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Levels of Selection in Virus Emergence
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Levels of Selection in Pathogen Emergence

Themes, emphasizing role of evolutionary prediction:

« EVOLVABILITY — how does variation arise and is it maintained?

 ADAPTABILITY — which traits foster pathogen-emergence success?

« CONSTRAINT — what prevents pathogens from exploiting new hosts?

« EXTINCTION — why can (cannot) pathogens persist through time?
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Experimental Evolution



Case example: Role of novel-host encounters in emergence
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Sindbis virus

model (+)RNA virus

Togaviridae family

- rubella

- West Nile fever
144 test lineages




Gradual host invasions caused:
Lesser phenotypic variation and Lesser genetic variation among evolved

greater adaptation on novel hosts. lineages (less variable genomes).

Morley, Mendiola & Turner 2015, Proceedings B
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Dynamics of virus molecular evolution constrained by sudden vs. gradual host exposure:
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Dynamics of virus molecular evolution constrained by sudden vs. gradual host exposure:
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What other approaches could be used
in studying emergence”?



Model and Non-Model Systems

vesicular |
stomatitis phage T4 phage phi-6
virus dsDNA segmented
(-)ssRNA dsRNA
chikungunya virus dengue virus

(+)ssRNA



High-Throughput Phenotyping

Discovering cell-receptor(s) used by a virus:

sx O phage T6

Output CPM (binned by gene)

Genes for phage
infection Input CPM (binned by gene)

Genes for phage

resistance Kortright, Chan & Turner. 2020

PNAS USA

Output CPM (binned by gene)

Input CPM (binned by gene)

How do emerging pathogens
interact with:

 Microbiomes

* Viromes

« Host cells

e Other pathogens



Computer and Data Science

Measuring phenotypic and molecular ‘rules’ of virus host-breadth: Ben Chan. PhD

(Yale U)

Clinical strains
of bacteria

Candidate viruses
for phage therapy

Chan et al. (unpublished)



Computer and Data Science

Clinical strains of bacteria
Ben Chan, PhD
(Yale U)

Can machine learning sort through such
datasets to accurately predict
virus infection potential?

Candidate
phages

Chan et al. (unpublished)



Computer and Data Science

Clinical strains of bacteria

Ben Chan, PhD
(Yale U)

Can machine learning sort through such
datasets to accurately predict
virus infection potential?

Can similar approaches
help estimate

nggg:;e microbial extinction rates?

Rates of ‘background extinction’ estimated for macro-organisms.
(Raup 1994 PNAS USA).



Ensuring Diverse Approaches and Participants



