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Physics-based Models of Dynamical Systems

* Relationships b/w input & output variables governed by physics-
based partial differential equations (PDEs)

Input Drivers Xt Examples from Hydrology, Limnology, Fluid Dynamics, ...
PHY

Input Output Parameters
Hidden States Z;

Rainfall, topography, : . Soil conductivity,
Parameters ) land use, river width River discharge channel flow

Physics-based Solar radiation, air Lake bathymetry,

Equations G temp, wind speed Lake quality water clarity
* Pressure, strain rate Velocity field, Reynolds stress,
tensor, kinetic energy lift, drag flow geometry

Target V¢



Limitations of Physics-based Models

* Incomplete or missing physics (F, G)

Xt — Physics-based models often use approximate forms to meet
“scale-speed/accuracy” trade-off
PHY l — Results in inherent model bias
Zt
0  Unknown parameters (0) need to be “calibrated”
— Computationally Expensive
F.G — Easy to overfit: large number of parameter choices, small
l number of samples, heterogeneity k5
YVt

Number of layers

NSF PREVENT Symposium, 2/23/2021

w




“Black-box” Data Science Models

Xt An alternative to modeling dynamical systems?

Ct

Choice of model family
LSTM

Gates, not governed by physics
Attention,

Support Vector Machine Deep Learning

Yt

* But disappointing results in scientific

e Hugely successful in domains!

commercial applications _ Require lots of data

— Can generate physically inconsistent results

b DeepMInd - Unable to generalize to unseen scenarios

Google ds [INTAIIML

The Parable of Google Flu:
IMAGE facebomk.ﬁ! TSvmpom Traps in Big Data Analysis

— Unable to provide valuable physical insights




Dichotomy b/w Scientific Theory-based and Data Science Models

High

Theory-based models
are limited by our
current scientific
understanding

Data science models show
limited performance when
data is under-representative

Theory-based Models

Use of Scientific Theory

Data Science Models

Low

Low Use of Data High

Both use incomplete sources of information about the two key
components of knowledge discovery: scientific theory and data

US CLIVAR Data Science Webinar, 1/11/
2020



High

Use of Scientific Theory

Low

Theory-based Models

Theory-guided Data Science (TGDS)

Builds on the foundations of
data science while taking full
advantage of domain theories

Theory-guided
Data Science Models

Data Science Models

>

Low

Use of Data High
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High

Use of Scientific Theory

Low

Theory-based Models

Theory-guided Data Science (TGDS)

Theory-guided
Data Science Models

Data Science Models

Low

Use of Data High
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A Big Data Guide to Understanding Climate
Change: The Case for Theory-Guided Data
Science
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To adequately address climate change, we need novel data-science
methods that account for the spatiotemporal and physical nature of
climate phenomena. Only then will we be able to move from statistical
analysis to scientific insights.

US CLIVAR Data Science Webinar, 1/11/

2020



Scientific Theory Guided Machine Learning:
A Paradigm Shift in Scientific Discovery
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Artificial Intelligence Roadmap
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Integrating Physics-Based Modeling With Machine
Learning: A Survey arXiv:2003.04919

JARED WILLARD* and XIAOWEI JIA®, University of Minnesota
SHAOMING XU, University of Minnesota

MICHAEL STEINBACH, University of Minnesota

VIPIN KUMAR, University of Minnesota

There is a growing consensus that solutions to complex science and engineering problems require novel
methodologies that are able to integrate traditional physics-based modeling approaches with state-of-the-art
machine learning (ML) techniques. This paper provides a structured overview of such techniques. Application
arcas for which these approaches have been applied are summarized, then classes of methodologies used to
construct physics-guided ML models and hybrid physics-ML frameworks are described. We then provide a
taxonomy of these existing techniques, which uncovers knowledge gaps and potential crossovers of methods
between disciplines that can serve as ideas for future research.

Many conferences/workshops

* 2020 AAAI Spring Symposium on ML in Physical Sciences

* 2020 AAAI Fall Symposium on Physics-Guided Al
* 2020 SIAM MDS Mini-symposium on Physics-guided Al
* 2020 Physics-informed Machine Learning Workshop at LANL,

2020 Physics-Informed Learning Machines for Multiscale and
Multiphysics Problems at PNNL

US CLIVAR Data Science Webinar, 1/11/

2020
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Questions
e Can physics-guided machine learning (PGML) models

— outperform pure physics based/mechanistic models?

e provide better accuracy with limited observation data?
* produce results that are physically consistent?
* generalize to novel testing scenarios

— model a collection of processes that are unfolding at
different scales?

— dynamically assimilate new information/data?
— create data at high resolution (super-resolution)?

M d I ﬂ South Branch of the Root River Watershed - ~

odeling stream flow P e *

in a watershed N\ S 3&‘73 ;X;;_’E’?_:_ - ,?ﬁ ~ Modeling Lake Water
= - D 4 .

SWAT: physics based - N 4_\ =S L — Temperature dynamics

model used by 5 - TRy | GLM: physics based

hydrological REs " LR

community

= model used by USGS



PGML for Modeling Lake Water Temperature:
Performance under varying # of observations

<& Process-Guided Deep Learning
| 0O Deep Learning

O Process-Based ¢¢ ..... %}g

Test RMSE (°C)

2 10 50 100 500 980
Training temperature profiles (#)

Process-Guided Deep Learning Predictions of Lake
Water Temperature, Read et.al. WRR, Nov. 2019.
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GLM: State of the Art physics-based
model used by USGS

RNN: A black-box machine learning
model that can incorporate time

PGRNN: A machine learning
framework that leverages physics
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PGML for Modeling Lake Water Temperature:

Performance in Novel Testing Scenarios

Train: spring, fall, winter

Test: summer

Train & test similar
10 ®

/9

(;3 ]
W (O
0 20
=
o
k7]
i Observations from
25 J’ﬂ Summer seasons are
used only during test
3.0
Process— Deep Process-Guided Process— Deep Process-Guided
Based Leaming Deep Learning Based Leaming Deep Leaming

Process-Guided Deep Learning Predictions of Lake
Water Temperature, Read et.al. WRR, Nov. 2019.
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GLM: State of the Art physics-based
model used by USGS

: A black-box machine learning
model that can incorporate time

PGRNN: A machine learning
framework that leverages physics
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KGML for Streamflow Prediction in a Watershed

Streamflow

« A traditional black box approach models streamflow directly fom
weather inputs
gL
. . DNN
 Aspects of the physical system that can guide the ML models: >
1. Simultaneous modeling of inter-related variables &=
Weather Inputs
Evapo Snow Surface
(transplratlon‘ pack P ( runoff I
/ \ / \ /
-~ -~ -~
P -~ \ /L: \l\ / - ~N \
il ateral
( V\?:tler i ‘ fow ( Baseflow |

/ \ 7 N\ /
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KGML for Streamflow Prediction in a Watershed

Streamflow

« A traditional black box approach models streamflow directly from
weather inputs
gL
DNN
 Aspects of the physical system that can guide the ML models: =
1. Simultaneous modeling of inter-related variables &=
2. Nature of variables (e.g., states vs fluxes) Weather Inputs
= \ - -
Evapo 7 \ ’ h \
P Snow , Surface
(transplratlon‘ ( pack — runoff 3
/ \ / \ V4
~ - ~ ~
- - -
’ Soil N l,LateraI \ ! \
( W:tler i U oflow ( Baseflow/l
S ~ / > ~ - / N ~ -
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KGML for Streamflow Prediction in a Watershed

Streamflow

* A traditional black box approach models streamflow directly from
weather inputs
N
 Aspects of the physical system that can guide the ML models: = -
1. Simultaneous modeling of inter-related variables &=
2. Nature of variables (e.g., states vs fluxes) Weather nputs
3. Dependency structure between variables
Camo N o
transpiration pack { srtr:?;f
\ - / \ \/ \
- -£
’ SOi|\ N l,Later; \_ j/ \
Water I fiow 11 Baseflow |
N__/ N_ 4 o N_ LY
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KGML for Streamflow Prediction in a Watershed

oy . Streamflow
« A traditional black box approach models streamflow directly fom
weather inputs
gL
DNN
 Aspects of the physical system that can guide the ML models: =
1. Simultaneous modeling of inter-related variables &=
2. Nature of variables (e.g., states vs fluxes) Weather Inputs
3. Dependency structure between variables
4. Physical constraints among variables (e.g., mass conservation)
- - —
/7 /7 ~
Eva.po. \ ( Snow . | Surface
transpiration pack | runoff
N4 ‘T
-~ L
LS — \/
g Soil \ l,LateraI \_ j/B fl \
Water T U flow 1 B¢ OW/'

-~

P —ET —Q = ZASl-
S;i:Soil Water,Snowpack, Ground Water ...

P: Precipitation, ET: Evapotranspiration, Q: Streamflow
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KGML for Streamflow Prediction in a Watershed

« A traditional black box approach models streamflow directly from
weather inputs (Basic)

Streamflow

South Branch of the Root River Watershed

pA

 Aspects of the physical system that can guide the ML models: o
1. Simultaneous modeling of inter-related variables (Multi-task)
2. Nature of variables (e.g., states vs fluxes) (State-aware)
3. Dependency structure between variables (Dependency-aware)
4. Physical constraints among variables (e.g., mass conservation) (Constraint-aware)

Weather Inputs

- - -
7/ ~
Model | rvse UGN swow [ surtace
(transpiration ( pack — runoff
Basic 0.63 \ / \ / \
- ~
Multi-task 0.55 _ _ /'
. e S GRS
Multi-task + State-aware 0.40 Soil [ lateral _ [ o
Water T T fow T 1 %W l
Multi-task + State + Dependency aware 0.30 \ / \ /7 N\ /
-~ -~ =

1000-year simulation from the SWAT model for South Branch of the Root
River at Garden Meadow (1,112 ha.) in SE Minnesota. P —ET —Q = ZASi
Experiment Setting:
First 600 years for training, last 400 years for testing
Sequence length for LSTM 180 days P: Precipitation, ET: Evapotranspiration, Q: Streamflow
Hidden features = 64

S;i:Soil Water,Snowpack, Ground Water ...
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Concluding Remarks

e PGML offer a promising approach for addressing
limitations of pure ML and pure process guided
approaches.

 Future Directions:

* How to incorporate complex physical knowledge into model learning
and model architecture

* How to model a system with multiple components (e.g., network of
river streams, a complex hydrological system).

* How to make use of real time observation data (i.e., data assimilation
in KGML setting)?
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