [P™™, P™a%) that may be safely
carried for a given duration d. The GRG representation of a thermal limit is provided in Table 6.

Similar to the current limit, a thermal limit object is also expressed as an array of individual limits. Each individual
limit is again a JSON object containing at least four fields: duration, min, max, and report.



GRG name | Symbol | Unit \

min Smin MegaWatt (MW)
max Smar MegaWatt (MW)
duration | d Seconds (sec)

Table 6: Thermal Limits: representation in the GRG format and units.

GRG schema: thermal_limits

"thermal_limits": {
"type": "array",
"items" : [{
"type": "object",
"required": ["duration", "min", "max", "report"],
"additionalProperties": true,
"properties": {
"duration": {"$ref": "#/values/basic_values/extended_number"},
"min": {"Sref": "#/values/basic_values/extended_number"},
"max": {"Sref": "#/values/basic_values/extended_number"},
"report": {"enum": ["on","off"]}
}
Py
"minItems": 1,
"additionalItems": false

2 Network Components

Having described the fundamental parameters of electrical devices like transmission lines, transformers, and genera-
tors, we now describe these components themselves.

2.1 AC Line

An AC line connects network devices in two different points of the network. It has two sides: side I is defined as the
sending side, and side 2 is defined as the receiving side. For simplicity, we assume the current is positive when flowing
from side 1 to side 2, i.e. "left to right”. The currents I; (at side 1) and I (at side 2) are given by:

1

I1=Y1-V1+E(V1—V2) &)
1

12=—Y2-V2+§(V1—V2), (6)

where Y1 = G1 + jB; and Y5 = G4 + j Bs are the admittances at sides 1 and 2, respectively, Z = R + j X is the line
impedance, and V; and V5 are the voltages at the connecting points. Figure | illustrates an AC line between nodes 1
and 2 (represented by the black points at the ends). The power S; at side 4 (i € {1,2}) is given by:

Si=5-V; )

Note that many softwares/implementations may assume a different current/power flow directions. Users will need to
flip the sign of the current variables or power variables if the direction is changed from “left to right” to right to left”.

Line current/thermal limits are monitored at both ends. For current limits, the absolute value of current magnitude
is compared to a sequence of current limits Ly = Ly,,..., Ly, and Ly = Lo,,...,Ls_, where each L;, (¢ €
{1,2},k € {1,...,n})is a current limit object, and for each L;, , (k > 1), I/ = I}’ Thermal limits are similar.
The absolute value of complex power magnitude is compared to a sequence of thermal limits L; = Ly,,...,L; ,and
Ly =Ls,...,La, ,whereeach L;, (i € {1,2},k € {1,...,n})is a thermal limit object, and for each L, , (k > 1),
S;‘:” = S;*. Finally, the current/thermal limit durations are such that d;, = oo, denoting that L;, is a permanent
acceptable limit.



L1 R +jX 2

2

® >
A
4
Figure 1: Illustration of an AC line.
GRG schema: ac-line
"ac_line": {
"type" : "object",
"required": ["type", "id", "link_1", "link_2", "shunt_1", "shunt_2", "impedance"],
"additionalProperties": true,
"properties": {
"type" : {"enum": ["ac_line"]},
"subtype" : {"type": "string"},
nig" . {lltypell: "string"},
"description" : {"type": "string"},
"link_1" : {"type": "string"},
"link_2" : {"type": "string"},
"shunt_1" : {"Sref": "#/electrical_values/admittance"},
"shunt_2" : {"Sref": "#/electrical_values/admittance"},
"impedance" : {"Sref": "#/electrical_values/impedance"},
"current_limits_1" : {"Sref": "#/limits/current_limits"},
"current_limits_2" : {"Sref": "#/limits/current_limits"},
"thermal_limits_1" : {"Sref": "#/limits/thermal_limits"},
"thermal_limits_2" : {"Sref": "#/limits/thermal_limits"}

For a component object in the GRG schema, we use t ype and subtype (optional) to identify the type of an object
(for example an AC line). id is a unique identifier for global referencing, and description (optional) is further
used to describe the component. Fields 1ink_1 and 1ink_2 are global identifiers for identifying the voltage points
being connected to the network component. For an AC line, 1ink_1 and 1ink_2 will be the voltage points at side
1 and side 2 respectively. shunt_1 and shunt_2 define the admittances Y; and Y5 at sides 1 and 2, respectively.
impedance defines the impedance Z of the line. current_limits_1 and current_limits_2 describe collec-
tions of current limits associated to sides 1 and 2 of the line. Finally, thermal_limits_1 and thermal_limits_2
describe collections of thermal limits associated to sides 1 and 2 of the line. Thermal limits are optional. Starting from
GRGV1.6, current limits are also optional. A summary of these AC line components is provided in Table 7.

An example of an AC line in GRG format is provided in Figure 2.

2.2 DC Line

In GRGV4.0, we start to provide support for High-Voltage DC (HVDC) lines. A DC line connects network devices at
two different points of the network, with an AC-DC converter on each side. The converter is called rectifier if set to
convert power from AC to DC, and will be called inverter if set to convert power from DC to AC. Power or current
flowing through the DC line are first converted from AC to DC by a rectifier, before devliering power back to the
network in AC by an inverter.

DC line again has two sides. We define side [ as the sending side, and side 2 as the receiving side. For simplicity,
we again assume the current is positive when flowing from side 1 to side 2, i.e. "left to right”. In other words, we
implicitly assume side 1 will be connecting to a rectifier, and side 2 will be connecting to an inverter. The DC voltages

10



GRG name

symbol | unit

link_1 side 1

link_2 side 2
impedance—resistance R Ohm (2)
impedance—reactance X Ohm (2)
shunt_l—conductance Gy Siemens (S)
shunt_l—susceptance B, Siemens (S)
shunt_2—conductance Go Siemens (S)
shunt _2—susceptance Bs Siemens (S)
current_limits_1[k]—duration | dj, Seconds (sec)
current _limits_ 1[k]—min {‘;’" Ampere (A)
current limits_ 1[k]—max e Ampere (A)
current_limits_2[k]—duration | dg, Seconds (sec)
current_limits 2[k]—min g}:" Ampere (A)
current_limits_2[k]—max 5‘;‘” Ampere (A)
thermal limits_1[k]—duration | dj, Seconds (sec)
thermal limits_1[k]—min {"km MegaWatt (MW)
thermal_ limits_1[k]—max STee MegaWatt (MW)
thermal_limits_2[k]—duration dgk Seconds (sec)
thermal _limits_2[k]—min Smm MegaWatt (MW)
thermal limits_ 2[k]—max Sm‘”” MegaWatt (MW)

Table 7: AC line: representation in the GRG format and units.

Example: AC Line

"ac_line_11" : {
"type" "ac_line",
"subtype" "overhead",
"id" "line_11",
"link_1" "voltage_id_ALH_5",
"link_ 2" : "voltage_id_OQF_5",
"current_limits_1" [
{"duration": "Inf", "min": 0, "max": 563, "report": "off"},
{"duration": "Inf", "min": 563, "max": 746, "report": "on"},
{"duration": 6300, "min": 746, "max": "Inf", "report": "off"}
1,
"current_limits_2" [
{"duration": "Inf", "min": 0, "max": 563, "report": "off"}
:| 4
"impedance" {"reactance" : 6.52, "resistance" : 2.39},
"shunt_1" {"conductance" : 0, "susceptance" : 2.3e-05},
"shunt_2" {"conductance" : 0, "susceptance" : 2.3e-05}

V7 (at side 1) and V5 (at side 2

Figure 2: An example of a GRG AC Line.

) of a DC line are linked by:

Vi=Va+RI

(®)
€))

where R is the DC line resistance, and I is the DC current flowing through the DC line. The DC power S; at side ¢

(7 € {1,2}) is given by:

Si=1-V,

(10)

Again, many softwares/implementations may assume a different current/power flow directions. Users will need to flip

the sign of the current/power variables if the direction is changed from “left to right” to right to left”.

11



In GRG, we also support modeling of active power loss P4 for the converters by:
Pogs = min(max(lyin, le1 P + col), Imax) (11)

where P is the active power flowing through the converter, I ,i;, and Imax are the minimum and maximum losses of
the converter, and ¢ /¢q are the coefficients of the converter loss function. Detailed modeling of the converter control
mechanism (e.g. VSC or LCC controls) can also be added to the JSON object as extensions.

Figure 3 illustrates a DC line connecting to two converters.

rectifier R inverter

1 2
— —  e— —e— — >
Z Y

Figure 3: Illustration of a DC line.

Similar to AC lines, line current/thermal limits are monitored on DC lines at both ends. For current limits, the
absolute value of current magnitude is compared to a sequence of current limits Ly = Ly,,...,L;,, and Ly =
Lo, ..., Ly, , where each L;, (i € {1,2},k € {1,...,n}) is a current limit object, and for each L;,, (k > 1),
I z“;m = I;}*". Thermal limits are similar. The absolute value of complex power magnitude is compared to a sequence
of thermal limits Ly = Lq,,...,L1,, and Ly = Lo,,..., Ly , where each L;, (¢ € {1,2},k € {1,...,n})isa
thermal limit object, and for each L;,, (k > 1), S;‘l‘f” = 53" Finally, the current/thermal limit durations are such
that d;, = oo, denoting that L;, is a permanent acceptable limit.

GRG schema: dc_-line

"dc_line":{

"type": "object",
"required": ["type", "id", "link_1", "link_ 2", "resistance",
"losses_1", "losses_2" 1,
"additionalProperties": true,
"properties": {
"type": { "enum": ["dc_line", "dc_line_vsc", "dc_line_lcc"]},
"subtype": {"type": "string"},
midr: "type": "string”},
"description": {"type": "string"},
"link_1": {"type": "string"},
"link_2": {"type": "string"},
"resistance": {"S$ref": "#/values/basic_values/abstract_value"},
"losses_1": {
"type": "object",
" required" . [" Cio "’ "Cil "] ,
"additionalProperties": true,
"properties": {
"min" : {"Sref": "#/values/basic_values/abstract_value"},
"max" : {"Sref": "#/values/basic_values/abstract_value"},
"c_O" : {"Sref": "#/values/basic_values/abstract_value"},
"e_1" : {"Sref": "#/values/basic_values/abstract_value"}
}
br
"losses_2": {
lltypell: "object",
"required": ["c_O", "c_1"],
"additionalProperties": true,
"properties": {
"min" : {"S$ref": "#/values/basic_values/abstract_value"},
"max" : {"S$ref": "#/values/basic_values/abstract_value"},
"c_O" : {"Sref": "#/values/basic_values/abstract_value"},
"c_ 1" : {"Sref": "#/values/basic_values/abstract_value"}

12



b
"output_1" : {

"reactive": { "Sref": "#/values/electrical_values/abstract_value" }
}7
"output_2" : {

"reactive": { "S$Sref": "#/values/electrical_values/abstract_value" }
}l
"current_limits_1": {"S$ref": "#/values/limits/current_limits"},
"current_limits_2": {"Sref": "#/values/limits/current_limits"},
"thermal_limits_1": {"Sref": "#/values/limits/thermal_limits"},
"thermal_limits_2": {"Sref": "#/values/limits/thermal_limits"}

For a component object in the GRG schema, we use type and subtype (optional) to identify the type of an
object (for example a DC line). id is a unique identifier for global referencing, and description (optional) is
further used to describe the component. Similar to AC lines, fields 1ink_1 and 1ink_2 are again global identifiers
for identifying the voltage points being connected to the network component. For a DC line, 1ink_1 and 1ink_2
will be the voltage points of its converters at side 1 and side 2 respectively.

resistance define the resistance R for the DC line. losses_1 and losses_2 give the power losses for the
converters at side 1 and 2 respectively. The two JSON objects are required to provide the loss function coefficients
c_-0 and c_1. min and max are optional fields denoting the minimum and maximum active power losses. output_1
and output_2 are optional fields to denote the feasible range of the reactive power at side 1 and 2 respectively.
Feasible active power range are also allowed to be extended and inserted into the output_1 / output_2 JSON
objects. Similar to AC line, current _limits_1 and current_limits_2 describe collections of current limits
associated to sides 1 and 2 of the line, and thermal_limits_1 and thermal_limits_2 describe collections of
thermal limits associated to sides 1 and 2 of the line. Thermal limits and current limits are both optional. A summary
of these DC line components is provided in Table 8.

An example of a DC line in GRG format is provided in Figure 4.

Example: DC Line

"dc_line_01": {
"type": "dc_line_vsc",
"id": "dc_line_1",
"link_1": "voltage_id_30",
"link_2": "voltage_id_31",
"resistance": 0.0192,
"losses_1": { "min": 0.01, "c_O": 0.02, "c_1": 0.03 },
"losses_2": { "min": 0.01, "c_O": 0.02, "c_1": 0.03 1},
"output_1": { "reactive": { "var": {"lb": -0.4, "ub": 0.4} } },
"output_2": { "reactive": { "var": {"lb": -0.4, "ub": 0.4} } },
"current_limits_1" : [
{"duration": "Inf", "min": 0, "max": 600, "report": "off"}

:| 4
"current_limits_2" : [
{"duration": "Inf", "min": 0, "max": 600, "report": "off"}

]

Figure 4: An example of a GRG DC Line.

2.3 Transformers

A two winding transformer connects devices located at two different voltage levels of the network. We denote these
voltage levels VL; and VL, and their associated nominal voltage values v1°™ and v5°™. Most transformers are
equipped with taps on their winding to adjust the voltage transformation or the reactive flow through the transformer.
For a specific tap k£, we denote the voltage magnitude ratio for a transformer to be 7, phase shift to be d;, impedance

to be Z, and admittance to be Yj,. The current GRG schema supports to two circuit diagram for representing a two

13



GRG name symbol | unit

link_1 side 1

link_2 side 2

resistance R Ohm (2)
losses_1—min Inin MegaWatt (MW)
losses_l—max Imax MegaWatt (MW)
losses_1—c.0 co MegaWatt (MW)
losses_1—c_1 c1 MegaWatt (MW)
losses_2—min Linin MegaWatt (MW)
losses_2—max Imax MegaWatt (MW)
losses 2—c.0 Co MegaWatt (MW)
losses_2—c_1 c1 MegaWatt (MW)
output_l—reactive Q MegaVolt-Ampere Reactive (MVAR)
output _2—reactive Q MegaVolt-Ampere Reactive (MVAR)
current_limits_1[k]—duration | di, Seconds (sec)
current_limits_ 1[k]—min I{’}j” Ampere (A)
current_limits_1[k]—max e Ampere (A)
current_limits_2[k]—duration | dg, Seconds (sec)
current limits 2 [k]—min Ig}f" Ampere (A)
current_limits_2[k]—max Ig}c” Ampere (A)
thermal limits_1[k]—duration | dj, Seconds (sec)
thermal limits_1[k]—min rﬂ:" MegaWatt (MW)
thermal_ limits_1[k]—max ST MegaWatt (MW)
thermal limits_2[k]—duration | dg, Seconds (sec)
thermal_ limits 2 [k]—min pun MegaWatt (MW)
thermal_limits_ 2 [k]—max 3}:” MegaWatt (MW)

Table 8: DC line: representation in the GRG format and units.

Two Winding Transformer: T model

14
e

winding transformer: the T model (Figure 5) and the PI model (Figure 6). We describe the T model first, then later the

R+ X

<
ENN

G +jB

NS

Figure 5: Illustration of the T model for a two winding transformer.

14




Similar to AC transmission line, without loss of generality, we assume the current is positive when flowing from 1
to 2 (i.e. left to right). The currents I; and /5 at sides 1 and 2:

1
h:@%nWT5ﬂW*%D (12)
1
I, = —(V/ — V3), where (13)
Zy
VQnom o ,
pr = ((W) ) - €% V= Vipy, (14)
1

Y = Gi + jBy is the admittance of the transformer on tap k, 7 = Ry, + j X} is the impedance of the transformer
on tap k, V7 and V5 are the voltages at the connecting buses in VL; and VL,, respectively. We use V"™ and V3™
to denote the nominal voltage magnitudes at sides 1 and 2 of the transformer, respectively. The power S; at sides ¢
(i € {1,2}) is given by:

S, =1V, (15)

As with AC lines, transformers have also both current and thermal limits. The maximum absolute value of the
current magnitude is monitored on both sides of the branch. Constraints are described through a sequence of current
limits Ly = Li,,...,L1,, and Ly = Lo,,..., Ly , where each L;, (i € {1,2},k € {1,...,n}) is a current
limit object, and for each L;,, (k > 1), IZ“;”L = I;}*". The absolute value of complex power magnitude is similar
and also monitored on both sides of the branch. Constraints are described through a sequence of thermal limits
Ly=1L4,...,L1,,and Ly = Lo,,..., Lo, where each L;, (i € {1,2},k € {1,...,n}) is a thermal limit object,
and for each L;,, (k > 1), Sﬁin = 57%. Finally, the current/thermal limit durations are such that d;, = oo, denoting
that L;, is a permanent acceptable limit.

Two Winding Transformer: PI model

The PI model (Figure 6) are widely used in the literature, and differs from the T model by moving half of the admittance
Y}, to the right hand side. The complex turns ratio ,e*°* are also used differently. The PI model represents a step-down
transformer scaling down the voltage, while the T model represents a step-up transformer scaling up the voltage.

r, &% R + jX

NS

v v G+jB G +jB
1

Figure 6: Illustration of the PI model (right) for a two winding transformer.

Without loss of generality, we assume the current is positive when flowing from 1 to 2 (i.e. left to right). The

15



currents I; and I5 at sides 1 and 2 are:

)¢ 1
[1:ﬁk'(7k'w+7k(vf*v2)) (16)
1 Y,
I, = Z—k(Vl' —Vs) — ; - Va, where (17)
Vnom 1 .
pr= () 7o) 7™ W = Vips (18)
1

Y = Gy, + j By is the admittance of the transformer on tap k (half of each side), Z,, = Ry + j X is the impedance of
the transformer on tap k, V7 and V5 are the voltages at the connecting buses in VL1 and VLo, respectively. Similarly,
we again use V"™ and V;'°™ to denote the nominal voltage magnitudes at sides 1 and 2 of the transformer, respectively.

The power S; at sides ¢ (i € {1,2}) is again given by:
Si=1;-Vi 19)

The thermal and current capacity limits are the same as the T model. Since the T model and the PI model share the
same set of components, we use the same JSON format and schema to store and represent both types of transformers.

GRG schema: two-winding_-transformer

"two_winding_transformer": {
”type" . "object",
"required": ["type", "id", "link_1", "link_2", "tap_changer"],
"additionalProperties": true,
"properties": {
"type": {
"enum": ["two_winding_transformer", "T_model_transformer", "PI_model_transformer"]
}7
"subtype": {"type": "string"},
"id": {"type": "string"},
"description": {"type": "string"},
"link_1": {"type": "string"},
"link_2": {"type": "string"},
"current_limits_1": {"S$ref": "#/values/limits/current_limits"},
"current_limits_2": {"Sref": "#/values/limits/current_limits"},
"thermal_limits_1": {"Sref": "#/values/limits/thermal_limits"},
"thermal_limits_2": {"Sref": "#/values/limits/thermal_limits"},
"tap_changer": {
"type": "object",
"required": ["position","impedance", "shunt","transform","steps"],
"additionalProperties": true,
"properties": {
"position": {"$ref": "#/values/basic_values/abstract_value" },
"impedance": {"Sref": "#/values/electrical_values/impedance"},
"shunt": { "Sref": "#/values/electrical_values/admittance"},
"transform": {
"type": "object",
"required": ["tap_ratio", "angle_shift"],
"additionalProperties": true,
"properties": {
"tap_ratio": {"Sref": "#/values/basic_values/abstract_value"},
"angle_shift": { "$ref": "#/values/basic_values/abstract_value"}

}I
"steps": {
"type": vvarray",
"items" : [
{
"type": "object",
"required": ["position", "impedance", "shunt", "transform"],
"additionalProperties": true,
"properties": {
"position": {"type": "number"},
"impedance": {"S$ref": "#/values/electrical_values/impedance"},
"shunt": {"Sref": "#/values/electrical_values/admittance"},

16



"transform": {
"type": "object",
"required": ["tap_ratio", "angle_shift"],
"additionalProperties": true,
"properties": {
"tap_ratio": { "Sref": "#/values/basic_values/abstract_value"},
"angle_shift": { "$ref": "#/values/basic_values/abstract_value"}

"minItems": 1,
"additionalItems": false

In the two winding transformer GRG schema, t ype identify the type of an object. Prior to GRGv4.0, a T model trans-
former will have type equals to string two_winding_transformer and a subtype equals to string T_mode1.
Similarly before GRGv4.0, a PI model transformer will have t ype equals to string two_winding_transformer
and a subtype equals to string T_-model. Since T model/PI model transformers are specific subclasses of two
winding transformers, the label of two_winding_transformer are redundant. In GRGv4.0, we unify type and
subtype labels. A T model transformer will have type set to string T_-model_transformer, and a PI model
transformer will have type set to string PT_model_transformer. To allow ease of extensions/migrations, the
GRGV4.0 schema still accept the old naming conventions, i.e. allowing type to be two_winding_transformer
with a user customized subtype field to refer to specific mathematical models.

Field id is a unique identifier for global referencing, and description (optional) is further used to describe the
component. Fields 1ink_1 and 1ink_2 are global identifiers for identifying the voltage points being connected to
the network component. For a two winding transformer, 1ink_1 and 1ink_2 will be the voltage points at side 1 and
side 2 respectively. current_limits_1 and current_limits_2 describe collections of current limits associated
to sides 1 and 2 of the line. thermal_limits_1 and thermal_l1imits_2 describe collections of thermal limits
associated to sides 1 and 2 of the line. Both current and thermal limits are optional. Finally, tap_changer describes
the transformer taps, requiring fields: position, impedance, shunt, transform (containing tap_ratio and
angle_shift), and steps. The position field describes the possible indices (or the pre-set index) of the tap
steps for the transformer. The impedance, shunt, and t ransform (containing tap_ratioand angle_shift)
describes the ranges (or the pre-set values) of the (tap) impedance, shunt, tap ratio, and tap phase shifts. Finally,
steps is a JSON array object describing all the possible assignments for position, impedance, shunt, and
transform(i.e. tap_.ratio and angle_shift) objects.

A summary of the two winding transformer components in nominal units is provided in Table 9, and an example
is provided in Figure 7.

2.4 Three winding Transformer

A three winding transformer connects devices located at three different voltage levels of the network. We denote these
voltage levels VL, VLo, and VL3 and their associated nominal voltage values as V"™, VJ'°", and V3'°™, respectively.
Figure 8 provides an illustration of a three winding transformer.

Without loss of generality, we assume and define side I to be the high voltage side, side 2 to be the medium
voltage side, and side 3 to be the low voltage side. To simplify our notations, we assume the current flows from side
1 to side 2 and side 3 (i.e. flows from the left to the right in Figure 8). Voltages V1, V5, and V3 are the voltages at the
connecting/terminal buses, and V7, V3, and V4 will be their corresponding voltages behind the three transformer taps.
Let V,,, to be the voltage in the star middle point.

P1,» P2,,» and ps, , corresponding to the k-th transformer tap, will then be the complex voltage multipliers/ratios on

17



GRG name symbol unit \

link_1 side 1
link_2 side 2
current_limits_1[k]—duration dy, Seconds (sec)
current limits_ 1[k]—min ﬂm Ampere (A)
current _limits_ 1[k]—max e Ampere (A)
current_limits_2[k]—duration da, Seconds (sec)
current limits 2 [k]—min g}:” Ampere (A)
current_limits_2[k]—max Im‘” Ampere (A)
thermal limits_1[k]—duration dlk Seconds (sec)
thermal limits_1[k]—min min MegaWatt (MW)
thermal limits_ 1[k]—max e MegaWatt (MW)
thermal_ limits_2[k]—duration da, Seconds (sec)
thermal _limits_2[k]—min Smm MegaWatt (MW)
thermal limits_ 2 [k]—max Sm“z MegaWatt (MW)
tap_-changer—position k
tap_changer—impedance—resistance Ry, Ohm ()
tap_-changer—impedance—reactance X Ohm ()
tap_changer—shunt—conductance Gy Siemens (.5)
tap_.changer—shunt—susceptance Bk Siemens (S)
tap_changer—transform—tap_ratio ( Vl:""‘ )rk (T model) | voltage-ratio
(%)rk (PI model) | voltage-ratio
tap_-changer—transform—angle_shift Ok degrees
tap_-changer—steps[k] —2position k
tap_changer—steps|[k]—impedance—resistance | Ry Ohm ()
tap_.changer—steps|[k] —impedance—reactance Xk Ohm ()
tap_changer—steps|[k] —shunt—conductance Gy Siemens (S)
tap_changer—steps [k]—shunt—susceptance Bk Siemens (S)
tap_changer—steps[k]—transform—tap.ratio (Vnorn )i (T model) | voltage-ratio
(Knom ). (PI model) | voltage-ratio
tap_-changer—steps [k] »transform—angle_shift | Ji degrees

Table 9: Two winding transformer: representation in the GRG format and units.

sides 1, 2, and 3 of the transformer:

nom

‘/1/ = plth where Pl = ((Vnom)rlk) . ej51k, (20)
Vn()m 6
Vy = pa, Va, where py, = ((Vnom)rgk) 7% 21
Vs = ps3, V3, where p3, = ((#)Tfﬁk) - /%% (22)
3

where V™™, VJ°" and V3'°" denote the nominal voltage magnitudes at sides 1, 2, and 3 of the transformer. In
addition, V2°™ denotes the nominal voltage magnitudes of the voltage in the star middle point, and can be freely set
to the nominal voltage magnitude on any side of the transformer. Finally, the current at sides 1, 2, and 3 is given,

18



Example: Two

"two_winding_transformer_1"
"type" "T_model_transformer",
"id" : "transformer_1",

Winding Transformer

"link_1" "voltage_id_9",
"link_2" "voltage_id_11",
"current_limits_1" : [
{"duration": "Inf", "min": 0, "max": 1029, "report": "off"},
{"duration": 1200, "min": 1029, "max": 1342, "report": "off"},
{"duration": 300, "min": 1342, "max": 1790, "report": "off"},
{"duration": 60, "min": 1790, "max": "Inf", "report": "off"}
] 4
"tap_changer": {
"position": { "var": { "1lb": 0, "ub": 0}},

0.0},
0.25}}1},

"impedance": { "resistance": { "var": { "1lb": 0.0, "ub":

"reactance": { "var": { "1b": 0.25,"ub":

"shunt": {"conductance": {"var": {"1lb": 0.0,"ub": 0.0}},
"susceptance": {"var": {"1lb": 0.0, "ub": 0.0}}},

"transform": {
"tap_ratio": {"var": {"1lb": 0.0
"angle_shift": {"var": {"1lb": 0
}y

,"ub": 11.0 }3},

.0, "ub": 0.0 }}

"steps": [
{ "position": O,
"impedance": { "resistance": 0.0, "reactance": 0.2516799999999999 },
"shunt": { "conductance": 0.0, "susceptance": 0.0},
"transform": { "tap_ratio": 11.0, "angle_shift": 0.0 }}
]
}
}
Figure 7: An example of a GRG Two Winding Transformer.
02
Ro+ X, re
4 [z
E—
a1l
el .
/1 1 k v F\"+ jX| V2
— ! Vi
A
R+ jX, e’ 3
Vs I3
G +jB
+
Vv J!
4

Figure 8: Illustration of a three winding transformer.

respectively by:

Il :pik :
Iy = p3, -
I3 = 3y -

1

Z(Vlmk - Vm)
1

T%(Vm - V202k)
1

ZT,,C(V’” — Vsps,.),

(23)

(24)

(25)

where Vi, = G + j By, is the admittance at side 1 of the transformer with tap k; Z;, = Ry + j X4, Z5, = Ra + jXo,
and Z3, = R3 + jX3 are the impedance values of sides 1, 2, and 3 of the transformer with tap k. The power S; at

19



sides i (i € {1,2,3}) is given by:

Si=1;-V; (26)
GRG schema: threewinding_-transformer
"three_winding_transformer": ({
"type": "object",
"required": ["type", "id", "link_1", "link_2", "link_3",
"tap_changer_1", "tap_changer_2", "tap_changer_3"],
"additionalProperties": true,
"properties": {
"type": { "enum": [ "three_winding_transformer"] 1},
"subtype": { "type": "string" },
"id": { "type": "string"},
"description": { "type": "string" },
"link_1": { "type": "string"},
"link_2": { "type": "string"},
"link_3": { "type": "string"},
"current_limits_1": { "Sref": "#/values/limits/current_limits"},
"current_limits_2": { "Sref": "#/values/limits/current_limits"},
"current_limits_3": { "Sref": "#/values/limits/current_limits"},
"thermal_limits_1": { "Sref": "#/values/limits/thermal_limits"},
"thermal_limits_2": { "Sref": "#/values/limits/thermal_limits"},
"thermal_limits_3": { "Sref": "#/values/limits/thermal_limits"},
"tap_changer_1": {
"type”: "object",
"required": ["position", "impedance", "shunt", "transform","steps"],
"additionalProperties": true,
"properties": {
"position": { "Sref": "#/values/basic_values/abstract_value"},
"impedance": { "$ref": "#/values/electrical_values/impedance"},
"shunt": {"Sref": "#/values/electrical_values/admittance"},
"transform": {
"type": "object",
"required": ["tap_ratio", "angle_shift"],
"additionalProperties": true,
"properties": {
"tap_ratio": {"$ref": "#/values/basic_values/abstract_value" },
"angle_shift": { "S$Sref": "#/values/basic_values/abstract_value" }
}
I
"steps": {
"type" : "array" ,
"items" : [{
"type": "object",
"required": ["position", "impedance", "shunt", "transform"],
"additionalProperties": true,
"properties": {
"position": {"type": "number"},
"impedance": {"$ref": "#/values/electrical_values/impedance"},
"shunt": {"S$ref": "#/values/electrical_values/admittance"},
"transform": {
"type": "object",
"required": ["tap_ratio", "angle_shift"],
"additionalProperties": true,
"properties": {
"tap_ratio": {"S$ref": "#/values/basic_values/abstract_value"},
"angle_shift": {"$ref": "#/values/basic_values/abstract_value"}
}
}
}
Pl
"minItems": 1,
"additionalItems": false

}!
"tap_changer_2": {
"type": "object",

20



"required": [ "position", "impedance", "transform", "steps"],

"additionalProperties": true,
"properties": {
"position": {"$ref": "#/values/basic_values/abstract_value"},
"impedance": { "$ref": "#/values/electrical_values/impedance"},
"transform": {
"type" : "object" ,
"required": ["tap_ratio", "angle_shift"],
"additionalProperties": true,
"properties": {
"tap_ratio": { "Sref": "#/values/basic_values/abstract_value"},
"angle_shift": {"$ref": "#/values/basic_values/abstract_value" }
}
}I
"steps": {
"type" : "array",
"items" : [{
"type": "object",
"required": ["position", "impedance", "transform"],
"additionalProperties": true,
"properties": {
"position": {"type": "number"},
"impedance": {"$ref": "#/values/electrical_values/impedance"},
"transform": {
"type": "object",
"required": ["tap_ratio", "angle_shift"],
"additionalProperties": true,
"properties": {
"tap_ratio": {"S$ref": "#/values/basic_values/abstract_value"},
"angle_shift": {"$ref": "#/values/basic_values/abstract_value"}
}
}
}
Pl
"minItems": 1,
"additionalItems": false

}l
"tap_changer_3": {

"type": "object",
"required": [ "position", "impedance", "transform", "steps"],
"additionalProperties": true,
"properties": {
"position": { "S$ref": "#/values/basic_values/abstract_value"},
"impedance": { "$ref": "#/values/electrical_values/impedance"},
"transform": {
"type": "object",
"required": ["tap_ratio", "angle_shift"],
"additionalProperties": true,
"properties": {
"tap_ratio": {"S$ref": "#/values/basic_values/abstract_value"},
"angle_shift": {"$ref": "#/values/basic_values/abstract_value"}
}
}I
"steps": {
"type": "array",
"items" : [{
"type": "object",
"required": ["position", "impedance", "transform"],
"additionalProperties": true,
"properties": {
"position": {"type": "number"},
"impedance": {"$ref": "#/values/electrical_values/impedance"},
"transform": {
"type": "object",
"required": ["tap_ratio", "angle_shift"],
"additionalProperties": true,

21



"properties": {

"tap_ratio": {"Sref": "#/values/basic_values/abstract_value"},
"angle_shift": {"$ref": "#/values/basic_values/abstract_value"}
}
}
}
Pl
"minItems": 1,
"additionalItems": false

In the three winding transformer GRG schema, type and subtype (optional) identify the type of the object
(for example a three winding transformer). id is a unique identifier for global referencing, and description is
an optional field to describe the component. Fields 1ink_1, 1ink_2, and 1ink_3 are global identifiers for identi-
fying the voltage points being connected to the component. For a three winding transformer, 1ink_1, 1ink_2, and
1ink_3 will be the voltage points at side 1, 2 and 3 respectively. current_limits_1, current_limits_2, and
current_limits_3 describe collections of current limits associated to sides 1, 2, and 3. thermal_limits_1,
thermal_limits_2, and thermal_limits_3 describe collections of thermal limits associated to sides 1, 2, and
3 accordingly. Again similar to two winding transformers, both type of limits are optional.

Finally, tap_changer_1, tap_changer_2, and tap_changer_3 describe the three transformer taps at side
1, 2, and 3 respectively. All of the transformer taps require fields: position, impedance, transform (con-
taining tap-ratio and angle_shift), and steps. tap-changer_1 further requires the shunt field. The
position fields describe the possible indices (or the pre-set index) for each of the taps. The impedance, shunt,
and transform (containing tap_ratio and angle_shift) fields describe the ranges (or the pre-set values) of
the (tap) impedances, shunts, tap ratios, and phase shifts for the corresponding transformer. steps is a JSON array
object describing all the possible assignments for position, impedance, shunt (for tap_changer_1 only),
and transform (i.e. tap-ratio and angle_shift) objects.

A summary of three winding transformer components is provided in Table 10, and Figure 9 provides an example.

2.5 Switch

A switch is an electrical component that can interrupt the current in a circuit. There are two types of switches: circuit
breakers and isolators. Circuit breakers can be switched on or off when they are energized, while isolators (also called
disconnectors) can be switched only when not energized. These are series devices with two sides denoted side 1 and
side 2. Their operation satisfies the following:

5-Vi=s5-Vs, 27

where s is a binary variable denoting the switch status (1 for open, O for closed), and V; and V5 are the voltages at
sides 1 and 2 of the switch.
Figure 10 illustrates an open isolator (a) and breaker (c), and a closed isolator (b) and breaker (d).

GRG schema: switch

"switch": {
”type" . "object",
"required": ["type", "subtype", "id", "status", "link_1", "link_2"7,
"additionalProperties": true,
"properties": {
"type" : {"enum": ["switch"]},
"subtype" : {"enum": ["breaker", "isolator"]},
"description": {"type": "string"},
nign . {"type": ”strinq"),
"status" : {"Sref": "#/values/basic_values/status"},
"link_1" : {"type": "string"},
"link_2" : {"type": "string"}

22



GRG name [ symbol [ unit

link.1 side 1
link.2 side 2
link.3 side 3
lir dlk Seconds (sec)
I '1“;" Ampere (A)
IT;“ Ampere (A)
2 Seconds (sec)
o A A
2, mpere (A)
I;‘):T Ampere (A)
ds % Seconds (sec)
I g“]:” Ampere (A)
Ig“;“” Ampere (A)
1 Seconds (sec)
ST;" MegaWatt (MW)
ST;“” MegaWatt (MW)
dgk Seconds (sec)
S';Z" MegaWatt (MW)
S'Q";:w MegaWatt (MW)
35 Seconds (sec)
mzmn
3 S3k i MegaWatt (MW)
thermal_limits_3[k]—max sg“;“ MegaWatt (MW)
tap-changer_.1—position k
tap-changer.l—impedance—resistance le Ohm (92)
tap_changer_.1—impedance—reactance Xlk Ohm (©2)
tap-changer.1—shunt —conductance le Siemens (.S)
tap-changer_.1—shunt —susceptance 1 Siemens (S)
v fom ]
tap-changer.l—transform—tap-ratio (w1, voltage-ratio
1
tap-changer.l—transform—angle_shift 61k degrees
tap-changer_.l1—steps[k] —position
tap-changer_.l—steps [k] —=impec ~e—resistance le Ohm (92)
tap_changer_.l1—steps[k]—1 ‘e—reactance Xlk Ohm (£2)
tap-changer.l1—steps[k] —shunt—conductance G1y, Siemens (.S)
tap-changer_.l1—steps (k] —shunt—susceptance 1 Siemens (.S)

v fom )
tap-changer.l—steps[k] —transform—tap.ratio (w1, voltage-ratio

1
tap-changer_.l—steps[k] —transform—angle_shift Ok degrees
tap-changer_.2—position k
tap-changer_2—impedance—resistance Rzk Ohm (£2)
tap-changer_2—im - —reactance XQ#D Ohm (92)

v fiom .
tap-changer.2—transform—tap-ratio (%)7'% voltage-ratio
tap-changer.2—transform—angle_shift 52k degrees
tap-changer.2—steps[k] —position
tap-changer_2—steps [k] —impe ce—resistance Ra), Ohm (2)
tap-changer_2—steps k] —imp —reactance XQ&, Ohm (92)

vyom .
tap-changer_2—steps (k] —transform—tap.ratio (%)rzlC voltage-ratio
tap-changer_.2—steps (k] —-transform—angle_shift (52k degrees
tap-changer_3—position
tap-changer_3—impedance—resistance ng Ohm (©2)
tap-changer_.3—impedance—reactance ngo Ohm (£2)

yiom .
tap-changer.3—transform—tap-ratio (%)T% voltage-ratio
tap-changer_3—transform—angle_shift 63k degrees
tap-changer_.3—steps[k] —position
tap-changer_.3—steps k] —imped —resistance R3,, Ohm (£2)
tap-changer_3—steps[k]—im —reactance Xgéq Ohm (£2)

v fiom .
tap-changer.3—steps[k] —transform—tap.ratio (%)T% voltage-ratio
tap-changer_.3—steps[k] —transform—angle_shift 53k degrees

Table 10: Three winding transformer: representation in the GRG format and units.

The field type identifies the type of the object (switch), subtype denotes whether the switch is a breaker or
an isolator (disconnector), description is an optional field for describing the switch, id is a unique identifier,
status denotes whether the switch is open or closed, and 1ink_1 and 1ink_2 identify the connecting voltage
points at sides 1 and side 2 of the switch.

Table |1 summarizes switch components, and Figure |1 provides an example.

23



Example: Three Winding Transformer
"three_winding_transformer_1" {

"type" : "three_winding_transformer",
"id" : "transformer_1",
"link 1" : "voltage_id_2",
"link_2" : "voltage_id_3",
"link_3" : "voltage_id_e6",

"tap_changer_1": {
"position": { "var": { "lb": 0, "ub": 0}},
"impedance": { "resistance": { "var": { "lb": 1.512,"ub": 1.512}},
"reactance": { "var": { "lb": 60.1,"ub": 60.1}}},
"shunt": {"conductance": {"var": {"1lb": 0.0,"ub": 0.0}},
"susceptance": {"var": {"1lb": 0.0, "ub": 0.0}}},
"transform": {
"tap_ratio": {"var": {"lb": 1.0,"ub": 1.0 }},
"angle_shift": {"var": {"1b": 0.0, "ub": 0.0 }}

}l
"steps": [
{ "position": 0,
"impedance": { "resistance": 1.512,"reactance": 60.1 },
"shunt": { "conductance": 0.0, "susceptance": 0.0},
"transform": { "tap_ratio": 1.0, "angle_shift": 0.0 }}
]

by
"tap_changer_2": {
"position": { "var": { "1lb": 0, "ub": 0}},
"impedance": { "resistance": { "var": { "1lb": 0.0, "ub": 0.0}},

"reactance": { "var": { "1lb": 0.25,"ub": 0.25}}},

"transform": {
"tap_ratio": {"var": {"1lb": 0.0,"ub": 11.0 1}},
"angle_shift": {"var": {"1lb": 0.0, "ub": 0.0 }}

}!
"steps": [
{ "position": O,
"impedance": { "resistance": 0.0, "reactance": 0.25 },
"transform": { "tap_ratio": 11.0, "angle_shift": 0.0 }}
]

by
"tap_changer_3": {
"position": { "var": { "1b": 0, "ub": 0}},
"impedance": { "resistance": { "var": { "1lb": 0.0, "ub": 0.0}},

"reactance": { "var": { "1lb": 0.21,"ub": 0.21}}},

"transform": {
"tap_ratio": {"var": {"1lb": 0.0,"ub": 9.0 }},
"angle_shift": {"var": {"1lb": 0.0, "ub": 0.0 }}

}!
"steps": [
{ "position": O,
"impedance": { "resistance": 0.0, "reactance": 0.21 },
"transform": { "tap_ratio": 9.0, "angle_shift": 0.0 }}
]

Figure 9: An example of a GRG Three Winding Transformer.

| GRG name | symbol [ unit \

’ status \ s \ boolean ‘

Table 11: Switch representation in GRG format and units.

24



v A v A
a b.
1 2 1 2
e — -@
v A v A
[¢ d.

Figure 10: Illustration of an open (a) and close (b) isolator, and an open (c) and close (d) breaker.

Example: Switch

"switch_F" : {

"type" : "switch",

"subtype": "breaker",

llid" : "SW_l ",

"link_1" : "voltage_id_C_0",

"link_2" : "voltage_id_C_3",

"status" : {"var" : ["off", "on"]}
}

Figure 11: An example of a GRG switch.

2.6 Bus

A bus is a set of equipment connected together. It could be a configured object or the result of a computation, depending
of the context.

GRG schema: bus

"bus": {
"type" : "object",
"required": ["type", "id", "link", "voltage"],
"additionalProperties": true,
"properties": {
"type" : {"enum": ["bus"]},
"subtype" : {"type": "string"},
"description": {"type": "string"},
"id" : {"type": "string"},
"link" : {"type": "string"}
"voltage" : {"$Sref": "#/values/electrical_values/voltage"}
"name" : {"type": "string"},

type identifies the type of the object. Depending on the network topology adopted, a bus can be represented as
a busbar (node-breaker topology), logical bus (bus-breaker topology), or simply bus (bus-branch topology).
These information can be stored in the subtype optional field. description is an optional description field, and
idis a unique identifier. The field 1ink identifies the voltage point at which the bus is connected. Finally, voltage
refers to the bus voltage magnitude v and phase angle ¢, and name denotes the bus name.

Table 12 tabulates the bus components, while Figure 12 contains an example of a bus in GRG format.

25



GRG name | symbol | unit \

voltage—magnitude | v kiloVolt (kV)
voltage—angle—lb | ©F Degrees
voltage—angle—ub | O Degrees

Table 12: Bus representation in GRG format and units.

Example: Busbar

"bus 0" : |
”type" : "bus",
nige . "bUS_6",
"link" : "voltage_id_P_0",
"voltage" : {
"angle" : {"var" : {"1b" : -30.0, "ub" : 30.0}},
"magnltude" . {"Var" . {"lbll . "O", "ub" . "500" } }
}
}
Figure 12: An example of a GRG busbar.
2.7 Shunt

A shunt capacitor or reactor is defined as an admittance:
I=-Y.V,
where Y = G + j B is the admittance, and V' is the voltages at the connecting point. Figure 13 illustrates a shunt.

1

Y
—_—

G+/B

Figure 13: A shunt.

GRG schema: shunt

"shunt": {

"type" : "object",

"required": ["type", "id", "link", "shunt"],

"additionalProperties": true,

"properties": {
"type" : {"enum": ["shunt"]},
"subtype" : {"type": "string"},
nign . {"type": "string"),
"description": {"type": "string"},
"link" : {"type": "string"},
"shunt" : {"Sref": "#/values/electrical_values/admittance"}

In the above schema, t ype identifies the type of the object (i.e., a shunt), 1d is a unique identifier, and description
is an optional description field. The field 1ink identifies the connecting voltage point. Finally, shunt defines the
admittance Y.

Table 13 summarizes shunt components, while Figure 14 provides an example.

26



GRG name | symbol | unit \

shunt—conductance | G Siemens (S)
shunt—susceptance | B Siemens (S)

Table 13: Shunt representation in the GRG format and units.

Example: Shunt

"shunt_IO" : {

nign . "Shilo",

lltypell : "shunt",

"subtype": "inductor",

"link" : "voltage_id_HS_9",

"shunt": {"conductance" : 0.0, "susceptance" : -0.16}
}

Figure 14: An example of a GRG shunt.

2.8 Load

A Load consumes active power P and reactive power () at its connection point, as illustrated in Figure 15.

l -(P+jQ)
1

Figure 15: A load.

load definition

"load": {

"type" . "object",

"required": ["type", "id", "link", "demand"],

"additionalProperties": true,

"properties": {
lltype" . {"enum": ["load"] },
"subtype" : {"type": "string"},
mign . {"type": “string"},
"description": {"type": "string"},
"link" : {"type": "string"},
"demand" : {"S$ref": "#/values/electrical_values/power"},

In the load GRG schema, type identifies the type of the object (i.e., a 1oad), subtype identifies the type of load
(for example withdrawal to indicate the load will only withdraw power). The attribute id is a unique identifier for
the load component, and description is an optional description field. The field 1ink identifies the connecting
voltage point in the network. Finally, demand defines the power S consumed by the load, and can be set to a variable
to be assinged later.

Table 14 summarizes load components, while Figure 16 provides an example.

’ GRG name \ symbol \ unit ‘
demand—active P MegaWatt (MW)
demand—reactive | @ MegaVolt-Ampere Reactive (MVAR)

Table 14: Load representation in GRG format and units.

27



Example: Load

"load_AER" : {

"type" . "load"

"subtype": "withdrawal",

"id" : "ld 6",

"link" : "voltage_id_ACM_13",

"demand" : {
llactivell . {llvar" . {"lbll . "_Infll, "ubll . "Inf"}},
"reactive" : {"var" : {"1b" : "-Inf", "ub" : "Inf"}}

Figure 16: An example of a GRG load.

2.9 Generator

A generator produces active power (P) and reactive power (Q), and supports voltage (V). Its output is limited according
to a PQ-curve, which specifies minimum and maximum reactive power values for every active power value. More
formally, a PQ-curve is a sequence of tuples: (P, Q’,?m, QR*™)R_, (withn > 0) such that foreach k < n, P, < Py41,
and Qr];nn < Qr];laac.

Figure 17 illustrates a generator (a) and feasible PQ region (shaded gray area) of its PQ-curve.

A

Q

o o N
T Q

P +jQ) T
1 Q1m " /(;2’"'"
P Py )
a b

Figure 17: Illustration of a generator (a) and its PQ-curve (b).

GRG schema: generator

"generator": {
”type" . "object",
"required": ["type", "id", "link", "output"],
"additionalProperties": true,
"properties": {
"type" : {"enum": ["generator"]},
"subtype": {"enum": ["hydro", "wind", "thermal", "other", "nuclear", "solar"]l},
"id" : {"type": "string"},
"description": {"type": "string"},
"link" : {"type": "string"},
"output" : {"S$ref": "#/values/electrical_values/power"},
"PQ_curve" : |
"type": "object",
"required": ["arguments", "values"],
"additionalProperties": true,
"properties": {
"arguments": {
"type": "array",
"items": [
{"enum": ["active"]}, {"enum": ["reactive_1b"]}, {"enum": ["reactive_ub"]}
1,
"minItems": 3, "maxItems": 3, "additionalItems": false
by
"values": {
"type": uarrayu,
"items": [

28



"type": "array",

items": [
{"Sref": "#/values/basic_values/extended_number"},
{"Sref": "#/values/basic_values/extended_number"},
{"Sref": "#/values/basic_values/extended_number"}
] 4
"minTtems": 3, "maxItems": 3, "additionallItems": false
}
I
"minItemes": 1

In the generator GRG schema, t ype identifies the type of the object (i.e., a generator), subtype identifies the
type of generator, id is a unique identifier, and description is an optional description field. 1ink identifies the
connecting voltage point in the network. The output field defines the power S produced by the generator. Finally,
the PQ—curve is a table of active and reactive bounds, defining the feasible operating region.

Table 15 summarizes generator components, and Figure 18 provides an example.

’ GRG name \ symbol \ unit ‘
output—active P MegaWatt (MW)
output—reactive Q MegaVolt-Ampere Reactive (MVAR)
PQ_curve—values[k][0] | Py MegaWatt (MW)

PQ_curve—values[k][1] Qg‘m MegaVolt-Ampere Reactive (MVAR)
PQ_curve—valuesl[k][2] | QP MegaVolt-Ampere Reactive (MVAR)

Table 15: Generator: representation in the GRG format and units.

Example: Generator

"generator_AEC" : {
"type" : "generator",
"subtype": "solar",
llid" : llgen_4l|,
"link" : "voltage_id_ACM_5",
"PQ_curve" : {
"arguments": ["active", "reactive_1b", "reactive_ub"],
"values" : [[0.0, 0.0, 0.07,
20.7, 0.0, 0.011
}
"output" : {
"active" : {"var" : {"1lb" : 0.0, "ub" : 20.7}},
"reactive" : {"var" : {"1lb" 0.0, "ub" : 0.0}}

Figure 18: An example of a GRG generator.

2.10 Synchronous Condenser

A synchronous condenser is a spinning machine that can compensate lagging current by either generating or absorbing
reactive power.

GRG schema: synchronous_condenser

"synchronous_condenser": {
"type" . "object",

29



"required": ["type", "id", "link", "output"],
"additionalProperties": true,

"properties": {
"type" : {"enum": ["synchronous_condenser"]},
"subtype":{"type": "string"},
"id" : {"type": "string"},
"link" : {"type": "string"},
"output": {
"reactive": {"$ref": "#/values/electrical_values/abstract_value"}

}

In the synchronous_condenser GRG schema, t ype and subtype identifies the type of the object, the attribute

id is a unique identifier, and description is an optional description field. 1ink identifies the connecting voltage

point in the network. output defines the reactive power (react ive) produced or absorbed by the condenser.
Table 16 summarizes synchronous condenser components, and Figure 19 provides an example.

| GRG name | symbol | unit \
| output—reactive [ Q | MegaVolt-Ampere Reactive (MVAR) |

Table 16: Synchronous condenser representation in GRG format and units.

Example: Synchronous Condenser

"sync_cond_3" : {
"type" : "synchronous_condenser",
mign . "SyI’lC_E",
"link" : "voltage_id_11",
"output": {
"reactive" : {"var" : {"1b" : 0, "ub" : 14.53}}

}

Figure 19: An example of a GRG synchronous condenser.

30



3 Assignment and Mappings

An assignment is a JSON object which contains a list of value assignments for some network component. Assignments
may be used to define a particular instance of a network, for example, by assigning values to a set of variables. The
assignment schema is as follows.

GRG schema: assignment
"assignment": {

"type" : "object",
"patternProperties": {

Lt

"oneOf": [
{"type": "object"},
{"S$ref": "#/values/basic_values/abstract_value"},
{"Sref": "#/values/basic_values/status"}]

The JSON reference refers to any of the components described in section 2, and the patternProperties specifies
that zero or more component assignments can be specified.

We say that a network component field is assigned if its value is specified as an object in an assignment. An
assignment example is shown in Figure 20.

Example: Assignment
"assignment": {

"switch_773/status": {"on"},
"bus_6/voltage" : {
"angle" : 4.23,
"magnitude": 63.12

Figure 20: An example of a GRG assignment.

A mapping is a set of assignments. It can be used to to define a particular instantiation of a network, or a desired
network state, e.g., target values. Its schema is as follows. In GRGv4.0, we also allow users to define various extra
information, e.g. reference bus, in the mapping section. Users are free to add extra information in the mapping block,
or extra operational information in the operational constraints block.

GRG schema: mappings

"mappings": {
"type": "object",
"patternProperties": {
"ox": {"Sref": "#/network/network_assignments"}

}

The patternProperties field specifies that zero or more set of component assignments can be specified. For
each of these sets, an arbitrary number of component assignments can be specified. Figure 21 contains an example.

Similar to mappings, an operation constraints block is a set of assignments. It is reserved for posting operational
constraints to restrict the range of values allowed to be assigned to variables/states in the network. Its schema is as
follows.

GRG schema: mappings

"operation_constraints": {
lltype" . "object" ,
"patternProperties": {
"#/values/basic_values/grg_pointer": {
"Sref": "#/network/network_assignments"

}

31



Example: Mappings

"mappings": {
"starting_points": {

"bus_6/voltage": {
"magnitude": 132.22,
"angle": -10.15

}7

"1d_7/demand": {
"active": 5.80,
"reactive": 2.0

br

"sync_3/output": {
"active": 0.0,
"reactive": 11.87

b

"transformer_1/tap_changer/position": 0

Figure 21: An example of GRG mappings.

The patternProperties field again specifies that zero or more set of component assignments can be specified.
Figure 22 contains an example on how we describe the angle difference constraints on AC lines and two winding
transformers, by explicitly restricting the angle difference value has to be within the range of [-30,30] (i.e. 30 degree
angle difference constraints).

Example: Operation Constraints
"operation_constraints": {
"transformer_6/angle_difference": {

"var": {
"1b": -30,
"ub": 30
}
I
"line_4/angle_difference": {
"var": {
"1b": -30,
"ub": 30
}
}
}
Figure 22: An example of GRG operation constraints.
4 Networks

A GRG network is a collection of network components, along with a list of component assignments. When a network
component is assigned, its value in the assignments block of the GRG document supersedes its value in the network
block. The GRG schema for a network is shown below.

GRG schema: network

"network": {
"typell . "object",
"required": ["id", "type", "subtype", "per_unit", "components"],
"properties": {
"id": {"type": "string"},
"type": {"enum": ["network"]},
"subtype": {"enum": ["node_breaker", "bus_breaker", "bus_branch"]},
"per_unit": {"type": "boolean"},
"description": {"type": "string"},
"components": {"S$ref": "#/network/network_components"}

32



"assignments": {"$ref": "#/network/network_assignments"},

}I
"additionalProperties": true

The attribute t ype identifies the type of the object (i.e., a network). subtype indicates topology type, which de-
fines the level of detail in descriptions of connections between components; description is an optional description
field, and per_unit indicates whether network component values are expressed in per unit or nominal value.

A network is organized as a set of substations connected via transmission lines. Together these comprise the
network_components block, as shown in the following schema fragment:

GRG schema: network components

"network_components": {
"patternProperties": {
"ot
"oneOf": [
{"Sref": "#/network_components/substation"},
{"Sref": "#/network_components/ac_line"}

4.1 Substation

A substation is a collection of equipment located at a the same physical site and belonging to one Transmission System
Operator (TSO). It is composed of several voltage levels and transformers. Its schema is as follows.

GRG schema: substation

"substation": {
"type" : "object",
"required": ["type", "id", "substation_components"],
"properties": {
"type" : {"enum": ["substation"]},
"subtype": {"type": "string"},
"description": {"type": "string"},
nign . {"type": "string"),
"countzry" : {"type": "string"},
"TgO" . {"type": "string"),
"substation_components": {
"patternProperties": {
"okt |
"oneOf": [
{"Sref": "#/network_components/voltage_level"},
{"$ref": "#/network_components/two_winding_transformer"}
{"$ref": "#/network_components/three_winding_transformer"}

The attribute t ype identifies the type of the object (i.e., a substation). The attributes count ry and TSO indicate
the country in which the substation is located, along with its Transmission System Operator. Substation components
are listed in the creatively-named substation_components object.

4.2 Voltage Level

A voltage level is a collection of equipment located in the same substation at the same nominal voltage value. Its
schema is as follows.

33



GRG schema: voltage_level

"voltage_level": {
”type" . "object",
"required": ["type", "id", "voltage", "voltage_points"],
"properties": {
"type" : {"enum": ["voltage_level"]},
"subtype": {"type": "string"},
"description": {"type": "string"},
"id" : {"type": "string"},
"voltage_points": { "type": "array", "items": { "type": "string" }, "minItems": 1 },
"voltage": {
"type" : "object",
"required" : ["nominal_value", "upper_limit", "lower_limit"],
"additionalProperties": true,
"properties": {
"nominal_value": {"type": "number"},
"upper_limit" : {"type": "number"},
"lower_limit" : {"type": "number"}
}
br
"voltage_level_components": {
"patternProperties": { ".x": {
"oneOf": [
{"$Sref": "#/network_components/bus"},
{"Sref": "#/network_components/shunt"},
{"Sref": "#/network_components/generator"},
{"Sref": "#/network_components/synchronous_condenser"}
{"Sref": "#/network_components/load"},
{"Sref": "#/network_components/switch"}

The attribute type identifies the type of the object (i.e., a voltage_level). voltage contains the nominal
voltage V., along with voltage limits [VZ, VU] for all components contained in the voltage level. Since GRGv1.5,
we unify all network components to be connected by voltage points, and voltage points are assume to be global
and unique. To allow ease of parsing, we require all voltage levels to explicitly list all its voltage point labels in
voltage_points starting from GRG v1.6. The voltage level components are listed in voltage_components.

Table 17 describes the voltage level element.

’ GRG name \ Parameter \ unit ‘
voltage—nominal_value Vaom KiloVolt (KV)
voltage—lower_limit vE KiloVolt (KV)
voltage—upper_limit vu KiloVolt (KV)

Table 17: Voltage Level description.

5 Market

A market GRG block describe various costs information to the network component. In previous GRG versions,
we use costs block to describle operational costs for a component. We allow multiple polynomial cost functions
for each component, by defining the costs to be a JSON array of arrays. This can become overly complex to parse
for users, especially when most benchmarks only have single polynomial function per component. In GRGv4.0, we
use operational_costs JSON block, a more simplified structure, to describe operational costs for a component.
Since the market block allows additional costs structure, the old costs structure (prior to GRGv4.0) will be automati-
cally allowed, and migration should not be an issue. Other costs structure, e.g. investment costs for expansion planning
problems, or startup/shutdown costs for unit committment problems can also be defined and extended in the market
GRG block.

34



voltage_level definition

"market": {
”type" . "object",
"additionalProperties": true,
"properties": {
"operational_costs": {
"patternProperties": {
"'*": {
"type": "object",
"required": ["type","input","coefficients"],
"additionalProperties": true,
"properties": {
"type": {
"enum": ["polynomial"]
}l
"input": {
"Sref": "#/values/basic_values/grg_pointer"
br
"coefficients": {
"type" . uarrayu,
"items": { "Sref": "#/values/basic_values/abstract_value"},
"minItems": 1

Each item in the operational_costs block is named with a GRG pointer in the input field to its associated
network element. The coefficient field is a JSON array defining the associated cost coefficients: a,_1, ..., ag,
generating the polynomial:

1

An_1T;  +...+a12; +ao

Since the cost coefficients are dependent on the units of the argument s array, they will need to be re-computed if
the units of the argument s array changed (e.g. during per-unit operations).

6 Units

A units object details the units adopted for each physical quantity. These may differ from unit associated to the
description of various components in the previous sections. The JSON schema of units is defined below.

GRG schema: units

"units": {
"type": "object",
"required": ["voltage", "current", "angle", "reactive_power", "active_power",
"impedance", "resistance", "reactance", "conductance", "susceptance", "time"],
"properties": {
"voltage": {"enum": ["volt", "kilo_volt", "mega_volt", "pu"l},
"current": {"enum": ["ampere", "kilo_ampere", "mega_ampere", "pu"l},
"angle" : {"enum": ["degree", "radian"]},
"active_power": {"enum": ["watt", "kilo_watt", "mega_watt", "pu"l},
"reactive_power": {"enum": ["volt_ampere_reactive", "mega_volt_ampre_reactive", "pu"l},
"impedance": {"enum": ["ohm", "pu"]},
"resistance": {"enum": ["ohm", "pu"l},
"reactance": {"enum": ["ohm", "pu"]},
"conductance": {"enum": ["siemens", "pu"l},
"susceptance": {"enum": ["siemens", "pu"l},
"time": {"enum": ["seconds", "minutes", "hours", "days", "months", "years"]}

35



7 Time Series Data

A network_time_series object describes time-varying data for network components. The JSON schema of
network_time_series is defined below.

GRG schema: network_time_series

"network_time_series" :{
"type" : "object",
"patternProperties" :{

Lt

"type" : "object",
"required" : ["step_duration", "steps", "step_duration_units"],
"additionalProperties": true,
"properties" :{
"step_duration" : {"$ref": "#/values/basic_values/extended_positive_number"},
"steps": {"Sref": "#/values/basic_values/extended_positive_number"},
"step_duration_units": {"enum": [ "microseconds", "milliseconds", "seconds",
"minutes", "hours", "days", "months", "years"]},
"assignments": {
"type": "object",
"patternProperties":{
n .*" . {
"type": "array",
"items": {
"oneOf": [ {"Sref": "#/values/basic_values/extended_number"},
{llenum": ["Off", "Ol’l"]}}
br
"minItems" : 1
}
}
}y
"external_file" :{
"type" : "object",
"required" : ["file_name", "ids"],
"additionalProperties": true,
"properties" :{
"file_name" : { "type" : "string" },
"ids" {
"type": "array",
"items": { "type": "string" },
"minItems" : 1
}
}
}
}
}
by
"additionalProperties": true

The patternProperties field specifies that zero or more sets of time series data are allowed to be specified. For
each of the time series data block, we require fields steps, step_duration, step_duration_units. stepsis
used to specify the number of time series data for each component within the time series data block. step_duration
and step_duration_units are used to specify the time interval and units for each adjacent pair of time series data.
Finally, assignments block list all the time series data in JSON array format for network components. Figure 23
shows an example of network time series represented in our GRG format. In this example, we specify active and
reactive load data for load 1 and active dispatch data for generator 2. The data consists of three data points (steps)
at a one hour interval (step_duration & step_duration_units).

In GRGV4.0, we further allow users to store potentially large time series data into a CSV file, instead of storing
all data in the assignments block. The external_file JSON block is used to record the information for the
external CSV file. £ile_name records the full path (or the web accessible path) to the CSV data file. ids is a JSON

array block for recording all the network components with time series data in the external file, with the ith component

in the array corresponds to the data at the ith row of the CSV data file. In other words, the data at the ith row and jth

column in the CSV file represents the data at the jth time step for the ith network component in the 1ds array.

36



Example: Network time series

"network_time_series": {
"one_year_data": {

"step_duration": 1,

"steps": 3,

"step_duration_units": "hours",

"assignments": {
"load_1/demand/active": [ 0.94, 0.91, 0.88 1,
"load_1/demand/reactive": [ -0.15, -0.15, -0.14],
"gen_2/output/active": [ 0.14, 0.12, 0.101]

} 4

"external_file" :{
"file_name": "/home/users/datal.csv",
"ids": ["load_3/demand/active", "load_3/demand/reactive", "gen_3/output/active" ]

Figure 23: An example of network time series block

8 Stochastic Time Series Data

A stochastic_time_series object describes stochastic time-varying data for network components. The object
extends the network_time_series defined above and further introduces scenarios and their probabilities. The
JSON schema of stochastic_time_series is defined below.

GRG schema: stochastic_time_series

"stochastic_time_series":{

"type" : "object",
"patternProperties" :{
"ot
"type" . "object",
"required" : ["step_duration", "steps", "step_duration_units",
"var", "scenario", "scenario_probability"],
"additionalProperties": true,
"properties" :{
"step_duration" : {"$ref": "#/values/basic_values/extended_positive_number"},
"steps": {"Sref": "#/values/basic_values/extended_positive_number"},
"step_duration_units": {"enum": [
"microseconds",
"milliseconds",
"seconds",
"minutes",
"hours",
"days",
"months",
"years"
14,
"Var" : { lltypell . "Stril’lg"},
"scenario": {
"type": "object",
"patternProperties": {
ll'*":{
"type": "array",
"items": {
"oneOf": [
{"$ref": "#/values/basic_values/extended_number"},
{"enum": ["Off", “OI'I"])]
}l
"minItems" : 1
}
}
b
"scenario_probability": {
"type": "object",

"patternProperties": {

37



"oy

"type": "string"

The patternProperties field specifies that zero or more sets of stochastic time series data are allowed to be spec-
ified. Similar to the time series data block defined in previous section, we require fields steps, step_duration,
and step_duration_units for each of the stochastic time series data block. We further require fields var,
scenario, and scenario_probability to describe stochastic data.

var is used specify the network component corresponding to the stochastic data of interests. scenario is
used to describe all the time-varying scenarios for the specified component. Each scenario is labeled with a name
and specified by the time series data in JSON array format. To specify the probability for each scenario, we use
scenario_probability to list the probabilities for all of the scenarios. The probability data will be represented
as string data in percentages, and ending with the "%’ character. steps is used to specify the number of time series
data for the scenarios defined in scenario. step_-duration and step_duration_units are used to specify
the time interval and units for each adjacent pair of time series data across all scenarios.

Figure 24 shows an example of stochastic network time series represented in our GRG format. In this example,
we specify the stochastic time series data for the active demand for load 1. The data consists of three scenarios:
scenario_1, scenario_2, and scenario_3, each with probability 50%, 40%, and 10% respectively. The number of data
points in each scenario is four (steps), at a one hour interval (step_duration & step_duration_units).

Example: Stochastic time series

"stochastic_time_series":{
"stochastic_dataSet_1": {

"step_duration": 1,

"steps": 4,

"step_duration_units": "hours",

"var": "load_1l/demand/active",

"scenario": {

"scenario_1": [0.9415429966400392,
0.914192766758504,
0.8891846836347795,
0.8789094591488987
:|l

"scenario_2": [1.4123144949¢6,
1.37128915014,
1.33377702545,
1.31836418872
]I

"scenario_3": [1.88308599328,
1.82838553352,
1.77836936727,
1.7578189183
1

}!

"scenario_probability": {
"scenario_1": "50%",
"scenario_2": "40%",
"scenario_3": "10%"

Figure 24: An example of stochastic time series block

38



9 Time Series Constraints

Atime_series_constraints object describes constraints with temporal time steps (e.g. ramping constraints for
unit committment problems). It can also be used to provide extra information for the time series data or the stochastic
time series data.

GRG schema: time_series_constraints

"time_series_constraints" :{
”type" . "object",
"patternProperties" :{

"o g

"type" : "object",
"required" : ["units", "assignments"],
"additionalProperties": true,
"properties" :{
"units": { "type" : "string"},
"assignments": { "S$ref": "#/network/network_assignments"}
}
}
}I
"additionalProperties": true

The patternProperties field specifies that zero or more sets of time series constraints are allowed to be spec-
ified. In time_series_constraints, we require fields units and assignments. Field units is used
specify the unit for the time series constraints. For example, the ramp up/down rate unit can be specified in units.
assignments block provides a list of assignments, where each assignment provides constraint data for each network
component.

Figure 25 shows an example of a time series constraint block represented in the GRG format. In this example,
we specify the ramping constraints for generator gen_1. The ramp up rate for the generator are 50 (active) and 30
(reactive) MVA/hour. Similarly, the ramp down rate are 40 (active) and 20 (reactive) MVA/hour. Again, the schema
allows users to customize and extend the GRG format. Users are encouraged to create other JSON blocks to describe
additional data.

Example: Time series constraint

"time_series_constraints": {

"ramp_constraints": {

"units" : "MVA/hours",

"assignments": {
"gen_1/output/active/ramp_up_rate": 50,
"gen_1/output/active/ramp_down_rate": -40,
"gen_1l/output/reactive/ramp_up_rate": 30,
"gen_1/output/reactive/ramp_down_rate": -20

Figure 25: An example of a time series constraint block

10 Contingencies

The contingencies object describes a set of contingency scenarios. Each scenario can be either defined as a
customized list of components specified by their GRG ID, or defined as a traditional contingency requirement (e.g. N-
1 contingency for transmission line). The JSON schema of cont ingencies, including the two contingency types
custom_contingency and traditional_contingency, are defined below.

GRG schema:contingencies

"contingencies" : {
"type": "object",
"additionalProperties": true,

39



"patternProperties": {
moam g

"oneOf": [

{
"Sref": "#/contingencies/custom_contingency"
br
{
"$ref": "#/contingencies/traditional_contingency"
}
]

}

}I
"custom_contingency" : {

"type" . "object",

"required" : ["failure-list"],

"additionalProperties": true,

"properties" :{

"failure-list" : { "type": "array",
"items" : {
"type" : "string"
}V
"minItems" : 1

}
)!
"traditional_contingency" : {
"type" : "object",
"required" : ["criteria", "component"],
"additionalProperties": true,
"properties" :{
"criteria" : { "type": "string"},
"component" : { "type": "string" }

The patternProperties field specifies that zero or more sets of contingency scenarios are allowed to be specified.
Each contingency scenario will be either defined as a customized contingency scenario (custom_contingency),
or a classical contingency scenario (traditional_contingency). A classical contingency scenario requires
fields criteria and component. component is used to specify the type of network components (e.g. generator,
ac_line, or bus) for the contingency scenario. criteria is used to describe the requirement on the type of equipments
specified in component (e.g. N-1 requirement). A customized contingency scenario requires field failure—-1list
to specify a list (in JSON array) of contingency components by their GRG IDs. Extra fields and data are allowed
and recommended to be added to customized scenario to provide more data and description on the listed contingency
components.

Figure 26 shows an example of four contingency scenarios represented in our GRG format. In this example, we
specify two customized contingency scenarios and two classical contingency scenarios. The first scenario contains a
failure-1list ofthreelines (1ine_1, 1ine_2, and 1ine_3), and the second scenario containsa failure—-1list
of one generator, one bus, and one transformer. The third and fourth scenarios describe two classical contingencies:
the N-2 contingency for AC transmisison line, and the N-1 contingency for generators.

11 Group block: Zones, Areas, and owners

The groups object records zones, areas, and ownership information of a transmission network. The object is useful
in providing information for network grouping, as well as information for classification. An object in the groups
block will be either a zone record, an area record, or an ownership record (or a user-defined extended record). The
JSON schema for groups, as well as the JSON schema for zone, area, and owner are defined below.

GRG schema:groups
"groups" : {
"type": "object",

40



Example: Contingency scenarios

"contingencies": {
"scenario_1": {
"failure-list" ["line_1", "line_2", "line_3"]
}l
"scenario_2": {
"failure-list" ["gen_1", "bus_75", "transformer_84"]
by
"scenario_3": {
"criteria": "N-2",
"component": "ac_line"
}l
"scenario_4": {
"criteria": "N-1",
"component": "generator"

Figure 26: An example of contingencies block

"additionalProperties":
"patternProperties": {

+{

L

"oneOf": [
{
"Sref": "#/groups/zone"
}l
{
"Sref": "#/groups/area"
b
{
"Sref": "#/groups/owner"
}
]
}
}I
"ZOI’]e" (
"type" "object",
"required" ["type", "name", "source_id", "component_ids"],
"additionalProperties": true,
"properties" :{
"type" { "enum" ["zone"]},
"name" { "type" "string"},
"source_id" { "type" "string"},
"component_ids" {
lltypell: "array",
"items" {"type" "string"},
"minItems" 1
}
}
I
"area" {
Iltype" "object",
"required" ["type", "name", "ptol", "source_id", "component_ids"],
"additionalProperties": true,
"properties" :{
"type” { "enum" ["arean]),
"name" { "type" "string"},
"ptol" {"Sref": "#/values/basic_values/extended_number"},
"source_id" { "type" "string"},
"component_ids" {
lltypell: "array",
"items" {"type" "string"},
"minItems" 1

true,

41



by

"owner" : {

"type" . ”object" ,
"required" : ["type", "name", "source_id", "component_ids"],
"additionalProperties": true,
"properties" :{
"type" : { "enum" : ["owner"]},
"name" : { "type" : "string"},
"source_id" : { "type" : "string"},
"component_ids" : {
"type": "array",
"items" : {"type" : "string"},
"minItems" : 1

The patternProperties field specifies that zero or more sets of group records are allowed to be specified. Each
record will be either defined as a zone record zone, an area record area, or an ownership record owner. All of
these records require t ype, name, source_id, and component_ids. An area record also require ptol. type
identified if the record is a zone, area, or owner record. name and source_id gives the name and identifier of the
record. component_ids is a JSON array listing the network components (in GRG IDs) associating to the specific
record. Finally, pt ol is the area interchance tolerance (in MW) specifically design for the area record. Extra fields and
data are again allowed and recommended to be added to these records to provide more data and description. Figure 27
shows an example of a zone, an area, and an ownership record represented in the GRG format.

Example: Group block

"groups":{

"zone_01":{
"type": "zone",
"name": "SOUTHWST",
"source_id": "10",
"component_ids": ["bus_1", "bus_3", "gen_1"]

I

"area_02":{
"type" : "area",
"name": "MEXICO",
"ptol": 5.0,
"source_id": "20",
"component_ids": ["bus_1", "gen_2"]

I
"owner_01": {
“type" : "owner",
"name": "PG&E",
"source_id": "20",
"component_ids":["line_1", "line_3", "transformer_4"]

Figure 27: An example of group block

12 GRG Document

A GRG document is defined as a collection of JSON blocks, and includes a network block, a mapping block,
a market block, a units block, an operation_constraints block, a network_time_series block, a
time_series_constraints block, a contingencies block, a stochastic_time_series block, and a
groups block. Its schema is as follows.

GRG schema: GRG document

42



"type": "object",
"required": ["grid_version", "network", "units"],
"additionalProperties": true,

"properties": {
"grg_version": {"type": "string"},
"description": {"type": "string"},
"network": {"S$ref": "#/network"},
"mappings": {"S$ref": "#/mappings"},
"market": {"Sref": "#/market"},
"units": {"Sref": "#/units"},
"operation_constraints": {"S$ref": "#/operation_constraints"},
"network_time_series" : {"Sref": "#/network_time_series"},
"time_series_constraints" : {"Sref": "#/time_series_constraints"},
"contingencies" : {"S$ref": "#/contingencies"},
"stochastic_time_series" : {"S$ref": "#/stochastic_time_series"},
"groups" :{"$ref": "#/groups"}

13 Network Topology

A network may be represented in one of three different topologies, from finer to coarser level of detail: node-breaker,
bus-breaker, or bus-branch. Table 18 summarizes these representations, indicating which ones capture the voltage
level topology (i.e., whether all the elements and their connections are physical ones) or not (i.e., merely logical con-
nections); which switch types are captured, and the representation of buses. We will now discuss each representation
in detail.

H Node-breaker | Bus-breaker \ Bus-branch ‘

Topology yes yes no
Breakers yes yes no
Disconnectors || yes no no
Bus Type busbar logical bus | bus

Table 18: Network Topologies.

13.1 Node-Breaker Topology

A node-breaker topology contains the highest level of detail for a network. All components are physical elements,
including busbar sections, breakers, and disconnectors. In this topology, a voltage level is a collection of network
components and connection nodes. Nodes are logical connection points labeled with values in N U {0}. Each com-
ponent is directly connected to one node (if it is a bus, shunt, generator, or load), or to two nodes (if it is an AC
line, transformer, or switch). The connection of a network component to a node is described in its 1ink attribute
(or 1ink_1 and 1ink_2 attributes for a connector). The set of nodes in a voltage level is described implicitly: It is
the union of 1ink values of all network components in that voltage level. Figure 28 (a) shows a voltage level in the
node-breaker topology where breakers are illustrated as white squares, and disconnectors as pairs of white circles.

13.2 Bus-Breaker Topology

A network in bus-breaker form also represents a voltage level as a collection of components connected through nodes.
However, the bus-breaker representation contains no disconnectors. Algorithm | describes the procedure for con-
structing a bus-breaker topology from a network in node-breaker form. The algorithm accepts a node-breaker network
N as input. Lines (1-2) call the procedure Transform-Voltagelevel for each voltage level V in the network A'. The
result of this operation is to (1) merge busbars of the voltage level which are connected by closed disconnectors, (2)
remove all disconnectors from the voltage level, and (3) remove components that have no path to a logical bus. Lines

43



LN1
EITY ez

BUS1

(@) () (©

Figure 28: Illustration of a voltage level in node-breaker (a), bus-breaker (b), and bus-branch (c) topologies.

Algorithm 1: NODE-BREAKER TO BUS-BREAKER(N)

1 foreach voltage level V € N do
2 L Transform-VoltageLevel(V);

3 foreach line and transformer | € Ly U Ty do
4 if A paths through close switches from [ to some by € By, and by € By, then
5 L Remove [ from V;

(6—-12) show greater detail for the removal process of a set of disconnectors Dy, of the voltage level V. A disconnector
is removed from the network by linking all voltage level components attached to its node on side 2 (1ink_2) to its
node on side 1 (1ink_1) (lines 9-11). This operation may result in multiple busbars connected to the same node. In
Figure 28 (a), for instance, busbars BBS1 and BBS2 will be connected to node 0 when disconnector DI1 is removed.
The effect of the loop in lines 13—15 is to merge such busbar sets into single logical buses. This is done by preserving
one busbar of the set B, changing its type to a logical bus, and removing all other busbars in B.

The effect of executing lines 16—18 is to remove all components of the voltage level for which there is no path
through closed switches or non-assigned breakers to a logical bus of the voltage level. For instance, in Figure 28 (a),
the breakers BR1, BR4, BS5, the generator GN1, and the load LD1 have no closed path to a voltage level bus, since
disconnector DI2 is open. Thus, these components are removed from the voltage level. The result of this operation is
illustrated in Figure 28 (b).

Finally, in lines (3-5) of Algorithm 1, all lines and transformers (connectors) of the network are processed. As was
done for voltage levels, a connector is removed if it has no closed path to logical buses on both sides.

Figure 28 (b) illustrates an example voltage level in the bus-breaker topology obtained from the node-breaker
topology of Figure 28 (a).

13.3 Bus-Branch Topology

A network in bus-branch form differs from one in a node- or bus-breaker form in that switches are not represented, and
all network components are directly connected to a bus. Thus, the bus-branch topology has no concept of connection
nodes.

A bus-branch topology can be obtained from a node- or a bus-breaker topology by applying a variation of Algo-
rithm 1. Rather than processing disconnectors (line 6), all switches of the voltage level are processed. Finally, after the
algorithm is executed, the 1ink attribute of each generator, load, and shunt, and the 1ink_1 and 1ink_2 attributes
of lines and transformers are updated to take the ID of the bus to which they are connected.

Figure 28 (c) illustrates an example voltage level in the bus-branch topology, obtained from the bus-breaker topol-
ogy of Figure 28 (b).

44



Procedure Transform-VoltageLevel())

6 foreach disconnectors d € Dy, do
7 ny < d[link_1];
8 ng < d[link_2J;

9 foreach component c € V s.t. c is connected to no do

10 Let link be link_i if ¢ is a switch, line, or transformer, and link_i # no;
11 c[link] < nq;

12 Remove d from V ;

13 foreach busbar b € By, do

14 Let B = {V/ € By : V'[link] = b[link]} ;
15 | Removeallt € B\ {b};

16 foreach component c € V do

17 if A path through close switches from c to some b € By, then
18 L Remove ¢ from V;

14 Per-Unit Transformations

This section describes all per-unit transformations for network components.

AC Line

The per-unit transformation of an AC line (see also Figure 1) is shown in Table 19. The nominal current magnitude

Iom of the AC line is defined as:
SI'IO'HL

Inom = V. y
nom

where Vo, is voltage magnitude on either side of the line, and .S, is the nominal power magnitude of the network.
The nominal impedance of the AC line is defined as:

(28)

2
T = V) 29)
nom
| GRG name | Parameter | Per-unit transformation |

impedance—resistance R ﬁ ‘R

impedance—reactance X Z.:i:m - X

shunt_l—conductance G4 Znom - G1

shunt_l—susceptance B: Znom * B1

shunt_2—conductance Gy Znom - G
shunt 2—susceptance By Znom * Ba
current_limits_1[k]—min Imm Inlm ~Imi”
current_limits_1[k]—max Im‘” Infm '[m‘”
current limits2[k]—min | I§" A pin
current_limits_ 2 [k]—max Im‘” Inf'rn . Im‘”
thermal_limits_1[k]—min ‘f}f” Snim . Ilnkm
thermal limits 1 [k]—max maz S - S
thermal_ limits_2[k]—min Smm Snim . Smm
thermal_limits_2[k]—max Sm‘”” Sn(](;)rn . Sm“z

Table 19: AC line per-unit transformations.

45



DC Line

The per-unit transformation of an DC line is shown in Table 20. The nominal current magnitude I,,,, of the DC line
is defined as: 3
I — nom , 30
nom ‘/nom ( )
where Vo, is voltage magnitude on either side of the line, and .S, is the nominal power magnitude of the network.
The nominal resistance of the DC line is defined as:

2
R = U] G
nom

GRG name \ Parameter \ Per-unit transformation ‘
resistance R Rnlom ‘R
losses_l—min Lin ﬁ “Unin
losses_l—max Imax 5. - lmax
losses_1—c.0 Co Snlm - Co
losses_1—c_1 c1 Smf)m -c1
losses_2—min Imin ﬁ “Imin
losses_2—max Imax - Imax
losses_2—c.0 Co Snlm - Co
losses_2—c_1 c1 Snfm -c1
output_l—reactive Q Snim -Q
output 2—reactive Q Snzm -Q
current_limits_1[k]—min ﬂm I,.lm i‘;:”
current_limits_1[k]—max I““a“c Infm ~Ima$
current_limits_ 2[k]—min é‘;”‘ I“im g‘;”
current_limits_2[k]—max Imax Infm -[m‘m
thermal limits_ 1[k]—min ﬁm % T’km
thermal_limits_1[k]—max 'f‘:x S,.fm . Tkax
thermal_limits_2[k]—min Smm Snim ~Smm
thermal_limits_2[k]—max Sm‘”“ Snfm . S’m“”“

Table 20: DC line per-unit transformations.

Two winding transformer

For a two winding transformer (see Figure 5), the per-unit transformation is defined in Table 2 1. The nominal current

magnitudes 1! onside 1 and 12, on side 2 are defined as:

1
Liom VI (32)
S,
2 __ “nom
Ioom = vz (33)
where VL and V2 = are the voltage magnitudes on sides 1 and 2 of the transformer. The nominal impedance

magnitude on side 2 (low voltage side) of the transformer is defined as:

2
(‘/nom) (34)

Znom - S
nom

46



GRG name | Parameter | Per-unit transformation |

tap_-changer—impedance—resistance Ry anm - Ry,
tap_changer—impedance—reactance Xk anm - Xk
tap_-changer—shunt—conductance Gy Znom * Gk
tap_-changer—shunt—susceptance By, Znom B
tap_changer—transform—tap_ratio (T model) (%)rk Tk
tap_changer—transform—tap_ratio (Pl model) “2;: 7Tk Tk
tap_changer—transform—angle_shift O 180 * Ok
tap_changer—steps[k] —impedance—resistance Ry, anm - Ry
tap-changer—steps k] —impedance—reactance X anm - Xk
tap-changer—steps (k] —+shunt—conductance G Znom * Gk
tap-changer—steps|[k]—shunt—susceptance By, Znom * B
tap_changer—steps [k] »transform—tap_ratio (T model) (%)rk rE
tap_changer—steps [k]—transform—tap_ratio (Pl model) (é—z’m)rk Tk
tap_-changer—steps|[k]—transform—angle_shift Ok %% - O,
current _limits 1[k]—min e I
current _limits_ 1[k]—max e Infm e
current limits 2[k]—min g In(im - 15
current_limits 2[k]—max b Infm 2"
thermal_limits_l—min i S“Tm - Siin
thermal_ limits_l—max Sﬂaz Snfm : Siam
thermal_limits_2—min Sgyin Snim - Sgin
thermal_limits_2—max Sénkaz Snf?’n 'Sénkaz

Table 21: Two winding transformer per-unit transformations.

Three winding transformer

For a three winding transformer (see Figure 8), the per-unit transformation is defined in Table 22. The nominal current

magnitudes I . T2 and I3 ~ onside 1,2, and 3 are defined as:
S,
1 __ Pnom
Inom - V;{;m, (35)
Sn m
[n20m = V20 ) (36)
nom
. S,
I3, = o 37
o Vim Gn
(38)
where VI V2 and V3 & are the voltage magnitudes on sides 1, 2, and 3 of the transformer. The nominal

impedance magnitude of the transformer is defined as:

m )2
Znom = (‘g}ﬂ» (39)

where V™ is the chosen nominal voltage magnitudes at star middle point of the transformer. V™ can be setto VL

2 3 :
Vim,or Voo depending on usage.
Bus

The per-unit transformation for a bus is defined in Table 23, where Vj,,, is voltage magnitude at the voltage level
of the bus. If the network is in flat representation, then the voltage component of the bus is transformed in per-unit
according to the description provided in the last three rows of Table 23.

47



[ GRG name [ Parameter [ Per-unit transformation
~a 1 71 .
tap-changer_-1—im ‘e—resistance R, Zogm Ry,
tap-changer_1—im ce—reactance X1, Znom " X1g,
tap-changer.l—shunt—conductance G Znom - Gy,
tap-changer_.1—shunt—susceptance By Znom + B1y,

nom
tap-changer_.l—transform—tap.ratio ( Vn%m )le T1y

1
tap-changer_.l—transform—angle_shift 51k ﬁ . 61k
tap-changer_.l1—steps[k] —impedance—resistance Ry, 7Zn1m c Ry,
tap-changer_1l—steps k] —impedance—reactance Xlk Znom Xlk
tap-changer_.l—steps[k] —shunt—conductance le Znom * le
tap_.changer_l1—steps|[k] —shunt—susceptance Blk Znom - Blk

Vnom
tap-changer.-1—steps[k] —transform—tap-ratio (e )71, T1

1
tap-changer_l1—steps[k] —transform—angle_shift 01y, 180 " 01y,
tap_-changer_2—impedance—resistance ng ﬁ . R2,C
tap-changer-2— impe ce—reactance v‘i{“zk T X2
tap-changer_2—transform—tap_ratio %)Tzk T2y,

2
tap-changer_2—transform—angle_shift 52k 50 52k
tap-changer.2—steps[k]—in e—resistance ng anm . Rzk
tap-changer_2—steps k] —impedance—reactance ng anrn . ng

v hom )
tap-changer-2—steps[k] —transform—tap.-ratio (e )72, T2,

3 :
tap_changer_2—steps[k] —transform—angle_shift Oz, 180 " 02,

N ~ N 3 1 .
tap-changer_3—impe —resistance Rg,C Znom R3k
tap-changer.3—im »—reactance X3, Znom X3y,

) ynom
tap-changer_3—transform—tap_ratio ﬁ)rsk T3y,

3
tap-changer.3—transform—angle_shift LET 180 * 93
tap-changer_3—steps[k] —imped c—resistance Rs,, ﬁ Ray,
tap-changer_3—steps[k] = impedance—reactance ng_ ij . X3k

yhom )
tap-changer-3—steps[k] —transform—tap-ratio (e )73, T3,

3
tap_changer_3—steps[k]—transform—angle_shift 53k 180 " 93,
current_limits_1[k]—min Irlmn Inim IT):TL

its_1[k]—max IT(M In;m 'IT:T

[k] —min L In;m LT

[k] —max I3 T e

[k]—min Ig";" In;m . Ig‘;"

(k] —max 150 o 150"

nal limits_1[k]—min ST S ST

rmal_limits_1[k]—max Srln}:w S“im Srln;:m

nal limits 2 [k]—min Sz S - S5

rmal_limit [k] —max S;‘Zm Snim . S;";:m

thermal_limits_3[k]—min S5 S S5

herm imits mé @ T omax
tt al_limits_3[k]—max S3k S S3k

Table 22: Three winding transformer per-unit transformations.

’ GRG name \ Parameter \ Per-unit transformation
voltage—magnitude v anm v
voltage—angle—1lb ot 180 ° 6!
voltage—angle—ub o 180 0"
voltage—nominal _value Viom 1
voltage—lower_limit vk V;,lm VL
voltage—upper_limit |74 % v

Table 23: Voltage component per-unit transformations.

Shunt

For a shunt (see Figure 13), the per-unit transformation is defined in Table 24. The nominal impedance of the AC line
is defined as: )
(Vaom)

Znom = S
nom

(40)

48



| Parameter | Per-unit transformation |

GRG name
shunt—conductance G Zl -G
shunt—susceptance B Zf -B

Table 24: Shunt per-unit transformations.

Load

For a load, the per-unit transformation is defined in Table 25.

| Parameter | Per-unit transformation |

| GRG name
demand—active P 5 L .p
demand—reactive Q Sf -Q

Table 25: Load per-unit transformations.

Generator

For a generator, the per-unit transformation is defined in Table 26.

\ Parameter \ Per-unit transformation ‘

GRG name
output—active P Snlm -P
output—reactive Q = Em -Q
PQ_curve—values[k] [0] Py S.E,m - Py
PQ_curve—values[k] [1] Qrin ﬁ - Quin
PQ_curve—values[k] [2] QR Snfm - QRaw

Table 26: Generator per-unit transformations.

Synchronous Condenser

For a synchronous condenser, the per-unit transformation is defined in Table 27.

’ GRG name

\ Parameter \ Per-unit transformation ‘

’ output—reactive ‘

Q|

T

Shom

Q

|

Table 27: Synchronous condenser per-unit transformations.

Voltage Level

Each voltage component of a voltage level is transformed according to Table 28.

GRG name Parameter | Per-unit transformation
voltage—nominal_value Vaomn 1
voltage—lower_limit Vi anm VL
voltage—upper_limit |74 Vﬂ—fm VU

Table 28: Voltage Level per-unit transformations.

49



	Basic Concepts
	Values
	Electrical Values
	Limits

	Network Components
	AC Line
	DC Line
	Transformers
	Three winding Transformer
	Switch
	Bus
	Shunt
	Load
	Generator
	Synchronous Condenser

	Assignment and Mappings
	Networks
	Substation
	Voltage Level

	Market
	Units
	Time Series Data
	Stochastic Time Series Data
	Time Series Constraints
	Contingencies
	Group block: Zones, Areas, and owners
	GRG Document
	Network Topology
	Node-Breaker Topology
	Bus-Breaker Topology
	Bus-Branch Topology

	Per-Unit Transformations

