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Abstract: Recently, model predictive control (MPC)-based platooning strategies have been developed 
for connected and autonomous vehicles (CAVs) to enhance traffic performance by enabling cooperation 
among vehicles in the platoon. However, they are not deployable in practice as they require the embedded 
optimal control problem to be solved instantaneously, with platoon size and prediction horizon duration 
compounding the intractability. Ignoring the computational requirements leads to control delays that can 
deteriorate platoon performance and cause collisions between vehicles. To address this critical gap, this 
study first proposes an idealized MPC-based cooperative control strategy for CAV platooning based on 
the strong assumption that the problem can be solved instantaneously. It also proposes a solution 
algorithm for the embedded optimal control problem to maximize platoon performance. It then develops 
two approaches to deploy the idealized strategy, labeled the deployable MPC (DMPC) and the DMPC 
with first-order approximation (DMPC-FOA). The DMPC approach reserves certain amount of time 
before each sampling time instant to estimate the optimal control decisions. Thereby, the estimated 
optimal control decisions can be executed by all the following vehicles at each sampling time instant to 
control their behavior. However, under the DMPC approach, the estimated optimal control decisions may 
deviate significantly from those of the idealized MPC strategy due to prediction error of the leading 
vehicle’s state at the sampling time instant. The DMPC-FOA approach can significantly improve the 
estimation performance of the DMPC approach by capturing the impacts of the prediction error of the 
leading vehicle’s state on the optimal control decisions. An analytical method is derived for the 
sensitivity analysis of the optimal control decisions. Further, stability analysis is performed for the 
idealized MPC strategy, and a sufficient condition is derived to ensure its asymptotic stability under 
certain conditions. Numerical experiments illustrate that the control decisions estimated by the DMPC-
FOA approach are very close to those of the idealized MPC strategy under different traffic flow scenarios. 
Hence, DMPC-FOA can address the issue of control delay of the idealized MPC strategy effectively and 
can efficiently coordinate car-following behaviors of all CAVs in the platoon to dampen traffic 
oscillations. Thereby, it can be applied for real-time cooperative control of a CAV platoon.  

Keywords: Connected and autonomous vehicles; deployable model predictive control approaches; 
sensitivity analysis; stability analysis 

1. Introduction  

Connected and autonomous vehicle (CAV) technologies provide disruptive and transformational 
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opportunities for innovations toward intelligent transportation systems. Unlike human-driven vehicles, 
CAVs have shorter reaction times, better knowledge of ambient traffic (in terms of speed, position, 
acceleration, etc.), and faster information processing speeds. These characteristics enable CAVs to form 
platoons to drive cooperatively on the road, in which a vehicle maintains a small and nearly constant 
headway with its preceding vehicle. Past studies suggest that vehicle platooning of CAVs can benefit 
transportation systems in many ways (Jia et al., 2015). It can increase road capacity, reduce energy 
consumption and tailpipe emissions, and facilitate vehicle-to-vehicle based applications (involving data 
sharing and dissemination) due to the relatively fixed positions of vehicles within a platoon.  

In the literature, many adaptive cruise control (ACC) models and cooperative ACC (CACC) models 
have been proposed to control longitudinal car-following behavior of vehicles to enable efficient vehicle 
platooning. The ACC makes car-following decisions based on the preceding vehicle’s information (speed 
and position) obtained through onboard sensors (e.g., VanderWerf et al., 2001; Hasebe et al., 2003; 
Kesting et al., 2008; Darbha and Rajagopal, 1999), while CACC makes car-following decisions with 
more information (speed, position and/or acceleration) from either a single vehicle or multiple vehicles 
in the platoon by leveraging connectivity technologies. The CACC models can improve the stability and 
efficiency of the ACC models by reducing the delay in responding to the preceding vehicle. According 
to Wang et al. (2014a), CACC models can be divided into two categories, the cooperative sensing-based 
models and the cooperative behavior-based models. The cooperative sensing-based models seek to 
optimize individual vehicle’s performance using, for example, the immediate preceding vehicle’s 
information (with acceleration) (Rajamani, R., Shladover, S.E. 2001, Desjardins and Chaib-draa, 2011), 
multiple preceding vehicles’ information (Li et al., 2011; Jia and Ngoduy, 2016; Ge and Orosz, 2014; 
Ploeg et al., 2014) or the preceding-and-following vehicles’ information (Zheng et al., 2016; Nakayama 
et al., 2001). It is important to note that the behaviors of vehicles controlled by these models are non-
cooperative. That is, the control is not based on viewing a group of vehicles as an integrated system, 
which can deteriorate system (platoon) performance in terms of safety, mobility, energy consumption, 
etc.  

To bridge this gap, recently, cooperative behavior-based CACC models have been proposed to 
coordinate the behaviors (accelerations or decelerations) of all of the following vehicles in a CAV platoon 
(e.g., Wang et al., 2014b; Zhou et al., 2017; Gong and Du, 2018). Most of these models are developed 
by leveraging the model predictive control (MPC) cooperative control approach. The MPC approach 
incorporates an optimal control problem to optimize the control decisions of the following vehicles in 
the platoon for some future period (labeled prediction horizon) to maximize the platoon performance 
based on the vehicles’ state information at the current time. It has the flexibility to deal with multiple 
design criteria and constraints on state and control variables. Wang et al. (2014b) propose a MPC 
approach to coordinate the behaviors of all CAVs in a platoon to optimize a cost function reflecting 
different control objectives. Numerical applications illustrate that this approach can lead to smoother 
deceleration behavior and more responsive and agile acceleration behavior compared to non-cooperative 
controllers. Zhou et al. (2017) extend Wang et al. (2014b) by addressing the impacts of uncertainty in 
both system dynamics and sensor measurements on vehicle control. They propose a discrete Kalman 
filter to estimate the system state and a stochastic MPC approach to determine the optimal control. Gong 
and Du (2018) apply the MPC approach to coordinate multiple CAV platoons separated by human driven 
vehicles to enhance the smoothness and stability of the mixed flow platoon. Wang et al. (2019) provide 
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a detailed review of the recent CAV trajectory control methods. 
While the aforementioned MPC-based cooperative control strategies can coordinate the car-

following behaviors of CAVs in a platoon effectively, their real-time deployability requires that at each 
sampling time instant, the group of CAVs solve the embedded optimal control problem instantaneously 
(i.e., in much less than 0.1 seconds) to obtain the vehicles’ control decisions based on their detected states 
(e.g., speed and positions) at that instant. These decisions then need to be executed to control the CAV 
platoon at the sampling time instant with no delay. However, this requirement cannot be satisfied in 
practice due to the computational time required by the CAVs to solve the optimal control problem. As 
pointed by Zhou et al. (2017), the computational time for solving the optimal control problem increases 
monotonically with the number of vehicles in the platoon and the prediction horizon. It can become 
intractable in real traffic systems due to the expansion of the dimensionality of state and control input 
spaces (Wang et al., 2016). Thereby, based on platoon size and prediction horizon length, the 
computational time of the optimal control problem can cause significant delay (labeled control delay) in 
the execution of the optimal control decisions for the CAV platoon. As the CAVs’ states change 
dynamically, the control delay can significantly deteriorate performance and even induce vehicle 
collisions. This precludes these MPC-based cooperative control strategies for a CAV platoon from being 
applied in real-time.  

Some recent studies have sought to reduce the control delay induced by the computational time to 
solve the optimal control problem embedded in MPC-based cooperative control strategies. Wang et al. 
(2016) propose a decentralized MPC strategy which considers cooperation among only two vehicles in 
a decoupled platoon system, which reduces the computational time substantially as only two vehicles’ 
control decisions are optimized simultaneously. However, the performance of the CAV platoon cannot 
be enhanced to the fullest under this strategy as only two vehicles’ behaviors are coordinated at the same 
time under a common objective. Further, the computational time for solving the optimal control problem 
can increase with the prediction horizon for even the decoupled platoon system. Gong and Du (2018) 
propose a distributed solution algorithm to reduce computational time by distributing the computational 
tasks among all CAVs in the platoon. However, the computational time of this algorithm can increase 
dramatically with platoon size and prediction horizon. Hence, these methods (e.g., Wang et al., 2016; 
Gong and Du, 2018) alleviate the issue of control delay of MPC-based cooperative control strategies to 
only a certain extent, but are still limited by platoon size and/or prediction horizon. 

This study develops two real-time deployable MPC-based approaches that address the issue of the 
control delay at a fundamental level. In this study, the phrase “real-time deployable” refers to the 
capability that these approaches can overcome the control delay issue and can provide the optimal control 
decisions for all following vehicles in the platoon instantaneously at each sampling time instant. To do 
so, first, an idealized MPC-based cooperative control strategy is proposed by modifying the strategies 
proposed by Wang et al. (2014b) and Zhou et al. (2017). It can coordinate the behavior of all of the 
following CAVs in the platoon to maneuver them efficiently and safely on the idealized assumption that 
the embedded optimal control problem can be solved instantaneously. To relax this assumption, two 
deployable approaches, labeled the deployable MPC (DMPC) approach and the DMPC with first-order 
approximation (DMPC-FOA) approach, are proposed to address the issue of computational delay 
associated with solving the optimal control problem in the idealized MPC-based strategy. It should be 
noted that to enable efficient coordination of the car-following behaviors of all CAVs in the platoon, 
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such approaches need to accurately characterize the optimal control decisions of the idealized MPC-
based strategy.  

The DMPC approach reserves sufficient time before each sampling time instant to solve the optimal 
control problem so that the optimal control decisions can be obtained in advance to be executed at the 
corresponding sampling time instant with no delay. However, as the leading vehicle of a platoon needs 
to respond to the dynamics of the vehicles downstream of it, its behavior cannot be controlled and 
coordinated with those of the following vehicles in the platoon. Thereby, its position and speed at each 
sampling time instant need to be predicted ahead of that time, which is determined by the time reserved 
for computing. Hence, the optimal control decisions of the DMPC approach can deviate from that of the 
idealized MPC strategy due to error in predicting the leading vehicle’s position and speed in advance. To 
address this problem, the DMPC-FOA approach is proposed to more accurately characterize the optimal 
control decisions of the idealized MPC strategy. Before each sampling instant, the DMPC-FOA approach 
reserves sufficient time to determine not only the optimal control decisions using the leading vehicle’s 
predicted position and speed at the sampling time instant, but also the derivatives of the estimated optimal 
control decisions with respect to the leading vehicle’s position and speed. Thereby, at the sampling time 
instant when the leading vehicle’s actual position and speed are detected, the first-order Taylor 
approximation method can be applied to correct the estimated optimal control decisions for the following 
vehicles. Numerical experiments illustrate that the DMPC-FOA approach can address the issue of control 
delay while accurately estimating the optimal control decisions of the idealized MPC strategy.  

The contributions of this study are fivefold. First, an idealized MPC strategy is proposed to 
coordinate the behaviors of the following vehicles in the platoon by modifying the control strategies 
proposed by Wang et al. (2014b) and Zhou et al. (2017).  Further, a solution algorithm is proposed to 
solve the optimal control problem with both control constraints and pure state constraints in the idealized 
MPC strategy. A two-point boundary value problem is derived based on the necessary conditions for 
optimality to obtain the optimal control decisions to coordinate the behaviors of all vehicles in the platoon 
to maximize the platoon performance. Second, the study develops the DMPC-FOA approach that 
simultaneously addresses the control delay issue while accurately characterizing the optimal control 
decisions of the idealized MPC strategy. Thereby, it can be applied in real-time to efficiently coordinate 
the car-following behaviors of all CAVs in a platoon. Third, the method for sensitive analysis of the 
optimal control problem is analytically formulated. It can quantitatively measure the impact of parametric 
perturbations (e.g., perturbations of initial state of the leading vehicle) on the optimal control decisions 
and the platoon performance. Fourth, this study shows analytically that the derivatives of the optimal 
control decisions with respect to parametric perturbations are the same when the inequality constraints 
in the proposed optimal control problem (e.g., acceleration range constraints, speed range constraints, 
spacing headway constraints) are inactive in some traffic scenarios (e.g., uncongested traffic flow with 
mild acceleration and deceleration behavior of the leading vehicle). These results can be used as initial 
points in the algorithm to solve for these derivatives faster when the constraints in the optimal control 
problem are active in certain traffic scenarios (e.g., very congested flow). This enhances the real-time 
applicability of the proposed method. Fifth, an analytical method is provided for stability analysis of the 
idealized MPC strategy. It helps to identify the inputs of the parameters in the idealized MPC strategy to 
better dampen the oscillations in the platoon.   

It is important to note that this study is fundamentally different from that of Wang et al. (2018), 
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which discusses a compensation strategy for sensor delay and actuator lag. The compensation strategy 
can account for the differences between the sensed kinematic states of all following vehicles and the 
actual ones at the sampling time instant by leveraging the optimal control decisions for all following 
vehicles in the last control cycle. However, in their study, the computational time for solving the optimal 
control problem is neglected. Thereby, they do not study the impacts of the prediction error of the leading 
vehicle’s state at the sampling time instant on the optimal control decision. Note that the leading vehicle’s 
behavior cannot be controlled. Thereby, unlike for the following vehicles in the platoon, the deviation 
between the predicted leading vehicle’s state and the actual one at the sampling time instant cannot be 
compensated using the method proposed in Wang et al. (2018). 

The remainder of this paper is organized as follows. The next section provides the analytical 
formulation of the idealized MPC cooperative control strategy for a CAV platoon and discusses the 
framework for the DMPC and DMPC-FOA approaches. Section 3 introduces the solution algorithm to 
solve the optimal control problem in the idealized MPC strategy. The method for the sensitivity analysis 
of the optimal control problem is presented in Section 4. Section 5 discusses the conditions for the 
stability of the idealized MPC strategy without inequality constraints. Section 6 discusses results of 
numerical experiments to compare the control performance of the idealized MPC strategy and the DMPC 
and DMPC-FOA approaches. The last section provides some concluding comments. 

2. MPC approaches for longitudinal control of CAV platoon 

2.1 An idealized MPC cooperative control strategy for a CAV platoon 

This section presents an idealized MPC strategy to control the CAVs in a platoon cooperatively by 
modifying the control strategies developed by Wang et al. (2014b) and Zhou et al. (2017). It seeks to 
coordinate the behavior of all following vehicles to: (1) maintain a desired safe spacing (labeled 
equilibrium spacing) between two consecutive vehicles in a platoon, and reduce traffic flow oscillations 
in terms of spacing and speed changes, and (2) maximize the comfort of travelers in these vehicles by 
minimizing deceleration and acceleration. The details of the idealized MPC strategy are as follows.  

Consider a stream of CAVs in a single highway lane as shown in Fig. 1. Let 0,1,2⋯ , 𝑛 represent the 
CAVs in the platoon sequentially with 0 being the leading CAV and 𝑛 being the tail CAV. The following 
assumptions will be used to design the longitudinal control of the CAV platoon: 

1. All vehicles in the platoon are CAVs. 
2. Two-way V2V communications exist between the leading vehicle and each of the following 

vehicles in the platoon (see Fig.1). Each following vehicle sends real-time information (speed 
and position) to the leading vehicle. The leading vehicle sends the computed optimal control 
decisions to each of the following vehicles to control their driving behavior. 

3. All CAVs can sense their kinematic states (speed, position, etc.) accurately and can send that 
information to the leading vehicle of their platoon instantaneously. 

4. The leading CAV computes and sends the optimal control decisions (i.e., accelerations and 
decelerations) to all of the following CAVs which implement these decisions. 

5. The actuator delay is negligible; that is, vehicles can implement the control instantly. 
6. The pavement of the highway lane is in good condition and longitudinal slope is negligible. 
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Fig. 1. A CAV platoon stream. 

In this study, we treat a platoon of CAVs as an integrated system, in which vehicles within the platoon 
are controlled in a coordinated manner. Define the state of a follower vehicle 𝑖 as (𝑠*(𝑡) − 𝑠*∗(𝑡), 𝑣*(𝑡) −
𝑣*12(𝑡)3, where 𝑠*(𝑡) is the spacing of vehicle 𝑖 with its predecessor vehicle at time 𝑡, 𝑣*(𝑡) is the speed 
of vehicle 𝑖 at time 𝑡, and 𝑠*∗(𝑡) is the equilibrium spacing at time 𝑡. This study uses the constant time 
headway policy to determine the equilibrium spacing. Thereby, 𝑠*∗(𝑡) = 𝑟*∗ ∙ 𝑣*(𝑡) + 𝑠8, where 𝑟*∗ is the 
constant time headway for vehicle 𝑖 and 𝑠8 is the safe distance to the predecessor vehicle. For simplicity, 
the constant time headway for each follower vehicle in the platoon is assumed to be the same, i.e., 𝑟*∗ =
𝑟∗, ∀𝑖 = 1,2,⋯𝑛. Let 𝑥*(𝑡) = 𝑠*(𝑡) − 𝑠*∗(𝑡), ∀𝑖 be the position error between the desired spacing and 
actual spacing of vehicle 𝑖 from its predecessor vehicle at time 𝑡. Denote 𝑦*(𝑡) as the speed difference of 
vehicle 𝑖  from its predecessor vehicle at time 𝑡 , i.e., 𝑦*(𝑡) = 𝑣*(𝑡) − 𝑣*12(𝑡) . Denote 𝑑*(𝑡)  as the 
longitudinal position of CAV 𝑖 in the platoon at time 𝑡. Then, 

𝑥*(𝑡) = 𝑑*12(𝑡) − 𝑑*(𝑡) − 𝑟∗ ∙ 𝑣*(𝑡) − 𝑠8  (1) 
and  

�̇�*(𝑡) = 𝑣*12(𝑡) − 𝑣*(𝑡) − 𝑟∗ ∙ 𝑢*(𝑡)       (2a) 

�̇�*(𝑡) = 𝑢*(𝑡) − 𝑢*12(𝑡)       (2b) 
where �̇�*(𝑡) is the first-order derivative of position error of vehicle 𝑖 from its predecessor vehicle with 
respect to time 𝑡.	�̇�*(𝑡) is the first-order derivative of speed difference of vehicle 𝑖 from its predecessor 
vehicle with respect to time 𝑡. 𝑢*(𝑡) is the acceleration of CAV 𝑖 at time 𝑡.  

Assume that the leading vehicle 0  travels at a constant speed. The spacing of vehicle 𝑖, ∀𝑖 =
1,2,⋯ , 𝑛 from its predecessor vehicle can then be expressed as:  

𝑠*(𝑡) = 𝑥*(𝑡) + 𝑟∗ ∙ @𝑣A(𝑡) +B 𝑦C(𝑡)
*

CD2
E + 𝑠8, ∀𝑖 = 1,2,⋯ , 𝑛        (3) 

Denote 𝐱(𝑡) = [𝑥2(𝑡), 𝑥H(𝑡),⋯ , 𝑥I(𝑡)]K , 𝐲(𝑡) = [𝑦2(𝑡), 𝑦H(𝑡),⋯ , 𝑦I(𝑡)]K , and 𝒖(𝑡) =
[𝑢2(𝑡), 𝑢H(𝑡),⋯ , 𝑢I(𝑡)]K.  𝐱(𝑡) and 𝐲(𝑡) are vectors of state variables. Then, the dynamics of the states 
(i.e., 𝐱 and 𝐲) are as follows: 

N�̇�
(𝑡)
�̇�(𝑡)O = P𝟎I −𝑬I

𝟎I 𝟎I
STUUVUUW

𝑨

N𝐱
(𝑡)
𝐲(𝑡)O + Y

𝐌
𝑺 \]
𝑩

∙ 𝒖(𝑡) (4) 

where �̇�(𝑡) and �̇�(𝑡) are first-order derivatives of 𝐱(𝑡) and 𝐲(𝑡) with respect to time 𝑡 , 𝟎I  is the 𝑛-
dimensional zero square matrix, and 𝐌 = −𝑟∗ ∙ 𝑬I,	𝑬I is the 𝑛-dimensional identity matrix. Matrices 𝑨 
and 𝑩 are defined in Eq. (4). The matrix 𝑺 is: 

0123

!

n

Optimal control 
decision of vehicle n

Speed and position of 
vehicles in the platoon 

Optimal control 
decision of vehicle 1

Optimal control 
decision of vehicle 3

Optimal control 
decision of vehicle 2
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𝑺 =

⎣
⎢
⎢
⎢
⎡ 1−1 1

−1 1
⋱ ⋱

−1 1 ⎦
⎥
⎥
⎥
⎤
I×I

  

Following the elucidation of the state variables, the next step in developing the idealized MPC 
strategy is the conceptual illustration of its implementation framework and computational procedure, as 
shown in Figs. 2(a) and 2(b), respectively. In Fig. 2(a), let 𝑡g(𝑘 = 1,2,3⋯ ) be the sampling time instant 
at which new optimal control decisions should be executed to control vehicles in the platoon, 𝑇k be the 
prediction horizon for which the optimal control decisions are determined, and  ∆𝑡	(∆𝑡 ≤ 𝑇k) be the roll 
period for which these decisions are implemented. Such a rolling horizon framework enables the practical 
implementation of the control strategy by trading off (solution) computational time with solution 
accuracy by limiting the prediction horizon size while being responsive to unfolding traffic conditions. 
Thereby, for a sampling time instant 𝑡g , the new optimal control decisions are calculated for the 
prediction horizon [𝑡g, 𝑡g + 𝑇k], but only implemented for the roll period [𝑡g, 𝑡g + ∆𝑡]	by the following 
vehicles in the platoon to control their behavior. Then, at the next sampling time instant 𝑡gn2 (where 
𝑡gn2 = 𝑡g + ∆𝑡), the procedure is repeated to determine and implement the optimal control decisions for 
all following CAVs in the platoon for roll period [𝑡gn2, 𝑡gn2 + ∆𝑡]. This procedure is repeated until the 
platoon dissipates. 

 
(a) 

 
(b) 

Fig.2. The idealized MPC strategy: (a) Implementation framework, and (b) Computational procedure. 

Next, the idealized MPC strategy to determine the optimal control decisions and its computational 

Prediction horizon ( seconds)

Roll period ( seconds)

Time

Problem 
(5)

Platoon 
control

At time 

At time

Solved instantaneously
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procedure are exposited. Let 𝐳(𝑡) = [𝐱(𝑡)K, 𝐲(𝑡)K]K. Following Wang et al. (2014b) and Zhou et al. 
(2017), at each sampling time instant 𝑡g , ∀𝑘 = 0,1,2⋯, the optimal control decisions of all of the 
following vehicles in the platoon can be obtained by solving the following optimal control problem: 

min
𝒖
s

1
2 𝑒

1uv𝐿(𝒛(𝑡), 𝒖(𝑡))
Ky

A
𝑑𝑡 +

1
2 𝑒

1uKy𝜙(𝐳(𝑇k)) (5a) 

�̇�(𝑡) = 𝑨 ∙ 𝐳(𝑡) + 𝑩 ∙ 𝒖(𝑡) (5b) 

𝑠*(𝑡) = 𝑥*(𝑡) + 𝑟∗ ∙ @𝑣A(0) +B 𝑦C(𝑡)
*

CD2
E + 𝑠8 ≥ s}*I; 𝑖 = 1,2,⋯ , 𝑛 (5c) 

0 ≤ 𝑣*(𝑡) ≤ 𝑣}��; 𝑖 = 1,2,⋯ , 𝑛 (5d) 

𝑢}*I ≤ 𝑢* ≤ 𝑢}��; 𝑖 = 1,2,⋯ , 𝑛 (5e) 

𝐳(0) = [𝐱AK 𝐲AK]K (5f) 
where  

𝐿(𝒛(𝑡), 𝒖(𝑡)) = 𝐳(𝑡)K P𝑹2 𝑹H
S 𝐳(𝑡) + 𝒖(𝑡)K𝑹�𝒖(𝑡) (5g) 

𝜙(𝐳(𝑇k)) = 𝐳(𝑇k)K P
𝑹�

𝑹�
S 𝐳(𝑇k) (5h) 

In problem (5), for expository convenience, we consider a generic prediction horizon and ignore the 
sampling time instant 𝑡g . So, 𝑡 ∈ [0, 𝑇k] without loss of generality in (5). Here, 𝑹2, 𝑹H,	𝑹� 𝑹�, and 𝑹� 
are weight matrices; 𝑹2, 𝑹H,	 𝑹�, and 𝑹� are symmetric positive definite matrices; and 𝑹� is a positive 
definite diagonal matrix (Zhou et al., 2017).  𝐿(𝒛(𝑡), 𝒂(𝑡)) is the running cost which is the cost incurred 
during an infinitesimal period (Wang et al. 2014b). It consists of two terms. The first term 

𝐳(𝑡)K P𝑹2 𝑹H
S 𝐳(𝑡) seeks to minimize the position errors and the relative speed of all adjacent vehicle 

pairs. The second component (i.e., 𝒖(𝑡)K𝑹�𝒖(𝑡)) is to maximize comfort by reducing hard braking and 
acceleration. 𝑒1uv is a term to weight the running cost at different times and	𝛽 is the discount coefficient. 
This term provides higher weight for the running cost for the near-term future than for the longer-term 
future as the uncertainty in running cost increases with time (Wang et al., 2014b). 𝜙(𝐳(𝑇k)) is the 
terminal cost which is used to penalize the value of objective function if the values of the state variables 
at the end of the prediction horizon deviate from the equilibrium point (i.e., 0). Eq. (5b) describes the 
dynamics of the state variables (i.e., position errors and relative speeds of all adjacent vehicle pairs in the 
platoon). Eq. (5c) is a safety constraint to ensure that the spacing between two consecutive CAVs in the 
platoon is always larger than a positive lower bound s}*I , s}*I > 0. Eq. (5d) specifies that the range of 
the speed of each vehicle in the platoon. 𝑣}�� is the speed limit of the road. Eq. (5e) specifies the upper 
bound (𝑢}��) and lower bound (𝑢}*I) of the acceleration. These inequality constraints are extensively 
used in the literature for designing effective control method for CAV platoons (see e.g., Wang et al., 
2018; Lu et al., 2019). Eq. (5f) specifies the initial inputs for the state variables. Hence, for example, for 
any sampling time instant 𝑡g , 𝐱g = [𝑥2(𝑡g), 𝑥H(𝑡g), ⋯ , 𝑥I(𝑡g)]  and 𝐲g = [𝑦2(𝑡g), 𝑦H(𝑡g),⋯ , 𝑦I(𝑡g)] 
are values of 𝐱AK and 𝐲AK, respectively.  

There are primarily two differences between optimal control problem (5) and the ones developed by 
Wang et al. (2014b) and Zhou et al. (2017). First, a term 𝑒1uv is added to the objective function to weight 
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the running costs at different times. Second, a terminal cost 𝜙(𝐳(𝑇k)) is added to penalize the objective 
function if the state variables deviate from the equilibrium point 0 at the end of the prediction horizon. 
These two terms will be useful to analyze the stability of the idealized MPC strategy. In addition, for 
convenience of stability analysis, the weight matrices 𝑹*(𝑖 = 1,2,4,5) are assumed to have the following 
forms: 

𝑹2 = 𝜦𝑻𝑫�𝜦, 𝑹H = 𝜦𝑻𝑫�𝜦, 𝑹� = 𝜦𝑻𝑫�𝜦, and 𝑹� = 𝜦𝑻𝑫�𝜦  (6) 
where 𝜦 is an orthogonal matrix, 	𝜦K𝜦 = 𝜦𝜦K = 𝑬I , and  𝑫� , 𝑫� , 𝑫�  and 𝑫�  are positive definite 
diagonal matrices. The inputs of these weight matrices will be determined by the stability analysis in 
Section 5. Eq. (6) shows that if 𝜦 = 𝑬I, then 𝑹2, 𝑹H, 𝑹�, and 𝑹� are positive definite diagonal matrices.  

Let 𝐳(𝑡g) be the actual values of the state variables at the sampling time instant 𝑡g, (𝑘 = 1,2,⋯ ), 
𝐳(𝑡g) = [𝐱gK 𝐲gK]K. The computational procedure of the idealized MPC strategy is summarized in Fig. 
2(b). At each sampling time instant 𝑡g(𝑘 = 1,2,⋯ ), the leading vehicle obtains the value of 𝐳(𝑡g) 
through V2V communications. It solves the optimal control problem (5) to determine the optimal control 
decisions (i.e.,𝒖∗(𝑡)) during the prediction horizon [𝑡g, 𝑡g + 𝑇k] by inputting the value of 	𝐳(𝑡g) into Eq. 
(5e). The optimal control decisions are sent by the leading vehicle to the following vehicles to control 
their behaviors only for the roll period [𝑡g, 𝑡g + ∆𝑡], (i.e., [𝑡g, 𝑡gn2]). Then, at the sampling time instant 
𝑡gn2, the optimal control problem (5) is solved again to obtain the optimal control decisions 𝒖∗(𝑡) for 
the prediction horizon [𝑡gn2, 𝑡gn2 + 𝑇k], and is implemented to control the CAV platoon for the roll 
period [𝑡gn2, 𝑡gn2 + ∆𝑡]. These steps are repeated at each sampling time instant.  

As can be noted, the idealized MPC strategy computes the optimal control decisions by solving 
optimal control problem (5) at each sampling time instant and implements it to control the CAVs for the 
roll period starting at that instant. To achieve this, it is assumed that the leading vehicle can solve the 
optimal control problem (5) of the idealized MPC strategy instantaneously at each sampling time instant 
𝑡g . However, in practice, the computational time for solving optimal control problem (5) increases with 
platoon size and prediction horizon size. It can cause significant delays in executing the control decisions, 
which can deteriorate the performance and even lead to vehicle collisions. Thereby, while the idealized 
MPC strategy can coordinate the behavior of the following vehicles in the platoon to maneuver them 
efficiently and safely, it cannot be deployed to control the CAV platoon in real-time.  

2.2 DMPC approach framework 

The leading vehicle of a CAV platoon needs to respond to the dynamics of the vehicles downstream of 
it. Thereby, its behavior is not known in advance. However, the behavior of all following vehicles in the 
platoon for each roll period can be estimated at the corresponding sampling time instant through the 
known optimal control decisions of the previous roll period (i.e., 𝒖∗(𝑡) , 	𝑡 ∈ [𝑡g12, 𝑡g12 + ∆𝑡]). To 
account for this difference, we divide 𝐳(𝑡) into two parts, 𝒛2(𝑡)	and 𝒛H(𝑡). We denote the vector of 
position error and speed difference of vehicle 1 from that of the leading vehicle 0 as 𝒛2(𝑡) =
[𝑥2(𝑡), 𝑦2(𝑡)]K , and the vector of state variables for the other following vehicles as 𝒛H(𝑡) =
[𝑥H(𝑡), 𝑥�(𝑡),⋯ , 𝑥I(𝑡), 𝑦H(𝑡), 𝑦�(𝑡),⋯ , 𝑦I(𝑡)]K. At each sampling time instant 𝑡g , the value of 𝒛2(𝑡g) 
cannot be computed in advance due to the unknown position and speed of the leading vehicle at that 
instant. However, 𝐳H(𝑡g) can be estimated in advance at a short time before the sampling time instant 𝑡g .  

We propose the DMPC approach to address the strong assumption of the idealized MPC strategy 
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that the optimal control problem (5) can be solved instantaneously. The implementation framework for 
the DMPC approach is shown in Fig. 3(a). Unlike the idealized MPC strategy, the DMPC approach 
reserves a sufficient amount of time, labeled reserved time (denoted as 𝜏2), before each sampling time 
instant 𝑡g	(𝑘 = 1,2,⋯ ) to solve the optimal control problem (5) so that the optimal control decisions are 
available at 𝑡g  for the corresponding roll period. It is important to note that the roll period ∆𝑡 should be 
larger than 𝜏2 to enable the real-time implementation of the DMPC approach.  

The DMPC computational procedure is illustrated in Fig. 3(b). The DMPC approach starts to solve 
the optimal control problem at time 𝑡g − 𝜏2 to predict the values of all state variables at time 𝑡g  (i.e., 
𝐳(𝑡g)). As stated in the assumptions, the leading vehicle can obtain the actual states of all following 
vehicles at time instant 𝑡g − 𝜏2 through V2V communications. Also, as discussed earlier in this section, 
it knows the control decisions of all following vehicles in the time period [𝑡g − 𝜏2, 𝑡g] as they are 
determined at the beginning of the previous roll period. The DMPC approach leverages these two sets of 
inputs to predict 𝐳H(𝑡g) with low error. This is because in the context of the CAV platooning application, 
𝜏2 is much smaller than the roll period, in the order of a fraction of a second. Hence, as the actual states 
are available close to 𝑡g , and prior control decisions are known, we assume that the error in estimating 
𝐳H(𝑡g) is negligible. 

 
(a) 

 
(b) 

Fig. 3. The DMPC approach: (a) Implementation framework, and (b) Computational procedure. 

As discussed earlier, the leading vehicle’s behavior is not known in advance. Thereby, 𝐳2(𝑡g) cannot 
be estimated with low error unlike 𝐳H(𝑡g). Hence, the value of 𝐳2(𝑡g) needs to be predicted at time 
instant	𝑡g − 𝜏2. To do so, the leading vehicle’s behavior at 𝑡g  needs to be predicted at 𝑡g − 𝜏2. As 𝜏2 is 
much smaller than the roll period, we assume the acceleration of the leading vehicle 0 during the small 
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time interval [𝑡g − 𝜏2, 𝑡g] remains the same as at time instant 𝑡g − 𝜏2. Then, 
𝑣�A(𝑡g) = 𝑣A(𝑡g − 𝜏2) + 𝑢A(𝑡g − 𝜏2) ∙ 𝜏2 (7a) 

𝑑�A(𝑡g) = 𝑑A(𝑡g − 𝜏2) + 𝑣A(𝑡g − 𝜏2) ∙ 𝜏2 + 0.5 ∙ 𝑢A(𝑡g − 𝜏2) ∙ (𝜏2)H (7b) 
where 𝑣�A(𝑡g) and 𝑑�A(𝑡g) are the predicted speed and predicted position of the leading vehicle at time 
instant 𝑡g , respectively. Here, 𝑣A(𝑡g − 𝜏2),  𝑑A(𝑡g − 𝜏2) and 𝑢A(𝑡g − 𝜏2) are the actual speed, position 
and acceleration of the leading vehicle at 𝑡g − 𝜏2, respectively, that are detected through onboard sensors. 
The position error and relative speed of vehicle 1 from that of the leading vehicle 0 at time instant 𝑡g  can 
then be predicted as: 

𝑥�2(𝑡g) = 𝑑�A(𝑡g) − 𝑑2(𝑡g) − 𝑟∗ ∙ 𝑣2(𝑡g) − 𝑠8 (8a) 

𝑦�2(𝑡g) = 𝑣2(𝑡g) − 𝑣�A(𝑡g) (8b) 
where 𝑥�2(𝑡g) and 𝑦�2(𝑡g) are the predicted position error and speed difference of vehicle 1 with respect 
to the leading vehicle 0 at time 𝑡g , respectively. Note that the speed and position of vehicle 1 at time 
instant 𝑡g − 𝜏2 are detected through the onboard sensors, and the corresponding control decision 𝑢2(𝑡), 
𝑡 ∈ [𝑡g − 𝜏2, 𝑡g] is known. Then, 𝑑2(𝑡g) and 𝑣2(𝑡g) can be computed as:  

𝑣2(𝑡g) = 𝑣2(𝑡g − 𝜏2) + s 𝑢2(𝑡)
v�

v�1��
𝑑𝑡 (9a) 

𝑑2(𝑡g) = 𝑑2(𝑡g − 𝜏2) + s 𝑣2(𝑡)
v�

v�1��
𝑑𝑡 

= 𝑑2(𝑡g − 𝜏2) + s �𝑣2(𝑡g − 𝜏2) + @s 𝑢2(𝜍)𝑑𝜍
v

v�1��
E�

v�

v�1��
𝑑𝑡 

(9b) 

Note that the predicted value 𝐳�2(𝑡g) (𝐳�2(𝑡g) = [𝑥�2(𝑡g), 𝑦�2(𝑡g)]) is different from the actual value 
𝒛2(𝑡g) due to the error in predicting the leading vehicle’s position and speed. Thereby, the estimated 
control decisions of the DMPC approach (i.e., 𝒖�(𝑡)) are different from the optimal control decisions 
computed by the idealized MPC strategy (i.e., 𝒖∗(𝑡)). In the numerical experiments, we will show that 
the estimated control decisions of the DMPC approach will deviate significantly from those of the 
idealized MPC strategy when the error in predicting 𝒛2(𝑡g) is large. This will deteriorate the efficiency 
of the CAV platoon and can cause vehicular collisions. 

It should be noted that other models can also be used to predict the leading vehicle’s state. However, 
prediction error exists for all models as the leading vehicle’s behavior is unknown, which may impact 
the control performance of the DMPC approach. 

2.3 DMPC-FOA approach framework 

The DMPC approach circumvents the strong assumption of the idealized MPC strategy at the cost that 
the estimated control decisions may deviate significantly from those of the idealized MPC strategy due 
to the error in predicting 𝒛2(𝑡g). To address this problem, we propose the DMPC-FOA approach which 
simultaneously addresses the control delay issue of the idealized MPC strategy while more accurately 
characterizing the optimal control decisions. 

Let 𝜏H  be the reserved time for computing the optimal control decisions for the DMPC-FOA 
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approach. Also, let 𝒛�2(𝑡g) = [𝑥�2(𝑡g) 𝑦�2(𝑡g)] be the predicted value of 𝒛2(𝑡g)	for the DMPC-FOA 
approach at time instant 𝑡g − 𝜏H by replacing  𝜏2 with 𝜏H in Eqs. (7) and (8). Here, 𝑥�2(𝑡g) and 𝑦�2(𝑡g) are 
the predicted position error and speed difference of vehicle 1 with respect to the leading vehicle at time 
instant 𝑡g , respectively. Similar to the DMPC approach, we assume the error in estimating 𝐳H(𝑡g) is 
negligible as the actual states (i.e., 𝐳H(𝑡g − 𝜏H)) are available close to 𝑡g , and prior control decisions are 
known.  

Denote 𝜸(𝑡) as the vector of costate variables associated with the state equations (5b). The costate 
variables indicate the change in the objective function value for a unit change in the corresponding state 
variable at the optimal state (Gaimon, 2002). The computational procedure for the DMPC-FOA approach 
is illustrated in Fig. 4, where	𝒛�∗(𝑡) and	𝜸�∗(𝑡), 𝑡 ∈ [𝑡g, 𝑡g + 𝑇k] are the solutions for the state and costate 
variables obtained by solving optimal control problem (5) with initial inputs [𝒛�2(𝑡g), 𝒛H(𝑡g)]). The 
optimal control decisions for the idealized MPC strategy, 𝜑(	𝒛∗(𝑡), 	𝜸∗(𝑡)3  (denoted as 𝒖∗(𝑡)), are 
analytically derived in Section 3 (see Eq. (23)) which discusses the solution algorithm. Then, 𝒖∗(𝑡), 𝑡 ∈
[𝑡g, 𝑡g + 𝑇k] can be approximated by 𝜑(	𝒛�∗(𝑡), 	𝜸�∗(𝑡)3 (denoted as 𝒖�∗(𝑡)). Note that the difference 
between [	𝒛�∗(𝑡), 	𝜸�∗(𝑡)] and [	𝒛∗(𝑡), 	𝜸∗(𝑡)] significantly impacts the accuracy of the estimated control 
decisions 𝒖�∗(𝑡). To reduce the difference between 𝒖�∗(𝑡) and 𝒖∗(𝑡), 𝑡 ∈ [𝑡g, 𝑡g + 𝑇k], sensitivity analysis 
of the optimal control problem (5) is performed to determine the derivatives of 𝜕𝒛�∗(𝑡) 𝜕⁄ 𝒛�2(𝑡g) (i.e., 
Y ¢	𝒛�

∗(v)
¢���(v�)

, ¢	𝒛�
∗(v)

¢£��(v�)
\ ) and 𝜕𝜸�∗(𝑡) 𝜕⁄ 𝒛�2(𝑡g)  (i.e., Y ¢	𝜸�

∗(v)
¢���(v�)

, ¢	𝜸�
∗(v)

¢£��(v�)
\ ). These two terms can quantitatively 

measure the changes in the optimal solutions for 	𝒛�∗(𝑡) and	𝜸�∗(𝑡) for a unit increase in 𝒛�2(𝑡g). Thereby, 
at sampling time instant 𝑡g  when the actual value of 𝑥2(𝑡g) and 𝑦2(𝑡g) are detected through onboard 
sensors, the first-order Taylor’s approximation is applied to better estimate the solutions of 	𝒛∗(𝑡) 
and	𝜸∗(𝑡), as follows:  

	𝒛¤∗(𝑡) = 	𝒛�∗(𝑡) +
𝜕	𝒛�∗(𝑡)
𝜕𝑥�1(𝑡𝑘)

(𝑥1(𝑡𝑘) − 𝑥�1(𝑡𝑘)3 +
𝜕	𝒛�∗(𝑡)
𝜕𝑦�1(𝑡𝑘)

¥𝑦1(𝑡𝑘) − 𝑦�1(𝑡𝑘)¦ , 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝑇𝑃] (10a) 

	�̈�∗(𝑡) = 	𝜸�∗(𝑡) +
𝜕	𝜸�∗(𝑡)
𝜕𝑥�1(𝑡𝑘)

(𝑥1(𝑡𝑘) − 𝑥�1(𝑡𝑘)3 +
𝜕	𝜸�∗(𝑡)
𝜕𝑦�1(𝑡𝑘)

¥𝑦1(𝑡𝑘) − 𝑦�1(𝑡𝑘)¦ , 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝑇𝑃] (10b) 

where 	𝒛¤∗(𝑡)  and 	�̈�∗(𝑡)  are the values of 	𝒛∗(𝑡)  and 	𝜸∗(𝑡)  estimated by the DMPC-FOA approach, 
respectively. 

 
Fig. 4. Computational procedure of the DMPC-FOA approach. 

When compared to [	𝒛�∗(𝑡), 	𝜸�∗(𝑡)], [	𝒛¤∗(𝑡), 	�̈�∗(𝑡)] are closer to [	𝒛∗(𝑡), 	𝜸∗(𝑡)	]. Thereby, in Fig. 4, 
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the estimated control decisions �̈�∗(𝑡) = 𝜑(	𝒛¤∗(𝑡), 	�̈�∗(𝑡)3 are closer to 𝒖∗(𝑡) compared to 	𝒖�∗(𝑡), 𝑡 ∈
[𝑡g, 𝑡g + 𝑇k]. It is important to note here that Eq. (10) can be calculated instantaneously if the derivatives 
are obtained before the sampling time instant 𝑡g . In addition, 𝜑(	𝒛¤∗(𝑡), 	�̈�∗(𝑡)3 can also be calculated 
instantaneously due to the closed-form formulation (Eq. (23)).  Thereby, the DMPC-FOA approach can 
be applied for real-time control of the CAV platoon with no control delay.  

As can be noted, before each sampling time instant 𝑡g ,  the DMPC-FOA approach needs to solve the 
optimal control problem (5) and conduct sensitivity analysis. Hence, the reserved time 𝜏H ≥ 𝜏2 . 
Nevertheless, we will show using numerical examples that the gap between �̈�∗(𝑡) and 𝒖∗(𝑡) is negligible 
even for large prediction errors of 𝒛2(𝑡g) at every sampling time instant 𝑡g .  

3. Solution algorithm for optimal control problem (5)  

To solve optimal control problem (5), a two-point boundary value problem is developed in this section 
based on the necessary conditions for optimality, the solution of which determines the optimal control 
decisions for all following CAVs. The two-point boundary value problem can be solved efficiently using 
methods such as the shooting method (Keller, 1976), method of steepest descent (Kirk, 2012), and 
iterative algorithm (Wang et al., 2014a).  

Optimal control problem (5) contains control constraints (Eq. (5d)) and pure state variable inequality 
constraints (5c). The presence of pure state variable inequality constraints increases the difficulty in 
designing an effective solution algorithm as these constraints depend on the control history. To address 
this problem, optimal control problem (5) is converted to an equivalent optimal control problem without 
pure state variable inequality constraints. To do so, we define a new variable 𝑧ª that has the following 
functional relationship 

�̇�ª(𝑡) =B(𝑧ª,2* + 𝑧ª,H* + 𝑧ª,�* 3
I

*D2

 (11) 

where 

𝑧ª,2* = [𝑠*(𝑡) − s}*I]H𝐼(𝑠*(𝑡) − s}*I)  

𝑧ª,H* = [𝑣}�� − 𝑣*(𝑡)]H𝐼(𝑣}�� − 𝑣*(𝑡)3  

𝑧ª,�* = 𝑣*(𝑡)𝐼(𝑣*(𝑡)3  

𝐼(𝑠*(𝑡) − s}*I) = ¬0, 𝑖𝑓		𝑠*(𝑡) − s}*I ≥ 0	
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒											 

𝐼(𝑣}�� − 𝑣*(𝑡)3 = ¬0, 𝑖𝑓		𝑣}�� − 𝑣*(𝑡) ≥ 0	
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒											 

𝐼(𝑣*(𝑡)3 = ¬0, 𝑖𝑓		𝑣*(𝑡) ≥ 0																
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																					 

Proposition 1: If 𝑧ª(0) = 𝑧ª(𝑇k) = 0, then 𝑠*(𝑡) ≥ s}*I  and 0 ≤ 𝑣*(𝑡) ≤ 𝑣}��; 𝑖 = 1,2,⋯ , 𝑛 for 𝑡 ∈
[0, 𝑇k]. 
Proof: According to Eq. (11),	𝑧ª(𝑡) is a continuous function of time 𝑡 and  �̇�ª(𝑡) ≥ 0. Thereby, 𝑧ª(𝑡) 
is a non-decreasing function of time 𝑡. Since 𝑧ª(0) = 𝑧ª(𝑇k) = 0, this implies that �̇�ª(𝑡) ≡ 0 for 𝑡 ∈
[0, 𝑇k]  (otherwise, 𝑧ª(𝑇k) = ∫ �̇�ª(𝑡)

Ky
A 𝑑𝑡 + 𝑧ª(0) = ∫ �̇�ª(𝑡)

Ky
A 𝑑𝑡 > 0 ). According to Eq. (11), 
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�̇�ª(𝑡) ≡ 0 if and only if 𝑠*(𝑡) ≥ s}*I  and 𝑣*(𝑡) ≤ 𝑣}��; 𝑖 = 1,2,⋯ , 𝑛 for 𝑡 ∈ [0, 𝑇k]. This completes 
the proof. 

According to Proposition 1, the optimal control problem (5) can be rewritten as the following 
equivalent problem: 

min
𝒖
s

1
2 𝑒

1uv[𝐳(𝑡)K𝑸2𝐳(𝑡) + 𝒖(𝑡)K𝑹�𝒖(𝑡)]
Ky

A
𝑑𝑡 +

1
2 𝑒

1uKy𝐳(𝑇k)K𝑸H𝐳(𝑇k) (12a) 

�̇�(𝑡) = 𝑨 ∙ 𝐳(𝑡) + 𝑩 ∙ 𝒖(𝑡) (12b) 

�̇�ª(𝑡) = B(𝑧ª,2* + 𝑧ª,H* + 𝑧ª,�* 3
I

*D2

 (12c) 

𝑢}*I ≤ 𝑢* ≤ 𝑢}��; 𝑖 = 1,2,⋯𝑛 (12d) 

𝐳(0) = [𝐱AK 𝐲AK]K; 𝑧ª(0) = 𝑧ª(𝑇k) = 0 (12e) 
where  

𝑸2 = P𝑹2 𝑹H
S; 𝑸H = P𝑹� 𝑹�

S  

To develop a two-point boundary value problem based on the necessary conditions for optimality of 
optimal control problem (5), the terminal condition 𝑧ª(𝑇k) = 0 is removed from Eq. (12e). To ensure 
𝑧ª(𝑇k) → 0, similar to the study of Naidu (2003), the term M ∙ (𝑧ª(𝑇k)3

H
 is added to the objective 

function, where M is a sufficiently large number. If 𝑧ª(𝑇k) ≠ 0, the objective function is penalized. The 
optimal control problem (12) can then be re-written as: 

min
𝒖
s

1
2
𝑒1uv[𝐳(𝑡)K𝑸2𝐳(𝑡) + 𝒖(𝑡)K𝑹�𝒖(𝑡)]

Ky

A
𝑑𝑡 +

1
2
𝑒1uKy𝐳(𝑇𝑃)K𝑸H𝐳(𝑇𝑃) +M ∙ (𝑧(𝑇k)3

H
 (13a) 

�̇�(𝑡) = 𝑨 ∙ 𝐳(𝑡) + 𝑩 ∙ 𝒖(𝑡) (13b) 

�̇�ª(𝑡) = B(𝑧ª,2* + 𝑧ª,H* + 𝑧ª,�* 3
I

*D2

 (13c) 

𝑢}*I ≤ 𝑢* ≤ 𝑢}��; 𝑖 = 1,2,⋯𝑛 (13d) 

𝐳(0) = [𝐱AK 𝐲AK]K; 𝑧ª(0) = 0 (13e) 
Optimal control problem (13) is equivalent to problem (5). It contains only control constraints. 

Define the vector of functions 𝐟2(𝒛(𝑡), 𝒖(𝑡)) and the function	fH(𝒛(𝑡), 𝒖(𝑡)) as follows: 

�̇�(𝑡) = N�̇�
(𝑡)
�̇�(𝑡)O = 𝐟2

(𝒛(𝑡), 𝒖(𝑡)) = 𝑨 ∙ 𝐳(𝑡) + 𝑩 ∙ 𝒖(𝑡) (14a) 

�̇�ª(𝑡) = fH(𝒛(𝑡),𝒖(𝑡)3 = B(𝑧ª,2* + 𝑧ª,H* + 𝑧ª,�* 3
I

*D2

 (14b) 

Then, the Hamiltonian function for optimal control problem (13) is written as: 
𝑯(𝒛(𝑡), 𝝀»(𝑡), 𝒖(𝑡)) = 𝑒1uv𝐿(𝒛(𝑡),𝒖(𝑡)3 + 𝝀(𝑡)K ∙ 𝐟2(𝒛(𝑡), 𝒖(𝑡)3 + 𝜆ª(𝑡) ∙ fH(𝒛(𝑡), 𝒖(𝑡)). (15) 

where 𝝀(𝑡) = [𝜆2(𝑡) ⋯ 𝜆HI(𝑡)]K	 and 𝜆ª(𝑡) are the costate variables associated with 𝐟2(𝒛(𝑡), 𝒖(𝑡)3 
and fH(𝒛(𝑡), 𝒖(𝑡)), respectively. Let 𝝀»(𝑡) = [𝝀(𝑡)K, 𝜆𝑁(𝑡)]K, and 𝒛»(𝑡) = [𝒛(𝑡)K, 𝑧ª(𝑡)]K. According to 
Pontryagin's minimum principle, the necessary conditions for 𝒖∗(𝑡)  to be an optimal solution for 
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problem (13) are  

𝝀»̇(𝑡) = −¾
𝜕𝑯

𝜕𝒛»(𝑡)
¿ (16a) 

N �̇�
(𝑡)

�̇�𝑁(𝑡)
O = P𝐟1(𝒛(𝑡),𝒖(𝑡))f2(𝒛(𝑡),𝒖(𝑡))

S (16b) 

with the initial conditions given in Eq. (13e) and the terminal conditions as: 

𝝀(𝑇𝑃) = 𝜕 @
1
2
𝑒−𝛽𝑇𝑃𝐳(𝑡)𝑇𝑸2𝐳(𝑡)E 𝜕𝐳(𝑡)À Á

𝑡=𝑇𝑃

 

= 𝑒−𝛽𝑇𝑃 ∙ 𝑸H ∙ 𝐳(𝑇𝑃); 
(16c) 

𝜆ª(𝑇𝑃) = 𝜕(M ∙ 𝑧𝑁(𝑡)2) 𝜕𝑧𝑁(𝑡)⁄ |𝑡=𝑇𝑃 
= 2	M ∙ 𝑧ª(𝑇k). 

(16d) 

In addition, the optimal state trajectory 𝒛∗(𝑡), the optimal costate trajectory 𝝀»∗(𝑡) and the optimal control 
decisions 𝒖∗(𝑡) should satisfy 

𝑯(𝒛∗(𝑡), 𝝀»∗ (𝑡), 𝒖∗(𝑡)) ≤ 	𝑯(𝒛∗(𝑡), 𝝀»∗ (𝑡), 𝒖(𝑡)3; 		𝒖(𝑡), 𝒖∗(𝑡) ∈ 𝓤  (16e) 
where 𝓤 = {𝒖|𝑢𝑚𝑖𝑛 ≤ 𝑢𝑖 ≤ 𝑢𝑚𝑎𝑥; 	𝑖 = 1,2,⋯ 𝑛}. To convert these necessary conditions for optimality into 
a two-point boundary value problem, we define the current-value Hamiltonian function as follows: 

𝑯𝒄 = 𝑒uv𝑯 = 𝐿(𝒛(𝑡), 𝒖(𝑡)) + 𝜸(𝑡)K𝐟2(𝒛(𝑡), 𝒖(𝑡)) + 𝛾ª(𝑡)fH(𝒛(𝑡), 𝒖(𝑡)).  (17) 

where 𝜸(𝑡) = 𝝀(𝑡)𝑒uv, 𝛾ª = 𝜆ª(𝑡)𝑒uv  are the costate variables for the current-value Hamiltonian 
function. Since the discount factor 𝑒1uv	does not depend on the control variables, the optimal control 𝒖∗ 
that minimizes the Hamiltonian function 𝑯 must also minimize the current-value Hamiltonian function 
(Eq. (17)). Let 𝜸» = [𝜸(𝑡)K, 𝛾ª(𝑡)]K. Then,  

�̇�»(𝑡) = −𝛽𝑒1uv𝜸»(𝑡) + 𝑒1uv�̇�»(𝑡).   (18a) 

𝜕𝑯
𝜕𝒛»(𝑡)

=
𝜕𝑯�

𝜕𝒛»(𝑡)
𝑒1u∙v (18b) 

Eqs. 18(a) and 18(b) imply  

�̇�»(𝑡) = 𝝀»̇(𝑡) + 𝛽𝜸𝑨(𝑡) (19) 
Thereby, 

�̇�(𝑡) = −
𝜕𝑯�

𝜕𝒛 + 𝛽𝜸(𝑡) 

= −
𝜕 𝐟2(𝒛, 𝒖)

𝜕𝒛 𝜸(𝑡) −
𝜕fH(𝒛, 𝒖)
𝜕𝒛 𝛾ª(𝑡) −

𝜕 𝐿(𝒛, 𝒖)
𝜕𝒛 + 𝛽𝜸(𝑡) 

= −𝑨 ∙ 𝜸(𝑡) − P
𝑪�
𝑪£
S 𝛾ª(𝑡) − 𝑸2𝐳(𝑡) + 𝛽𝜸(𝑡). 

(20a) 

�̇�ª(𝑡) − 𝛽 ∙ 𝛾ª(𝑡) = −𝜕𝑯� 𝜕𝑧𝑁(𝑡)⁄ = 0 (20b) 
where  
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𝑪� =
𝜕fH(𝒛(𝑡), 𝒖(𝑡))

𝜕𝐱(𝑡) = Ë

2 ∙ [𝑠2(𝑡) − 𝑠}*I] ∙ 𝐼(𝑠2(𝑡) − 𝑠}*I)
2 ∙ [𝑠H(𝑡) − 𝑠}*I] ∙ 𝐼(𝑠H(𝑡) − 𝑠}*I)

⋮
2 ∙ [𝑠I(𝑡) − 𝑠}*I] ∙ 𝐼(𝑠I(𝑡) − 𝑠}*I)

Í  

𝑪£ =
𝜕fH(𝒛(𝑡), 𝒖(𝑡)3

𝜕𝐲(𝑡) =

⎣
⎢
⎢
⎢
⎡2 ∙ [𝑣}�� − 𝑣2(𝑡)] ∙ 𝐼(𝑣}�� − 𝑣2(𝑡)3
2 ∙ [𝑣}�� − 𝑣H(𝑡)] ∙ 𝐼(𝑣}�� − 𝑣H(𝑡)3

⋮
2 ∙ [𝑣}�� − 𝑣I(𝑡)] ∙ 𝐼(𝑣}�� − 𝑣I(𝑡)3⎦

⎥
⎥
⎥
⎤
+

⎣
⎢
⎢
⎢
⎡2 ∙ 𝑣2(𝑡) ∙ 𝐼(𝑣2(𝑡)3
2 ∙ 𝑣H(𝑡) ∙ 𝐼(𝑣H(𝑡)3

⋮
2 ∙ 𝑣�(𝑡) ∙ 𝐼(𝑣�(𝑡)3⎦

⎥
⎥
⎥
⎤
+

⎣
⎢
⎢
⎡
𝐶2,£
𝐶H,£
⋮

𝐶I,£⎦
⎥
⎥
⎤
  

𝐶*,£ =B 2 ∙ Ï𝑠C(𝑡) − 𝑠}*IÐ ∙ 𝐼(𝑠C(𝑡) − 𝑠}*I3
*

CD2
, ∀𝑖 = 1,2,⋯𝑛.  

The terminal conditions in Eq. (16c) and Eq. (16d) imply that 

𝜸(𝑇k) = 𝑸2 ∙ 𝐳(𝑇k)
K, 𝛾ª(𝑇k) = 𝑒u𝑇𝑃 ∙ M ∙ 2 ∙ 𝑧𝑁(𝑇𝑃) (21) 

Let 𝜸»∗ (𝑡) = 𝝀»∗(𝑡)𝑒uv  . Since 𝑒uv > 0 , according to Eq. (17), at time 𝑡 , minimizing 
𝑯(𝒛∗(𝑡), 𝝀»∗ (𝑡), 𝒖(𝑡))  with respect to 𝒖(𝑡)  is equivalent to minimizing 𝑯𝒄(𝒛∗(𝑡), 𝜸»∗ (𝑡), 𝒖(𝑡))  with 
respect to 𝒖(𝑡). This indicates that if the optimal control 𝒖∗ minimizes 𝑯𝒄(𝒛∗(𝑡), 𝝀»∗ (𝑡), 𝒖(𝑡)), it is the 
solution to inequality (16e). Thereby, 𝒖∗(𝑡) can be found by solving the following minimization problem  

𝑚𝑖𝑛𝒖(v)𝑯𝒄(𝒛∗(𝑡), 𝜸»∗ (𝑡), 𝒖(𝑡)); 			𝒖(𝑡), 𝒖∗(𝑡) ∈ 𝓤 (22) 
Proposition 2. Let [𝑝2(𝑡) 𝑝H(𝑡) ⋯ 𝑝I(𝑡)]K = −(𝑹�)12(𝑩K𝜸∗(𝑡)); if 𝑹�  is a diagonal positive 
definite matrix, then the optimal control decisions 𝒖∗ = [𝑢2∗ 𝑢H∗ ⋯ 𝑢I∗ ] that minimizes 𝑯𝒄(𝒛∗, 𝜸»∗ , 𝒖) 
is unique and can be formulated as 

𝑢*∗(𝑡) = 𝜑(𝒛∗(𝑡), 𝜸∗(𝑡)3 = Ò
𝑢}*I, 𝑖𝑓	𝑝*(𝑡) < 𝑢}*I												
𝑢}��, 𝑖𝑓	𝑝*(𝑡) > 𝑢}��										
𝑝*(𝑡), 𝑖𝑓𝑢}*I ≤ 	𝑝*(𝑡) ≤ 𝑢}��

 (23) 

Proof. If 𝒖∗ = [𝑢2∗ 𝑢H∗ ⋯ 𝑢I∗ ] minimizes 𝑯𝒄(𝒛∗(𝑡), 𝜸»∗ (𝑡), 𝒖(𝑡)), then we have  

𝐿(𝒛∗(𝑡), 𝒖∗(𝑡)3 + 𝜸∗(𝑡)𝐟2(𝒛∗(𝑡),𝒖∗(𝑡)3 + 𝛾ª∗ (𝑡)fH(𝒛∗(𝑡), 𝒖∗(𝑡)3 
≤ 𝐿(𝒛∗(𝑡), 𝒖(𝑡)) + 𝜸∗(𝑡)𝐟2(𝒛∗(𝑡), 𝒖(𝑡)) + 𝛾ª∗ (𝑡)fH(𝒛∗(𝑡), 𝒖(𝑡)) 

(24) 

Eq. (24) indicates 

0.5 ∙ 𝒖∗(𝑡)K𝑹�𝒖∗(𝑡) + (𝜸∗(𝑡)3𝑇 ∙ 𝑩 ∙ 𝒖∗(𝑡) 

≤ 0.5 ∙ 𝒖(𝑡)𝑇𝑹3𝒖(𝑡) + (𝜸∗(𝑡)3
K
∙ 𝑩 ∙ 𝒖(𝑡) 

(25) 

Let 𝒑∗(𝑡) = (𝑹�)12(𝑩K𝜸∗(𝑡)) = −[𝑝2 𝑝H ⋯ 𝑝I]K. Then 

(𝜸∗(𝑡)3
K
∙ 𝑩 ∙ 𝒖∗(𝑡) = (𝒖∗(𝑡)3

K
𝑩K𝜸∗(𝑡) = (𝒖∗(𝑡)3

K
𝑹�𝒑∗(𝑡) (26a) 

(𝜸∗(𝑡)3
K
∙ 𝑩 ∙ 𝒖(𝑡) = (𝒖(𝑡))K𝑩K𝜸∗(𝑡) = (𝒖(𝑡)3

K
𝑹�𝒑∗(𝑡) (26b) 

Substituting Eq. (26) into Eq. (25), we have  

0.5 ∙ 𝒖∗(𝑡)K𝑹�𝒖∗(𝑡) + (𝒖∗(𝑡)3
K
𝑹�𝒑∗(𝑡) 

≤ 0.5 ∙ 𝒖(𝑡)K𝑹�𝒖(𝑡) + (𝒖(𝑡))K𝑹�𝒑∗(𝑡) 
(27) 

Adding 0.5 ∙ 𝒑∗(𝑡)K𝑹�𝒑∗(𝑡) = 0.5(𝜸∗(𝑡)3𝑇 ∙ 𝑩(𝑹3)−1𝑩𝑇𝜸∗(𝑡) to both sides of inequality (27), we have  
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0.5[𝒖∗(𝑡) + 𝒑∗(𝑡)]K𝑹�[𝒖∗(𝑡) + 𝒑∗(𝑡)] ≤ 0.5[𝒖(𝑡) + 𝒑∗(𝑡)]K𝑹�[𝒖(𝑡) + 𝒑∗(𝑡)] (28) 
Inequality (28) implies that if 𝒖∗ minimizes 𝑯𝒄(𝒛∗(𝑡), 𝜸»∗ (𝑡), 𝒖(𝑡)), it must minimize inequality (27) and 
vice versa. Thereby  

𝒖∗(𝑡) = 𝑚𝑖𝑛𝒖∈𝓤[𝒖(𝑡) + 𝒑∗(𝑡)]𝑇𝑹3[𝒖(𝑡) + 𝒑∗(𝑡)] (29) 
Note 𝑹�  is a diagonal positive definite matrix; without loss of generosity, let 𝑹� =
𝑑𝑖𝑎𝑔([𝓌2,𝓌H⋯ ,𝓌I]), 𝓌* > 0,∀𝑖 = 1,2,⋯ , 𝑛. Then, inequality (29) can be written as  

𝒖∗(𝑡) = 𝑚𝑖𝑛𝒖∈𝓤B𝓌*[𝑢*(𝑡) − 𝑝*]H
𝑛

𝑖=1

 

=B 𝑚𝑖𝑛𝑢𝑚𝑖𝑛≤𝑢𝑖≤𝑢𝑚𝑎𝑥𝓌*[𝑢*(𝑡) − 𝑝*]H
I

*D2
 

(30) 

The only solution to the above inequality is  

𝑢*∗(𝑡) = Ò
𝑢}*I, 𝑖𝑓	𝑝*(𝑡) < 𝑢}*I												
𝑢}��, 𝑖𝑓	𝑝*(𝑡) > 𝑢}��										
𝑝*(𝑡), 𝑖𝑓𝑢}*I ≤ 	𝑝*(𝑡) ≤ 𝑢}��

; ∀𝑖 = 1,2,⋯ , 𝑛 (31) 

This completes the proof. ∎ 
Eq. (13b), Eq. (13c), Eq. (20a), Eq. (20b) and Eq. (23) form a two-point boundary value problem as 

follows with initial conditions and terminal conditions provided by Eq.(12e) and Eq. (21), respectively.  

�̇�(𝑡) = 𝑨 ∙ 𝐳(𝑡) + 𝑩 ∙ 𝜑(𝒛(𝑡), 𝜸(𝑡)3 (32a) 

�̇�ª(𝑡) =B(𝑧ª,2* + 𝑧ª,H* + 𝑧ª,�* 3
I

*D2

 (32c) 

�̇�(𝑡) = −𝑨 ∙ 𝜸(𝑡) − P
𝑪�
𝑪£
S 𝛾ª(𝑡) − 𝑸2𝐳(𝑡) + 𝛽𝜸(𝑡) (32d) 

�̇�ª(𝑡) = 𝛽 ∙ 𝛾ª(𝑡) (32e) 

𝐳(0) = [𝐱AK 𝐲AK]K; 𝑧ª(0) = 0; (32f) 

𝜸(𝑇k) = 𝑸H𝐳(𝑇k), 𝛾ª(𝑇k) = 𝑒uKy ∙ M ∙ 2 ∙ 𝑧ª(𝑇𝑃) (32g) 
The two-point boundary value problem can be solved using many existing solution algorithms. A 

review of these algorithms is provided in Kirk (2012). In this study, the shooting method is used to solve 
the two-point boundary value problem (32). The details of implementing the shooting method can be 
found in Keller (1976). The main advantage of the shooting method is that it converges very fast if the 
algorithm starts to converge (Keller, 1976). Note, 𝜕H𝑯𝒄 𝜕(𝒖(𝑡))H⁄ = 𝑹� is a positive definite matrix. 
Thereby, the solution (𝒛∗(𝑡), 𝑧ª∗ (𝑡), 𝜸∗(𝑡), 𝛾ª∗ (𝑡)) of the two-point boundary value problem (32) is a 
minimum solution of optimal control problem (5). The optimal control 𝒖∗(𝑡)  can be obtained by 
inputting 𝜸∗(𝑡) into Eq. (23). 

4. Sensitivity analysis of the optimal control problem 

For the DMPC approach, at each sampling time instant 𝑡g , the control decisions are determined by 
solving the two-point boundary value problem (32) with the predicted spacing error and relative speed 
of vehicle 1 with respect to the leading vehicle (i.e., 𝑥�2(𝑡g) and 𝑦�2(𝑡g)). The resulting control decisions 
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may deviate significantly from those of the idealized MPC strategy due to errors in predicting f 𝑥2(𝑡g) 
and 𝑦2(𝑡g), which can decrease the platoon performance and cause collisions. To address this issue, the 
DMPC-FOA approach corrects the estimated control decisions of the DMPC approach using first-order 
Taylor approximation. To do so, the main step is to obtain the derivatives of the optimal solution of the 
state and costate variables with respect to 𝑥�2(𝑡g) and 𝑦�2(𝑡g) in the DMPC-FOA approach, respectively. 

The sensitivity analysis of an optimal control problem quantitatively measures the change in the 
optimal solution of the state and costate variables induced by a unit change in the perturbed parameters 
(i.e., 𝑥�2(𝑡g) and 𝑦�2(𝑡g) in this study). Parametric sensitivity of optimal problem has been extensively 
studied. Dorato (1963) developed an analytical model to study the variation of the objective function 
with respect to parametric perturbations. Malanowski (1984, 1987) discussed the conditions for 
directional differentiability of the solutions for an optimal control problem with nonlinear ordinary 
dynamics. Maurer and Pesch (1984) developed an analytical method for sensitivity analysis of optimal 
control problems with no constraints. This method is further extended to study the sensitivity analysis of 
optimal control problems with control constraints (Maurer and Pesch, 1995; Malanowski and Maurer, 
1996), and pure state variable constraints (Augustin and Maurer, 2001; Malanowski, 2011). Here, the 
analytical method for sensitivity analysis of the optimal control decisions with respect to 𝑥�2(𝑡g) and 
𝑦�2(𝑡g) will be derived by modifying the method developed by Maurer and Pesch (1995) for a general 
optimal control problem.  

Denote 𝒖�∗(𝑡) = [𝑢�2∗(𝑡),⋯ , 𝑢�I∗ (𝑡)] as the control decisions obtained by solving Eq. (32) using 𝑥�2(𝑡g) 
and 𝑦�2(𝑡g) predicted by the DMPC-FOA approach. The corresponding solutions for the state variables 
(i.e., 𝐳(𝑡), 𝑧ª(𝑡)) and costate variables (i.e., 𝜸(𝑡), 𝛾(𝑡)) are denoted as 𝐳�∗(𝑡), �̃�ª∗ (𝑡), 𝜸�

∗(𝑡) and 𝛾�ª∗ (𝑡), 
respectively. Let the derivatives of the optimal solutions for the state and costate variables with respect 
to 𝑥�2(𝑡g) be defined as follows: 

	𝐡���(𝑡) =
𝜕𝐳�∗(𝑡)
𝜕𝑥�2(𝑡g)

; 	ℎª,���(𝑡) =
𝜕𝑧�𝑁∗ (𝑡)
𝜕𝑥�2(𝑡g)

  

	𝛈���(𝑡) =
𝜕𝜸�∗(𝑡)
𝜕𝑥�2(𝑡g)

; 	𝜂ª,���(𝑡) =
𝜕𝛾�ª∗ (𝑡)
𝜕𝑥�2(𝑡g)

.  

According to 𝑢�*∗(𝑡), we can obtain the set of time intervals Ω*,2 , 	Ω*,H, and Ω*,H  (Ω*,2 ∪ Ω*,H ∪ Ω*,H =
[0, 𝑇k]) for each vehicle 𝑖, 𝑖 = 1,2,⋯ , 𝑛 such that 

𝑢�*∗(𝑡) = Ò
𝑢}*I, 𝑡 ∈ Ω*,2							
𝑢}��, 𝑡 ∈ Ω*,H						

𝑝�*, 𝑡 ∈ Ω*,�
 (33) 

where [𝑝�2(𝑡) 𝑝�H(𝑡) ⋯ 𝑝�I(𝑡)]K = −(𝑹�)12(𝑩K𝜸�∗(𝑡)).  
Then, according to Eq. (33), we have   

𝑑𝑢�*∗(𝑡)
𝑑𝑥�2(𝑡g)

= Þ
0, 𝑡 ∈ (Ω*,2 ∪ 	Ω*,H3		
𝑚���,*(𝑡), 𝑡 ∈ Ω*,�									

 (34a) 

where  
[𝑚���,2(𝑡) 𝑚���,H(𝑡) ⋯ 𝑚���,I(𝑡)]K = −(𝑹�)12 (𝑩K	𝛈���(𝑡)3. (34b) 

Let Ψ(	𝛈���(𝑡)3 = Y àá��
∗(v)

à���(v�)
àá�â∗(v)
à���(v�)

⋯ àá�ã∗ (v)
à���(v�)

\
K
. Differentiating both sides of Eqs. (32a)-(32g) 

with respect to 𝑥�2(𝑡g), we have  
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�̇����(𝑡) = 𝑨 ∙ 𝐡��� + 𝑩 ∙ Ψ(	𝛈���(𝑡)3 (35a) 

ℎ̇ª,��� = Ï𝑪�K 𝑪£KÐ ∙ 𝐡��� (35c) 

�̇���� = −𝑨 ∙ 𝛈���(𝑡) − P
𝑪�
𝑪£
S 𝜂ª,���(𝑡) − 𝑸2𝐡��� + 𝛽𝛈���(𝑡) (35d) 

�̇�ª,���(𝑡) = 𝛽 ∙ 𝜂ª,���(𝑡) (35e) 
with initial and terminal conditions as: 

𝐡���(0) =
𝜕𝐳�(0)
𝜕𝑥�2(𝑡g)

=
𝜕𝐳�(𝑡g)
𝜕𝑥�2(𝑡g)

= [1, 𝟎2×HI12]K (35f) 

ℎª,���(0) =
𝜕�̃�ª(0)
𝜕𝑥�2(𝑡g)

=
𝜕(0)
𝜕𝑥�2(𝑡g)

= 0 (35g) 

𝛈���(𝑇k) =
𝜕𝜸�2(𝑇𝑃)
𝜕𝑥�2(𝑡g)

=
𝜕(𝑸H𝐳�(𝑇k))
𝜕𝑥�2(𝑡g)

= 𝑸H ∙ 𝐡���(𝑇k) (35h) 

𝜂𝑁,𝑥�1(𝑇k) =
𝜕𝛾�𝑁(𝑇k)
𝜕𝑥�2(𝑡g)

=
𝜕(𝑒uKy ∙ M ∙ 2 ∙ 𝑧�𝑁(𝑇k)3

𝜕𝑥�2(𝑡g)
= 𝑒uKy ∙ M ∙ 2 ∙ ℎ𝑁,���(𝑇k) (35i) 

where 𝟎2×HI12 is a (2𝑛 − 1)-dimensional zero vector. Eqs. (35a)-(35i) also form a two-point boundary 
value problem which can be solved using the shooting method.  

To obtain the derivatives of the optimal state and costate variables with respect to 𝑦�2(𝑡g), similarly, 
let 

𝐡£��(𝑡) =
𝜕𝐳�∗(𝑡)
𝑑𝑦�2(𝑡g)

;		ℎª,£��(𝑡) =
𝜕𝑧�𝑁∗ (𝑡)
𝑑𝑦�2(𝑡g)

 (36a) 

𝛈£��(𝑡) =
𝜕𝜸�∗(𝑡)
𝜕𝑦�2(𝑡g)

; 	𝜂ª,£��(𝑡) =
𝜕𝛾�ª∗ (𝑡)
𝜕𝑦�2(𝑡g)

. (36b) 

Differentiating both sides of Eqs. (32a)-(32f) with respect to 𝑦�2(𝑡g), we can obtain a similar two-
point boundary value problem, as follows: 

�̇�£��(𝑡) = 𝑨 ∙ 𝐡£�� + 𝑩 ∙ Ψ(	𝛈£��(𝑡)3 (37a) 

ℎ̇ª,£�� = Ï𝑪�K 𝑪£KÐ𝐡£�� (37c) 

�̇�£�� = −𝑨 ∙ 𝛈£��(𝑡) − P
𝑪�
𝑪£
S 𝜂ª,£��(𝑡) − 𝑸2𝐡£�� + 𝛽𝛈£��(𝑡) (37d) 

�̇�ª,£��(𝑡) = 𝛽 ∙ 𝜂ª,£��(𝑡) (37e) 
with initial and terminal conditions as: 

𝐡£��(0) =
𝜕𝐳�(0)
𝜕𝑦�2(𝑡g)

=
𝜕𝐳�(𝑡g)
𝜕𝑦�2(𝑡g)

= [𝟎2×I, 1, 𝟎2×I12]K (37f) 

ℎª,£��(0) =
𝜕�̃�ª(0)
𝜕𝑦�2(𝑡g)

=
𝜕(0)
𝜕𝑦�2(𝑡g)

= 0 (37g) 

𝛈£��(𝑇k) =
𝜕𝜸�2(𝑇𝑃)
𝜕𝑦�2(𝑡g)

=
𝑑(𝑸H𝐳�(𝑇k))
𝜕𝑦�2(𝑡g)

= 𝑸H ∙ 𝐡£��(𝑇k) (37h) 
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𝜂ª,𝑦�1(𝑇k) =
𝜕𝛾�𝑁(𝑇k)
𝜕𝑦�2(𝑡g)

=
𝜕(𝑒uKy ∙ M ∙ 2 ∙ 𝑧�𝑁(𝑇k)3

𝜕𝑦�2(𝑡g)
= 𝑒uKy ∙ M ∙ 2 ∙ ℎª,£��(𝑇k) (37i) 

where 𝟎2×I12 is a (𝑛 − 1)-dimensional zero vector. The vector of functions Ψ(	𝛈£��(𝑡)3 is similar to 
Ψ(	𝛈���(𝑡)3. It is formulated by replacing the subscript “𝑥�2” in Eq. (34) with “𝑦�2”.  

The derivatives of the optimal solutions for the state and costate variables with respect to 𝑥�2(𝑡g) and 
𝑦�2(𝑡g) can be obtained by solving the two-point boundary value problems (35) and (37), respectively. 
Then, when the actual value of 𝑥2(𝑡g) and 𝑦2(𝑡g) are detected at the sampling time instant 𝑡g , the optimal 
solution of the state and costate variables of the idealized MPC strategy can be estimated using first-
order Taylor approximation, as follows 

𝒛¤∗(𝑡) = 𝒛�∗(𝑡) + 𝐡𝑥�1(𝑡)(𝑥1(𝑡𝑘) − 𝑥�1(𝑡𝑘)3 + 𝐡𝑦�1(𝑡) ¥𝑦1(𝑡𝑘) − 𝑦�1(𝑡𝑘)¦ (38a) 

�̈�∗(𝑡) = 𝜸�∗(𝑡) + 𝛈𝑥�1(𝑡)(𝑥1(𝑡𝑘) − 𝑥�1(𝑡𝑘)3 + 𝛈𝑦�1(𝑡) ¥𝑦1(𝑡𝑘) − 𝑦�1(𝑡𝑘)¦ (38b) 
Eq. (38a) and Eq. (38b) can be calculated instantaneously at the sampling time instant 𝑡g  as 𝐡���(𝑡), 
𝐡£��(𝑡), 𝛈���(𝑡) and 𝛈£��(𝑡) are obtained before 𝑡g . Eq. (38) indicates that compared to Ï𝒛�∗(𝑡), 𝜸�∗(𝑡)Ð, 
[𝒛¤∗(𝑡), �̈�∗(𝑡)] are closer to [𝒛∗(𝑡), 𝜸∗(𝑡)] calculated for the idealized MPC strategy using exact 𝑥2(𝑡g) and 
𝑦2(𝑡g). According to Eq. (23), the optimal control decisions of the idealized MPC strategy can be 
estimated as 

𝑢¤*∗(𝑡) = 𝜑(𝒛¤∗(𝑡), �̈�∗(𝑡)3 = Ò
𝑢}*I, 𝑖𝑓	�̅�*(𝑡) < 𝑢}*I												
𝑢}��, 𝑖𝑓	�̅�*(𝑡) > 𝑢}��										
�̅�*(𝑡), 𝑖𝑓𝑢}*I ≤ 	 �̅�*(𝑡) ≤ 𝑢}��

; ∀𝑖 = 1,2,⋯ , 𝑛 (39) 

where [�̅�2(𝑡) �̅�H(𝑡) ⋯ �̅�I(𝑡)]K = −(𝑹�)12(𝑩K�̈�∗(𝑡)) . Compared to 𝒖�∗(𝑡) , the estimated 
�̈�∗(𝑡), (�̈�∗(𝑡) = [�̈�1∗(𝑡) �̈�2∗(𝑡) ⋯ �̈�𝑛∗(𝑡)]𝑇)  is closer to 𝒖∗(𝑡)  calculated using the idealized MPC 
strategy as �̈�∗(𝑡) is closer to 𝜸∗(𝑡) compared to 𝜸�∗(𝑡). 

Proposition 3: If the inequality constraints (5c), (5d) and (5e)  are not active along the trajectory of the 
optimal solution (𝒛�∗(𝑡), 𝑧�∗(𝑡), 𝜸�∗(𝑡), 𝛾�∗(𝑡)) obtained with the predicted initial state 𝑥�2(𝑡g) and 𝑦�2(𝑡g), 
then the derivatives of optimal solutions for the state and costate variables with respect to 𝑥�2(𝑡g) and 
𝑦�2(𝑡g) are the same for all solutions of (𝒛�∗(𝑡), 𝑧�∗(𝑡), 𝜸�∗(𝑡), 𝛾�∗(𝑡)) for which the inequality constraints 
(5c) and (5d) are not active. 
Proof: If the inequality constraints (5c), (5d) and (5e) are not active along the optimal solution,�̃�ª∗ (𝑡) ≡
0 , 	𝑡 ∈ [0, 𝑇k].  According to Eq. (16d), 𝛾�ª∗ (𝑇k) = 2	M ∙ �̃�ª∗ (𝑇k) = 2	M ∙ 0 = 0 . Based on Eq. 
(32e), 	𝛾�ª∗ (𝑡) ≡ 0, 𝑡 ∈ [0, 𝑇k] . This indicates that 𝜂ª,���(𝑡) = 𝜂ª,£��(𝑡) ≡ 0, 𝑡 ∈ [0, 𝑇k]	.	  In addition, 

Ψ¥	𝛈���(𝑡)¦ = −(𝑹�)12(𝑩K	𝛈���(𝑡)3   and Ψ¥	𝛈£��(𝑡)¦ = −(𝑹�)12	(𝑩K	𝛈£��(𝑡)3 . Thereby, the two-
point boundary value problems (35) and (37) are the same for different optimal solutions under which 
the inequality constraints (5c), (5d) and (5e) are not active. This indicates that the derivatives of the 
optimal solutions for the state and costate variables with respect to 𝑥�2(𝑡g) and 𝑦�2(𝑡g) are the same for 
all of these solutions. ∎ 

Proposition 3 implies that if under the optimal control decisions, the following vehicles in the platoon 
do not brake and accelerate at the maximum values, the speed is within the speed limit, and the spacing 
between all adjacent vehicle pairs is larger than the minimum spacing during time interval [𝑡g, 𝑡g + 𝑇k], 
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the changes in the optimal control decisions for a unit change in 𝑥�2(𝑡g) and 𝑦�2(𝑡g) would be the same 
for all of these optimal control decisions. It is worth noting that the idealized MPC strategy can coordinate 
the behaviors of all following vehicles to minimize the objective function efficiently. It can enable 
smoother deceleration and acceleration behavior of all following vehicles even if the leading vehicle 
decelerates or accelerates at the maximum value. The following vehicles accelerate or decelerate at the 
maximum value only when the spacing between two consecutive vehicles is too large or too small. 
Thereby, according to Proposition 3, under normal conditions, the derivatives of the optimal solutions 
for the state and costate variables, i.e., (𝒛�(𝑡), �̃�ª(𝑡), 𝜸�(𝑡), 𝛾�ª(𝑡)) with respect to 𝑥�2(𝑡g) and 𝑦�2(𝑡g) are 
the same and are independent of these solutions. Let 𝐡å∗(𝑡), ℎª,å∗ (𝑡), 𝛈å∗(𝑡), 𝜂ª,å∗ (𝑡), 𝑙 ∈ {𝑥�2, 𝑦�2}, 𝑡 ∈ [0, 𝑇k] 
be the corresponding derivatives. These derivatives can be obtained offline to avoid solving the two-
point boundary value problems (35) and (37) in real time. Thereby, under normal situations when the 
inequality constraints (5c), (5d) and (5e) are not active along the optimal solution, the time reserved for 
computing in DMPC-FOA approach can be the same as that of the DMPC approach.  

Further, when the inequality constraints are active frequently for some traffic flow conditions (e.g., 
very congested flow), the two-point boundary value problems (35) and (37) need to be solved in real 
time. 	𝐡å∗(𝑡), ℎª,å∗ (𝑡), 𝛈å∗(𝑡), 𝜂ª,å∗ (𝑡), 𝑙 ∈ {𝑥�2, 𝑦�2}, 𝑡 ∈ [0, 𝑇k]  can be used as the initial point for the 
shooting method to solve the two-point boundary value problems. This can significantly reduce the 
computational time for solving the two problems as they are closer to the optimal solution. This property 
enhances the applicability of the proposed DMPC-FOA approach for controlling the CAV platoon in 
real-time. 

5. Stability analysis of the idealized MPC strategy with no inequality constraints 

Stability is an important property for a CAV platoon. It indicates the capability of a platoon to recover to 
a stable state after external disturbances on the platoon formation (e.g., unexpected hard acceleration and 
deceleration of the leading vehicle). In this study, the condition for asymptotic stability of the idealized 
MPC strategy is analyzed to ensure that the CAV platoon can dampen traffic oscillations efficiently. This 
condition also ensures the local stability of the DMPC-FOA approaches as it is proposed to characterize 
the control decisions of the idealized MPC strategy. Similar to Gong et al., (2016), the stability analysis 
of the idealized MPC strategy is based on optimal control problem (5) with no inequality constraints as 
they are not active in most traffic flow scenarios. The conditions for asymptotic stability of the idealized 
MPC strategy with active constraints will be investigated in our future work.  

For convenience of stability analysis, in the following, optimal control problem (5) without 
inequality constraints (5c) and (5d) is transformed into an equivalent form for analyzing stability. The 
conditions for asymptotic stability of the unconstrained idealized MPC strategy are analyzed using the 
stability theorem for continuous MPC problems developed by Mayne et.al. (2000). Let  

𝒛u(𝑡) = 𝑒1
u
Hv𝒛(𝑡) (40a) 

𝒖u(𝑡) = 𝑒1
u
Hv𝒖(𝑡)	 (40b) 

Then, optimal control problem (5) without inequality constraints (5c) and (5d) can be formulated as  

𝑚𝑖𝑛
𝒖ç

s Ï𝒛u(𝑡)K𝑸2𝒛u(𝑡) + 𝒖u(𝑡)K𝑹�𝒖u(𝑡)Ð
Ky

A
𝑑𝑡 + 𝒛u(𝑇k)K𝑸H𝒛u(𝑇k) (41a) 
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s.t �̇�u(𝑡) = ¥𝑨 − u
H
𝑬HI¦ 𝒛u(𝑡) + 𝑩𝒖u(𝑡) (41b) 

𝒛u(0) = [𝐱g 𝐲g]K (41c) 
The following theorem is used to analyze the asymptotical stability of the idealized MPC strategy with 
no inequality constraints. 

Theorem 1 (Mayne et.al. 2000): Consider the following continuous constrained MPC problem 
 
𝑚𝑖𝑛
𝒂
s 𝐿(𝔃(𝑡),𝓾(𝑡))
Ky

A
𝑑𝑡 + 𝐹(𝔃(𝑇k)) 

s.t �̇� = 𝑔(𝔃,𝓾) 
 𝔃(𝑡) ∈ 𝒵,   for 𝑡𝜖[0, 𝑇k] 
 𝓾(𝑡) ∈ 𝒜,   for 𝑡𝜖[0, 𝑇k] 
 𝔃(𝑇k) ∈ 𝒵8  

where 𝔃 and 𝓾 are vectors of the state variables and control variables, respectively. 𝔃(𝑇k) is the value 
of 𝔃(𝑡) at terminal time 𝑇k.  𝒵, 𝒜, and 𝒵8  are the feasible sets for 𝔃(𝑡), 𝓾(𝑡) and 𝔃(𝑇k), respectively. 
If there exists a nominal controller 𝜅(𝔃) such that the following four conditions hold for the above 
continuous MPC problem, then it is asymptotic stable. 
(1).  0 ∈ 𝒵 
(2).  𝜅(𝔃) ∈ 𝒜, ∀𝔃 ∈ 𝒵8 
(3).  𝑔(𝔃, 𝜅(𝔃)) ∈ 𝒵8  for ∀𝔃 ∈ 𝒵8  
(4).  Ï�̇� + 𝐿Ð(𝔃,𝜅(𝔃)3 ≤ 0 for ∀𝔃 ∈ 𝒵8  

To enable application of Theorem 1 for stability analysis of the unconstrained idealized MPC strategy 
based on optimal control problem (41), let 

𝔃(𝑡) = 𝒛u(𝑡) (42a) 
𝓾(𝑡) = 𝒖u(𝑡)	 (42b) 

�̇�(𝑡) = 𝑔(𝔃,𝓾) = ¾𝑨 −
𝛽
2 𝑬HI¿ 𝔃(𝒕) + 𝑩𝓾

(𝑡) (42c) 

𝐿(𝔃(𝑡),𝓾(𝑡)3 = 𝔃(𝒕)K𝑸2𝔃(𝒕) + 𝓾(𝑡)K𝑹�𝓾(𝑡) (42d) 
𝐹(𝔃(𝑡)3 = 𝔃(𝑡)K𝑸H𝔃(𝑡) (42e) 
�̇�(𝔃(𝑡)3 = �̇�(𝑡)K𝑸H𝔃(𝑡) + 𝔃(𝑡)K𝑸H�̇�(𝑡) (42f) 

This study chooses a linear nominal controller (Camacho and Alba, 2013) as follows 
𝜅(𝔃) = 𝓚𝔃 (43) 

Let 𝓚 = 𝟎HI×I. This choice of matrix 𝓚 will simplify the analysis of conditions for asymptotic 
stability of the unconstrained idealized MPC strategy based on optimal control problem (41). Next, we 
illustrate the conditions for which optimal control problem (41) can satisfy the four conditions in 
Theorem 1.  

For optimal control problem (41), the feasible set of state variables, control variables, and terminal 
state variables are 𝒵 = ℝHI , 𝒜 = ℝI , and 𝒵8 = ℝHI , respectively. Thereby, 0 ∈ 𝒵 ; condition 1 is 
satisfied. According to Eq. (43), 𝜅(𝔃) = 𝓚𝔃 = 𝟎2×I ∈ ℝI = 𝒜. Hence, condition 2 in Theorem 1 is 
also satisfied. From Eq. (42c) and Eq. (43), 𝑔(𝔃, 𝜅(𝔃)3 = ¥𝑨− u

H
𝑬HI¦ 𝔃(𝑡) + 𝑩𝓚𝔃(𝑡) = ¥𝑨 −

u
H
𝑬HI¦ 𝔃(𝑡) ∈ ℝHI = 𝒵8 . Therefore, condition 3 holds for optimal control problem (41).  
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To illustrate that condition 4 is satisfied, for simplicity, the notation for time 𝑡  is removed. 
Substituting Eqs. (42c)-(42f) into the inequality in condition 4, we have 

P¾𝑨 −
𝛽
2 𝑬HI¿ 𝔃 + 𝑩𝓚𝔃S

K

𝑸H𝔃 + 𝔃K𝑸H P¾𝑨 −
𝛽
2 𝑬HI¿ 𝔃 + 𝑩𝓚𝔃S + 𝔃

K𝑸2𝔃
+ (𝓚𝔃)K𝑹�(𝓚𝔃) ≤ 0 

(44) 

Note 𝓚 = 𝟎HI×I; hence, inequality (44) can be simplified as  

𝔃K �¾𝑨 −
𝛽
2 𝑬HI¿

K

𝑸H + 𝑸H ¾𝑨 −
𝛽
2 𝑬HI¿ + 𝑸2

� 𝔃 ≤ 0 (45) 

Let 𝑾 = ¥𝑨 − u
H
𝑬HI¦

K
𝑸H + 𝑸H ¥𝑨 −

u
H
𝑬HI¦ + 𝑸2. Obviously, inequality (45) holds if matrix 𝑾 is 

negative semidefinite. According to Eq. (6), 𝑹2 = 𝜦𝑻𝑫�𝜦 , 𝑹H = 𝜦𝑻𝑫�𝜦 , 𝑹� = 𝜦𝑻𝑫�𝜦 , and 𝑹� =
𝜦𝑻𝑫�𝜦, where 𝜦 is an 𝑛 × 𝑛 orthogonal matrix and 𝜦K𝜦 = 𝜦𝜦K = 𝑬I. Let the diagonal positive definite 
matrices 𝑫� , 𝑫� , 𝑫�  and 𝑫�  be 𝑫� = diag(𝑎2,… , 𝑎I), 𝑫� = diag(𝑏2, … , 𝑏I) , 𝑫� = diag(𝑐2,… , 𝑐I), 
and 𝑫� = diag(𝑒2, … , 𝑒I), respectively, where 𝑎* > 0, 𝑏* > 0, 𝑐* > 0, and 𝑒* > 0 for 𝑖 = 1, … , 𝑛. The 
following proposition discusses the sufficient conditions for matrix 𝑾 to be negative semidefinite 
Proposition 4. 𝑾	(𝑾 ∈ ℝHI×HI) is a negative semidefinite matrix if matrices 𝑫�, 𝑫�, 𝑫� and 𝑫�, and 
the discount parameter 𝛽 are set such that 

𝑎* < 𝛽𝑐*, ∀𝑖 = 1,2,⋯ , 𝑛	 (46a) 

𝑒* ≥
−𝑐*H

𝛽(𝑎* − 𝛽𝑐*)
, ∀𝑖 = 1,2,⋯ , 𝑛 (46b) 

𝑏* ≤
𝑐*H + 𝛽𝑒*(𝑎* − 𝛽𝑐*)

𝑎* − 𝛽𝑐*
, ∀𝑖 = 1,2,⋯ , 𝑛 (46c) 

for ∀𝑖. 
Proof. Matrix  𝑾 can be expanded as  

𝑾 = ¾𝑨 −
𝛽
2 𝑬I¿

K

𝑸H + 𝑸H ¾𝑨 −
𝛽
2 𝑬I¿ + 𝑸2 

= P 𝟎I 𝟎I
−𝑬I 𝟎I

S P𝑹� 𝑹�
S + P𝑹� 𝑹�

S P𝟎I −𝑬I
𝟎I 𝟎I

S − P𝛽𝑬I𝑹� 𝛽𝑬I𝑹�
S

+ P𝑹2 𝑹H
S 

= P𝑹2 − 𝛽𝑹� −𝑹�
−𝑹� 𝑹H − 𝛽𝑹�

S 

 
 
 
 
 

(47) 

Denote 𝜦ù = Y𝜦
𝜦
\, then 

𝑾ú = 𝜦ù𝑾𝜦ùK = Y𝜦
𝜦
\ P𝑹2 − 𝛽𝑹� −𝑹�

−𝑹� 𝑹H − 𝛽𝑹�
S Y𝜦

K

𝜦K
\ 

= P𝜦
(𝜦K𝑫�𝜦 − 𝛽𝜦K𝑫�𝜦)𝜦K −𝜦𝜦K𝑫�𝜦𝜦K

−𝜦𝜦K𝑫�𝜦𝜦K 𝜦(𝜦K𝑫�𝜦 − 𝛽𝜦K𝑫�𝜦)𝜦K
S 

= P𝑫� − 𝛽𝑫� −𝑫�
−𝑫� 𝑫� − 𝛽𝑫�

S 

 
 
 
 
 

(48) 
According to Eq. (47), the eigenvalues of matrix 𝑾ú  and 𝑾  are identical. Let 𝒛ûu =
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(𝑥2,u, 𝑦2,u, 𝑥H,u, 𝑦H,u, … , 𝑥I,u, 𝑦I,u3
K

; 𝒛ûu  is a vector of variables obtained by changing the order of 
variables in 𝒛u. Then,  

(𝒛u3
K
𝑾ú ∙ 𝒛u = (𝒛ûu3

K

⎣
⎢
⎢
⎡𝑾
ü2

𝑾üH
⋱

𝑾üI⎦
⎥
⎥
⎤

TUUUUUUVUUUUUUW
𝑾ü

∙ 𝒛ûu (49) 

where 𝑾ü is a block diagonal matrix defined above, in which 𝑾ü*	(∀𝑖 = 1,2⋯ , 𝑛) is  

𝑾ü* = P𝑎* − 𝛽𝑐* −𝑐*
−𝑐* 𝑏* − 𝛽𝑒*

S (50) 

Note 𝑾ü* is a symmetric matrix. It is negative semidefinite if 
𝑎* − 𝛽𝑐* ≤ 0 (51a) 

and  
(𝑎* − 𝛽𝑐*)(𝑏* − 𝛽𝑒*) − 𝑐*H ≥ 0 (51b) 

Obviously, inequality (51a) holds if 𝑎* < 𝛽𝑐*. According to Eq. (51b), we have  
(𝑎* − 𝛽𝑐*)(𝑏 − 𝛽𝑒*) − 𝑐*H = (𝑎* − 𝛽𝑐*)𝑏* − 𝛽𝑒*(𝑎* − 𝛽𝑐*) − 𝑐*H ≥ 0 (52) 

Note 𝑎* < 𝛽𝑐*, inequality (52) implies that  

𝑏* ≤
𝑐*H + 𝛽𝑒*(𝑎* − 𝛽𝑐*)

𝑎* − 𝛽𝑐*
 (53) 

As 𝑏* ≥ 0, the right-hand side of inequality (53) holds only if  
𝑐*H + 𝛽𝑒*(𝑎* − 𝛽𝑐*) ≤ 0 (54) 

This implies  
𝑐*H + 𝛽𝑒*(𝑎* − 𝛽𝑐*) ≤ 0 (55) 

Thereby,    

𝑒* ≥
−𝑐*H

𝛽(𝑎* − 𝛽𝑐*)
 (56) 

The above discussion shows that if inequalities (53), (56), and 	𝑎* < 𝛽𝑐*  hold, 𝑾ü*  is a negative 
semidefinite matrix. Similarly, we can infer that the block diagonal matrix  𝑾ü is negative semidefinite if 
inequalities (46a)-(46c) hold. This implies that 𝑾ú is negative semidefinite. Note that matrix 𝑾ú is similar 
to the symmetric matrix 𝑾 . Thereby, 𝑾  is negative semidefinite if inequalities (46a)-(46c) hold. 
Proposition 4 is proved. ∎ 

It is worth mentioning that Proposition 4 only provides a sufficient condition to ensure the asymptotic 
stability of the unconstrained idealized MPC strategy. There exist other conditions under which the 
unconstrained idealized MPC strategy is also asymptotically stable. Further, there may exists multiple 
equilibrium states for the CAV platoon depending on the speed of the leading vehicle. Proposition 4 only 
ensures the local stability the unconstrained idealized MPC strategy. 

According to Proposition 4, the method to determine the diagonal positive definite matrices 𝑫�, 𝑫�, 
𝑫� and 𝑫� and the discount parameter 𝛽 to ensure asymptotic stable of the unconstrained idealized MPC 
strategy can be summarized as follows. First, set an arbitrary positive value for 𝛽 and a diagonal positive 
definite matrix 𝑫�. Second, obtain the matrix 𝑫� such that inequality (56a) is satisfied. Then, obtain 
matrices 𝑫� and 𝑫� according to inequalities (56b) and (56c), respectively. 
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6.  Numerical experiments 

This section discusses four numerical experiments to demonstrate the motivation for this study and to 
illustrate the effectiveness of the proposed DMPC-FOA approach. The first numerical experiment 
analyzes the computational time required for the leading vehicle to solve optimal control problem (5) for 
different initial inputs, prediction horizons, and the number of following vehicles. The second numerical 
experiment illustrates the detailed steps for sensitivity analysis of the optimal control problem. The first-
order Taylor approximation method is then applied to estimate the solution of state variables, costate 
variables, and the optimal control decisions when the leading vehicle’s initial speed and position are 
changed. The estimated solution and the exact solution (computed using the solution algorithm in Section 
3) are compared. The third numerical experiment compares the control performance of the DMPC-FOA 
approach with that of the DMPC approach assuming the movement of the leading vehicle is 
predetermined according to NGSIM field data. The fourth numerical experiment shows a traffic flow 
scenario where the DMPC approach fails to control the CAV platoon safely due to poor estimation of 
the optimal control decisions of the idealized MPC strategy. However, the DMPC-FOA approach can 
control the CAV platoon effectively and is able to characterize the optimal control decisions of the 
idealized MPC strategy accurately in this scenario. The last numerical experiment apply two more 
scenarios to test the performance of the proposed DMPC-FOA approach. 

6.1 Computational time for solving optimal control problem (5) 

The DMPC approach and DMPC-FOA approach need to reserve 𝜏2 and 𝜏H time before each time instant, 
respectively, to estimate the optimal control decisions of the idealized MPC approach. 𝜏2 should be large 
enough such that the optimal control problem (5) (i.e., the two-point boundary value problem (32)) can 
be solved using the shooting method, while 𝜏H should be sufficiently large so as to solve the two-point 
boundary value problems (32), (35) and (37) with the shooting method. Note that the computational times 
for the two-point boundary value problems significantly depend on the platoon size (𝑛), the prediction 
horizon (𝑇k)	and the initial state of the CAV platoon. In this study, the values of 𝜏2 and 𝜏H will be 
determined offline according to platoon size and the prediction horizon. For each platoon size (varying 
from 2 to 15) and the prediction horizon (varying from 1 second to 8 seconds), we randomly generated 
1000 initial states of the CAV platoon. The shooting method is applied to solve the two-point boundary 
value problems (32), (35) and (37) under each initial state. The computational time for solving the two-
point boundary value problems (32) corresponding to 0.95 cumulative probability is used as the baseline 
for 𝜏2, while the total computational time for solving the two-point boundary value problems (32), (35) 
and (37) corresponding to 0.95 cumulative probability is used as the baseline for 𝜏H. 

Table 1 shows the detailed inputs of the parameters in the optimal control problem (5). These inputs 
are used for all four numerical experiments. The discount parameter 𝛽 and the matrices 𝑹2, 𝑹H, 𝑹�, and 
𝑹� in optimal control problem (5) are set as follows: 𝛽 = 1, 𝑹2 = 0.5𝑬I, 𝑹H = 𝑹� = 𝑬I, 𝑹� = 3𝑬I. 
These inputs satisfy the inequalities in Proposition 4 to ensure that the unconstrained idealized MPC 
strategy is asymptotic stable. It is worth mentioning that the value of 𝛽 decides the weights of the running 
cost at different time in future. It not only impacts the stability of the benchmark MPC approach, but also 
the estimation performance of the DMPC-FOA approach. Our analysis shows that the stability 
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performance of the benchmark MPC approach and the estimation performance of the DMPC-FOA are 
better when 𝛽 ∈ [0.5,1.5].  

Table 1. Input parameters for optimal control problem (5) 
Variables Default value 

Minimum acceleration (𝑢}*I) −5	𝑚/𝑠H 
Maximum acceleration (𝑢}��) 3	𝑚/𝑠H 

Minimum spacing (s}*I) 5	𝑚 
Safety space (s8) 10	𝑚 

Speed limit (𝑣}��) 33.5 𝑚/𝑠 (120	𝑘𝑚/ℎ) 
Time headway (𝑟∗) 1	𝑠 

  
Fig. 5. Cumulative probability of computational time for solving optimal control problem (5) with different initial inputs 

(i.e., 𝐱(0) and 𝐲(0)) at 𝑛 = 8 and 𝑇k = 4𝑠 and 6𝑠. 

Without loss of generality, suppose the initial time is 0. To ensure that optimal control problem (5) 
can be solved within 𝜏2 seconds under different initial inputs of position errors (i.e., 𝐱(0)) and speed 
differences (i.e., 𝐲(0) ) of all adjacent vehicles pairs, 𝐱(0)  is generated randomly in the interval 
[−10,100] and 𝐲(0) is randomly generated in the interval [0,20]. This study generates 1000 different 
values for 𝐱(0) and 𝐲(0) for which the inequality constraints (Eq. (5c)) are satisfied.  

The numerical experiments were coded in MATLAB and executed on a computer with an Intel Core 
i7-4790 3.60-GHz CPU with 8.00 GB of RAM. To analyze the impacts of the number of following 
vehicles in the platoon (𝑛) and the prediction horizon (𝑇k ) on computational time, optimal control 
problem (5) is solved 1000 times under different feasible initial inputs for each combination of 𝑛 and 𝑇k.  

Fig. 5 shows the cumulative probability of computational time for solving the optimal control 
problem (5) with different initial inputs (i.e., 𝐱(0) and 𝐲(0)) for 𝑛 = 8 and 𝑇k = 4𝑠 and 6𝑠. It shows 
that the computational time significantly depends on the value of 𝐱(0) and 𝐲(0). The computational time 
ranges from 0.08s to 0.4s under 𝑛 = 8 and 𝑇k = 4𝑠. It is worth noting that computational times are large 
only when the initial position errors of many adjacent vehicle pairs deviate remarkably from the 
equilibrium state (i.e., they are close to 100 𝑚), the likelihood of occurrence of which is low in the real 
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world. Hence, this study uses the computational time corresponding to 0.95 cumulative probability as 
the reference point to determine the reserved time for the DMPC and DMPC-FOA approaches.  

 
Fig. 6. Computational time corresponding to 0.95 cumulative probability under different 𝑛 and 𝑇k . 

Fig. 6 shows the computational time corresponding to 0.95 cumulative probability under different 𝑛 
and 𝑇k. The computational time corresponding to 0.95 cumulative probability is the time within which 
95% of the experimental scenarios can be solved. Fig. 6 illustrates that the computational time 
corresponding to 0.95 cumulative probability increases monotonically with the number of following 
vehicles and the prediction horizon.  

6.2 Sensitivity analysis of optimal control problem (5) 

 
     (a)                                                (b) 

Fig. 7. Solutions of costate variables and optimal control decisions at the unperturbed initial state: (a) solutions of costate 
variables; (b) optimal control decisions. 

This section shows the details of the sensitivity analysis method implementation for the optimal control 
problem (5) introduced in section 4. Consider a CAV platoon with 5 following vehicles (𝑛 = 5). The 
leading vehicle and all following vehicles drive at a speed of 20 𝑚/𝑠 at time 0 (i.e., 𝐲(0) = 0). Suppose 
the initial position errors of vehicle 2 to vehicle 5 are all 0, and the initial position error of vehicle 1 with 
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respect to the leading vehicle is 90 m. This implies that the spacing between vehicle 1 and vehicle 0 is 
90 + 𝑇 ∙ 20 + 𝑠8 = 120𝑚. It indicates a case where the following vehicles seek to catch up with the 
leading vehicle.  Let 𝑇k = 5	𝑠. Fig. 7(a) shows the optimal solutions of the costate variables obtained 
using the solution algorithm proposed in Section 3. The optimal control decisions of all following 
vehicles in the platoon can then be determined according to Eq. (23). Fig. 7(b) shows the optimal control 
decisions of vehicles 1, 3 and 5. It indicates that vehicle 1 accelerates at the maximum value (3	𝑚/𝑠H) 
for the first 1.7 seconds. Then, the acceleration decreases monotonically in the time interval [1.7s, 4.3s] 
and then increases.  

Suppose the initial position and speed of the leading vehicle at time 0 are perturbed. Then, 𝑥2(0) and 
𝑦2(0) change from the unperturbed values 90 and 0, respectively. Fig. 8 shows the derivatives of 
solutions for the state and costate variables with respect to 𝑥2(0) and 𝑦2(0), respectively. They are 
obtained by solving the two-point boundary value problem (35) and (37), respectively. Fig. 8 shows that 
at the optimal state, a unit change in 𝑥2(0) and 𝑦2(0) will increase the optimal solution of 𝑥2(𝑡) and 
𝑦2(𝑡) by 1, respectively, at time interval [0,1.7]. The impacts of variations in 𝑥2(0) and 𝑦2(0) on 𝑥2(𝑡) 
and 𝑦2(𝑡) decrease after 1.7 seconds.  

 
                                                                          (a)                                                   (b) 

 
                                                                  (c)                                                    (d) 

Fig. 8. Derivatives of the state and costate variables with respect to 𝑥2(0) and 𝑦2(0), respectively, at the unperturbed initial 
state: (a) derivatives of the state variables with respect to 𝑥2(0); (b) derivatives of the state variables with respect to 

𝑦2(0); (c) derivatives of the costate variables with respect to 𝑥2(0); (d) derivatives of the costate variables with respect 
to 𝑦2(0). 
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(a) 

                    
                                                                                                 (b) 

                     
(c) 

Fig. 9. Comparison of estimated and perturbed optimal solutions for the state and costate variables: (a) comparison of 
estimated and perturbed optimal solutions of position errors; (b) comparison of estimated and perturbed optimal 

solutions of speed difference for adjacent vehicle pairs; (c) comparison of estimated and perturbed optimal solutions for 
the costate variables.  

Suppose both 𝑥2(0) and 𝑦2(0) are increased by 4 units (for example, due to prediction error). Using 
the  first-order Taylor approximation (Eq. (38)), Fig. 9 compares the estimated and perturbed optimal 
solutions for the state variables and costate variables. The perturbed solutions are obtained using the 
solution algorithm at the perturbed states of 𝑥2(0) and 𝑦2(0). Fig. 9 shows that the estimated solutions 
are very close to those of the perturbed solutions, indicating that the  first-order Taylor approximation 
can accurately characterize the variation in the optimal solutions induced by changes in 𝑥2(0) and 𝑦2(0). 
Based on the estimated solutions for the costate variables (i.e., 𝜸), Fig. 10 compares the optimal control 
decisions of following vehicles estimated by Eq. (39) and the perturbed ones obtained using the solution 
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algorithm in Section 3. It shows that the estimated solutions are also very close to the perturbed ones 
obtained using the solution algorithm.  

 
Fig. 10. Comparison of estimated and perturbed optimal control decisions of the following vehicles. 

6.3 Control performance of the DMPC and DMPC-FOA approaches  

 
Fig. 11. Acceleration of the leading vehicle 

Note that both the DMPC and DMPC-FOA approaches seek to address the issue of control delay and 
estimate the optimal control decisions of the idealized MPC strategy. This section compares the control 
decisions of the DMPC approach, the DMPC-FOA approach and the idealized MPC strategy. To do so, 
we consider a CAV platoon with 8 following vehicles (vehicle IDs 1-8). The acceleration of the leading 
vehicle is shown in Fig. 11. It contains a 240-seconds (with resolution 0.1 second) real-world vehicle 
control diary collected on eastbound I-80 in the San Francisco Bay area at Emeryville, California. It can 
be noted that the vehicle decelerated or accelerated mildly most of the time. However, it contains some 
time slots with hard braking and high acceleration (e.g., the time slots around 110s, 140s and 186s).  

Suppose the prediction horizon and the roll period are 𝑇k = 5  seconds and ∆𝑡 = 1	 second, 
respectively. According to Fig. 6, the computational time for solving optimal control problem (5) 
corresponding to 95% cumulative probability with 8 following vehicles is 0.33 seconds. To reserve 
enough time for solving the optimal control problem, 𝜏2 is set as 0.4 seconds for the DMPC approach. 
Note that the DMPC-FOA approach needs to solve optimal control problem (5) as well as perform 
sensitivity analysis of the optimal control problem with respect to 𝑥�2(0) and 𝑦�2(0). Thereby, 𝜏H ≥ 𝜏2. 
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From 1000 simulations, the total computational time for solving the optimal control problem (5) and the 
two-point boundary value problems (problems (35) and (37)) corresponding to 95% cumulative 
probability is around 0.56 seconds. Thereby, 𝜏H is set as 0.6 seconds. It should be noted that among the 
1000 simulations, there are situations where some following vehicles need to brake and accelerate at the 
maximum rate during the prediction horizon. Thereby, 𝜏H = 0.6𝑠 > 𝜏2 = 0.4𝑠. According to Proposition 
3, if these situations do not exist and the spacing of each following vehicle is always greater than the 
minimum value (𝑠}*I), 𝜏H can be set the same as 𝜏2.  

 
                                          (a)                                                                                             (b) 
Fig. 12. Differences between the estimated control decisions of the DMPC and DMPC-FOA approaches from those of the 

idealized MPC strategy: (a) difference between control decisions of the DMPC approach and those of the idealized 
MPC strategy; (b) difference between control decisions of the DMPC-FOA approach and those of the idealized MPC 

strategy.  

 
                                                        (a)                                                                                           (b) 

Fig. 13. Differences in optimal spacing and speed between the DMPC approach and the idealized MPC strategy: (a) 
difference in optimal spacing; (b) difference in optimal speed. 

Fig. 12 shows the difference between the estimated control decisions of  the DMPC approach (i.e, 
∆𝑢* = 𝑢�*∗(𝑡) − 𝑢*∗(𝑡), ∀𝑖 = 1,2,⋯𝑛 ) and the DMPC-FOA approach (i.e, ∆𝑢* = 𝑢¤*∗(𝑡) − 𝑢*∗(𝑡), ∀𝑖 =
1,2,⋯𝑛) from those of the idealized MPC strategy. Fig. (12a) shows that the estimated control decisions 
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of the DMPC approach are close to those of the idealized MPC strategy with the maximum difference 
less than 0.45 𝑚/𝑠H. The estimation errors of the control decisions of DMPC approach are induced by 
the prediction error of 𝑥2(𝑡)  and 𝑦2(𝑡)  at each sampling time instant. However, through first-order 
Taylor’s approximation, the DMPC-FOA approach can significantly improve on the estimation 
performance of the DMPC approach. As can be seen from Fig. 12(b), the maximum difference between 
the control decisions estimated by the DMPC-FOA approach and the idealized MPC strategy is less than 
3 × 101�	𝑚/𝑠H, indicating that the DMPC-FOA approach can characterize the decisions of the idealized 
MPC strategy very well.  

 
Fig. 14. Prediction errors of the initial states of 𝑥2(𝑡g) and 𝑦2(𝑡g), 𝑡g = 1𝑠, 2𝑠,⋯ , 240𝑠.  

Fig. 13 illustrates the differences in optimal spacing and speed between the DMPC approach and the 
idealized MPC (i. e. , ∆s* and ∆𝑣*, respectively, 𝑖 = 1,2,⋯ 𝑛). It shows that while the estimated control 
decisions of DMPC approach deviate from the idealized MPC strategy, the optimal spacing and speed 
obtained by the DMPC approach are very close to those of the idealized MPC strategy. Hence, the DMPC 
approach is able to control the CAV platoon efficiently in this case. To investigate the reason for the 
good control performance of the DMPC approach in this scenario, Fig. 14 shows the prediction errors of 
the initial inputs of 𝑥2(𝑡) and 𝑦2(𝑡) at each sampling time instant 𝑡g, 𝑘 = 1,2,⋯ . Recall ∆𝑡 = 1𝑠. Hence, 
𝑡g = 1𝑠, 2𝑠,⋯ , 240𝑠. It shows that the predicted values of 𝑥2(𝑡g) and 𝑦2(𝑡g), 𝑘 = 1,2,⋯ are very close 
to those of the exact ones as the leading vehicle drives with mild acceleration or deceleration most of the 
time (see Fig. 11). The large prediction error occurs at the moments when the leading vehicle has hard 
acceleration or deceleration (e.g., 𝑡 = 110𝑠, 140𝑠, 186𝑠 etc.). Correspondingly, the DMPC approach 
also has larger estimation errors in terms of the optimal solutions relative to those of the idealized MPC 
strategy (see Fig. 12(a) and Fig. 13). However, as these “extreme” behaviors of the leading vehicle only 
last for small time periods, their impacts are small. In addition, if 𝑥2(𝑡g) and 𝑦2(𝑡g) are accurately 
predicted at a time instant 𝑡g , the large difference in optimal solutions between the DMPC approach and 
the idealized MPC strategy in the previous roll period will be reduced significantly at the current roll 
period starting from time instant 𝑡g . This can be observed in Fig. 12(a) and Fig. 13 where the large 
differences at time instants 𝑡 = 110𝑠, 140𝑠, 186𝑠 are reduced dramatically in the roll periods following 
time instants at which 𝑥2(𝑡) and 𝑦2(𝑡) are predicted with low errors at the corresponding sampling time 
instants  (i.e.,	𝑡g = 111𝑠, 141𝑠, 187𝑠, see Fig. 14).  
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Fig. 15 shows the control decisions of the following vehicles estimated by the DMPC-FOA approach. 
It indicates that when the leading vehicle 0 executes hard acceleration/deceleration, vehicle 1 also 
executes hard acceleration/deceleration with a magnitude slightly less than that of the leading vehicle 0. 
The acceleration or deceleration decreases sequentially in the platoon, indicating that the traffic 
oscillation is damped sequentially from the head of the platoon to its tail. Fig. 16 shows the optimal 
spacing and speed differences of adjacent vehicle pairs in the platoon computed by the DMPC-FOA 
approach. These results are almost identical to those of the idealized MPC strategy with the maximum 
absolute error less than 8 × 101$ due to the high accuracy of the estimated optimal control decisions (see 
Fig. 12(b)). As can be seen in Fig. 16, the oscillation of the optimal spacing and speed difference of 
adjacent vehicle pairs decreases sequentially in the platoon. These results indicate that the DMPC-FOA 
approach can lead to smooth deceleration and acceleration behavior of all following vehicles. In addition, 
it can coordinate the behavior of all following vehicles to dissipate the traffic oscillation to ensure 
stability of the CAV platoon.  

 
Fig. 15. Estimated control decisions of the DMPC-FOA approach.  

 
                                            (a)                                                                           (b) 

Fig. 16. Optimal spacing and speed difference for some adjacent vehicle pairs in the platoon computed by DMPC-FOA 
approach: (a) spacing of adjacent vehicle pairs; (b) speed difference of adjacent vehicle pairs. 

0 40 80 120 160 200 240
-4

-3

-2

-1

0

1

2

Time (s)

Ac
ce

le
ra

tio
n 

(m
/s2 )

 

 

u1 (DMPC-FOA)

u3 (DMPC-FOA)

u5 (DMPC-FOA)

u7 (DMPC-FOA)

0 40 80 120 160 200 240
20

25

30

35

40

Time (s)

s 
(m

)

 

 

s1 (DMPC-FOA)
s3 (DMPC-FOA)

s5 (DMPC-FOA)
s7 (DMPC-FOA)

0 40 80 120 160 200 240
-2

-1

0

1

2

3

4

Time (s)

y 
(m

/s
)

 

 
y1 (DMPC-FOA)
y3 (DMPC-FOA)

y5 (DMPC-FOA)
y7 (DMPC-FOA)



34 
 

6.4 Scenario where the DMPC approach fails to control the CAV platoon 

The previous section illustrated a scenario in which the estimated control decisions and the solutions for 
the state variables of the DMPC approach are very close to those of the idealized MPC strategy. Here, 
we illustrate a scenario in which when the DMPC approach fails to accurately predict the values of 𝑥2(𝑡g) 
and 𝑦2(𝑡g)	at each sampling time instant 𝑡g , the error of the control decisions between the DMPC 
approach and idealized MPC strategy increases with each roll period. Then, the car-following behavior 
of the vehicles controlled by the DMPC approach significantly deviates from that of the idealized MPC 
strategy. However, as will be illustrated, the DMPC-FOA approach accurately characterizes the optimal 
control decisions of the idealized MPC strategy. 

  
                                                      (a)                                                                                                  (b) 

Fig. 17. Acceleration and speed of the leading vehicle: (a) acceleration of the leading vehicle; (b) speed of the leading 
vehicle. 

Consider a CAV platoon with 10 following vehicles. Let 𝑇k = 5  seconds and ∆𝑡 = 1	 second. 
According to Fig. 6, the computational time corresponding to 95% cumulative probability is 0.42 seconds. 
Hence, we set 𝜏2 = 0.5 seconds for the DMPC approach. By conducting 1000 simulation runs with 
different initial inputs for 𝑥2(0) and 𝑦2(0), the computational time corresponding to 95% cumulative 
probability for the DMPC-FOA approach is determined as 0.66 seconds. We will set 𝜏H = 0.7 seconds 
for the DMPC-FOA approach.  

Suppose the leading vehicle drives at 30 𝑚/𝑠 at time 0. Assume the leading vehicle accelerates at 
the maximum value 3	𝑚/𝑠H for 0.5 seconds and then decelerates at the maximum value −5	𝑚/𝑠H for 
0.5 seconds. Such behavior will repeat for 30 seconds until the leading vehicle stops. Fig. 17(a) shows 
the trajectory of the assumed acceleration of the leading vehicle. The corresponding speed of the leading 
vehicle is shown in Fig. 17(b).  

As ∆𝑡 = 1	second, the sampling time instant 𝑡g = 𝑘 seconds for 𝑘 = 1,2,⋯. Under the assumed 
acceleration behavior of the leading vehicle, the prediction errors of 𝑥2(𝑡g) and 𝑦2(𝑡g) using the DMPC 
approach are −1	𝑚	and 4	𝑚/𝑠, respectively, at each sampling time instant 𝑡g . Note that the prediction 
errors of 𝑥2(𝑡g) and 𝑦2(𝑡g) 	(𝑘 = 1,2,3⋯ ) for DMPC-FOA are the same as that of DMPC approach.   

Fig. 18 compares the optimal solutions for the DMPC approach, the DMPC-FOA approach and the 
idealized MPC strategy. It illustrates that both spacing and control decisions of vehicle 1 computed using 

0 5 10 15 20 25 30

-5

-3

-1

1

3

Time (s)

u 0 (m
/s

2 )

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

Time (s)

v 0 (m
/s

)



35 
 

the DMPC approach deviate significantly from those of the idealized MPC strategy due to the large 
prediction errors of 𝑥2(𝑡g) and 𝑦2(𝑡g) (𝑘 = 1,2,⋯). In addition, the spacing between the leading vehicle 
0 and vehicle 1 even reduce to a value less than the minimum allowable spacing 𝑠}*I(𝑠}*I = 5	𝑚). 
Thereby, a collision will occur between leading vehicle 0 and vehicle 1 in the platoon. Note that the 
DMPC approach stops at	𝑡 = 18𝑠 as the safety constraints (inequality (5c)) cannot be satisfied thereafter. 
Hence, no solution can be found using the DMPC approach. By contrast, the DMPC-FOA approach 
provides an optimal solution very close to that of the idealized MPC strategy. When the leading vehicle 
stops at 𝑡 = 30𝑠, the spacing between leading vehicle 0 and vehicle 1 is over 10	𝑚 to ensure safety. 
These results highlight that the DMPC-FOA approach can effectively improve the estimation 
performance significantly beyond that of the DMPC approach even under extreme scenarios.  

 
     (a) 

 
      (b) 

Fig. 18. Comparison of solutions for spacing and control decisions of vehicle 1 among the DMPC approach, the DMPC-
FOA approach and the idealized MPC strategy: (a) comparison of solution for spacing of vehicle 1; (b) comparison of 

control decisions for vehicle 1 
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sufficient to control the CAV platoon efficiently. However, when the leading vehicle executes a hard 
brake or accelerates frequently (e.g., in congested traffic flow), the DMPC-FOA approach should be 
applied to ensure the safety and efficiency of the CAV platoon. 

6.5 Two other scenarios to test the control performances of DMPC-FOA approach  

In this section, the following two traffic scenarios are considered to validate the performance of the 
DMPC-FOA approach. Assume that the number of following CAVs in the platoon is 8. Let 𝜏H = 0.6 
seconds. 

In scenario 1, the leading vehicle performs acceleration and deceleration maneuvers to represent a 
situation in which the platoon approaches a traffic jam on a highway and moves out of the traffic jam 
afterwards. In the simulation of 180 seconds, the leading vehicle drives at a constant speed of 25 𝑚/𝑠 
for 20 seconds. It decelerates at -4 𝑚/𝑠H and accelerates at 3 𝑚/𝑠H in time [20𝑠, 23𝑠] and [110𝑠, 114𝑠], 
respectively.  

 
                                               (a)                                                                                              (b) 

 
                                              (c)                                                                                              (d) 

Fig 19. Optimal results computed by DMPC-FOA approach for scenario 1: (a) Control decision; (b) Difference in optimal 
control decisions between the DMPC approach and the idealized MPC strategy; (c) spacing of adjacent vehicle pairs; 

(d) difference in speed of adjacent vehicle pairs 
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0 30 60 90 120 150 180
-4

-3

-2

-1

0

1

2

3

Time (s)

Ac
ce

le
ra

tio
n 

(m
/s2 )

 

 

u2 (DMPC-FOA)

u4 (DMPC-FOA)

u6 (DMPC-FOA)

u8 (DMPC-FOA)

0 30 60 90 120 150 180
0

1

2

3

4

5

Time (s)

D
iff

er
en

ce
 in

 a
cc

el
er

at
io

n 
( ´

10
-3

 m
/s

2 )

 

 

Du2 (DMPC-FOA)

Du4 (DMPC-FOA)

Du6 (DMPC-FOA)

Du8 (DMPC-FOA)

0 30 60 90 120 150 180

10

15

20

25

30

35

40

Time (s)

s 
(m

)

 

 

s2 (DMPC-FOA)
s4 (DMPC-FOA)

s6 (DMPC-FOA)
s8 (DMPC-FOA)

0 20 40 60 80 100 120 140 160 180
-3

-2

-1

0

1

2

3

4

Time (s)

y 
(m

/s
)

 

 
y2 (DMPC-FOA)
y4 (DMPC-FOA)

y6 (DMPC-FOA)
y8 (DMPC-FOA)



37 
 

at a constant speed of 30 𝑚/𝑠 initially and decelerates at -2 𝑚/𝑠H at 𝑡 = 10s until it stops completely.  
Figure 19 shows the optimal results of the DMPC-FOA approach for scenario 1. As can be seen, the 

magnitudes of deceleration and acceleration decrease from the head of the platoon to its tail, implying 
that the scale of perturbation decreases sequentially in the platoon (Figure 19(a)). Figure 19(b) shows 
that the maximum error of the estimated optimal control is less than 5 × 101� 𝑚/𝑠H, indicating that the 
DMPC-FOA approach can accurately characterize the optimal control of the idealized MPC approach.  
Figure 19(c) and Figure 19(d) illustrate the evolution of space headway and speed difference of adjacent 
vehicle pairs, respectively. These results further validate that the DMPC-FOA approach can damp traffic 
oscillations effectively.  

For scenario 2, similarly, the DMPC-FOA approach can accurately estimate the optimal control 
decisions of the idealized MPC approach (see Figure 20(a)). The following vehicles decelerate when the 
leading vehicle decelerates and converge to the equilibrium state sequentially (see Figure 19(b)). The 
evolution of space headway and speed difference of adjacent vehicle pairs show that the traffic oscillation 
decays in the platoon (Figures 20(c) and 20 (d)). ” 

   
                                             (a)                                                                                              (b) 

 
                                                (c)                                                                                              (d) 

Fig 20. Optimal results computed by DMPC-FOA approach for scenario 2: (a) Difference in optimal control decisions 
between the DMPC approach and the idealized MPC strategy; (2) speed of each vehicle; (c) spacing of adjacent vehicle 

pairs; (d) difference of speed of adjacent vehicle pairs. 
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7. Concluding comments 

This study first proposes an idealized MPC-based cooperative control strategy for CAV platooning. Its 
optimal control decisions can coordinate the behaviors of all following CAVs in the platoon to maneuver 
them effectively and safely. However, as in existing literature, it is based on the idealized, but unrealistic, 
assumption that the embedded optimal control problem can be solved instantaneously. To relax this 
idealized assumption, two deployable strategies, i.e., the DMPC approach and the DMPC-FOA approach, 
are proposed to address the control delay issue of the idealized MPC strategy and to accurately 
characterize its optimal control decisions. The DMPC approach addresses the control delay issue by 
reserving sufficient time before each sampling time instant to solve the embedded optimal control 
problem. However, the estimated control decisions of the DMPC approach can deviate significantly from 
those of the idealized MPC strategy due to errors in predicting the leading vehicle’s position and speed. 
By contrast, the DMPC-FOA approach addresses the control delay issue effectively while accurately 
characterizing the optimal control decisions of the idealized MPC strategy by leveraging the proposed 
analytical sensitivity analysis method for the embedded optimal control problem. The application of the 
DMPC-FOA approach for a CAV platoon whose lead vehicle’s trajectory is obtained from field data 
illustrates that it can dampen traffic oscillations efficiently, and can enable smooth deceleration and 
acceleration behaviors for all following vehicles. In addition, it can provide control decisions very similar 
to those of the idealized MPC strategy even under extreme situations where the leading vehicle’s speed 
and position are predicted very poorly at each sampling time instant.  

It is important to note that the DMPC-FOA approach concept can also be leveraged to address the 
issue of control delay for other MPC-based cooperative control strategies (e.g., Wang et al., 2014b) 
arising from the computational time required to solve the embedded optimal control problem. It can be 
applied for real-time control of large CAV platoons on the condition that the time reserved for computing 
(i.e.,	𝜏H) is less than the roll period (∆𝑡).  

It should be noted that while the proposed DMPC-FOA approach can fundamentally address the 
control delay issue induced by the computational time for the optimal control problem, there is the need 
to relax some assumptions in this study to make the control approach more robust and reliable to deal 
with real-world situations. This study can be extended in a few directions as follows: 

First, the proposed DMPC-FOA approach is a centralized controller for a CAV platoon. It relies on 
a single vehicle to compute the optimal control decision. The application of the DMPC-FOA approach 
for real-time control of the CAV platoon can be constrained by the reserved time 𝜏H, which is determined 
by the computational time of the DMPC-FOA approach. To enable controlling a large-size CAV platoon 
with a large prediction horizon, discretization techniques (e.g., Wei et al., 2017) and a new solution 
algorithm (e.g, distributed dynamic programming algorithm) will be developed to reduce the 
computational time for the optimal control problem.  

Second, this study does not consider the impacts of uncertainties in system dynamics (e.g., false 
execution of optimal control, dynamic resistance of the pavement) and initial vehicle conditions (e.g., 
dynamic communication delays, dynamic sensor measurement errors). However, it is worth noting that 
the MPC approach has some level of robustness against disturbances in vehicles’ states (Zhou et al., 
2017). Further, the analytical sensitivity analysis method for the proposed optimal control problem can 
quantify the impacts of changes in both control decisions and initial vehicle conditions on the CAV 
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platoon dynamics and the platoon performance. In future work, robust cooperative control strategies will 
be developed by leveraging the analytical sensitivity analysis method to enable safe and efficient control 
of the CAV platoon under different levels of uncertainty. 

Third, the application of the DMPC-FOA approach depends on two necessary conditions. First, the 
optimal control decisions are estimated within 𝜏H time. Second, the V2V communications are reliable 
such that the information can be delivered successfully between the leading vehicle and each of the 
following vehicles. For the cases that one of the two necessary conditions is not satisfied, the ACC or 
cooperative sensing-based CACC models should be applied immediately to control the car-following 
behavior of all CAVs. In future, a switching control which leverages the DMPC-FOA approach and the 
ACC models (or cooperative sensing-based CACC models) will be developed to control the CAV platoon 
under different traffic flow and communication environments.  
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