Influence of Europa's Time-Varying Electromagnetic Environment on Magnetospheric Ion Precipitation and Surface Weathering

Peter Addison^{1,}

(paddison6@gatech.edu),

Lucas Liuzzo², Hannes Arnold¹, Sven Simon¹

¹School of Earth and Atmospheric Sciences, Georgia Tech, Atlanta, GA ²Space Sciences Laboratory, University of California, Berkeley, CA

Europa

- Radius $R_{\rm E} = 1560.8$ km.
- Orbital distance = 9.38 Jupiter radii ($R_{\rm J}$ = 71,492 km).
- Subsurface ocean
 - Discovered in Galileo magnetic field data (induction signal)
- Dilute, molecular oxygen exosphere, observed by HST and Galileo

Jupiter's Magnetosphere I

(paddison6@gatech.edu)

- Magnetosphere: extends $50 R_J$ upstream and hundreds of R_J downstream
- Magnetic axis inclined by 9.6°
- Populated by a zoo of **plasma** species
- Thermal **plasma sheet** in magnetic equatorial plane

Jupiter's Magnetosphere I

(paddison6@gatech.edu)

- Magnetosphere: extends $50 R_J$ upstream and hundreds of R_J downstream
- Magnetic axis inclined by 9.6°
- Populated by a zoo of **plasma** species
- Thermal **plasma sheet** in magnetic equatorial plane

Europa's Thermal Plasma Interaction

(Nearly)
 corotating plasma
 <u>overtakes</u> Europa!

Thermal Plasma Sheet

(Nearly)
 corotating plasma
 <u>overtakes</u> Europa!

Flow deflection at Europa

Magnetic Field Perturbations Near Europa

(paddison6@gatech.edu)

Georgia Tech

• **Sub-alfvenic** plasma interaction with ionosphere and induced dipole.

- Ionization of exosphere: massloading, slows the plasma
- Field lines frozen into plasma: pileup, draping

Magnetospheric Ion Bombardment of Europa I

(paddison6@gatech.edu)

Bouncing Energetic Ions (E > 5 keV)

North corotation

Jupiter

То

Europa's Diverse Surface Coloration

(paddison6@gatech.edu)

Georgia Tech

Mosaic of Europa's trailing hemisphere as imaged by Galileo. (*McEwen* 1986).

Preceding Work on Ion	n Bombardment	(paddison6@	gatech.edu)	Georgia Tech
Pospieszalska & Johnson, 1989				
Image: state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state in the state is a state in the state in t				

All three studies: uniform magnetic field, found trailing hemisphere "bullseye"

Our Approach

Ongoing work at Georgia Tech

NASA

& Johnson, 1989 Cassidy et al., 2013

Pospieszalska

Dalton et al., 2013

B

drapec

B

Goals of this Study

20 400

• Constrain the evolution of magnetospheric ion flux onto Europa's surface over a full synodic rotation.

Goals of this Study

Tech

Constrain the evolution of magnetospheric ion flux onto Europa's • surface over a full synodic rotation.

Determine influence of field perturbations on surface flux pattern. •

 Constrain the evolution of magnetospheric ion flux onto Europa's surface over a full synodic rotation.

Determine influence of field perturbations on surface flux pattern.

• Correlate modeled ion surface fluxes with measured surface features.

• Constrain the evolution of magnetospheric ion flux onto Europa's surface over a full synodic rotation.

Determine influence of field perturbations on surface flux pattern.

• Correlate modeled ion surface fluxes with measured surface features.

Constrain exogenic or endogenic origin of surface compounds.

Pilot Study: Breer et al., 2019

(paddison6@gatech.edu)

100

90

80

70

60

50

40

30

20

10

0

Accessibility (%)

- Surface shielded by magnetic field deformation!
- Did not calculate flux, nor examine time variability

Approach to Calculating Ion Surface Flux

(paddison6@gatech.edu)

Tech

• A hybrid model for field perturbations (Arnold et al., 2019, 2020a,b)

• A particle tracing tool (Liuzzo et al., 2019a,b)

Modeling Europa's Plasma Interaction

• 3D hybrid model AIKEF (ion particles, electron fluid)

• Lorentz
Force Law
$$\begin{array}{l}
\frac{\mathrm{d}\underline{x}_{\nu}}{\mathrm{d}t} = \underline{v}_{\nu} \quad \text{and} \quad \frac{\mathrm{d}\underline{v}_{\nu}}{\mathrm{d}t} = \frac{e}{m_{\nu}} \left(\underline{E} + \underline{v}_{\nu} \times \underline{B}\right) \\
\bullet \text{Navier-}\\
\text{Stokes Eqn.}
\\
\bullet \quad \mathbf{0} = n_{e}m_{e}\frac{\mathrm{d}\underline{u}_{e}}{\mathrm{d}t} = -en_{e}\left(\underline{E} + \underline{u}_{e} \times \underline{B}\right) - \nabla P_{e} \\
\bullet \quad \mathbf{0} = n_{e}m_{e}\frac{\mathrm{d}\underline{u}_{e}}{\mathrm{d}t} = -en_{e}\left(\underline{E} + \underline{u}_{e} \times \underline{B}\right) - \nabla P_{e} \\
\underline{E} = -\underline{u}_{i} \times \underline{B} + \frac{\left(\nabla \times \underline{B}\right) \times \underline{B}}{\mu_{0}\rho_{c}} - \frac{\nabla P_{e}}{\rho_{c}} \\
\bullet \quad \text{Faraday's} \\
\text{Law}
\end{array}
\quad \frac{\partial \underline{B}}{\partial t} = \nabla \times (\underline{u}_{i} \times \underline{B}) - \nabla \times \left[\frac{\left(\nabla \times \underline{B}\right) \times \underline{B}}{\mu_{0}\rho_{c}}\right] \\
\bullet \quad \text{Adiabatic} \\
\text{Law}
\end{aligned}$$

Georgia Tech

GENTOo GEN-2 Magnetospheric Ion Tracer

- Backtracing: dt < 0 •
- Combines modeled trajectories with measured upstream distributions

Variability of the Upstream Plasma Density

(paddison6@gatech.edu)

Georgia Tech

• <u>Gaussian</u> density profile (Hill & Michel, 1976)

• Values of $n_{p,0}$ and "scale height" *H* in literature vary, 50-200 cm⁻³, 0.9-1.9 R_J

Modeling Europa's Exosphere

(paddison6@gatech.edu)

- Molecular oxygen (*Plainaki et al., 2018*).
- Ram-wake asymmetry (e.g., *Rubin et al., 2015; Arnold et al., 2020a*)
- Leading/Wakeside Hemisphere

$$n_{n,L}(h) = n_{n,0} \cdot \exp\left(-\frac{h}{h_0}\right), \qquad 90^\circ < \alpha \le 180^\circ$$

• Trailing/Ramside Hemisphere

$$n_{n,T}(h,\alpha) = n_{n,L}(h) \cdot (1 + A \cdot \cos(\alpha)), \qquad \alpha \le 90^{\circ}$$

Modeling the Time-Variability of Ion Surface Flux (paddison6@gatech.edu)

- <u>How do surface fluxes change</u> <u>over time?</u>
- Approach:
 - 1. Investigate different points along a synodic rotation of Jupiter
 - 2. Compute maps of ion surface flux
 - 3. Average over a full synodic rotation

Georgia

Iec

The magnetospheric conditions at Europa's orbit change periodically!

В

Case (1): Center of the Plasma Sheet

(paddison6@gatech.edu)

$$\mathbf{B}_0(t) = -84 \,\mathrm{nT} \,\sin(\Omega t) \,\hat{\mathbf{x}} - 210 \,\mathrm{nT} \cos(\Omega t) \,\hat{\mathbf{y}} - 410 \,\mathrm{nT} \,\hat{\mathbf{z}}$$
$$B_0 = -84 \,\mathrm{nT} \,\hat{\mathbf{x}} - 410 \,\mathrm{nT} \,\hat{\mathbf{z}}$$

Case (2): North of the Plasma Sheet

(paddison6@gatech.edu)

$$\mathbf{B}_{0}(t) = -84\,\mathrm{nT}\sin(\Omega t)\,\hat{\mathbf{x}} - 210\,\mathrm{nT}\cos(\Omega t)\,\hat{\mathbf{y}} - 410\,\mathrm{nT}\,\hat{\mathbf{z}}$$
$$B_{0} = -210\,\mathrm{nT}\,\hat{\mathbf{y}} - 410\,\mathrm{nT}\,\hat{\mathbf{z}}$$

Case (3): South of the Plasma Sheet

(paddison6@gatech.edu)

MASA

$$\mathbf{B}_0(t) = -84\,\mathrm{nT}\sin(\Omega t)\,\hat{\mathbf{x}} - 210\,\mathrm{nT}\cos(\Omega t)\,\hat{\mathbf{y}} - 410\,\mathrm{nT}\,\hat{\mathbf{z}}$$
$$B_0 = 210\,\mathrm{nT}\,\hat{\mathbf{y}} - 410\,\mathrm{nT}\,\hat{\mathbf{z}}$$

Overview: Cases (1), (2), (3)

(paddison6@gatech.edu)

Three locations relative to the magnetospheric plasma sheet:

Upstream Ion Distributions

- Energetic ions: in-situ measurements by Galileo EPD (Paranicas et al., 2000, 2009; Mauk et al., 2004)
- Thermal ions: drifting Maxwellian distribution

(paddison6@gatech.edu)

Addison et al., submitted to JGR 12/2020

(paddison6@gatech.edu)

- Over <u>100 maps of magnetospheric ion flux</u> generated!
- Resolved by species: hydrogen, oxygen, sulfur
- Resolved by <u>energy range: thermal and energetic</u>
- Only select results presented today.

Georgia

Tech

Thermal Ion Surface Flux

(paddison6@gatech.edu)

Leading Hemisphere Irradiation

Thermal proton trajectories

High thermal velocity of proton distribution: many particles along the "wings" of the distribution!

Significant flux contribution from highly inclined trajectories: thermal ion flux onto Europa is a kinetic problem!

(paddison6@gatech.edu)

B

Georgia

Thermal Ion Surface Flux

(paddison6@gatech.edu)

Thermal Ion Surface Flux

(paddison6@gatech.edu)

Energetic Ion Surface Flux

(paddison6@gatech.edu)

magnetic fields

Log₁₀[Flux (cm² s)⁻¹]

Energetic Ion Surface Flux

(paddison6@gatech.edu)

Formation of Inverted Bullseye

(paddison6@gatech.edu)

- Energetic ions:
 "Valley of death"
 within one
 gyroradius of
 Europa's surface.
- Field draping alters the extent of this region

Formation of Inverted Bullseye

Georgia Tech

What does the <u>average</u> ion surface flux pattern look like?

Average = $\frac{\text{Case (1)} - \text{Case (2)} - \text{Case (3)}}{1 - \text{Case (3)}}$

3

Surface Composition vs. Sulfur Ion Flux Pattern I (paddison6@gatech.edu)

Tech

Can exogenic sulfur ion flux explain the H₂SO₄ distribution?

Surface locations of measured H_2SO_4 concentration, (Dalton et al., 2013)

Surface Composition vs. Sulfur Ion Flux Pattern II (paddison6@gatech.edu)

Georgia

Tech

MEASURED H₂SO₄ concentrations correlate tightly with **MODELED** sulfur ion flux!

 \bullet

Despite flux changes imposed by field perturbations, correlation remains!

Conclusions

- Goal: calculate spatial distribution of ion surface flux at Europa
- Method: combination of hybrid plasma model and particle tracing tool

1. Europa: <u>highly</u> <u>perturbed</u> electromagnetic environment.

2. Field perturbations <u>significantly</u> <u>alter</u> ion surface fluxes!

3. Longitudinal energetic ion flux pattern is <u>reversed</u> when perturbations are included!

4. Ion bombardment pattern can explain <u>surface</u> composition.

NASA

Manuscript submitted to JGR: Space Physics

- Influence of Europa's Time-Varying Electromagnetic Environment on Magnetospheric Ion Precipitation and Surface Weathering
- 4 Peter Addison¹, Lucas Liuzzo², Hannes Arnold¹, Sven Simon¹
- ¹School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
 ²Space Sciences Laboratory, University of California, Berkeley, CA, USA

- 7 Key Points:
- Magnetic field draping around Europa reduces ion surface flux onto the upstream
 hemisphere and enhances flux onto its downstream hemisphere
- Europa's unstream hemisphere receives the least amount of flux from energetic.