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Abstract 

 This paper proposes and investigates a framework for ensuring operational consistency of 
on-line dynamic traffic assignment in networks with Advanced Traffic Management and 
Information Systems (ATMIS).  Formulated within a stage-based rolling horizon framework, the 
model first solves a deterministic dynamic traffic assignment problem to predict the traffic 
network state for the near future while optimizing certain controller and/or user objectives, and 
later seeks consistency between the predicted system state and the actual conditions unfolding 
on-line.  This approach ensures that future state predictions and path assignments are consistent 
with the current actual system state rather than the previously predicted (presumed) system state. 
The consistency problem is formulated as a constrained least squares model.  It is under-
determined, rank deficient, and potentially ill-conditioned for general networks.  In addition, it 
lacks well-behaved properties and has a fixed-point element, characteristics inherited from the 
dynamic traffic assignment problem.  It is solved using generalized singular value decomposition 
(GSVD) based orthogonal transformations. Simulation experiments are conducted to analyze the 
effectiveness of the GSVD based solution algorithm vis-à-vis ensuring consistency. They 
emphasize the reliability and stability of GSVD in addressing the on-line consistency problem. 
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INTRODUCTION  

Recent perspectives on alleviating the debilitating congestion problem on roadways are 

focussed on the application of advanced technologies to transportation systems.  Under the aegis 

of intelligent transportation systems (ITS) traffic networks are being equipped with advanced 

sensor and information dissemination systems, broadly labeled as Advanced Traffic 

Management and Information Systems (ATMIS).  ATMIS envision that data processed from on-

line traffic measurements can be used to provide route guidance instructions and/or advisories 

using a dynamic traffic assignment (DTA) system to suitably equipped travelers and/or networks 

installed with advanced information dissemination sources, so as to enhance system 

performance.  In this context, the on-line deployment of a DTA system has emerged as a critical 

operational problem. 

 The primary on-line issues for deploying a DTA system are: computational efficiency of 

the solution procedure (1), robustness of the solution procedure (2), stability of the solution, and 

network state consistency over time.  The consistency problem, representing the potential 

divergence of the predicted system state from the actual conditions unfolding on-line, arises 

because of several inherently stochastic on-line factors that can significantly influence the 

performance of dynamic traffic networks: (i) incorrect prediction of time-dependent O-D 

demands, (ii) unpredicted incidents, (iii) incorrect path predictions, (iv) incorrect traffic 

modeling, (v) incorrect assumptions on user behavior and/or user class characteristics, (vi) 

incorrect assumptions on system related parameters, (vii) noise and/or sparsity in measurements, 

and (viii) failure of ATMIS components. Consistency is viewed here in terms of the deviations of 

the predicted time-dependent number of users on each path from the corresponding actual 

number of users.  However, on-line measurements of actual conditions are typically link-based 
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and are assumed to be the time-dependent link traffic counts in this study.  We use the time-

dependent link-path incidence relationships to relate the number of users on each path to actual 

link counts.  Ensuring consistency is critical to the effectiveness of procedures that seek to 

enhance system performance on-line.  Additionally, only a small fraction of network users are 

likely to be equipped with in-vehicle route guidance systems in the future.  Hence, it is 

imperative to robustly predict the en-route travel actions and decisions of unequipped users so as 

to provide more accurate information to equipped users, thereby enhancing the effectiveness of 

an on-line strategy in improving network performance.  These are key motivating factors for 

addressing the on-line consistency problem. 

 This paper proposes and investigates a generalized singular value decomposition based 

approach (3) that seeks on-line consistency at discrete time points between the actual and 

predicted states of a traffic network with ATMIS within a rolling horizon DTA framework that 

seeks to optimize certain system-wide objectives.  This is called the consistent on-line DTA 

problem.  The problem is formulated as a combination of a DTA model and a consistency model 

within a rolling horizon framework.  A comprehensive conceptual and theoretical discussion of 

the on-line consistency problem is provided in Bulusu (4).  The DTA model is formulated as a 

rolling horizon based deterministic DTA problem (RH-DTA) (5) and is solved for each stage σ 

using network information and near-term forecasts of the future O-D demand available towards 

the end of the previous stage σ-1.  It seeks to minimize the total system travel time for all 

vehicles present in the network in stage σ, subject to individual user class constraints.  This 

provides the predicted system state.  The consistency model (CONS) is formulated as a 

constrained least squares problem and seeks consistency between the actual and predicted system 

states.  It is solved in stage σ just before solving the deterministic DTA model for stage σ+1. 
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 The GSVD based algorithm is analyzed using a test network to obtain insights into its 

effectiveness vis-à-vis ensuring consistency.  The performance of the algorithm is investigated 

under different roll periods and in the presence/absence of incidents.  Consistency is measured 

by defining link-based and path-based indices. 

 

FRAMEWORK FOR THE CONSISTENT ON-LINE DTA PROBLEM  

 As stated earlier, there are several factors that can lead to inconsistencies between the 

actual and predicted states of traffic networks including: stochasticity in time-dependent OD 

demands, unaccounted for incidents, measurement errors and noise in measured link parameters, 

failure of ATMIS components, non-compliance or partial compliance of equipped users to 

supplied route guidance instructions, incorrect assumptions on user behavior modeling and/or the 

user class parameters, and incorrect assumptions on the paths and en-route actions of unequipped 

users.  Any combination of these can lead to a significant deterioration in the prediction accuracy 

of network state. 

In this paper, we formulate the problem in which inconsistencies arise due to the 

incorrect prediction of: paths of unequipped users, presence/absence and/or characteristics of 

incidents, time-dependent O-D demand, and compliance characteristics of equipped users to 

supplied routes.  It is assumed that traffic measurements are error free and the ATMIS 

components do not fail.  User class fractions are also assumed to be known.  The associated 

consistency problem seeks to correct the vector of the number of users one each path.  Other 

factors causing inconsistency can be incorporated by extending the framework for this problem, 

discussed hereafter. 



Srinivas Peeta and Srinivas Bulusu 

 

4 

 

 Figures 1 and 2 illustrate the stage-based rolling horizon framework for the consistent on-

line DTA problem. The RH-DTA model is used to determine the optimal paths to be assigned to 

users entering the network in the roll period of the current stage σ based on O-D demand 

forecasts available towards the end of the previous stage σ-1.  The DTA problem is solved 

towards the end of stage σ-1 and the paths are assigned to users in the roll period of stage σ.  

However, for the first stage, the initial set of paths to solve the DTA problem are obtained from 

historical data.  The predicted link counts (number of users) are compared to the measured link 

counts at discrete time points in the current stage.  The time-dependent prediction errors, 

representing the difference between the two counts at the various time points, serve as inputs to 

the consistency model (CONS).  It is solved towards the end of the current stage immediately 

before solving the RH-DTA model for the next stage.  The consistency model determines a 

corrected set of paths for users in the current stage so as to minimize the time-dependent 

prediction errors.  However, users are not re-assigned these paths; the corrected state is assumed 

to represent the actual network state for determining optimal path assignments for the next stage, 

σ+1.  The stage is incremented and the procedure is repeated until the end of the planning 

horizon of interest is reached. 

 

RH-DTA MODEL 

 The RH-DTA model is solved using a multiple user classes DTA algorithm (5), which 

provides the framework for addressing the consistent on-line dynamic traffic assignment 

problem.  The algorithm is simulation-based to adequately replicate dynamic traffic flow 

phenomena.  The basic idea of the rolling horizon approach is to use current information on 

traffic conditions and reliable near-term future O-D demand forecasts to solve the DTA problem 
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on-line while ensuring the effectiveness and computational efficiency of the procedure. Figure 2 

illustrates the rolling horizon framework for the consistent on-line DTA problem.  The planning 

horizon is subdivided into several stages, each of which consists of h discrete time intervals, 

called assignment intervals.  At time γ-κ towards the end of stage σ, reliable short-term and not-

so-reliable medium-term O-D demand forecasts are available for the next stage σ+1.  The shaded 

portion of a stage is called its roll period and consists of l assignment intervals.  It represents the 

short-term duration for which reliable demand forecasts are available in the previous stage.  The 

rest of the stage represents the medium-term duration for which as reliable forecasts may not be 

available.  The deterministic DTA problem is solved for stage σ + 1 using the known O-D 

demand forecasts at time γ-κ, but implemented only for the roll period in stage σ+1.  Thereby, κ 

represents the amount of time needed to solve the RH-DTA model in stage σ to obtain the path 

assignments for stage σ+1.  While paths are being assigned in the roll period of stage σ+1, the 

projected horizon is rolled l units to obtain stage σ+2.  The procedure is repeated until the end of 

the planning horizon of interest.  A comprehensive description of the RH-DTA algorithm and its 

implementation is provided by Peeta and Mahmassani (5, 6). 

 

CONS MODEL 

 The CONS model minimizes the difference between the predicted and actual network 

states in the current stage.  It uses the difference between the actual and predicted link counts at 

discrete time points as inputs.  The predicted state ( )R̂  at time t in the current stage σ is updated 

using the CONS model and measured link traffic counts available at time t to obtain a corrected 

state ( )R~  that is consistent with the actual network state.  It is executed at time ϕ before the 
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execution of the RH-DTA model for the next stage, as indicated in Figure 2.  Thereby, ϕ is the 

time required to solve the CONS model.  The consistency problem is stated as follows:  

Given the predicted network state tR̂σ  in terms of the vector of the number of users on each 

path up to time t, the predicted transition matrix tˆ σΦ , the predicted link-path incidence matrix 

tL̂σ , and the actual link traffic counts tXσ , the consistency problem seeks to obtain a set of path 

flows tR~ σ  that are consistent with the actual link measurements tXσ  and the associated traffic 

flow pattern tL~σ .  The formulation for the CONS model at time t in stage σ is represented by: 

           minimize: 2]XR~)R~(F[ −       (1) 

           subject to: DR~~ =Φ        (2) 

       )R~(~ Φ=Φ        (3) 

       )R~(F}L~{ =        (4) 

          0R~ ≥        (5) 

where, 

tR̂σ  =  the vector of predicted time-dependent number of users on each path at time t in stage σ. 

tXσ  =  the vector of the actual (measured) link traffic counts at time t in stage σ. 

tL̂σ  =  predicted time-dependent enhanced link-path incidence matrix at time t in stage σ.  It 

indicates the proportion of the number of users on each link of a given time-dependent 

path.  The elements of tL̂σ  are fractions which lie between 0 and 1.  For any path, all the 

fractions sum up to 1. 
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tˆ σΦ  =  predicted transition matrix which indicates the time-dependent existence of paths for 

every O-D pair at time t in stage σ.  It consists of binary values 0 and 1, where 1 

indicates the existence of a path. 

tDσ  =  the vector of actual O-D demands up to time t in stage σ in terms of the number of users. 

)(F ⋅  =  a function that predicts the time-dependent traffic flow pattern given the number of users 

on each path. 

tR~  =  the vector of the corrected number of users on each path for time t. 

tX~  =  the vector of the corrected link traffic counts for time t. 

tL~  =  corrected time-dependent link-path incidence matrix for time t. 

t~Φ  =  corrected time-dependent transition matrix for time t. 

Consistency is achieved when XR~L~ = .  This formulation seeks to achieve it by minimizing the 

squares of the errors between the predicted and actual link counts.  In general networks, the 

number of time-dependent paths is substantially larger than the number of links.  Therefore, 

XR~L~ =  is typically under-determined as the number of decision variables (the vector of the 

number of vehicles on each path) is significantly larger than the number of known variables (link 

counts) and problem constraints.  Hence, multiple solutions can exist that minimize the objective 

function.  Thereby, different combinations of R~  will lead to the vector of link counts X.  

Additionally, the characteristics of dynamic traffic networks lead to linear dependency in L~ , 

making it rank deficient.  Consequently, L~  is not invertible. 

 Equations 2 represent the conservation of O-D demands at origin nodes.  They indicate 

that the time-dependent number of users seeking to travel between an O-D pair use any of the 
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time-dependent paths that exist for that O-D pair.  Equations 3 are definitional constraints which 

state that the time-dependent transition matrix is a function of the corresponding R~ . 

 Equations 4 indicate that the time-dependent traffic flow pattern L~  is a function )(F ⋅  of 

the paths taken by the network users.  Due to the highly complex nature of dynamic traffic flow 

phenomena, the properties of )(F ⋅  are not well understood and analytical functions for )(F ⋅  do 

not exist for general networks.  Hence, )(F ⋅  is determined through simulation in our 

experiments.  For the same reason, well-behaved mathematical properties cannot be guaranteed 

(6,7) for )(F ⋅  in general networks.  The interdependence between L~  and R~ , a defining 

characteristic of the DTA problem is also inherited by the consistency problem, emphasizing its 

fixed point nature and making the objective function non-linear.  Equations 5 represent non-

negativity constraints. 

 The under-determined and fixed point nature of the formulation, and the lack of well-

behaved properties for the objective function motivate the development of a bi-level iterative 

solution framework for the problem.  The upper level model addresses the under-determined 

problem assuming a fixed L~  and Φ~  obtained from the lower level model, leading to a quadratic 

objective function with linear constraints that solves for R~ .  The lower level model determines 

L~  and Φ~  for a fixed R~  obtained from the upper level model.  The upper and lower level models 

are solved iteratively until L~ , Φ~  and R~  are identical in both the models, thereby addressing the 

fixed-point problem.  The lack of well-behaved properties for )(F ⋅  precludes the guarantee of a 

descent direction for the objective function in the upper level model from one iteration to the 

next for general networks.  However, convergence was achieved in all our experiments.  The 

formulation is: 
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Given:  tttt
1

tt
1 D,X,R̂R~,L̂L~ σσσσ ==  

Upper-level: 

 minimize: 2t
i

tt
i

t
1i

t
i )]X~X()R~R~(L~[ −−− σ

+     (6) 

 subject to: tt
1i

t
i DR~~ σ

+ =Φ       (7) 

               0R~ t 1i ≥+       (8) 

Lower-level: 

       )R~(~ t
1i

t
1i ++ Φ=Φ       (9) 

       )R~(FL~ t
1i

t
1i ++ =       (10) 

In the upper level model, the under-determined nature of the problem is addressed by 

augmenting t
iL
~  with a set of equations v.I, where v is a very small scalar, and I is the identity 

matrix with the dimensions of t
iR
~ , thereby making the formulation over-determined.  It is then 

solved using the generalized singular value decomposition (GSVD) approach (3), to obtain the 

consistent path flows tR~ σ  at convergence.  A comprehensive discussion of GSVD, its 

characteristics, and advantages in the context of addressing near singular systems such as the 

consistency problem, is provided in Bulusu (4).  GSVD is a very dependable approach for 

solving the consistency problem as it guarantees stability and provides an added measure of 

reliability to the solution for problems that are possibly rank deficient and/or ill-conditioned.  It 

achieves these desirable properties by simultaneously decomposing t
iL
~  and t

i
~Φ  using 

orthogonal transformations (4) into diagonal matrices C, S and orthogonal matrices U, V, and an 

upper triangular invertible matrix W.  The constrained least squares model in its diagonal form 

is: 
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  minimize:    subject to:    (11) 

where, 

  Y = W-1 t
1iR

~
+        (12) 

  b = UT tXσ        (13) 

  d = VT tDσ        (14) 

C and S satisfy CCT + SST = In.  Since the system of equations  form an active set of 

constraints, the solution to equations 11 is: 

  
⎪
⎩

⎪
⎨

⎧

+=

=

=
n,...,1pj,b

p...,,2,1j,s/d

y

j

jj

j      (15) 

where p is the rank of matrix [S  0] and n is the rank of ⎥
⎦

⎤
⎢
⎣

⎡
0
C

.  Hence, using columns w1 through 

wn of W, the solution of equations 1-5 is: 

  t
1iR

~
+  = ∑∑

+==
+

n

1pj
jj

p

1j
jjj bw)s/d(w     (16) 

A comprehensive description of the solution procedure is provided in Bulusu (4). Figure 3 

illustrates the iterative solution framework for the CONS model.  After obtaining tL̂σ , tˆ σΦ , 

tR̂σ , and tX̂σ  at time t in stage σ from the traffic simulator, GSVD is used to obtain a corrected 

set of path flows t
1iR

~
+ .  The corrected state of the system is checked for convergence, which is 

achieved if the errors in link traffic counts are within α% of the corresponding measured link 

traffic counts.  The parameter α is determined using sensitivity analysis (15% in our 

experiments).  Another convergence criterion is based on the error in average travel time for 
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stage σ.  If this error is within β% of the actual average travel time for the stage, convergence is 

assumed.  However, in reality link traffic counts are likely to be available more easily than actual 

average travel time for a stage.  Hence, the first convergence criterion is more realistically 

verifiable.  In our experiments, β is assumed to be 6.25%, and convergence is assumed if both 

criteria are satisfied.  If convergence is not achieved, the iteration number s is incremented and 

the procedure is repeated until convergence.  The corrected state is assumed to represent the 

actual state of the system to determine path assignments for the next stage σ+1.  The RH-DTA 

model is then solved for stage σ+1 assuming the corrected network state for stage σ and with O-

D demand forecasts available for stage σ+1. 

 

NUMERICAL EXPERIMENTS 

Experimental Setup 

 Figure 4 illustrates the test network which consists of a freeway and an arterial.  The 

network has 32 nodes, 76 links, and 8 origins and destination nodes (shaded dark in the figure).  

The free flow speed for the freeway links is 90 km/h and 48 km/h for other links.  The maximum 

and jam densities are 164 veh./km and 100 veh./km, respectively.  A planning horizon of 30 

minutes is assumed, with 20 minutes stage lengths. The O-D demand is generated for a 35 

minute peak period, with a 5 minute start-up time, followed by a 30 minute vehicle generation 

for which relevant statistics are accumulated.  While the actual time-dependent O-D trip desires 

are likely to be different from the predicted ones in any stage, they are assumed to be unchanged 

within tolerable bounds in our experiments.  The consistency solution algorithm can, however, 

directly incorporate the actual O-D demands if they are different.  Hence, the consistency 

analysis in our experiments focuses primarily on incorrect path flow predictions and the lack of 
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prediction of the presence/absence of incidents.  Table 1 illustrates the user class characteristics 

of the vehicles generated in the network. 

 In the absence of field data, a simulation-based scheme is used to test the effectiveness of 

the consistency solution framework.  The actual state of the network is assumed to be a 

simulated scenario.  The predicted state of the network is obtained by simulating a perturbed 

version of the actual state in each stage.  This is done by randomly perturbing the time-dependent 

path assignments.  In the context of analyzing the consistency solution algorithm vis-à-vis real-

world implementation, this implies that the traffic flow modeling can be adequately represented.  

It also implies that the experimental results focus primarily on prediction based inconsistencies.  

Hence, the effectiveness of the consistency solution algorithm is gauged by its ability to 

converge to the actual path/link counts vector. 

 

Experiments 

The effectiveness of the consistency solution framework is analyzed using the following 

scenarios: 

Scenario 1: The effectiveness of the solution procedure is investigated for roll periods of 5 and 

10 minutes.  It is assumed that there are no incidents in the network over the planning horizon of 

interest. 

Scenario 2: An incident blocking fifty percent of a link (Figure 4) for ten minutes starting at the 

eighth minute is assumed to occur.  The experiment is conducted for a roll period of 5 minutes.  

The actual state of the network is simulated with the incident.  The objective is to move the 

predicted state as close as possible to actual state of the network, when predictions are made 
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unaware of the incident.  This scenario aims at emphasizing the effectiveness of the consistency 

solution algorithm under significant stochastic on-line events. 

 

Performance Measures 

 The performance measures used to analyze consistency are: 

1. Percentage error in terms of average travel time: This index provides the percentage error in 

average travel time in the roll period of a stage in terms of the deviation of the travel time of the 

predicted state from the actual state: 

%100*
TT

T̂TTT
t

tt

σ

σσ −       (17) 

 tTTσ  = Actual average travel time at time t in stage σ 

 tT̂T σ  = Predicted average travel time at time t in stage σ 

2. Consistency in terms of link traffic counts (or number of users on a path): is defined as the 

two-norm of the difference in the number of users on a link (or path) between the actual and 

predicted states: 

  

( )
ψ

−
=

ψ

−
=

σσ
ψ

=
σσ ∑ t

i
t
i

1i2
tt

c

ẑzẐZ
I     (18) 

 cI  = Consistency Index 

 tZσ  = Actual state of the network at time t in stage σ 

 tẐσ  = Predicted state of the network at time t in stage σ 

 ψ  = Total number of links (or paths) 
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The consistency index indicates the average error per link/path in terms of the number of users 

on that link/path.  The normalization allows comparison of the consistency index across stages. 

 

Results 

 The first stage of the planning horizon represents the initialization stage, and hence 

results are discussed for the subsequent stages.  Tables 2 and 3 illustrate the number of paths and 

number users in the network for each stage under the 10 minute and 5 minute roll periods, 

respectively.  The experiments were performed on SUN Ultra-II 200 MHz workstation. The 

average CPU times in a stage for GSVD and the simulator were 2 seconds and 72 seconds, 

respectively. 

Figures 5 through 8 illustrate the results for the 10 minute roll period scenarios.  Figure 5 

illustrates the average travel times of all vehicles in the roll period for the actual and predicted 

states in stages 2 and 3.  For stage 2, the error between the average travel times under the 

predicted and actual states is 16.3% before the application of the consistency model.  Following 

its implementation, the error reduces to 4.9% at convergence.  For stage 3, the error reduces from 

26.3% to 1% at convergence.  As illustrated by Figures 5 and 6, while the error between the 

average travel times under the actual and predicted states is substantially reduced at convergence, 

a consistent descent direction in terms of the errors in travel times is not guaranteed due to the 

lack of well-behaved properties for )(F ⋅ , as discussed earlier.  Figures 7 and 8 illustrate 

consistency in terms of link counts and number of users on paths through the appropriate 

consistency indices. They indicate a consistent descent direction in terms of both the link and 

path consistency indices. 
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Figures 9 illustrates the consistency in terms of link counts for the 5 minutes roll period 

scenario.  On average, the consistency index values at convergence are smaller than the 

corresponding values in the 10 minutes roll period scenario.  This is because analyzing the 

planning horizon at a finer resolution reduces aggregation errors. 

Scenario 2 analyzes the effectiveness of the consistency solution framework in the 

presence of an incident for a roll period of 5 minutes.  Here, the solution procedure implicitly 

determines the presence of an incident in the network and adapts to it by shifting vehicles 

between paths. Figure 10 illustrates the consistency in terms of link counts.  It indicates that the 

average error per link is about 4 vehicles at convergence for all stages. The results of this 

scenario strongly emphasize the effectiveness of the consistency framework in adapting to 

stochastic on-line events. 

 In the above experiments, the convergence across stages is synergistic in terms of 

reducing percentage errors in travel times and improving measures of consistency.  Figure 11 

illustrates the percentage of paths within the error bound versus the error amount.  It indicates 

that the error between the actual and predicted states reduce over iterations in terms of the 

number of users on each path.  Also, the number of paths with large deviations decreases 

substantially as convergence is approached. It is a function of the convergence criteria; more 

conservative values for α and β can be used to restrict the deviation amounts (and not just the 

number of paths) while trading off computational efficiency. 

 

CONCLUDING COMMENTS 

 A theoretical framework is proposed to obtain operational consistency between the actual 

and predicted states of a traffic network with ATMIS.  Of relevance to the on-line operation of a 
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DTA system, the associated consistent on-line DTA problem is formulated within a rolling 

horizon framework, and consists of the RH-DTA model that predicts the network state for the 

near future while optimizing certain system-wide and/or individual user objectives, and the 

CONS model that seeks consistency between the actual and predicted network states.  The 

CONS model is formulated as a constrained least squares model and is solved using the 

generalized singular value decomposition approach.  The consistency problem is under-

determined, and is further characterized by rank deficiency, potential ill-conditionality, lack of 

well-behaved properties vis-à-vis dynamic traffic flow phenomena, and the fixed point element 

inherited from the DTA problem.  The GSVD approach has several advantages in the context of 

solving the consistency problem.  It ensures that rank deficiency and ill-conditionality of the 

augmented least squares model are addressed and guarantees stability for the upper level model.  

The associated solution, which ensures the minimum 2-norm of the decision variable R~  in 

addition to consistency with link counts, is nearly unique based on the GSVD procedure. 

 The results from the various experiments suggest that the GSVD based solution approach 

generates consistency in both link and path variables, thereby, ensuring consistency in terms of 

link travel times as well.  The procedure is effective even when the occurrence of an incident is 

unaccounted for in the DTA based state prediction process.  However, even if an incident is 

known to have occurred, it can be directly incorporated in the consistency solution procedure.  

Current efforts are focussed on ensuring consistency in the behavioral models and/or the 

associated parameters that are used in the DTA model, using the output from the consistency 

solution procedure. 
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FIGURE 1    Framework for the consistent on-line DTA problem. 
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FIGURE 2   The rolling horizon framework for the consistent on-line DTA problem. 

 

 

 

 

 

 

 

 

 

 

 

η.l-l+1    η.l   η.l-l+h 

roll period (l units) 

  Stage length  (h  units) 

  STAGE  σ 

  η.l+ l    η.l+h     η.l 
  STAGE  σ+1 

     ϕ   κ  γ 
  ϕ = Time needed to solve the 
         CONS model for stage σ 
   κ = Time needed to solve the 
          RH-DTA model for stage 
          σ+1 
   γ = Time at which predictions  
        are available for stage σ+1 

η = σ-1 



Srinivas Peeta and Srinivas Bulusu 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3    Solution framework for the CONS model. 
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FIGURE 4     The test network. 
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FIGURE 5     Average travel times for stages 2 and 3. 
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FIGURE 6    Difference between actual and predicted average travel times as a percentage 
of the actual average travel times. 
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FIGURE 7    Measure of consistency in terms of link traffic counts. 
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FIGURE 8    Measure of consistency in terms of number of users on paths. 
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FIGURE 9    Measure of consistency in terms of link traffic counts. 
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FIGURE 10    Measure of consistency in terms of link traffic counts (Incident Scenario). 
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FIGURE 11    Percentage of paths within discrete error bounds. 
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TABLE 1     User Class Characteristics 

User Class Percentage (%) Type of Information 

System Optimal1 (SO) 25 Pre-trip 

User Equilibrium2 (UE) 25 Pre-trip 

Boundedly Rational3 (BR) 25 Pre-trip  +  En-route 

Pre-Specified4 (PS) 25 No Information 

 

1 Equipped users following prescribed system optimal paths.  Users who are either unfamiliar with the typical 
network traffic conditions or affected by a severe incident are likely to follow this information. 
2 Equipped users following prescribed user equilibrium paths.  Users who are either willing to pay for information 
that optimizes their individual objectives or are very familiar with the network are likely to follow this information. 
3 Equipped users following the boundedly rational switching rule in response to descriptive information on the 
prevailing network conditions.  The switching rule states that users switch from their current path at decision points 
if travel time savings on an alternative route exceed a threshold value (8). 
4 Unequipped users following pre-specified paths.  These paths are either determined from historical data 
(representing past network experience) or solved for exogenously based on current conditions.  It is assumed that in 
the absence of information, users do not switch routes en-route. 
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TABLE 2    Stage Traffic Characteristics 

Roll Period = 10 minutes 

Stage Number Number of Paths Number of Users 

1 85 1930 

2 110 4661 

3 96 2535 
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TABLE 3    Stage Traffic Characteristics 

Roll Period = 5 minutes 

Stage Without Incident With Incident 

Number Number of paths Number of users Number of paths Number of users 

2 95 1878 95 1878 

3 98 2666 105 2681 

4 102 1947 115 1986 

5 93 1824 96 1856 

6 83 712 82 709 

 

 

 

 


