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Modeling for integrated reasoning about situations & actions

on Preparation

* VISION: Real-time Computational Epidemiology
« GOAL: Build a flexible suite of models that go beyond 2o
prediction and in real-time § 2
* Synthesize available data to produce consistent :S E
and meaningful representations of the underlying § e
system 8z
* Provide a range of interpretations of incoming
measurements —
_ CDC ..
* Evaluate a range of response actions and Intervals | Ivestigation | Recognition Initiation
behaviors | L
« Monitor effect of intervention responses Pi’andemlc mtewils
* Coordinate understanding among diverse

Predominantl: Sustained
stakeholders who Beahiio D

Adiga, A., et al.. 2020. Data-driven modeling for different stages of pandemic response. Journal of the Indian Institute of Science, pp.1-15.
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Human-centered model-based distributed decision making

model decision action
formation formation assignment
internal execution pathways

Individual decision maker




Human-centered model-based distributed decision making

Citizens £ [
§ € 2
external execution pathways B gl ?:o § e / \\ AR E AT .
res Aechion action L % Information and actions are distributed ..
formation formation assignment 5 2 % 3 . f N\,

g E ! * Local models are compatible, but ngt
intemal execution pathweys emmnT rataldel || identical or simple transformations~ ‘-
Individual decision maker L +  Differences may be important .
_§ N » Dynamics
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S E -\ % * Context Specific Shared Synthetic ‘-,
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Horizontal Integration
_* Non-attribution of sources /
~..» Privacy/ security
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On the ground
responders: Doctors,
Nurses, Educators, ...
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Local Authorit




The phases of COVID-19 pandemic
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Phases and questions
Phase 1

* Predict risk of

Questions | importation

* |Infer disease
parameters

 Evaluate impacts of
social distancing

* Clinical studies on

Data disease outcomes
Needs | °Global multimodal
traffic
* Testing and case

surveillance

Research | * Model projections

Highlights | (Imperial, IHME,
Northeastern)

* Undocumented
infections (Columbia)




Phases and questions

Phase 1 Phase 2
* Predict risk of * Predict risk of resurgence
Questions | importation * Infer the role of mobility &
* Infer disease mask use
parameters  Evaluate the efficacy of
e Evaluate impacts of contact tracing
social distancing
* Clinical studies on  Cross-scale intervention
Data disease outcomes measures
Needs | *Global multimodal * Local mobility and mixing
traffic * Behavior and compliance
* Testing and case
surveillance
Research | * Model projections * Collaborative ensemble
Highlights | (Imperial, IHME, (UMass)
Northeastern) e Symptom Surveys (CMU)
« Undocumented * Resource allocation (Yale,
infections (Columbia) UT Austin)

* Optimal testing (AIM)




Phases and questions

Phase 1 Phase 2 Phase 3
* Predict risk of * Predict risk of resurgence * Predict medical resource
Questions | importation * Infer the role of mobility & demand
* Infer disease mask use * Infer effect of
parameters * Evaluate the efficacy of seasonality
e Evaluate impacts of contact tracing e Evaluate K-12, colleges
social distancing reopening
* Clinical studies on * Cross-scale intervention * Hospital occupancy
Data disease outcomes measures statistics
Needs | *Global multimodal * Local mobility and mixing * Weather and seasonal
traffic * Behavior and compliance factors
* Testing and case * College reopening plans
surveillance
Research | * Model projections * Collaborative ensemble  Digital contact tracing
Highlights | (Imperial, IHME, (UMass) study (Oxford)
Northeastern) e Symptom Surveys (CMU) » Susceptibility and
« Undocumented * Resource allocation (Yale, climate (Princeton)
infections (Columbla) ur AUStin) * M0b|l|ty reduction
* Optimal testing (AIM) impact (Stanford)




Phases and questions

Phase 1 Phase 2 Phase 3 Phase 4
* Predict risk of * Predict risk of resurgence * Predict medical resource | ¢ Predict variant
Questions | importation * Infer the role of mobility & demand dominance
* Infer disease mask use * Infer effect of * Infer current
parameters * Evaluate the efficacy of seasonality seroprevalence
e Evaluate impacts of contact tracing e Evaluate K-12, colleges * Evaluate vaccine
social distancing reopening rollouts
* Clinical studies on * Cross-scale intervention * Hospital occupancy » Seroprevalence
Data disease outcomes measures statistics surveys
Needs | °Global multimodal * Local mobility and mixing * Weather and seasonal * Vaccine administration
traffic * Behavior and compliance factors * Genomic sequencing
* Testing and case * College reopening plans
surveillance
Research | * Model projections * Collaborative ensemble  Digital contact tracing *B.1.1.7 US prevalence
Highlights | (Imperial, IHME, (UMass) study (Oxford) (Scripps)
Northeastern) e Symptom Surveys (CMU) » Susceptibility and * Vaccine by serostatus
« Undocumented * Resource allocation (Yale, climate (Princeton) (U. Colorado, Harvard)
infections (Columbla) ur AUStin) ° M0b|l|ty reduction
* Optimal testing (AIM) impact (Stanford)




Challenges for End-to-End
Planning, Prediction and
Response




From Ecology to Biology to Epidemiology to Sociology

[ZOOnOS|S] MOdel the eVOI ution Of the pathogen Ebola Virus Ecology and Transmission x i

. . . . . . . . Ebola virus disease is a zoonotic disease. Zoonotic diseases involve animals and humans. { £ %[

in space and time, including its interaction with R _ . ‘
n.lmal-to-AmmalTransmnsslon Spﬂlllc'wer Event . Human-to-Humaﬁ Transwssvon Survivor .

humans and their immune syste ms, as well as Feseryolt hosis fofthe Ebala Wie. ~ _ aniuin (oot a0k, moakey: AIKGSK e tne frst aman, ansmlcslom of S Slicre SN O A

Bats carrying the virus can transmit it human becomes infected with Ebola virus from one human te another report effects such as tiredness and
. . to other animals, like apes, monkeys, virus through contact with the can occur through contact with the muscle aches, and can face stigma as
th e effe Cts Of | nte rve ntl O n S and duikers {antelopes), as well as to reservoir host. This contact could blood and body fluids of sick people they re-enter their communities.
" humans. occur through hunting or preparing or with the bodies of those who
¥ %‘4& the animal’s meat for eating. have died of Ebola. g 65
o s § G

[Immunological Response] Understand immune
response? What is the role of innate and
adaptive immunity?

” o 2
Y | 2
Rl W ICR
4 ;g L)
ey -2

Traditional funeral practice

[Vaccine Development and Testing] How effective
is the vaccine, how long will the immunity last?

9
Sl
)
{

1 0.6 j jr- E 3

Unprotected
healthcare worker

[Viral evolution] How will the virus evolve under
selection pressures

[Socio-economics] How will the pandemic
interact with social, political and economic
aspects

Unprotected contact
| with blood and
' \ ' body fluids

Need: Link models of viral evolution, human immune

system, epidemic spread and socio-economic systems




Spatial, temporal and social scales

Spatial

* Processes unfolding across temporal scales icrons - miles i
« Within host disease progression ' '
iecj Biological Social Political
. Betyvgen host tra.msmlssmn (Mo i (Macro)
* Individual behavioral change -
. rgan Community 2
« Community outbreak response faa , - Vo . i
* Public health control measures immune cells Housenoid . —M— LREEITN O
* Global response coordination o s ' 5 e
- - - - / : <
e Seasonality and waning immunity % ;2‘*‘1»
. : : D0 ¥
» Spatial and Social Interaction Scale &%

House (building), neighborhood (block
group), city; state, country and region

Household, neighborhood and country level
contact network

Infection Outbreak Pandemic

« Individual and collective behavior minutes hours days weeks _months “years

Temporal
Organizations (months), Community (days)
and individual (days)

Need: Multi-scale, multi-theory, multi-level network

representations and simulations




Data to decisions and communication

System adaptation Iterative refinement

NEED: Context-specific, decentralized information integration

and decision making across socio-political scales



Validation and uncertainty quantification (trust and adequacy)

* Retrospective and predictive validity are not
as useful in crisis situations when data is
limited.

* External Validation
* validate past predictions
* update future projections

* Internal Validation
* ensure structurally correct

 How do we gather and incorporate relevant
data in real-time to:
 actively learn when modeling
assumptions cause models to fail to
capture real-world dynamics?

Need: New approaches for V&YV, UQ and

model adaptation for co-evolving networks




Al and High-Performance
Computing-Enabled Prediction and
Decision Informatics for Real-time

Epidemic Science




How do we do it: Data driven-networked epidemiology

@{ Real/Synthesized Data ]
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Step 1: Build a digital twin
of a city/country



How do we do it: Data driven-networked epidemiology

Modeling and
@{ Real/Synthesized Data ] / y\@ [ Simula%ion }
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Step 1: Build a digital twin Step 2: Build agent-based

of a city/country simulatio.ns of disease
propagation



How do we do it: Data driven-networked epidemiology

_________________________________________________________________________

, ™ Modeling and
; Real/Synthesized D ‘ - (2) celing \ L 3 | y
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Step 1: Build a digital twin

of a city/country
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Step 3: Epidemiological
workflows using simulation
and ML

Step 2: Build agent-based
simulations of disease
propagation



Who do we
support

80+ scientists, staff, and students at UVA and collaborating institutions

Formal engagement Forecasts for University Fall

Early modelin Holiday effects
studies for DoD with VDH for CDC-coordinated reopening il withte gy v
projections ForecastHub scenarios
50+ weeks of modeling briefs to public health agencies
US crosses 10M cases. Pfizer
First international First confirmed death First country with US reaches Operation Warp Speed announces interim results Global deaths >2M, US
notice (WHO) in US (Washington) over 100K cases (Italy) 100K deaths deals up to $10.798 (>90% efficacy). deaths >400K
Dec 1 Jan 15 T Jul 1 Sep 28 Dec 14 Feb 19
an 1o | . >
Dec 31 | Feb 28 r 31 l Aug 11 1 Nov 9 l Jan 15 l
\“7 et
; Global death UK authorities report VOC 200M doses
Index case First known travel-related First lockdown outside First country with USC :;:25:;?0'( to(I)I t?:p ::;A 202012/01 (B.1.1.7). administered globally.
symptom onset case arrival in US China (Lombardi, Italy) over 1M cases (US) Y US begins vaccine 60M in US.

distribution.

2020 2021



https://covid19.biocomplexity.virginia.edu/

80+ scientists, staff, and students at UVA and collaborating institutions

Who do we

S U p pO rt 50+ weeks of modeling briefs to public health agencies

Early modeling Fommﬁm CI:(? reas;isnf:tl;d Unlversi't‘iy Fall Holiday effects Vaccines and
studies for DoD S opang and winter surge variants
projections ForecastHub scenarios

US crosses 10M cases. Pfizer

First international First confirmed death First country with US reaches Operation Warp Speed announces interim results Global deaths >2M, US

notice (WHO) in US (Washington) over 100K cases (Italy) 100K deaths deals up to $10.798 (>90% efficacy). deaths >400K

Dec 1 I Jan 15 T Viar 8 Jul 1 T Sep 28 I Dec 14 T Feb 19’

Dec 31 | Feb 28 r 31 l Aug 11 1 Nov 9 l Jan 15 l
\ — \‘}V ., . A~ , - US crosses 50K Global death UK authorities report VOC 'Z.OOM doses
e, Temmen  SEuEcnamk  Iomiones e
2020 distribution. 2021
Federal agencies Commonwealth of Virginia Local agencies
« Primary modeling for planning and * Virginia Hospital and Healthcare Association
response efforts (comprised of 27-member health systems and

110 community and specialty hospitals)

52\ Virginia Department of U IVERSITY
¢/ Emergency Management 9 IRGINIA

N
CnC

CENTERS FOR DISEASE .

I/ VIRGINIA \/
VD H DEPARTMENT
' OF HEALTH
Protecting You and Your Environment

wvew.vdh.virginia.gov An alliance of hospitals and health delivery systems

EDUCATION


https://covid19.biocomplexity.virginia.edu/

Weekly updates to state and federal agencies since February 2020

B UNIVERSITY VIRGINIA UVA COVID-19 MODEL l/ VIRGINIA
BIOCOMPLEXITY INSTITUTE WEEKLY UPDATE VDH‘;“::[TH:I“

o ©
Network Systems Estlmatlon Of February 19, 2021 68 per 100k

Science &Advansed KEY TAKEAWAYS
Computing
- m a ct « Whilestill high, cases, hospitalizations, and deaths in Virginia
Biocomplexity Institute continue to decline from the recent peak.
; Y » The most significant obstacle to continued improvement in case 39 per 100k

& Initiative .
counts remains the further emergence of variants,

o o o o :
University Of Vlrglnla I n I rg I n Ia « One year into the pandemic, Virginia is performing well compared

to other states on case, death and vaccination rates, but COVID-19 O
racial/ethnic disparities provide opportunities for improvement. per 100k
February 17th, 2021
(data current to February 15t - 16")

Biocomplexity Institute Technical report: TR 2021-020

KEY FIGURES

ﬁfg UN IVERSITY(_J}‘V TRGINIA o Days from Onset to Disgnosis and Test Positivity - Weekly

Rogion
BIOCOMPLEXITY INSTITUTE .z‘e'n';:i“ | o878 | 0088 |
Jacsw

biocomplexity.virginia.edu [Near sw
|Northern

[Northwest | 0883 |  0.145

IStatus 5 -/.‘ <<
Declining 30(33) & .
Plateau 1(0) & AJ\/\Z = . 7

Slow Growth 4(2) v> t\%:f\‘
in Surge 0(0) AR K)J [ JL_
Situation assessment

Literature surveys

https://www.vdh.virginia.gov/coronavirus/covid-19-data-insights/



https://www.vdh.virginia.gov/coronavirus/covid-19-data-insights/

Weekly updates to state and federal agencies since February 2020

Network Systems
Science & Advanced
Computing

Biocomplexity Institute
& Initiative

University of Virginia

Estimation of
COVID-19 Impact
in Virginia

February 17th, 2021

(data current to February 15t - 16")
Biocomplexity Institute Technical report: TR 2021-020

i UNIVERSITYof VIRGINIA

BIOCOMPLEXITY INSTITUTE

biocomplexity.virginia.edu

K

UVA COVID-19 MODEL
WEEKLY UPDATE

B UNIVERSITY VIRGINIA

v/ VIRGINIA
DEPARTMENT
OF HEALTH

BIOCOMPLEXITY INSTITUTE

EY TAKEAWAYS

While still high, cases, hospitalizations, and deaths in Virginia
continue to decline from the recent peak.

The most significant obstacle to continued improvement in case
counts remains the further emergence of variants.

One year into the pandemic, Virginia is performing well compared
to other states on case, death and vaccination rates, but COVID-19
racial/ethnic disparities provide opportunities for improvement,

68 per 100k

39 per 100k

KEY FIGURES

Days from Onset to Diagnosis and Test Positivity - Weekly

Region
|State-wide
|Central
|Eastern
|Far SW
|Near sSW
|Northern

[Northwest | 0883 |  0.145

30(33) oL,
Plateau 1(0) Ve {/ I <{ )
Slow Growth a(2) > w&% 2
In Surge 0(0) s };_} ﬂ e

weer

UVA COVID-19 MODEL
WEEKLY UPDATE

B UNIVERSITY# VIRGINIA

l/ VIRGINIA
DEPARTMENT
OF HEALTH

BIOCOMPLEXITY INSTITUTE

COVID-19 is a novel virus
causing a global
pandemic and response.

THE MODEL

The UVA COVID-19 Model and the weekly results are provided by the UVA
Biocomplexity Institute, which has over 20 years of experience crafting and
analyzing infectious disease models. It is a (S)usceptible, (E)xposed,
(I)nfected, (R)ecovered epidemiologic model designed to evaluate policy

The model improves as
we learn more about it.

options and provide projections of future cases based on the current course
of the pandemic

THE PROJECTIONS

The UVA team continues to improve the model weekly. The UVA model uses an "adaptive fitting" methodology, where the
model traces past and current trends and uses that information to predict future cases at the local level. The model
incorporates projections on the impact of vaccines which will improve over time. Several scenarios are included, including
counterfactual "no vaccine™ scenarios. The model also includes three "what-if" or planning scenarios. The "Best Past
Control" scenario projects what may occur if localities match the lowest rates of transmission seen earlier in the summer
This scenario also includes an optimistic vaccine rollout scenario, meeting public targets, The "Fatigued Control® scenario
does the opposite, projecting the highest transmission rates forward and using a pessimistic vaccine rollout scenario. The
"New Variants" scenario projects the potential impact of new variants, including a 40% increase in transmission, with the
B.1.1.7 variant becoming dominant in late March.

MODEL RESULTS

The model results are encouraging again this
week. All model scenarios show that weekly 100k {

Virginia Daily Confirmed - Comparison

Adaptive-BestPast-VariantB117
Adaptive-BestPast
Adaptive-FatigueControl-VariantB117
Adaptive-FatigueControl

-=- Adaptive-VariantB117

— Adaptive

cases have already peaked at just over 68
average daily cases per 100,000 residents
during the week ending January 24th, a0
However, if Virginians relax their behavior as
new variants take hold, we could face another
smaller peak in the spring. Under the Fatigued
Control, Variant B.1.1.7 scenario, cases would
reach 46 average daily cases per 100,000 the
week ending May 30th. To avoid another

Daily Confirmed cases

peak, we must give vaccines time to have an
impact, especially as new variants become
more prevalent across the nation, Do your
part to stop the spread. Continue to
practice _good prevention and get
vaccinated when eligible.

Situation assessment

Literature surveys

https://www.vdh.virginia.gov/coronavirus/covid-19-data-insights/

Model projections
Narrative summaries
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B u | |d | N g Medical Resource Demand Dashboard

https://nssac.bii.virginia.edu/covid-19/usmrddash

dashboards

Integrated Solutions:

Accessible and helpful to
everyone across the globe,
reliable, rich visualizations with
easy-to-use interface

COVID-19 Surveillance
Dashboard:

1.2 million users worldwide
3.7 million views since Feb 3,
2020

Spatial: 210 Countries, 450
States, 3,200 Counties (USA)

Temporal: Updated multiple
times a day since Jan 22, 2020;



https://nssac.bii.virginia.edu/covid-19/usmrddash

B U | |d | N g Medical Resource Demand Dashboard COVID-19 Surveillance Dashboard

dashboards

https://nssac.bii.virginia.edu/covid-19/usmrddash https://nssac.bii.virginia.edu/covid-19/dashboard/

A

= COVID-19 Surveillance Dashboard 2 USA Us y $ict bett f E‘Fj n | v

Integrated Solutions:

Accessible and helpful to
everyone across the globe,
reliable, rich visualizations with
easy-to-use interface

COVID-19 Surveillance
Dashboard:

1.2 million users worldwide
3.7 million views since Feb 3,
2020

Spatial: 210 Countries, 450
States, 3,200 Counties (USA)

Temporal: Since Jan 22, 2020;
updated multiple times a day



https://nssac.bii.virginia.edu/covid-19/dashboard/
https://nssac.bii.virginia.edu/covid-19/usmrddash

B U | |d | N g Medical Resource Demand Dashboard COVID-19 Surveillance Dashboard

dashboards

https://nssac.bii.virginia.edu/covid-19/usmrddash https://nssac.bii.virginia.edu/covid-19/dashboard/

Uiy Awenia

o, COVID-19 Surveillance Dashboard G USA sredict better f @ CHE

Integrated Solutions:

Accessible and helpful to
everyone across the globe,
reliable, rich visualizations with
easy-to-use interface

COVID-19 Surveillance

Dashboard: Social distancing survey

https://socialdistancing.stanford.edu/
1.2 million users worldwide -
3.7 million views since Feb 3, ; Sowy FoY

Za=N p _&/
(-9 F088
Spatial: 210 Countries, 450 % : 4
States, 3,200 Counties (USA) /5‘5
= :

Temporal: Since Jan 22, 2020; N (

updated multiple times a day
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B U | |d | N g Medical Resource Demand Dashboard COVID-19 Surveillance Dashboard

dashboards

https://nssac.bii.virginia.edu/covid-19/usmrddash https://nssac.bii.virginia.edu/covid-19/dashboard/

B U

~. COVID-19 Surveillance Dashboard

) T o o

Integrated Solutions:

@-o—ml

Cumulative count for All regions

Accessible and helpful to
everyone across the globe,
reliable, rich visualizations with
easy-to-use interface

COVID-19 Surveillance

Dashboard: Soma_l dl_stanc_lng survey
https://socialdistancing.stanford.edu/

1.2 million users worldwide -
3.7 million views since Feb 3, : s Y
2020 i
Spatial: 210 Countries, 450 ’; v
States, 3,200 Counties (USA) ‘

= :
Temporal: Since Jan 22, 2020; o B Eola
updated multiple times a day /f»% \ (--ﬂ’*' o
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USA

N

Multi-scale, multi-method weekly COVID: 2o =5

B ARIMA
2.0M1{ mmm SER

19 forecasting R e P e

I Ensemble
. Incorporate multiple classes of models: L.oM, /
o Statistical methods (AR, Kalman filters), deep learning models 20006 e
‘ot ) : 0.0 : : : : :
(ngyg:; and Mechanistic meta-population models (SEIR 1020,0% 2010,09 102030 1010“ 102032 101&0&
Virginia
° Ensemble: 60.0K i
o Combine forecasts from multiple methods to produce 20.0c| == En
probabilistic forecasts at county level (performance-based o L //,Z\
ensemble) 200K /~/_ e
o Bayesian model averaging (instead of model selection) to S
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Lessons learned

* Work closely with stakeholders
* Build models that are explainable, transparent

* Be agile and flexible

* Each situation is new and comes with unique challenges: requires constant
model adaptation

* Unusual effectiveness of transdisciplinary team science
* Working in teams is critical - skills, perspective and collaboration matters

 Social, political and economic considerations are increasingly
iImportant

« Communicating scientific results in such situation needs to be
thoughtful and deliberate

Pandemic Informatics: Preparation, Robustness, and Resilience A Computing Community Consortium (CCC)

Quadrennial Paper, E. Bradley, M. Marathe, M. Moses, W. Gropp, and D. Lopresti, 2020.



Concluding remarks and key takeaways

An effective strategy to reduce the global New looming challenges
burden of epidemics must: * Climate Change
* Detect timing and location of occurrence. * Anti-microbial resistance
» Anticipate public reaction to an outbreak. Synthetic pathogens
* Develop actionable interventions that Infodemics and role of social media
enable targeted and effective responses. Urbanization& increased global transactions
Expectation of timely information

Needed advances

* Real-time collection and updating of data,
models in rapidly changing environments.

* Incorporate social and behavioral
components in the models

* Models that are scientifically effective,
explainable & operational.

Pandemic Informatics: Preparation, Robustness, and Resilience A Computing Community Consortium (CCC)

Quadrennial Paper, E. Bradley, M. Marathe, M. Moses, W. Gropp, and D. Lopresti, 2020.
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