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Physics-based Models of Dynamical Systems

• Relationships b/w input & output variables governed by physics-
based partial differential equations (PDEs)
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Examples from Hydrology, Limnology, Fluid Dynamics, …

Input Output Parameters

Rainfall, topography, 
land use, river width River discharge Soil conductivity, 

channel flow

Solar radiation, air 
temp, wind speed Lake quality Lake bathymetry, 

water clarity

Pressure, strain rate 
tensor, kinetic energy

Velocity field, 
lift, drag

Reynolds stress, 
flow geometry
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Limitations of Physics-based Models
• Incomplete or missing physics (𝑭, 𝑮)

– Physics-based models often use approximate forms to meet 
“scale-speed/accuracy” trade-off

– Results in inherent model bias

• Unknown parameters (𝜽) need to be “calibrated”
– Computationally Expensive
– Easy to overfit: large number of parameter choices, small 

number of samples, heterogeneity
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• Hugely successful in 
commercial applications

Support Vector Machine Deep Learning

• But disappointing results in scientific 
domains!
- Require lots of data
- Can generate physically inconsistent results
- Unable to generalize to unseen scenarios
- Unable to provide valuable physical insights

Choice of model family 
not governed by physics
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“Black-box” Data Science Models
An alternative to modeling dynamical systems?

DS
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Dichotomy b/w Scientific Theory-based and Data Science Models

Both use incomplete sources of information about the two key 
components of knowledge discovery: scientific theory and data

Use of Data
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Theory-based models 
are limited by our 
current scientific 
understanding

Data science models show 
limited performance when 

data is under-representative
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Theory-guided Data Science (TGDS)
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Builds on the foundations of 
data science while taking full 

advantage of domain theories
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Theory-guided Data Science (TGDS)
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Scientific Theory Guided Machine Learning: 
A Paradigm Shift in Scientific Discovery
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US CLIVAR Data Science Webinar , 1/11/ 
2020

Surveys more 
than 300 papers

arXiv:2003.04919

Many conferences/workshops

• 2020 AAAI Spring Symposium on ML in Physical Sciences
• 2020 AAAI Fall Symposium on Physics-Guided AI 
• 2020 SIAM MDS Mini-symposium on Physics-guided AI
• 2020  Physics-informed Machine Learning Workshop at LANL,
• 2020  Physics-Informed Learning Machines for Multiscale and 

Multiphysics Problems at PNNL

https://arxiv.org/abs/2003.04919


Questions
• Can physics-guided machine learning (PGML) models
– outperform pure physics based/mechanistic  models?

• provide better accuracy with limited observation data?
• produce results that are physically consistent?
• generalize to novel testing scenarios

– model a collection of processes that are unfolding at 
different scales?

– dynamically assimilate new information/data?
– create data at high resolution (super-resolution)?
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Modeling stream flow 
in a watershed

GLM:  physics based 
model used by USGS

Modeling Lake Water 
Temperature dynamicsSWAT:  physics based 

model used by 
hydrological 
community
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PGML for Modeling Lake Water Temperature:
Performance under varying # of observations

GLM: State of the Art physics based 
model used by USGS

RNN: A black-box machine learning 
model that can incorporate time

PGRNN: A machine learning 
framework that leverages physics

GLM: State of the Art physics-based 
model used by USGS

RNN: A black-box machine learning 
model that can incorporate time

GLM: State of the Art physics based 
model used by USGS

Process-Guided Deep Learning Predictions of Lake 
Water Temperature, Read et.al. WRR, Nov. 2019.

Labeled 
Data
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PGML for Modeling Lake Water Temperature:
Performance in Novel Testing Scenarios

Process-Guided Deep Learning Predictions of Lake 
Water Temperature, Read et.al. WRR, Nov. 2019.

Observations from 
Summer seasons are 
used only during test

GLM: State of the Art physics based 
model used by USGS

RNN: A black-box machine learning 
model that can incorporate time

PGRNN: A machine learning 
framework that leverages physics

GLM: State of the Art physics-based 
model used by USGS

RNN: A black-box machine learning 
model that can incorporate time

GLM: State of the Art physics based 
model used by USGS



KGML for Streamflow Prediction in a Watershed
• A traditional black box approach models streamflow directly from 

weather inputs

• Aspects of the physical system that can guide the ML models:
1. Simultaneous modeling of inter-related variables

WIFIRE PGML workshop 1/27/2021 12
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KGML for Streamflow Prediction in a Watershed
• A traditional black box approach models streamflow directly from 

weather inputs

• Aspects of the physical system that can guide the ML models:
1. Simultaneous modeling of inter-related variables
2. Nature of variables (e.g., states vs fluxes)
3. Dependency structure between variables
4. Physical constraints among variables (e.g., mass conservation)

𝑷 −𝑬𝑻 −𝑸 ='𝜟𝑺𝒊
𝑺𝒊: 𝑺𝒐𝒊𝒍 𝑾𝒂𝒕𝒆𝒓, 𝑺𝒏𝒐𝒘𝒑𝒂𝒄𝒌, 𝑮𝒓𝒐𝒖𝒏𝒅 𝑾𝒂𝒕𝒆𝒓 …

𝑷: 𝑷𝒓𝒆𝒄𝒊𝒑𝒊𝒕𝒂𝒕𝒊𝒐𝒏, 𝑬𝑻: 𝑬𝒗𝒂𝒑𝒐𝒕𝒓𝒂𝒏𝒔𝒑𝒊𝒓𝒂𝒕𝒊𝒐𝒏, Q:	𝑺𝒕𝒓𝒆𝒂𝒎𝒇𝒍𝒐𝒘

WIFIRE PGML workshop 1/27/2021 15



KGML for Streamflow Prediction in a Watershed
• A traditional black box approach models streamflow directly from 

weather inputs (Basic)

• Aspects of the physical system that can guide the ML models:
1. Simultaneous modeling of inter-related variables (Multi-task)
2. Nature of variables (e.g., states vs fluxes) (State-aware)
3. Dependency structure between variables (Dependency-aware)
4. Physical constraints among variables (e.g., mass conservation)

𝑷 −𝑬𝑻 −𝑸 ='𝜟𝑺𝒊
𝑺𝒊: 𝑺𝒐𝒊𝒍 𝑾𝒂𝒕𝒆𝒓, 𝑺𝒏𝒐𝒘𝒑𝒂𝒄𝒌, 𝑮𝒓𝒐𝒖𝒏𝒅 𝑾𝒂𝒕𝒆𝒓 …

𝑷: 𝑷𝒓𝒆𝒄𝒊𝒑𝒊𝒕𝒂𝒕𝒊𝒐𝒏, 𝑬𝑻: 𝑬𝒗𝒂𝒑𝒐𝒕𝒓𝒂𝒏𝒔𝒑𝒊𝒓𝒂𝒕𝒊𝒐𝒏, Q:	𝑺𝒕𝒓𝒆𝒂𝒎𝒇𝒍𝒐𝒘

Model RMSE

Basic 0.63
Multi-task 0.55

Multi-task + State-aware 0.40
Multi-task + State + Dependency aware 0.30

(Constraint-aware)

• 1000-year simulation from the SWAT model for South Branch of the Root 
River at Garden Meadow (1,112 ha.) in SE Minnesota.

• Experiment Setting:
• First 600 years for training, last 400 years for testing
• Sequence length for LSTM 180 days
• Hidden features = 64

WIFIRE PGML workshop 1/27/2021 16
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Concluding Remarks

• PGML offer a promising approach for addressing
limitations of pure ML and pure process guided
approaches.

• Future Directions:
• How to incorporate complex physical knowledge into model learning

and model architecture

• How to model a system with multiple components (e.g., network of
river streams, a complex hydrological system).

• How to make use of real time observation data (i.e., data assimilation
in KGML setting)?

WIFIRE PGML workshop 1/27/2021 18
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