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Modeling for integrated reasoning about situations & actions 

E.T. Lofgren et al. “Opinion: Mathematical models: A key tool for outbreak response”, PNAS, vol. 111, no. 51, 2014.
Adiga, A., et al.. 2020. Data-driven modeling for different stages of pandemic response. Journal of the Indian Institute of Science, pp.1-15.

• VISION: Real-time Computational Epidemiology 

• GOAL: Build a flexible suite of models that go beyond 
prediction and in real-time
• Synthesize available data to produce consistent 

and meaningful representations of the underlying 
system

• Provide a range of interpretations of incoming 
measurements

• Evaluate a range of response actions and 
behaviors

• Monitor effect of intervention responses 
• Coordinate understanding among diverse 

stakeholders
• Usable by analysts and not just computing experts



Human-centered model-based distributed decision making

Individual decision maker
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The phases of COVID-19 pandemic

March 20 June 20 Sept 20 January 21

Phase 1 Phase 2 Phase 3 Phase 4
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reopening

•Predict variant 
dominance
• Infer current 

seroprevalence 
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rollouts

Data 
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•Clinical studies on 
disease outcomes
•Global multimodal 

traffic
• Testing and case 

surveillance

•Cross-scale intervention 
measures
• Local mobility and mixing
•Behavior and compliance

•Hospital occupancy 
statistics
•Weather and seasonal 

factors
•College reopening plans

•Seroprevalence 
surveys
• Vaccine administration
•Genomic sequencing

Research
Highlights

•Model projections 
(Imperial, IHME, 
Northeastern)
•Undocumented 

infections (Columbia)

•Collaborative ensemble 
(UMass)
•Symptom Surveys (CMU)
•Resource allocation (Yale, 

UT Austin)
•Optimal testing (AIM)

• Digital contact tracing 
study (Oxford)

• Susceptibility and 
climate (Princeton)

• Mobility reduction 
impact (Stanford)

•B.1.1.7 US prevalence 
(Scripps)
• Vaccine by serostatus

(U. Colorado, Harvard)



Challenges for End-to-End 
Planning, Prediction and 

Response



From Ecology to Biology to Epidemiology to Sociology

[Zoonosis] Model  the evolution of the pathogen 
in space and time, including its interaction with 
humans and their immune systems, as well as 
the effects of interventions.
[Immunological Response] Understand immune 
response? What is the role of innate and 
adaptive immunity?
[Vaccine Development and Testing] How effective 
is the vaccine, how long will the immunity last?
[Viral evolution] How will the virus evolve under 
selection pressures
[Socio-economics] How will the pandemic 
interact with social, political and economic 
aspects

Need: Link models of viral evolution, human immune 
system, epidemic spread and socio-economic systems



Spatial, temporal and social scales

Need: Multi-scale, multi-theory, multi-level network 
representations and simulations

• Processes unfolding across temporal scales
• Within host disease progression
• Between host transmission 
• Individual behavioral change
• Community outbreak response
• Public health control measures
• Global response coordination
• Seasonality and waning immunity

• Spatial and Social Interaction Scale
• House (building), neighborhood (block 

group), city; state, country and region
• Household, neighborhood and country level 

contact network
• Individual and collective behavior

• Organizations (months), Community (days) 
and individual (days)



Data to decisions and communication

NEED: Context-specific, decentralized information integration 
and decision making across socio-political scales



Validation and uncertainty quantification (trust and adequacy)

• Retrospective and predictive validity are not 
as useful in crisis situations when data is 
limited.

• External Validation
• validate past predictions 
• update future projections 

• Internal Validation 
• ensure structurally correct

• How do we gather and incorporate relevant 
data in real-time to: 
• actively learn when modeling 

assumptions cause models to fail to 
capture real-world dynamics?

Need: New approaches for V&V, UQ and 
model adaptation for co-evolving networks



AI and High-Performance 
Computing-Enabled Prediction and 
Decision Informatics for Real-time 

Epidemic Science



How do we do it: Data driven-networked epidemiology

Step 1: Build a digital twin 
of a city/country

Step 2: Build agent-based 
simulations of disease 
propagation

Step 3: Epidemiological 
workflows using simulation 
and ML
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Who do we 
support

https://covid19.biocomplexity.virginia.edu/

Federal agencies Commonwealth of Virginia
• Primary modeling for planning and 

response efforts

Local agencies
• Virginia Hospital and Healthcare Association 

(comprised of 27-member health systems and 
110 community and specialty hospitals)

https://covid19.biocomplexity.virginia.edu/


Weekly updates to state and federal agencies since February 2020

https://www.vdh.virginia.gov/coronavirus/covid-19-data-insights/
Literature surveys

Situation assessment

https://www.vdh.virginia.gov/coronavirus/covid-19-data-insights/


Weekly updates to state and federal agencies since February 2020

Narrative summaries

https://www.vdh.virginia.gov/coronavirus/covid-19-data-insights/
Literature surveys

Situation assessment Model projections

https://www.vdh.virginia.gov/coronavirus/covid-19-data-insights/


Building 
dashboards

Integrated Solutions:

Accessible and helpful to 
everyone across the globe, 
reliable, rich visualizations with 
easy-to-use interface

COVID-19 Surveillance 
Dashboard:

1.2 million users worldwide 
3.7 million views since Feb 3 , 
2020

Spatial: 210 Countries, 450 
States, 3,200 Counties (USA)

Temporal: Updated multiple 
times a day since Jan 22, 2020; 

Medical Resource Demand Dashboard
https://nssac.bii.virginia.edu/covid-19/usmrddash
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Multi-scale, multi-method weekly COVID-
19 forecasting
● Incorporate multiple classes of models:

○ Statistical methods (AR, Kalman filters), deep learning models 
(LSTM), and Mechanistic meta-population models (SEIR 
model)

● Ensemble:
○ Combine forecasts from multiple methods to produce 

probabilistic forecasts at county level (performance-based 
ensemble)

○ Bayesian model averaging (instead of model selection) to 
avoid overconfident inferences & include individual model 
uncertainty

○ Ensemble forecasts usually perform better than individual 
forecast

● Key observation: All models are useful.



HPC-Grid workflow to 
compute US medical costs
[1] Daily Incidence data:  ~ 3100 counties × 200 
days. 
[2] A typical  design: 2 VHI compliances × 3 
lockdown durations × 2 lockdown compliances 
× 51 states × 15 replicates = 9180 simulation 
instances.  Network with 300 million nodes and 
7.9 billion edges partitioned across all 50 states
[3] Size of individual level output data: 12 cells 
× 51 states × 15 replicates multi-million state 
transitions = approx. multi-billion entries (3TB). 
[4] Size of aggregate output data: 12 cells × 51 
states × 15 replicates × 365 days × 90 health 
states × 3 counts = ~1 billion entries (2.5GB). 

Scalable Epidemiological Workflows to Support COVID-19 Planning 
and Response D.  Machi, et al. IPDPS 2021, Scientific Reports, 2020



• Work closely with stakeholders
• Build models that are explainable, transparent

• Be agile and flexible
• Each situation is new and comes with unique challenges: requires constant 

model adaptation

• Unusual effectiveness of transdisciplinary team science
• Working in teams is critical – skills, perspective and collaboration matters

• Social, political and economic considerations are increasingly 
important
• Communicating scientific results in such situation needs to be 

thoughtful and deliberate

Pandemic Informatics: Preparation, Robustness, and Resilience A Computing Community Consortium (CCC) 
Quadrennial Paper,  E. Bradley, M. Marathe, M. Moses, W. Gropp, and D. Lopresti, 2020. 

Lessons learned



An effective strategy to reduce the global 
burden of epidemics must: 

• Detect timing and location of occurrence.
• Anticipate public reaction to an outbreak. 
• Develop actionable interventions that 

enable targeted and effective responses.

Needed advances
• Real-time collection and updating of data, 

models in rapidly changing environments.
• Incorporate social and behavioral 

components in the models
• Models that are scientifically effective,

explainable & operational.

Pandemic Informatics: Preparation, Robustness, and Resilience A Computing Community Consortium (CCC) 
Quadrennial Paper,  E. Bradley, M. Marathe, M. Moses, W. Gropp, and D. Lopresti, 2020. 

New looming challenges
• Climate Change
• Anti-microbial resistance
• Synthetic pathogens
• Infodemics and role of social media
• Urbanization& increased global transactions
• Expectation of  timely information

Concluding remarks and key takeaways



Some Background Information


