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ABSTRACT
The EU General Data Protection Regulation (GDPR) empowers in-
dividuals with the right to control erasure of their personal data
held by firms. GDPR also allows firms to retain anonymized aggre-
gate data and statistical results. Unfortunately, most recommender
systems (and many other types of machine learning models) mem-
oize individual data entries as they are trained, and thus are not
sufficiently anonymized to be GDPR compliant. Differential privacy
formally prevents against memoization and other types of overfit-
ting, and additionally allows for accurate analysis in a wide variety
of machine learning tasks. In this position paper, we advocate that
differentially private learning should be the preferred method for
GDPR-compliant recommender systems.
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1 GDPR: PERSONAL DATA VERSUS
STATISTICAL RESULTS

The EU General Data Protection Regulation (GDPR) specifies in
Article 17 that individuals “shall have the right to obtain [...] the
erasure of personal data concerning him or herwithout undue delay.”
However, GDPR makes different allowances for firms to retain
aggregate data and statistical results. The notion of aggregate data is
introduced in Recital 162 as part of the explanation of what it means
to process personal data for statistical purposes. Recital 162 offers
that “Statistical purposes mean any operation of collection and the
processing of personal data necessary for statistical surveys or for
the production of statistical results.” A key point of Recital 162 is that
the statistical results “may further be used for different purposes.”
This implies that the result of data processed for a statistical purpose
is “aggregate data” as opposed to personal data, “and that this
result or the personal data are not used in support of measures
or decisions regarding any particular natural person.” Given that
machine learning is a statistical process and the outcomes are for
statistical purposes, an open question is whether machine-learned
models qualify as aggregate data.

As the former Chief Privacy Counsel of Microsoft has argued, un-
der the GDPR aggregate data must also be anonymous. Specifically,
such data must meet three criteria: (1) it must not be “directly linked
to identifying data;” (2) there must not be a “known, systematic
way to (re)identify the data; and (3) the data must not “relate to a

FATREC’18, October 2018, Vancouver, Canada
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

specific person” [9]. This view connects to the language of Recital
26 which states, “The principles of data protection should therefore
not apply to anonymous information, namely information which
does not relate to an identified or identifiable natural person or to
personal data rendered anonymous in such a manner that the data
subject is not or no longer identifiable.” Recital 26 concludes that the
GDPR “does not therefore concern the processing of such anony-
mous information, including for statistical or research purposes.”
Thus for a machine learning model to qualify fully for exclusion
from GDPR regulation, the model must meet the GDPR definition
for anonymity.

In the alternative, given that anonymity is a high bar to meet
and the exact definition for anonymity under GDPR is not settled, a
model may not meet the anonymization standard and nonetheless
be able to use pseudonymization under Article 4(5).1 Pseudonymiza-
tion is “processing of personal data in such a manner that the per-
sonal data can no longer be attributed to a specific data subject
without the use of additional information, provided that such addi-
tional information is kept separately and is subject to technical and
organisational measures to ensure that the personal data are not
attributed to an identified or identifiable natural person.” Indeed,
Article 89 which addresses safeguards and derogations relating to
processing for statistical purposes, explicitly lists this technique as
a measure that can be a safeguard “for the right and freedoms of
data subjects.”

2 MEMOIZATION OF PERSONAL DATA IN
RECOMMENDER SYSTEMS

Many common machine learning algorithms memoize individual
data entries during training, either intentionally by storing them
in a cache to speed up processing, or inadvertently by imbedding
personal data in the learned model. Carlini et al. [3] showed that
deep learning algorithms for word prediction leaked Social Secu-
rity Numbers and credit card numbers when trained on a corpus
that included such data. Their results showed that “unintended
memorization occurs early, is not due to over-fitting, and is a per-
sistent issue across different types of models, hyperparameters, and
training strategies” [3]. Earlier work [2] showed that collaborative
filtering—the primary technique used in recommender systems—
leaked information across users, where user i may learn personal
data of user j through her personalized recommendations.

This memoization poses a problem for those who wish to have
their model meet the GDPR’s definition of statistical purpose and
its safeguard standards of anonymization or pseudonymization.
Since the underlying causes of inadvertent memoization are still

1We thank Mike Hintze for his help in making this point.
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poorly understood—particularly in deep learning and neural net-
works [1]—it is difficult to ensure that a machine learned model
is GDPR compliant without employing tools to formally prevent
memoization.

3 THE PROMISE OF DIFFERENTIAL PRIVACY
In the last decade, differential privacy has emerged as the leading
technique in computer science to allow for accurate data analysis
with formal privacy guarantees. First defined by [6], differential pri-
vacy is a parameterized notion of database privacy that gives amath-
ematically rigorous worst-case bound on the maximum amount of
information that can be learned about an individual’s data from
the output of a computation. It ensures that the pair of outputs
produced by two neighboring databases (which are the same except
for one user’s data) are nearly indistinguishable.

Definition 3.1 (Differential Privacy [6]). An algorithmM : D →
R is (ϵ,δ )-differentially private if for every pair of neighboring
databases X ,X ′ ∈ D, and for every subset of possible outputs
S ⊆ R,

Pr[M (X ) ∈ S] ≤ exp(ϵ ) Pr[M (X ′) ∈ S] + δ .

If δ = 0, we say thatM is ϵ-differentially private.

Differential privacy can be achieved for recommender systems
by first privately learning the recommendation model, and then
applying that model locally to each user’s data for personalized
recommendations. This ensures that for each user i , the set of per-
sonalized recommendations to all other users will be differentially
private in i’s data, but her own recommendation can be personalized
to her data. See [7] for a textbook summary of differentially private
algorithms that can be used to privately learn a recommendation
model.

One critical benefit of differential privacy is that it provably
prevents memoization. The requirement that private algorithms
perform similarly on neighboring databases constrains the algo-
rithm away from overfitting to individual entries in the database,
and thus ensures that no single entry has been memoized. This
guarantee also provides strong generalization guarantees for dif-
ferentially private algorithms, which have also been observed in
other machine learning applications [4, 5]. Empirically, Carlini et
al. [3] implemented a differentially private version of their deep
learning algorithm that previously leaked Social Security Numbers,
and showed no such leakage occurred under the privately learned
model. Further, their private word prediction model performed
nearly as well as the non-private version.

4 FUTURE POLICY CHALLENGES
Onemajor policy challenge in future implementations of differential
privacy is determining appropriate values for the privacy parame-
ters ϵ and δ . The primary privacy parameter is ϵ , where smaller ϵ
corresponds to stronger privacy guarantees. Much of the theoretical
literature advocates setting ϵ to be a small constant less than one,
or to be diminishing in the size of the database (e.g., O (1/

√
n) for a

database of size n) [10]. Practitioners prefer larger ϵ-values, because
this weakening of privacy can yield improved accuracy of the data
analysis. However, if ϵ is too large, the guarantees of differential
privacy can cease to provide meaningful privacy guarantees. For

example, recent work advocated that Apple’s choice of parameters
in their implementation of differential privacy provided insufficient
privacy to users [11].

The second parameter δ is the maximum failure probability of
the ϵ-differential privacy guarantee. Many commonly used differ-
entially private algorithms set δ = 0, with no possibility of fail-
ure. Using instead a cryptographically small positive value (i.e.,
δ = o(exp(−n)) for a database of size n) can lead to substantial
improvements in accuracy. One practically used method for GDPR-
compliant data erasure is to encrypt personal data and delete the
encryption key. If a cryptographically small failure probability is
acceptable under the GDPR for data erasures, then it may also
be acceptable for anonymization of statistical results. The use of
(ϵ,δ )-differential privacy may also be considered pseudonymiza-
tion under Articles 4(5) and 89 of the GDPR. Allowing a small δ > 0
can significantly reduce the required ϵ-value of an algorithm (via
composition analysis [8]) which may yield overall privacy improve-
ments.
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