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Differential privacy guarantees the input data from a single individual 
has a very small impact on the output of a computation. Tools from 
privacy can also be used in game theory and economics to incentivize 
people to truthfully reveal their data.

By Rachel Cummings 
DOI: 10.1145/3123742

literature on differentially private al-
gorithms applied to a wide variety of 
computational settings [1].) 

Interest in the connection between 
algorithmic game theory and differ-
ential privacy is fueled by a tension 
between privacy of the inputs to the 
computation, and usefulness of the 
output (usually measured in terms of 
the players’ utility or the mechanism 
designer’s objective). Privacy alone can 
be achieved by outputting pure noise, 
but this is likely to lead to a poor out-
come of the game; utility alone can be 

A lgorithmic game theory considers settings in which self-interested agents interact 
and make choices to maximize their payoff, or utility. Often this payoff also 
depends on the joint actions of other agents. An equilibrium of a game is an action 
profile where each player is maximizing their utility, given the actions of others. 

Equilibria are desirable because they are steady states of the game, where no player wishes 
to change their action. In some cases, the game designer—also known as mechanism 
designer— may have the power to determine the rules of the game or the information 
available to the players. This mechanism designer may also have their own objective, such  
as maximizing the total utility of all players or maximizing the profit of a seller (in 

the case of an auction). In settings 
where players’ utility functions con-
tain sensitive information, the de-
signer should also worry about privacy 
concerns when communicating infor-
mation to players.

Differential privacy is a notion 
of database privacy that provides a 
mathematically rigorous worst-case 
bound on the maximum amount of 
information that can be learned about 
any one individual’s input from the 
output of a computation. This “maxi-
mum amount” can be tuned using a 

parameter that balances the trade-off 
between accuracy of the computation 
and privacy of the individuals. The 
mathematical rigor of differential pri-
vacy ensures the security of the output, 
as it is robust to post-processing as well 
as the presence of external informa-
tion about the data. These formal guar-
antees give a sharp contrast to ad hoc 
privacy measures such as anonymiza-
tion, which has led to infamous privacy 
violations such as the Netflix challenge 
or AOL search logs release. (See Dwork 
and Roth for a survey of the growing 

Differential  
Privacy as a Tool  
for Truthfulness  
in Games
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achieved by selecting the best outcome 
of the game, but this may be very re-
vealing of a particular player’s input. 
In this article, we will explore privacy 
as both a requirement and a tool. It is 
a necessary objective when players of 
a game explicitly care about their pri-
vacy and when their utility depends 
on the privacy of their data. Privacy-
preserving algorithms can also serve 
as a powerful tool to incentivize good 
behavior, even in settings where play-
ers are not concerned with the privacy 
of their data.

FORMALIZING DIFFERENTIAL PRIVACY
Differential privacy guarantees if a 
single entry in the database were to 
be changed, then the algorithm would 
still have approximately the same dis-
tribution over outputs, where the prob-
ability of producing any output can 
change by at most a multiplicative (1+𝜖) 
factor. This means an adversary would 
have limited ability to detect small 
changes in the database from observ-

ing the mechanism’s output. This pri-
vacy guarantee is typically achieved 
by injecting carefully calibrated noise 
into the algorithm to randomize the 
output without significantly compro-
mising usefulness of the computation. 
The privacy parameter 𝜖 balances this 
trade-off between accuracy of the com-
putation and privacy of the individu-
als: 𝜖=0 provides perfect privacy be-
cause the output must be independent 
of the input. At the other extreme, 𝜖= 
∞ offers no privacy guarantees because 
the differential privacy constraint does 
not bind, and the mechanism’s output 
is allowed to depend arbitrarily on a 
single entry in the database. 

Differential privacy has three key 
properties that make it desirable for 
use as a privacy notion. Firstly, differ-
entially private algorithms are robust to 
post-processing, making it hard for an 
adversary to learn additional informa-
tion about the database by performing 
further computations on a differentially 
private output. Secondly, the privacy 

guarantee extends to arbitrary groups 
of players, where the level of privacy 
decreases linearly with the size of the 
group. This property is known as group 
privacy. Finally, differentially private 
algorithms compose, meaning the pri-
vacy guarantee degrades gracefully as 
multiple computations are performed 
on the same database. This allows for 
the modular design of differentially 
private mechanisms; an algorithm de-
signer can combine several simple dif-
ferentially private mechanisms as build-
ing blocks in a larger, more complicated 
algorithm. Then can reason about the 
overall privacy guarantee of their mech-
anism by reasoning only about these 
simple mechanisms.

GAME THEORY TERMINOLOGY  
AND EXAMPLES 
In the field of economics, a game con-
sists of several players who strategi-
cally choose their actions, which jointly 
determine everyone’s utility from the 
game. Throughout this article, we 
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tially private mechanisms with other 
algorithms designed to enforce strict 
truthfulness. One such mechanism is 
the punishing mechanism developed in 
[2], which works in environments where 
players can react to the mechanism’s 
output and the mechanism designer 
has the power to restrict reactions. Ex-
amples of reactions to the mechanism’s 
output include buying a good at the 
price selected by the mechanism, or vis-
iting one of the several hospitals with 
locations selected by the mechanism. 

The punishing mechanism is a con-
vex combination of two other mecha-
nisms. The first is the exponential 
mechanism, which satisfies differential 
privacy. It samples an output accord-
ing to a probability distribution that is 
exponentially weighted toward the so-
cially optimal outcomes, such as hospi-
tals with locations in the center of the 
city or price points at which players can 
purchase their favorite good. Once the 
outcome is sampled, players can react 
freely, regardless of their data reports. 
The second is the commitment mecha-
nism. It samples an outcome uniformly 
at random, and then requires that each 
player’s reaction is the best response 
to the outcome, according to their re-
ported data. For example, if this mecha-
nism was used to determine the price 
of a good, players would be forced to 
buy the good if their reported value was 
above the chosen price and not allowed 
to buy it otherwise.

The exponential mechanism is 
known to select a good outcome with 
high probability, but suffers from the 
weak truthfulness guarantees of dif-
ferential privacy. The commitment 
mechanism, on the other hand, is 
easily seen to be truthful, but is likely 
to choose a low-quality outcome. By 
randomizing between the two, the 
punishing mechanism enjoys both 
strict truthfulness and a high-quality 
outcome; truthfulness is enforced by 
the threat of the commitment mecha-
nism, and choosing the exponential 
mechanism with high probability pre-
serves the quality of the outcome.

JOINT DIFFERENTIAL PRIVACY,  
AN ALTERNATIVE APPROACH  
TO TRUTHFULNESS
Another approach for strengthening 
the truthfulness guarantees of pri-

will use three illustrative examples of 
games. The first is an auction, where 
each player’s action is their bid for the 
good being sold, and their utility is their 
value for the good (if the player wins 
the auction) minus the price paid. We 
also consider a facility location game, 
where a central designer, such as a gov-
ernment, wishes to build a hospital. 
The action of each player is the prefer-
ences reported to the designer about 
where they would like the hospital to 
be located, and their utility is a func-
tion of one’s convenience reaching the 
hospital. Finally, we use a traffic rout-
ing game, where each player simulta-
neously wants to drive from home to 
work. Their action is their chosen route, 
and their utility is decreasing commute 
time, given the traffic conditions cre-
ated by the routes of other players.

One primary objective of game 
theory is to help players arrive at an 
equilibrium of the game. Two differ-
ent equilibrium notions are used in 
this article. In a Nash equilibrium, ev-
ery player chooses one’s best action, 
given the actions of others. In a domi-
nant strategy equilibrium, every player 
chooses one’s best action, regardless 
of the actions of others. Dominant 
strategy is a stronger equilibrium no-
tion because it requires a player’s ac-
tion to be optimal for any behavior 
of their opponents, rather than just 
one fixed action profile. As such, Nash 
equilibria are generally guaranteed to 
exist, while many games do not have a 
dominant strategy equilibrium.

Within game theory, the field 
of mechanism design studies the 
problem(s) faced by a central designer, 
an entity who can influence the behav-
ior of players by changing their util-
ity functions, often through the use 
of payments that depend on a player’s 
action. Formally, the designer must 
choose a mapping from the actions of 
all players to both the outcome of the 
game, and the utilities to all players. In 
the case of auctions, the mechanism 
designer can be the auctioneer selling 
the item and deciding how much the 
winning bidder will pay. In the facility 
location game, the government plays 
the role of mechanism designer; it can 
ask players where they live and work, 
and then decide where the hospital will 
be located. Additionally, the designer 

may wish to optimize their own goals; 
the auctioneer may want to maximize 
his or her revenue, and the government 
may want to serve the maximum num-
ber of people with the hospital.

Another property, known as truth-
fulness or incentive compatibility, 
requires that players maximize their 
expected utility by reporting their true 
data. Games with this property incen-
tivize players to truthfully report their 
data to the mechanism designer. In an 
auction, a player’s data may be their val-
ue for the good being sold; in the traffic 
routing game, the player’s data may be 
the location of their home and work.

DIFFERENTIAL PRIVACY THROUGH 
THE LENS OF GAME THEORY
To better match the language of game 
theory and mechanism design, we re-
phrase the definition of differential pri-
vacy in terms of player utility functions. 
Now differential privacy guarantees that 
every player’s expected utility does not 
change more than a multiplicative (1+ 𝜖) 
factor from a change in a single player’s 
action or data report. This prohibits the 
utility of any player from changing sig-
nificantly due to the choice to either par-
ticipate in the mechanism or opt-out, or 
even decide to report truthfully or lie. 
It also promises that if a player, called 
Alice, changes her type report, then 
the utility of another player, called Bob, 
does not change drastically either.

This interpretation automatically 
implies an approximate truthfulness 
guarantee for any differentially private 
mechanism. Regardless of the actions 
chosen by other players, Alice can always 
maximize her expected utility (up to the 
multiplicative (1+ 𝜖) factor) by truthfully 
reporting her data to the mechanism. If 
Alice cannot gain anything from misre-
porting, she might as well be truthful. 
However, misreporting is also an ap-
proximate dominant strategy. Differen-
tial privacy promises a player’s utility 
will be insensitive to their own report, 
so they could achieve approximately the 
same utility with non-truthful report-
ing, which intuitively cannot strongly 
incentivize truthful reporting.

STRICT INCENTIVE  
COMPATIBILITY VIA PRIVACY
Stronger truthfulness guarantees can 
be achieved by combining differen-
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may receive an arbitrarily worse sug-
gestion. Further, when other players 
follow the good behavior strategy, then 
deviating from the mediator’s sugges-
tion is equivalent to deviating from a 
Nash equilibrium, which can only de-
crease Alice’s utility. Thus, each player 
can maximize their expected utility by 
truthfully reporting their type to the 
mediator and faithfully following the 
suggested action.

CONCLUSIONS
The main results presented here did 
not require caring about data privacy; 
privacy is a tool, not necessarily an ob-
jective. A related body of work consid-
ers game theory and mechanism de-
sign for players with privacy concerns. 
In addition to incentivizing truthful-
ness, these mechanisms must also en-
sure every player is fairly compensated 
for their loss in utility incurred by pro-
viding their data to the mechanism.

The truthfulness guarantees can be 
achieved by interpreting differential 
privacy not as a privacy guarantee, but 
rather as a stability notion; the algo-
rithm’s output is robust to small chang-
es in the input. Similar interpretations 
of differential privacy have borne fruit 
in other research areas as well, such 
as machine learning, statistics, and 
optimization. I encourage the reader 
to look for other places in their own re-
search where the stability properties of 
differential privacy may prove useful.
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vate mechanisms is through a relaxed 
privacy notion, known as “joint dif-
ferential privacy.” As previously dis-
cussed, differential privacy is often 
too strong of a notion in the context 
of mechanism design. Consider again 
the traffic routing game, where each 
player’s data is the location of their 
home and work, and their action is 
the route driven between these two 
locations. While we may want Alice’s 
route to work to be differentially pri-
vate in the input of the other players, it 
is natural to allow it to be more sensi-
tive to changes in Alice’s own input. If 
she changes jobs, she should certainly 
drive a different route.

Joint differential privacy was de-
fined precisely for such a setting, where 
the mechanism’s output is partitioned 
among all players, where each player 
can only see their portion of the out-
put. It guarantees the output for all 
other players besides Alice will be in-
sensitive to Alice’s input. This protects 
Alice’s privacy from arbitrary coali-
tions of other players. Even if all other 
players shared their portions of the 
output, they would still not be able to 
infer much about her data. This allows 
the mechanism designer more power 
to enforce truthfulness, while still pre-
serving the desirable properties of dif-
ferentially private mechanisms.

One useful tool for proving algo-
rithms satisfy joint differential privacy 
is the billboard lemma. Imagine an al-
gorithm first computes a differentially 
private signal of the data, and then dis-
plays that signal publicly to all players, 
as if posted on a billboard. If each play-
er’s portion of the output is comput-
able from only this public signal and 
their own data, then the mechanism 
is jointly differentially private. In our 
traffic routing game, the billboard may 
contain the amount of traffic on all ma-
jor freeways, and each player could use 
this information to decide their fast-
est route to work. This lemma allows a 
designer to use existing tools from dif-
ferential privacy to design jointly dif-
ferentially private algorithms.

MEDIATED GAMES
Joint differential privacy can be 
brought to bear for implementing 
equilibrium behavior with the help of 
a mediator. The mediator collects data 

from all players, computes an equilib-
rium of the game, and suggests back 
to each player an action corresponding 
to their part of the equilibrium. The 
mediator is weak because it does not 
have the power to enforce actions or 
outcomes. In the running example 
of traffic routing, the mediator can 
be thought of as a navigation app—
everyone enters a home address and 
work address into the mobile app, 
and the app suggests back a route for 
each person to drive. Each player is 
free to opt-out of the mediator (i.e., 
navigate to work without using the 
app), to misreport their type (i.e., lie to 
the app about one’s work address), or to 
deviate from the mediator’s suggested 
action (i.e., drive a different route than 
the suggested one).

In a mediated game, the designer 
would like players to truthfully report 
their type, and then faithfully follow 
the suggested action of the mediator. 
We call this strategy good behavior. 
Rogers and Roth showed if the me-
diator computes an equilibrium of the 
game under the constraint of differen-
tial privacy, then the suggested actions 
are jointly differentially private (by the 
billboard lemma), and good behavior 
is a Nash equilibrium [3]. 

The intuition behind this result lies 
in the usage of joint differential pri-
vacy, which ensures if Alice changes 
her type report the joint actions sug-
gested to other players will remain ap-
proximately unchanged. The mediator 
will suggest Alice’s own best action, 
given this fixed action profile of the 
other players, if Alice reports truth-
fully. However, if she misreports, she 

Privacy-preserving 
algorithms can also 
serve as a powerful 
tool to incentivize 
good behavior, even 
in settings where 
players are not 
concerned with the 
privacy of their data.




