RESPONSE

Berkeley 6 CBHAINSﬁEﬁERBG In partnership with @ 4 L ’ F E

COVID-19 Data Repository and
County-level Death Count Prediction in the US

Bin Yu
UC Berkeley Statistics, EECS, CCB

O github.com/Yu-Group/covid19-severity-prediction

Website: covidseverity.com

NSF PREVENT Symposium
Feb. 22, 2021


https://github.com/Yu-Group/covid19-severity-prediction
https://covidseverity.com/

Pl: Bin Yu

N. Altieri R. Dwivedi K. Kumbier X. Li R. Netzorg

C. Singh Y. Tan T. Tang Y. Wang A.Agarwal M. Shen C. Zhang D. Wang. P. Norvig
(Student Lead)

Google collaborators

Many others at UC Berkeley, UCSF, Stanford, Northeastern, Univ. of Chicago, UW-Madison, ...



5000 PPEs for Temple Univ Hospital on May 8, 2020
@RESPONSE
4LIFE

J
AERO BRIDGE

Don Landwirth. Rick Brennan



Overview: Current Data Repository & Prediction Pipeline
(Open Source)

Q

O COVID-19 Data Repository
GitHub COVID-19 Cases/Deaths + County-level Data + Hospital-level Data
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Data curation: scraped from a variety of sources

COVID-19 County-level Data Hospital-level Data
Cases/Deaths (Risk Factors, Demographics, Social Mobility) (e.g., #ICU beds, staff)
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Data quality issues about death counts

1.  Undercount problems

2. USAFacts and NYT data come from the same sources, but do not always agree

3. Weekdays are different from weekends

4. Historical data revisions
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Development of many transparent predictors
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Calculate a weighted average of the predictions: higher weight to the
models with better (recent) historical performancell

[1]. Schuller-Yu-Huang-Edler "Perceptual audio coding using adaptive pre-and post-filters and lossless compression." I[EEE
Transactions on Speech and Audio Processing 10.6 (2002): 379-390.



Combined Linear and Exponential Predictor (CLEP)

A combination of two S v
predictors performs v
well -
+ .
+Cases
+Neighboring
§ / Sla\IS;Zhboring
deaths
Separate-county Expanded Shared-
linear predictor county exponential k=7 for 7-day prediction

E[deaths;|t] = exp ([)’0 + 31 log(deaths; 1 + 1) + B2 log(cases; . + 1)

+ B3 log(neigh_deaths, ; + 1) + 34 log(neigh_cases,_; + 1))

Calculate a weighted average of the predictions: higher weight to the
models with better historical performancelll

[1.Schuller-Yu-Huang-Edler . "Perceptual audio coding using adaptive pre-and post-filters and lossless compression." I[EEE
Transactions on Speech and Audio Processing 10.6 (2002): 379-390.



Prediction Intervals based on conformal prediction[2]
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[2]. CG. Shafer and V. Vovk "A tutorial on conformal prediction." IMLR (2008): 371-421.
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Prediction Intervals: Max. Error Prediction Interval (MEPI)

Predicted range of error

120 Recorded deaths Apr 25 [-12.6%, 12.6%)]
Prediction interval for Apr 25
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https://hdsr.mitpress.mit.edu/pub/p6isyfOg/release/l Harvard Data Science Review (HDSR)
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Forecasting County-Level Death Countsin ...
the United States

by Nick Altieri, Rebecca L Barter, James Duncan, Raaz Dwivedi, Karl Kumbier, Xiao Li, Robert Netzorg, Briton
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Data and code at covidseverity.com (searchable by county)

COVID-19 SEVERITY PREDICTION Visualizations Data Models

Cumulative Cases on 02-20
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VIEW INTERACTIVE DASHBOARD FIND SIMILAR COUNTIES

In-depth look at COVID-19 in counties across the US. Find and compare similar counties based on different attributes.

The Yu Group at UC Berkeley Statistics / EECS / CCB is working to help forecast the




Data and code at covidseverity.com (searchable by county)
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The Yu Group at UC Berkeley Statistics / EECS / CCB is working to help forecast the

Find and compare similar counties based on different attributes.



Covidseverity.com is an automated Al system

1. Data (daily county case and death numbers) from USAFacts is scrapped
automatically to our AWS instance

2. Our CLEP prediction algorithm runs on updated data on AWS automatically
(Thanks to AWS and NSF)

3. Predictions, prediction intervals, plots, and maps are generated and displayed
automatically

This Al system could not spot that “1525” on May 21 for King County, WA was an
error. Humans in the loop would be better.
Al: human-machine collaboration b k
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Summary and Current Directions

covidseverity.com
e Data repository and open-source code on github

e Our CLEP/MEPI: simple, transparent, interpretable, and fast, and
comparable short-term prediction performance as agent-based models

e Hospitalization prediction (on-going)

e Causal investigation (on-going)



Challenges and Opportunities

A nimble, national and international, surveillance and intervention network
system

Complete with manufacture, supply chain logistics planning and stakeholder
coordination

Collecting, cleaning/curating data at multi-scale with data quality control

Powered by a responsible, trustworthy, and reproducible Al system with humans
In the loop



Challenges and Opportunities

Trans-disciplinary framework

e coherent and unified technical and accessible terminology

e an integrated and distributed computing platform (e.g. SPARK or DataBricks)

e a combination of diverse data/science driven prediction approaches (agent-
based, ML/Stats/SP) and with uncertainty assessments

e validating and reality checking policy decisions with multi-objectives (health.
economy, fairness)

e agile to adapt to fast dynamics due to climate changes and unpredictable
human events



Our PCS framework
for responsible data analysis and decision making

Veridical Data Science (Yu and Kumbier, PNAS, 2020)
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Human is at the center
e Transdisciplinary team: collaborative, not winner-takes-all, culture

e \isionary and fair Incentives and rewards (grant, authorship, promotion,
award)

NSF — not enough to support transformative research, but also support
verification and replication for trustworthy and reliable research

e Human-machine collaboration in Al system

e Transdisciplinary education, including communication and interpersonal skills



Thank you!



