Predicting Evolution of Virus Emergence

Paul E. Turner, PhD
Rachel Carson Professor of Ecology \& Evolutionary Biology, Yale University Microbiology Faculty, Yale School of Medicine. of Medicine

- Goal: To more accurately predict emergence potential on new hosts.
-Why are some pathogens successful at infecting new or multiple hosts?
-What rules govern pathogen evolution, adaptation, constraint and extinction?

Levels of Selection in Virus Emergence

Levels of Selection in Pathogen Emergence

Themes, emphasizing role of evolutionary prediction:

- EVOLVABILITY - how does variation arise and is it maintained?
- ADAPTABILITY - which traits foster pathogen-emergence success?
- CONSTRAINT - what prevents pathogens from exploiting new hosts?
- EXTINCTION - why can (cannot) pathogens persist through time?

Experimental Evolution

Studies of 'evolution-in-action'

Typical design:

Ancestor

(genotype or population)

Experimental Evolution

Studies of 'evolution-in-action' can reveal:

- Molecular and phenotypic variation
- Tempo and mode of adaptation
- Plausible vs. implausible genetic solutions
- Extinction probabilities

Case example: Role of novel-host encounters in emergence
Does sudden vs. gradual exposure to novel host species affect virus emergence potential?

Emergence can occur quickly versus slowly

Does sudden vs. gradual exposure to novel host species affect virus emergence potential?

Emergence can occur quickly versus slowly

Does sudden vs. gradual exposure to novel host species affect virus emergence potential?

Sandra Mendiola
(Emory U)

Emergence can occur quickly versus slowly

Does sudden vs. gradual exposure to novel host species affect virus emergence potential? - YES!

Gradual host invasions caused:

Lesser phenotypic variation and greater adaptation on novel hosts.

Lesser genetic variation among evolved lineages (less variable genomes).

Emergence can occur quickly versus slowly

Does sudden vs. gradual exposure to novel host species affect virus emergence potential? - YES!

Sindbis virus (+)ssRNA genome:
nsp1
nsp2
nsp3 nsp4
C

E3
Dynamics of virus molecular evolution constrained by sudden vs. gradual host exposure:

Emergence can occur quickly versus slowly

Does sudden vs. gradual exposure to novel host species affect virus emergence potential? - YES!

Sindbis virus (+)ssRNA genome:
nsp1
nsp2
nsp3
nsp4
C

Dynamics of virus molecular evolution constrained by sudden vs. gradual host exposure:

[^0]mutations per population

Emergence can occur quickly versus slowly

Does sudden vs. gradual exposure to novel host species affect virus emergence potential? - YES!

Dynamics of molecular evolution in RNA virus populations depend on sudden versus gradual environmental change

${ }^{1}$ Department of Ecology and Evolutionary Biology, Yale University, P. O. Box 208106, New Haven, Connecticut 06520
${ }^{2}$ Graduate Program in Microbiology, Yale School of Medicine, New Haven, Connecticut 06520
Supported by: NSF Graduate Research Fellowship to V. Morley NSF Beacon Center for Study of Evolution-in-Action

Winner of 2017 R.A Fisher Prize for most outstanding thesis paper in Evolution

What other approaches could be used in studying emergence?

Model and Non-Model Systems

High-Throughput Phenotyping

Discovering cell-receptor(s) used by a virus:

How do emerging pathogens interact with:

- Microbiomes
- Viromes
- Host cells
- Other pathogens

- Viromes

Computer and Data Science

Measuring phenotypic and molecular 'rules' of virus host-breadth:

Computer and Data Science

Can machine learning sort through such datasets to accurately predict virus infection potential?

Computer and Data Science

Can similar approaches help estimate microbial extinction rates?

Rates of 'background extinction' estimated for macro-organisms.
(Raup 1994 PNAS USA).

Ensuring Diverse Approaches and Participants

[^0]: gradual new environment

