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Abstract

In this work, we investigate whether privacy and fairness can be simultaneously achieved by a single
classifier in several different models. Some of the earliest work on fairness in algorithm design defined
fairness as a guarantee of similar outputs for “similar” input data, a notion with tight technical connec-
tions to differential privacy. We study whether tensions exist between differential privacy and statistical
notions of fairness, namely Equality of False Positives and Equality of False Negatives (EFP/EFN). We
show that even under full distributional access, there are cases where the constraint of differential privacy
precludes exact EFP/EFN. We then turn to ask whether one can learn a differentially private classifier
which approximately satisfies EFP/EFN, and show the existence of a PAC learner which is private and
approximately fair with high probability. We conclude by giving an efficient algorithm for classification
that maintains utility and satisfies both privacy and approximate fairness with high probability.

1 Introduction

The growing practice of applying machine learning techniques on personal data has raised concerns that
too much of some individual’s information might be leaked through a model learned on training data. For
example, if one learns a model based on historical health data, there is a risk that the algorithm will produce
a model containing information about individuals’ disease status or other sensitive information. Machine
learning algorithms for word prediction have been shown to leak Social Security Numbers and credit card
numbers when trained on a corpus that included such data [Carlini et al., 2018]. As a result, academia and
industry have spent much effort designing and implementing differentially private machine learning methods.
Differential privacy gives a strong guarantee to individuals whose data we use to train a model: the model
will learn aggregate information about the population, but will not encode information about the individuals.

Recent human-centric uses of machine learning systems for applications such as loan approvals and
predictive policing have also raised concerns of equity of the predictive power for a model on different
populations. The fairness of a model can be thought of as an equitable performance guarantee for individuals
who will be evaluated by the model, rather than a guarantee for someone participating in the model’s training
process. When phrasing privacy and fairness of a model this way, a natural question arises: in what settings
can we learn a model which is private in the training data and guarantees equitable performance for multiple
populations on which the model will ultimately be deployed? More precisely, will it be possible to guarantee
privacy of training data, fairness for the predictions made on two populations, and reasonable accuracy
overall? Our work addresses these questions.

1.1 Our Contributions

We present three contributions to the study of the intersection of differential privacy and fairness in clas-
sification. First, we show that it is impossible to achieve both differential privacy and exact fairness while
maintaining non-trivial accuracy, even in the setting where we have access to the full distribution of the
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data. We then consider a notion of approximate fairness in the finite sample access setting and show that
there exists a private PAC learner that is differentially private and satisfies approximate fairness with high
probability. Finally, we give a polynomial time no-regret algorithm that returns an accurate classifier which
satisfies both privacy and approximate fairness with high probability.

1.2 Related Work

The focus on fairness in machine learning and its relationship to differential privacy was explored in early
work by the privacy community [Dwork et al., 2012]. This work introduced the concept of treating similar
people similarly, where “similarity” is defined as a task-specific metric over individuals. The authors then
point out that this desideratum can be formulated as a Lipschitz constraint and show how to satisfy it using
tools from differential privacy.

Ekstrand et al. [2018] raised questions of whether statistical notions of equitable predictive power, such
as equalized odds [Hardt et al., 2016], are compatible with privacy. In a limiting sense, when one talks about
feature and model selection, there appears to be some tension here: an additional feature might increase the
possible privacy loss of an individual, while the additional feature should only make equalized odds easier
to satisfy [Bird et al., 2016]. Recent work at the interface of privacy and fairness has also advocated that
these two societal concerns be studied together [Datta et al., 2018]. This area remains largely unexplored,
but initial work by Jagielski et al. [2019] shows two algorithms that satisfy both differential privacy and
equalized odds. To the best of the author’s knowledge, [Jagielski et al., 2019] is the only work to date that
has considered satisfying both differential privacy and fairness constraints.

The technical tools we use for this work come from differential privacy, including the exponential mecha-
nism [McSherry and Talwar, 2007] and a differentially private version of Follow the Perturbed Leader [Kalai
and Vempala, 2005, Kearns et al., 2014, 2018]. Similar tools were used to satisfy statistical parity across
many different group definitions simultaneously in Kearns et al. [2018], although their algorithms were not
differentially private. More recently, differentially private tools contributed to the design of algorithms which
are well-calibrated across many different group definitions simultaneously [Hebert-Johnson et al., 2018].

2 Preliminaries

Let X be a data universe consisting of elements of the form z = (x, a, y) where x are the element’s features, a
is a protected (binary) attribute, and y is a binary label. As a concrete example, consider loan applications,
where x may be an applicant’s income and credit score, a may indicate whether the applicant is a racial
minority, and y may indicate whether the applicant intends to repay her loan. We will assume that data
entries are drawn from a joint distribution over X . We allow x to be arbitrarily correlated with a, including
containing a copy of a.

We will use the notation A(D) to denote the probability distribution over outputs of a randomized
algorithm A on input D.

2.1 Differential Privacy

Differential privacy ensures that a randomized algorithm will generate similar distributions over outputs on
neighboring databases, which differ in a single entry. For our results, we require two different notions of a
database, each with an accompanying definition of neighbors:

1. a finite sample, vector Z = (z1, ..., zn) with entries drawn i.i.d. from a distribution D over X ,

2. a distribution D over X .

The first notion is standard in the privacy literature, where databases are viewed as a finite collection of
data points from n individuals. The second notion is standard for statistical notions of fairness, where the
goal is to ensure fairness over a large—possibly infinite-sized—population.
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For the first notion, we can use the standard definition of neighboring databases, in which one element
of the sample is changed.

Definition 1 (Neighboring samples). Samples Z and Z ′ are neighboring if zi 6= z′i for exactly one i ∈ [n].

For the second database notion, we no longer have a finite size database with discrete entries, so the con-
cept of changing a single entry is no longer well-defined. Instead we use a closeness measure over distributions
to define neighboring databases.

Definition 2 (ζ-closeness [McGregor et al., 2010]). Random variables D and D′ taking values in X are
ζ-close if the statistical distance between their distributions is at most ζ, i.e.,

‖D −D′‖SD :=
1

2

∑
z∈X

∣∣Pr[D = z]− Pr[D′ = z]
∣∣ ≤ ζ.

When we view databases as distributions over X , we will say that D and D′ are neighbors if they are
ζ-close for some specified ζ.

Note that we could instead define a finite sample as a multi-set of sampled points, and use symmetric
distance instead of Hamming distance to measure finite sample neighbors. In this case, Definition 2 can
simply be considered a generalization of Definition 1.

The definition of differential privacy remains the same under both database notions. That is, a randomized
algorithm is differentially private if neighboring databases induce close distributions over outputs.

Definition 3 (Differential privacy [Dwork et al., 2006]). A randomized algorithm A is (ε, δ)-differentially
private if for all pairs of neighboring databases D,D′ and for all sets S ∈ Range(A) of outputs,

Pr[A(D) ∈ S] ≤ exp(ε) Pr[A(D′) ∈ S] + δ.

If δ = 0, we say that A is ε-differentially private.

A survey of relevant differentially private tools and algorithmic properties is given in Appendix A.

2.2 Exact Fairness

When considering exact fairness, we use the second database notion presented in Section 2.1, where we
consider a database to be a distribution D over X . This corresponds to the full distributional access setting
studied in Hardt et al. [2016], in which an algorithm has access to the joint probability distribution for
D = (X,A, Y ) taking values in X , where X, A, and Y are random variables respectively denoting features,
sensitive attributes, and true labels. We will consider binary predictors h : X → {0, 1}, which attempts to
predict the true label y of a point, based upon (x, a).1

We use equal opportunity as our notion of exact fairness in this setting.

Definition 4 (Equal Opportunity [Hardt et al., 2016]). A binary predictor h satisfies equal opportunity
with respect to A and Y if

Pr
D

[h = 1|Y = 1, A = 1] = Pr
D

[h = 1|Y = 1, A = 0].

This fairness definition requires equality of group-conditional true positive classification rates, denoted

γya(h) := Pr[h = 1|Y = y,A = a].

To ensure γya(h) is always well-defined, we introduce group membership probabilities Pya = Pr[Y = y,A = a]
and assume throughout the paper that Pya > 0 for a, y ∈ {0, 1}.

1Although we write h : X → {0, 1} or h(z) for ease of notation, it should be understood that h(z) depends only on the
observable attributes x and a. If a hypothesis could condition its predicted label on the true label, then perfect prediction
would always be possible and the learning problem would be trivial.
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Equal opportunity is also known as Equality of False Negatives (EFN), because it requires that the false
positive rates be equal on groups with a = 0 and a = 1. A strictly stronger condition would be to additionally
require Equality of False Positives (EFP). The requirement of both EFN and EFP is also known as equalized
odds [Hardt et al., 2016], which is a strictly stronger fairness requirement than equal opportunity. Since
we will prove impossibility results for exact fairness, it only strengthens our results to consider this weaker
fairness constraint. These measures of fairness belong to a broader class of fairness constraints that can be
represented as constraints on functions of the confusion matrix of a classifier [Narasimhan, 2018].

2.3 Approximate Fairness

In our setting for approximate fairness, we use the first database notion presented in Section 2.1, where we
consider a database to be a finite sample Z consisting of entries drawn i.i.d. from a distribution D over X .

Considering approximate fairness is appropriate for two reasons. First, when learning a classifier from
a finite sample, achieving exact fairness is impossible: a finite sample necessarily implies some error in
estimating any statistic. Second, as we will show in Section 3, exact fairness is incompatible with differential
privacy. Thus approximate notions of fairness are necessary relaxations if one hopes to satisfy any fairness
and privacy criteria from a finite sample.

For ease of notation, we define subgroups in the database based upon group membership and true labeling
as follows:

Zya := {zi ∈ Z|yi = y, ai = a}.
We define group-conditional true positive rates analogously to the distributional setting in Section 2.2:

γZya(h) :=
1

|Zya|
∑

zi∈Zya

h(zi).

We use α-discrimination as our notion of approximate fairness, which requires that group-conditional
true positive rates are not different by more that α.

Definition 5 (α-discrimination [Woodworth et al., 2017]). A binary predictor h is α-discriminatory with
respect to a binary protected attribute A on a sample Z if,2

ΓZ(h) := max
y∈{0,1}

|γZy0(h)− γZy1(h)| ≤ α.

A discrimination parameter of α = 0 corresponds to exact fairness. As an analog of Definition 4, we only
consider true positive rates, and approximate non-discrimination reduces to the condition:

ΓZ(h) := |γZ10(h)− γZ11(h)| ≤ α.

For the remainder of this paper, the notation Γ refers to this fairness measure.

2.4 Agnostic PAC Learning

Our learning models consider the agnostic setting that removes the realizability assumption that a perfect
hypothesis exists in the class H. If no such perfect hypothesis exists, then the goal of a learning algorithm
should be to minimize prediction error. Formally, the goal of a learner in the agnostic setting is to output a
(possibly randomized) hypothesis h ∈ H whose error with respect to the distribution is close to the optimal
possible by any function from H. The misclassification error of h on D is defined as:

err(h) = Pr
z∼D

[h(z) 6= y].

In our setting we consider only binary labels, and therefore consider randomized hypotheses h : X → [0, 1],
where h(z) is the probability that h predicts 1 on example z.

2α-discrimination can also be defined on a population, defined by the condition Γ(h) := maxy∈{0,1} |γy0(h) − γy1(h)| ≤ α.

By Woodworth et al. [2017], the sample fairness measure ΓZ converges to the population measure Γ when n is large.
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Definition 6 (Agnostic PAC Learning [Chaudhuri et al., 2011]). A hypothesis class H is agnostically PAC
learnable if there exists a polynomial poly(·, ·) and a learning algorithm A with the following property:
for every α, β ∈ (0, 1) and for every distribution D on X , when running the learning algorithm on n ≥
poly(1/α, log(1/β)) i.i.d. examples generated by D, the algorithm A returns a hypothesis h such that,

Pr[err(h) ≤ OPT + α] ≥ 1− β,

where OPT = minh∈H err(h) and the probability is over the choice of n training examples. The learning
algorithm A is said to be (α, β)-accurate.

We define private and approximately fair PAC learners as algorithms that satisfy the definitions of
differential privacy, approximate fairness (with high probability), and PAC learning.

Definition 7 (Private and Approximately Fair Agnostic PAC Learning). A hypothesis class H is privately
and approximately fair agnostically PAC learnable if there exists a polynomial poly(·, ·, ·, ·) and a learning
algorithm A with the following property: for every α, β ∈ (0, 1), ε > 0, Pmin = mina∈{0,1} P1a, and for
every distribution D on X , when running the learning algorithm on n ≥ poly(1/ε, 1/Pmin, 1/α, log(1/β))
i.i.d. examples generated by D:

1. [Fairness and Accuracy] Algorithm A satisfies Pr[Γ(h) + err(h) ≤ OPT + α] ≥ 1− β;

2. [Privacy] Algorithm A is (ε, δ)-differentially private;

where OPT = minh∈H Γ(h) + err(h) and the probability is over the choice of n training examples. The
learning algorithm A is both (α, β)-accurate and is at most α-discriminatory with probability at least 1−β.

By Woodworth et al. [2017], the dependence of the sample complexity on P1a is unavoidable for our
definition of approximate fairness. If there is a group with low prevalence in the sample, we still need enough
samples from that group to ensure that the sample group-conditional true positive rates γZ1a generalize to
the population.

3 Exact Fairness with Differential Privacy is Impossible

In this section, we see that exact fairness and differential privacy are strong guarantees that together prove
to be incompatible. Since we will provide impossibility results, we consider the simplest possible task. We
grant our learning algorithm full distributional access to the underlying population, and ask only for non-
trivial classification accuracy. That is, better than any constant classifier which predicts the same label for
all points: h(z0) = h(z1) for all z0, z1 ∈ X .

Our main result of this section shows that it is impossible for a classifier with non-trivial accuracy to
simultaneously achieve exact fairness and differential privacy.

Theorem 1. For any hypothesis class H, no algorithm can simultaneously satisfy (ε, 0)-differential privacy
for ε < ∞ and guarantee to output a hypothesis h ∈ H that satisfies equal opportunity and has error less
than that of any constant classifier.

Proof. We prove the theorem by first constructing a simple distribution D and a neighboring (i.e., ζ-close
for arbitrarily small ζ > 0) distribution D′. We then show that any non-trivial hypothesis h which is
fair with respect to D is not fair with respect to D′. Since D and D′ are neighboring, any differentially
private algorithm must output h with approximately the same probability under D and D′. Therefore, no
differentially private algorithm can produce an exactly fair hypothesis with non-trivial accuracy.

We begin by constructing D as the uniform distribution over the following four elements:

z0 = (x0, 0, 0); z1 = (x1, 0, 1);

z2 = (x2, 1, 0); z3 = (x3, 1, 1).
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That is, under distribution D, protected attributes and labels are equally likely to be 0 or 1, and x, a, and
y are all independent. Thus any constant classifier will have error 1/2.

Next consider an arbitrary h ∈ H such that h(z1) + h(z3) > h(z0) + h(z2) and h(z1) = h(z3). The first
condition ensures that err(h) < 1/2, and the second condition ensures that h satisfies equal opportunity.
Note that there must exist such an h ∈ H. Otherwise no algorithm can produce a fair hypothesis with
accuracy better than a constant classifier, because no such hypothesis exists, and we are done. Consider an
algorithm A that always outputs a hypothesis that satisfies equal opportunity and has non-trivial accuracy,
and assume without loss of generality that Pr[A(D) = h] > 0.

We next construct a neighboring distribution D′ that is ζ-close to D for arbitrarily small ζ > 0, and
show that Pr[A(D′) = h] = 0. Define D′ to place an additional ζ probability mass on z3 relative to D, and
ζ less mass on z1. Then D and D′ are ζ-close under Definition 2, and are neighbors for any arbitrarily small
ζ > 0. However, h does not satisfy equal opportunity with respect to D′ because:

γD
′

10 =
1

4
− ζ 6= 1

4
+ ζ = γD

′

11 .

Therefore algorithm A cannot output h with positive probability on input D′.
Finally, there is no ε <∞ for which,

0 < Pr[A(D) = h] ≤ exp(ε) Pr[A(D′) = h] = 0,

so A cannot be differentially private for any finite ε.

Our result also has implications for more general notions of statistical fairness. Most immediately,
Theorem 1 implies that no algorithm can simultaneously satisfy privacy, accuracy, and equalized odds [Hardt
et al., 2016], which is a strictly stronger fairness condition than equal opportunity.

More generally, the same proof technique can be used to show impossibility of achieving privacy with
other notions of approximate fairness such as disparate impact and mean difference scores [Narasimhan,
2018]. Under these definitions, approximate fairness means that the resulting classifier (or anything released
by the randomized algorithm) satisfies some hard threshold on the ‘level of discrimination’ on the distribution.
One simply needs to construct neighboring distributions where most or all of the fair hypotheses h which
satisfy the hard threshold on one distribution will fail to satisfy the threshold on a neighboring distribution.

At the crux of these impossibility results is the constraint that some hypothesis h which is fair on database
D and may be output with positive probability under A(D), but cannot be output under a neighboring
database D′. The differential privacy constraint then implies that h cannot be output under D either. One
might consider relaxing to (ε, δ)-differential privacy, which allows for some failure probability δ of the privacy
guarantee, and would allow h to be output with probability δ > 0 under distribution D. However, in most
privacy applications, δ is typically required to be cryptographically small which would still not qualitatively
circumvent these impossibility results.

In the next section, we instead relax the requirement that the hypothesis is always fair on the input
database, and consider algorithms that are both approximately fair with high probability and differentially
private.

4 Approximate Fairness with Differential Privacy

In the previous section we sought impossibility results, so we considered the simplest possible learning
setting: the algorithm was allowed full distributional access, and the goal was simply non-trivial classification
accuracy. We showed that even in that simple setting, privacy and exact fairness are not compatible. Here
we relax our fairness constraint to α-discrimination (Definition 5) and give positive results for learning
under the constraints of privacy and this notion of approximate fairness. As we shift our focus to positive
results, we correspondingly consider a more challenging learning environment. In this section, we only allow
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the algorithm sample access to the distribution, and we ask the algorithm to agnostically PAC learn a
hypothesis class.

Recall from Section 2.1 that in the finite sample setting, a database is a vector Z = (z1, ..., zn) with
entries drawn i.i.d. from a distribution D over X . In this setting, our goal is to release a hypothesis that
minimizes error with respect to D and is approximately fair. Our algorithm for this task (Algorithm 1) is
an instantiation of the (ε, 0)-differentially private Exponential Mechanism [McSherry and Talwar, 2007] to
select a hypothesis h ∈ H.

Algorithm 1 Approximately Fair Private Learner A(H, Z, n, ε)
Input: hypothesis class H, sample Z of size n, privacy parameter ε
Set u(Z, h) = ΓZ(h) + errZ(h) and δ = exp(−

√
n)

Sample Y ∼ Lap(1/ε)
Set M = mina |Z1a|+ Y − ln(1/δ)(1/ε)
Set ∆ = 2

M−1 + 1
n

Sample hypothesis h ∈ H with probability proportional to

exp(−ε · u(Z, h)

2∆
)

Output: sampled hypothesis h

The Exponential Mechanism relies on a utility loss score u : Xn × H → R, where u(Z, h) is the utility
loss from producing hypothesis h on input database Z. The mechanism then samples an output h with
probability exponentially biased by negative loss score, which ensures that a hypothesis with small loss is
sampled with high probability.3

We wish to optimize both fairness and accuracy, so we incorporate both objectives into our utility function.
We use α-discrimination as our in-sample fairness measure, quantified by ΓZ(h) = |γZ10(h)−γZ11(h)| for group-
conditional true positive rates γZ10(h), γZ11(h). We would ideally like to measure accuracy with respect to the
underlying distribution D, using accuracy measure err(h), but the algorithm does not have access to D.
Instead, we will use the empirical misclassification error errZ(h) = 1

n

∑
zi∈Z Pr[h(xi, ai) 6= yi], and will later

have to reason that errZ(h) is close to err(h). Therefore Algorithm 1 uses the utility score4

u(Z, h) = ΓZ(h) + errZ(h).

To instantiate the Exponential Mechanism, we also need to know the sensitivity of the utility score,
defined as

∆u = max
h∈H

max
Z,Z′neighbors

|u(Z, h)− u(Z ′, h)|.

The sensitivity of a function is the maximum change in its value from changing one entry in the database.
We can analogously define ∆Γ and ∆err as the respective sensitivities of the discrimination level ΓZ(h) and
the empirical misclassification error errZ(h). By Triangle Inequality, it suffices to set ∆u = ∆Γ + ∆err.
Lemma 2 below bounds this term as

∆u ≤ max
a

(
2

|Z1a| − ln( 1
δ )( 1

ε )− 1

)
+

1

n
.

Unfortunately, this bound depends on the input database Z through the subgroup sizes Z1a. Therefore
running the Exponential Mechanism using this sensitivity bound would add data-dependent noise, which
would not satisfy (ε, 0)-differential privacy.

3The standard Exponential Mechanism of McSherry and Talwar [2007] is designed to sample an output with high utility.
We change signs because we wish to minimize loss rather than maximize utility. The two versions are equivalent.

4Any weighted combination of the fairness and accuracy terms would suffice. We use the unweighted sum for simplicity.
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Instead Algorithm 1 uses a noisy (over-)estimate of ∆u by first privately estimating |Z1a| via the Laplace
Mechanism, and then biasing the estimate to ensure that it is greater than ∆u with high probability.5

This second step is critical to preserving privacy. The sensitivity of the utility score calibrates the
minimum amount of noise required to ensure ε-differential privacy. Thus under-estimating the sensitivity
may result in insufficient noise and a failure of the differential privacy guarantee. In the analysis of Algorithm
1, we bound this failure probability by δ = exp(−

√
n) and show that the algorithm satisfies (ε, δ)-differential

privacy.
In the analysis of Algorithm 1, we will also require the following assumption on the number of positively

labeled instances for each protected attribute value in the input database.

Assumption 1. For each a ∈ {0, 1}, the number of positively labeled instances given by |Z1a| is k·n = Θ(1)·n
for some constant k, and |Z1a| ≥ 2.

This assumption is reasonable in context of our learning setting, in which we independently draw samples
from a fixed distribution. Although we do not know the underlying probability that an instance of particular
group membership is positively or negatively labeled, we can say that this probability is fixed. For example,
k would be P1a. The assumption that we have more than one positively labeled example for each group
is reasonable in any practical setting in which one hopes to learn an accurate classifier. Without this
assumption, there is always a small probability that even a perfectly balanced distribution yields a database
with zero samples belonging to Z1a.

Our main result of this section shows that our Approximately Fair Private Learner of Algorithm 1
computes an approximately fair hypothesis with good accuracy in a differentially private manner.

Theorem 2. Any hypothesis class H is (2ε, δ)-privately approximately fairly agnostically learnable with
(α, β)-accuracy by Algorithm 1 A(H, Z, n, ε) with

n ≥ max

(
144(ln |H|+ ln 1/β + ln 20) · max

a∈{0,1}

(
1

α2P1a
,

2n/(|Z1a| − ln( 1
δ )( 1

ε )− 1) + 1

εα
,

√
n+ ln |H|

n

)
,

2

(kε)2

)
.

labeled examples drawn i.i.d. from distribution D, and δ = exp(−
√
n).

The first term in the inner max expression comes from the high probability guarantee that the sample
generalizes and thus is in terms of the true base rates P1a; the second term in the inner max comes from the
accuracy guarantee of the exponential mechanism, as a function of the query’s sensitivity. The final term in
the inner max comes from the accuracy guarantee of the Laplace mechanism.

Though our algorithm and performance guarantees aim to maximize the sum of the fairness and accuracy
scores, one may weight the terms in the sum differently to achieve more preference on either fairness or
accuracy. The sample size in Theorem 2 will still hold up to a constant that depends on the weighting.

Proof. Our proof needs to argue that the algorithm is differentially private, approximately fair, and accurate.
We begin by showing that Algorithm 1 is (2ε, δ)-differentially private. This algorithm is a slight mod-

ification of the Exponential Mechanism of McSherry and Talwar [2007], which is ε-differentially private.
Our algorithm differs from the standard Exponential Mechanism in that the sensitivity—and therefore our
distribution over sampled outputs—may depend on the input database.

Without further modification, this may preclude differential privacy. To avoid this issue, Algorithm 1
computes an over-estimate ∆ of the sensitivity in a way that ε-differentially private with respect to the
input database, using the Laplace Mechanism. As long as ∆ ≥ ∆u, then the Exponential Mechanism will
be ε-differentially private. We will show that this desirable over-estimation occurs with probability 1− δ for
δ = exp(−

√
n), so our instantiation of the Exponential Mechanism is (ε, δ)-differentially private. Then by

post-processing (Proposition 1) and basic composition (Proposition 2), the entire algorithm will be (2ε, δ)-
differentially private.

5Other methods for ensuring privacy under data-dependent sensitivity—such as Propose-Test-Release [Dwork and Lei, 2009]
or smoothed sensitivity [Nissim et al., 2007]—could be used instead. We chose to use the Laplace Mechanism for simplicity of
presentation.
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It just remains to show that our sampled M is at least |Z1a| with probability δ = exp(−
√
n). By Lemma

5 [Dwork and Roth, 2014], the accuracy of the Laplace mechanism satisfies,

Pr[M > min
a
|Z1a|] = Pr[min

a
|Z1a|+ Lap(1/ε)− ln(1/δ)(1/ε) > min

a
|Z1a|] ≤ δ.

We additionally require that ln(1/δ)(1/ε) is not too large, otherwise M will be negative. If δ = exp(−
√
n),

then

ln(1/δ)(1/ε) < k · n
2
⇐⇒ n >

2

(kε)2
.

Our sample size must additionally satisfy this inequality in order for our entire algorithm to be (2ε, δ)-
differentially private.

Now we will show that the utility condition is also satisfied. If the utility loss function u(Z, h) = ΓZ(h)+
errZ(h) used in Algorithm 1 was our desired objective, then we could immediately apply accuracy guarantees
of the Exponential Mechanism. However, we actually wish to minimize a slightly different objective: ΓZ(h)+
err(h), which we will denote u(D,h). Let the event E = {A(H, Z, ε) = h with u(D,h) > OPT + α}. We
will show that event E happens with low probability.

We will start by showing that u(D,h) is close to u(Z, h) with high probability. We require Lemma 1
(stated below and proved in Appendix B), which relies on Chernoff-Hoeffding bounds (Theorem 7) and
Lemma 3 from Woodworth et al. [2017], both also stated in Appendix B.

Lemma 1 (Concentration of Utility). For any sample Z of size n drawn i.i.d. from distribution D and for
any binary predictor h,

Pr
[∣∣u(Z, h)− u(D,h)

∣∣ > ρ
]
≤ 18 exp

(
−min

a

ρ2nP1a

16

)
.

Applying a union bound over all h ∈ H, Lemma 1 implies that

Pr[|u(Z, h)− u(D,h)| ≥ ρ for some h ∈ H] ≤ 18|H| exp(−min
a

ρ2nP1a

16
).

Now we analyze A(H, Z, ε) conditioned on the event that for all h ∈ H, |u(Z, h)−u(D,h)| < ρ. For every
h ∈ H,

Pr[A(H, Z, ε) = h] =
exp(− ε

2∆u · u(Z, h))∑
h′∈H exp(− ε

2∆u · u(Z, h′))

≤
exp(− ε

2∆u · u(Z, h))

maxh′∈H exp(− ε
2∆u · u(Z, h′))

= exp(− ε

2∆u
(u(Z, h)− min

h′∈H
u(Z, h′)))

≤ exp(− ε

2∆u
(u(Z, h)− (OPT + ρ))).

Hence the probability that A(H, Z, ε) outputs a hypothesis h ∈ H such that u(Z, h) > OPT + 2ρ is at
most |H| exp(− ε·ρ

2∆u ).
Setting ρ = α/3, we get the following bound on Pr[E]:

Pr[E] = Pr[Aε = h with u(Z, h) > OPT + α]

≤ Pr[|u(D,h)− u(Z, h)| ≥ α/3] + Pr[u(Z, h) ≥ OPT + 2α/3]

≤ |H|(18 exp(−min
a

α2nP1a

144
) + exp(− ε · α

6∆u
))

Then our desired utility guarantee holds for any β satisfying:

β ≥ |H|(18 exp(−min
a

α2nP1a

144
) + exp(− εα

6∆u
)) + δ. (1)

9



To complete the proof and translate the bound on β to a bound on n, we require the following lemma
(proven in the Appendix) which bounds the sensitivity of ΓZ(h) and errZ(h).

Lemma 2. ΓZ(h) has sensitivity ∆Γ = maxa( 2
|Z1a|−ln( 1

δ )( 1
ε )−1

), and errZ(h) has sensitivity ∆err = 1/n.

Plugging in the sensitivity bound of Lemma 2 and the value for δ to Equation (1), the utility guarantee
holds for

β ≥ |H|(18 exp(−min
a

α2nP1a

144
) + exp(− εα

6∆u
)) + δ

≥ |H|(19 max
a

(exp(−α
2nP1a

144
), exp(− εα

6∆u
)) + exp(−

√
n)

≥ |H|(20 max
a

(exp(−α
2nP1a

144
), exp(− εα

6∆u
),

exp(−
√
n)

|H|
).

Taking logs of both sides and plugging in the bound on ∆u gives,

− ln 1/β ≥ ln |H|+ ln 20 + max
a

(−α
2nP1a

144
,− εα

6∆u
,−
√
n− ln |H|)

≥ ln |H|+ ln 20 + max
a

(−α
2nP1a

144
,− εα

6(2/(|Z1a| − ln( 1
δ )( 1

ε )− 1) + 1/n)
−
√
n− ln |H|).

Rearranging terms gives final bound that the utility guarantee holds for:

n ≥ 144(ln |H|+ ln 1/β + ln 20) · max
a∈{0,1}

(
1

α2P1a
,

2n
(|Z1a|−ln( 1

δ )( 1
ε )−1

+ 1

εα
,

√
n+ ln |H|

n

)
.

Under Assumption 1, |Z1a| = Θ(n) so the right hand side of this bound is o(n).

We note that although Algorithm 1 achieves our desiderata of privacy, fairness, and accuracy, it does
not necessarily have a polynomial time implementation in general. The running time of the Exponential
Mechanism scales linearly with |H|. For most interesting hypothesis classes (e.g., the class of all linear
classifiers), |H| will have exponential size.

In the next section, we remedy this by designing efficient algorithms for private and approximately fair
learning.

5 An Efficient Algorithm for Approximately Fair and Private Clas-
sification

In this section, we construct a private version of the Fair No-Regret Dynamics (FairNR) algorithm originally
given by Kearns et al. [2018]. This is a polynomial time algorithm that returns an approximately fair and
accurate randomized classifier with high probability. Their results depend on a polynomial-time equivalence
between cost-sensitive classification (CSC) and agnostic learning, and an equivalence between weak agnostic
learning and auditing for fairness. This equivalence is given in Appendix C.

The cost-sensitive classification problem takes as input a hypothesis class H, a finite sample Z =
(z1, . . . , zn), and costs for predicting positive c1i and negative c0i labels on each point zi. The goal is to

output a hypothesis ĥ ∈ H that satisfies

ĥ ∈ arg min
h∈H

n∑
i=1

[h(zi)c
1
i + (1− h(zi))c

0
i ].

10



Kearns et al. [2018] show these equivalences to subsequently assume access to a cost-sensitive classification
oracle, which they utilize in the FairNR algorithm. This is motivated by many practical heuristics for agnostic
learning, which cannot be polynomial time in the worst case but work well in practice. These heuristics can
be employed to achieve subgroup fairness using the reduction, and in practice should converge quickly.

The FairNR algorithm satisfies a generalized version of α-discrimination (Definition 5) known as False
Positive Subgroup Fairness (Definition 8 below) which ensures approximate fairness for a large number
of subgroups—such as combinations of protected groups or, more generally, large structured subsets of
individuals. In particular, this fairness notion allows a class G of indicator functions defined over a set
of protected attributes. G defines a set of protected subgroups and each function g ∈ G corresponds to
one protected subgroup. Until now, our fairness notions had considered the special case of a single (binary)
protected attribute and a single protected subgroup, where G was a singleton containing the only the function
g(a) = a. Here we allow x to contain multiple protected and non-protected attributes.

As its name suggests, the fairness definition used in Kearns et al. [2018] (Definition 8) considered false
positive fairness, whereas we have been considering false negative fairness until now. However, as the authors
note, ensuring equality of false positives is symmetric to considering fairness in true positives. One can think
of this as simply transforming the cost vectors in a way that penalizes false negatives rather than false
positives, or equivalently, flipping the labels of the training samples and ensuring equality of false positives
on these modified entries. In this section, we proceed with false positive fairness for consistency with the
previous literature.

Definition 8 (False Positive (FP) Subgroup Fairness [Kearns et al., 2018]). Fix any classifier h, distribution
D, collection of group indicators G, and parameter α ∈ [0, 1]. For each g ∈ G, define,

AFP(g,D) = Pr
D

[g(x) = 1, y = 0],

and
BFP(g, h,D) = |FP(h)− FP(h, g)|,

where FP(h) = Prh,D[h(z) = 1|y = 0] denotes the overall false-positive rate of h and FP(h, g) = Prh,D[h(z) =
1|g(x) = 1, y = 0] denotes the false-positive rate of h on group g. We say h satisfies α-False Positive (FP)
Fairness with respect to D and G if for every g ∈ G,

AFP(g,D)BFP(g, h,D) ≤ α.

To complete the analogy to Definition 5, AFP(g,D) corresponds to P0a and FP(h, g) corresponds to
γ0a(h).

Given this definition, the Fair ERM Linear Program is defined as:

min
h∈H

Ez∼D[err(h,D)]

s.t. ∀g ∈ G : AFP(g,D)(FP(h)− FP(h, g)) ≤ α
AFP(g,D)(FP(h, g)− FP(h)) ≤ α.

The FairNR algorithm uses the fact that the Fair ERM Linear Program (LP) can be cast as a two-
player zero-sum game and solved approximately with no-regret dynamics. Kearns et al. [2018] derive the
partial Lagrangian of the LP, since computing an approximate solution to this LP is equivalent to finding
an approximate minimax solution for a corresponding zero-sum game [Freund and Schapire, 1996]. In the
corresponding game, the Learner attempts to output a distribution over hypotheses that minimizes error
and satisfies the fairness constraints, while the Auditor attempts to penalize fairness violations by identifying
the subgroup with the largest fairness violation. The rewritten LP reduces the problem of finding the most
violated fairness constraint to a CSC problem, which is where the oracles are needed. This is achieved by
introducing two dual variables λ+

g and λ−g as multipliers for each fairness constraint, and also restricting

the dual space to Λ = {λ ∈ R2|G(S)|
+ |‖λ‖1 ≤ C}, where C is a parameter of the algorithm. The core of the
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algorithm comes from the no-regret play in the game described above, computed by the two CSC oracles.
At each time step t, the CSC oracles compute a response based on the cumulative losses on the auditor’s
previous plays, represented as LC(λ(t−1)).

We modify the FairNR algorithm to additionally satisfy differential privacy. We call this algorithm
Private-FairNR, formally presented in Algorithm 3 in Appendix C.2. We introduce differential privacy into
our algorithm by using a differentially private subroutine (Private Follow The Perturbed Leader (FTPL*) in
Appendix C.1) to private computing the best responses of the players in each round. Privacy of the overall
algorithm follows by post-processing and composition guarantees.

In addition to simply using a private subroutine, our algorithm differs from that of Kearns et al. [2018]
because we add exponential rather than uniform noise to the Learner’s loss in each round. We tune the
magnitude of the noise to be large enough to ensure privacy, yet still small enough to ensure fairness and
accurate classification. Additional technical challenges arise from the fact that Follow The Perturbed Leader
(FTPL) was initially analyzed using one fixed noise vector, not one drawn fresh each round. However to
ensure privacy, we need a fresh draw of noise for each round.

We now state our main result of this section: there exists a polynomial time algorithm with provable
accuracy, privacy, and fairness guarantees.

Theorem 3. For any accuracy parameters α, β ∈ (0, 1), given an input of n data points and access to oracles
CSC(H) and CSC(G), there exists an algorithm that runs in polynomial time, is (ε, δ)-differentially private,

and with probability at least 1− β, outputs a randomized classifier ĥ with error err(ĥ) ≤ OPT + α and for
any g ∈ G, the fairness constraint violation satisfies

AFP (g,D)|FP(ĥ)− FP(ĥ, g)| ≤ ξ +O(α).

Details of the algorithm and the proof of Theorem 3 are deferred to Appendix C.2.
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A Differentially private tools

One common tool for achieving differential privacy is the Laplace Mechanism, which adds noise that scales
with the sensitivity of the analysis.

Definition 9 (`1-sensitivity). The `1-sensitivity of a function f : N|X | → Rk is

∆f = max
D,D′neighbors

‖f(D)− f(D′)‖1.

Definition 10 (Laplace mechanism [Dwork et al., 2006]). Given any function f : N|X | → Rk, the Laplace
mechanism is defined as:

AL(D, f(·), ε) = f(D) + (Y1, . . . , Yk)

where Yi are i.i.d. random variables drawn from Lap(∆f/ε).

Theorem 4 ([Dwork et al., 2006]). The Laplace mechanism preserves (ε, 0)-differential privacy.

following theorem is accuracy of laplace

Theorem 5 ([Dwork et al., 2006]). Let f : N|X | → Rk, and let y = AL(D, f(·), ε) be the output of a Laplace
mechanism. Then ∀β ∈ (0, 1] :

Pr[||f(D)− y||∞ ≥ ln(
k

β
) · (∆f

ε
)] ≤ β

Differential privacy also has a number of desirable algorithmic properties, including robustness to post-
processing, and that privacy guarantees compose adaptively as additional analysis are performed on the
data.

Proposition 1 (Post-processing [Dwork et al., 2006]). Let A : N|X | → R be an (ε, δ)−differentially private
algorithm, and let g : R → R′ be an arbitrary randomized mapping. Then g ◦ A : N|X | → R′ is (ε, δ)-
differentially private.

Proposition 2 (Basic composition [Dwork et al., 2006]). If A1 : N|X | → R and A2 : N|X | → R are both
(ε, δ)−differentially private algorithms, then the composition A = (A1,A2) is (2ε, 2δ)-differentially private.

Theorem 6 (Advanced composition [Dwork et al., 2010]). Let A : U → RT be a T-fold adaptive composition
of (ε, δ)-differentially private mechanisms. Then A satisfies (ε′, T δ + δ′)-differential privacy for

ε′ = ε
√

2T ln(1/δ′) + Tε(eε − 1).

In particular, for any ε ≤ 1, if A is a T-fold adaptive composition of (ε/
√

8T ln(1/δ), 0)-differentially private
mechanisms, then A satisfies (ε, δ)-differential privacy.

B Approximate Fairness with Differential Privacy

This appendix contains the omitted proofs from Section 4

Theorem 7 (Real-valued Additive Chernoff-Hoeffding Bound). Let X1, ..., Xd be i.i.d. random variables
with E[Xi] = µ and a ≤ Xi ≤ b for all i. Then for every ρ > 0,

Pr
[∣∣∣∑iXi

n
− µ

∣∣∣ > ρ
]
≤ 2 exp

(
−2ρ2n

(b− a)2

)
.
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Lemma 3 (Woodworth et al. [2017]). For any binary predictor h,

Pr
[∣∣Γ(h)− ΓZ(h)

∣∣ > ρ
]
≤ 16 exp

(
1

4
ρ2nmin

ya
Pya

)
= δ,

where Γ is as defined in as Definition 5 for y, a ∈ {0, 1}.

Lemma 1 (Concentration of Utility). For any sample Z of size n drawn i.i.d. from distribution D and for
any binary predictor h,

Pr
[∣∣u(Z, h)− u(D,h)

∣∣ > ρ
]
≤ 18 exp

(
−min

a

ρ2nP1a

16

)
.

Proof. Fix any h ∈ H. Recall that P1a = Pr[Y = 1, A = a].

Pr[|u(Z, h)− u(D,h)| > ρ]

= Pr[|ΓZ(h) + errZ(h)− (Γ(h) + err(h))| > ρ]

≤ Pr[|ΓZ(h)− Γ(h)|+ |errZ(h)− err(h)| > ρ]

≤ Pr
[
|ΓZ(h)− Γ(h)| > ρ

2

]
+ Pr

[
|errZ(h)− err(h)| > ρ

2

]
≤ 16 exp

(
−min

a

ρ2nP1a

16

)
+ 2 exp

(
−2ρ2n

4

)
≤ 18 exp

(
−min

a

ρ2nP1a

16

)
where the first inequality follows from the triangle inequality, the second from union bound, and the third
from Theorem 7 and Lemma 3. The final inequality is due the the fact P1a ≤ 1 for any a.

Lemma 2. ΓZ(h) has sensitivity ∆Γ = maxa( 2
|Z1a|−ln( 1

δ )( 1
ε )−1

), and errZ(h) has sensitivity ∆err = 1/n.

Proof. We start by showing that ∆err = 1/n. The empirical error function for any hypothesis h is errZ(h) =
1
n

∑
zi∈Z Pr[h(xi, ai) 6= yi]. Changing a single entry in Z can change at most one zi, which can change

Pr[h(xi, ai) 6= yi] by at most 1. Since errZ(h) averages these probabilities, this can change the value of
errZ(h) by at most 1/n.

We next bound the sensitivity of ΓZ(h), and we examine two cases for neighboring databases Z,Z ′. Case
1: The difference in databases we consider is changing an entry within a subgroup (i.e., within Z1a and Z ′1a
for a ∈ {0, 1}). Assume without loss of generality that a = 0. Let the differing entries be called z ∈ Z10 and
z′ ∈ Z ′10.

Then, we have γZ
′

11 = γZ11, but,

γZ10(h) =
1

|Z10|
∑
Z10

h(x, 0)

γZ
′

10 (h) =
1

|Z10|

( ∑
zi∈Z10∩Z′

10

h(xi, 0) + h(x′, 0)
)
.

Then,

ΓZ
′
(h) = |γZ

′

10 (h)− γZ
′

11 (h)|

= |γZ
′

10 (h)− γZ11(h)|

≤ ΓZ(h) +
1

|Z10|
.
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Case 2: The neighboring databases are different in that an entry moves from one subgroup and to another
subgroup. Without loss of generality, let γZ11(h) < γZ10(h) and Z ′ = (Z11 \ {z1})∪ (Z10 ∪ {z1}), where z1 is a
positively labeled example. Then,

γZ
′

11 (h) =
1

|Z ′11|
∑

zi∈Z′
11

h(xi)

=
1

|Z ′11|

( ∑
zi∈Z11

h(xi)− h(x1)
)

=
1

|Z11| − 1

( ∑
zi∈Z11

h(xi)− h(x1)
)
.

Similarly,

γZ
′

10 (h) =
1

|Z ′10|
∑

zi∈Z′
10

h(xi)

=
1

|Z ′10|

( ∑
zi∈Z10

h(xi) + h(x1)
)

=
1

|Z10|+ 1

( ∑
zi∈Z10

h(xi) + h(x1)
)
.

Thus, we see that

|ΓZ
′
(h)− ΓZ(h)| = (γZ

′

10 − γZ
′

11 )− (γZ10 − γZ11)

= (γZ
′

10 − γZ10) + (γZ11 − γZ
′

11 )

Let φ10 = γZ
′

10 − γZ10 and φ11 = γZ11 − γZ
′

11

φ10 =
1

|Z10|+ 1

( ∑
zi∈Z10

h(xi) + h(z1)
)
− γZ10

=
1− γZ10

|Z10|+ 1
.

and

φ11 = γZ11 −
1

|Z11| − 1

( ∑
zi∈Z11

h(xi)− h(x1)
)

=
1− γZ11

|Z11| − 1
.

Thus, we have

|ΓZ
′
(h)− ΓZ(h)| = φ10 + φ11 =

1− γZ10

|Z10|+ 1
+

1− γZ11

|Z11| − 1
.

Similar arguments can be used to show the sensitivity of Γ(h)Z when moving a negatively labeled example
between groups and when switching a label for an example as it moves between groups. Thus we have

∆Γ = maxa∈{0,1}

(
1
|Z1a| ,

γZ1a
|Z1a|−1 +

γZ1¬a
|Z1¬a|+1 ,

1−γZ1a
|Z1a|+1 +

1−γZ1¬a
|Z1¬a|−1 ,

1−γZ1a
|Z1a|+1 +

γZ1¬a
|Z1¬a|−1

)
, where ¬a = 1− a.
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We can bound this sensitivity using our assumption that we have at least two positively labeled examples
for each protected attribute: |Z1a| ≥ 2 and |Z1¬a| ≥ 2. First we note that γZ1a, 1 − γZ1a, γZ1¬a, 1 − γZ1¬a ≤ 1.
Next, if |Z1a| ≤ |Z1¬a|, then

1

|Z1a| − 1
+

1

|Z1¬a|+ 1
≤ 2

|Z1a| − 1
.

Similarly, if |Z1¬a| ≤ |Z1a|, then |Z1¬a| − 1 ≤ |Z1a| − 1,

1

|Z1a| − 1
+

1

|Z1¬a|+ 1
≤ 2

Z1¬a − 1
.

Thus, we have that ∆Γ ≤ maxa∈{0,1}
2

|Z1a|−1 .

C Algorithm via Reduction to Cost-Sensitive Classification

In this Appendix, we provide all the omitted details from Section 5.

C.1 Differentially Private Follow the Perturbed Leader

We first introduce a fundamental tool, the differentially private version of Follow the Perturbed Leader
[Abernethy et al., 2017]. This algorithm will be used as a subroutine in our algorithm Private-FairNR, given
in Appendix C.2.

Algorithm 2 Follow the Perturbed Leader* (FTPL*(ε))

Input: Hypothesis class H ⊆ {0, 1}n, ε ∈ (0, 1)
Initialize: Let h1 ∈ H be arbitrary.
for t = 1,. . . ,T do

Play hypothesis ht; Observe loss vector `t and suffer loss 〈`t, dt〉.
Update:

dt+1 = argminh∈H

∑
r≤t

〈`r, h〉+ 〈ξt, h〉

 ,
where ξt ∼ Lap(1/ε) independently for each t and for each coordinate.

end for

Theorem 8 ([Kalai and Vempala, 2005]). For hypothesis classH and nonnegative set of loss vectors S ⊂ Rn,
FTPL gives

E[cost of FTPL(ε)] ≤ (1 + 2Aε)OPT +
2M(1 + ln(n))

ε
,

where M ≥ ‖h− h′‖1 for all h, h′ ∈ H, and A ≥ ‖`‖1 for all ` ∈ S.

Lemma 4. Suppose that in each round t ∈ [T ], the loss vector `t is computed via a function that has access
to the database x, ie. `t = f t(x). Then FTPL*(ε′) is (ε, δ)-differentially private for

ε′ =
ε

maxt(∆f t)
√
T ln 1/δ

.

Proof. For each round t, we compute a new loss vector and also add i.i.d. noise from Lap(1/ε′) to each
coordinate. This is equivalent to privately computing the loss vector with the Laplace Mechanism. By
Theorem 4, in each round, the algorithm is (ε′, 0)-differentially private. Since we do this for T rounds, by
Theorem 6 and Proposition 1 the overall algorithm is (ε, δ)-differentially private.
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C.2 Efficient Private and Fair Algorithm

In our game, we define the payoff function for any pair of actions (h, λ) ∈ H × Λpure as:

U(h, λ) = err(h,D) +
∑

g∈G(S)

(λ+
g Φ+(h, g) + λ−g Φ−(h, g)) where

Φ+(h, g) = AFP(g,D)(FP(h)− FP(h, g)) and

Φ−(h, g) = AFP(g,D)(FP(h, g)− FP(h))

Algorithm 3 Private-FairNR: Private and Fair No-Regret Dynamics

Input: distribution D over n labeled data points, CSC oracles CSC(H) and CSC(G), dual bound C,
target accuracy parameters α, β, privacy parameters ε, δ, absolute constant c0, d = VCDIM(G).

Initialize: Let C = 1/α, λ
(0)

= 0,

T =
4
√
n ln(2/β)

α4
, m =

ln(2T/β)d ln(n)C2c0T√
n(1 + C)2 ln(2/β)

, and ε′ =
ε

2+C
n

√
mT ln 1/δ

.

for t = 1,. . . ,T do
for s = 1,. . . ,m do

(Sample from the learner’s FTPL* Distribution)
Draw a random vector ξs by independently for each coordinate drawing from Lap(1/ε′)
Use oracle CSC(H) to compute:

h(s,t) = argminh∈H

〈
LC
(
λ

(t−1)
)

+ ξs, h
〉

end for
Let ĥt be the empirical distribution over {hs,t}
(Auditor best responds to ĥt)
Use oracle CSC(G) to compute:

λt = argmaxλEh∼ĥt [U(h, λ)]

Update: Let λ
(t)

=
∑
t′≤t λ

t′

end for
Sample from the average distribution ĥ =

∑T
t=1 ĥ

t

Output: ĥ the empirical distribution over the samples.

Using Lemma 4 and the parameters appropriate to Private-FairNR, we obtain a new bound for the
Learner’s regret.

Lemma 5. Let T be the time horizon for the no-regret dynamics. Let D1, ..., DT be the sequence of
distributions maintained by the Learner’s FTPL*(ε′) algorithm, and λ1, ..., λT be the sequence of plays by
the auditor. Then

T∑
t=1

Eh∼Dt [U(h, λt)]−min
h∈H

T∑
t=1

U(h, λt) ≤ εOPT√
mT ln(1/δ)

+
2(1 + ln(n))(2 + C)

√
mT ln(1/δ)

ε

where OPT = minh∈H
∑T
t=1 U(h, λt).

Proof. The bound follows from applying Theorem 8 with A = (1 + C)/n, M = n and

ε′ =
ε

2+C
n

√
mT ln 1/δ

.
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Note that maxt(∆f
t) = maxt(∆LC(λ

(t−1)
)) = 2+C

n since the loss vector is created by assigning, for each
example (xi, yi), a cost with minimum value of −1/n and maximum value of (1 + C)/n.

We will the following theorem from Freund and Schapire [1996] to show that the no-regret dynamics of
the learner and auditor in our algorithm converges to an approximate equilibrium of the game.

Theorem 9. [Freund and Schapire, 1996] Let D1, D2, . . . , DT ∈ ∆H(S) be a sequence of distributions played
by the Learner, and let λ1, λ2, . . . , λT ∈ Λpure be the Auditor’s sequence of approximate best responses

against these distributions respectively. Let D̄ = 1
T

∑T
t=1D

t and λ̄ = 1
T

∑T
t=1 λ

t be the two players’
empirical distributions over their strategies, and γL and γA be the average regret of the learner and auditor.
Suppose that the regret of the learner satisfies

T∑
t=1

Eh∼Dt
[
U(h, λt)

]
− min
h∈H(S)

T∑
t=1

U(h, λt) ≤ γLT, and

max
λ∈Λ

T∑
t=1

Eh∼Dt
[
U(h, λ)

]
−

T∑
t=1

Eh∼Dt
[
U(h, λt)

]
≤ γAT.

Then (D̄, λ̄) is an (γL + γA)-approximate minimax equilibrium of the game.

We now restate and prove our main result, which analyzes the new private version of Private-FairNR
that uses FTPL*(ε) instead of FTPL.

Theorem 3. For any accuracy parameters α, β ∈ (0, 1), given an input of n data points and access to oracles
CSC(H) and CSC(G), there exists an algorithm that runs in polynomial time, is (ε, δ)-differentially private,

and with probability at least 1− β, outputs a randomized classifier ĥ with error err(ĥ) ≤ OPT + α and for
any g ∈ G, the fairness constraint violation satisfies

AFP (g,D)|FP(ĥ)− FP(ĥ, g)| ≤ ξ +O(α).

Proof. The only step where Private-FairNR interacts with the data is through the FTPL* subroutine. By
Lemma 4, this subroutine is (ε, δ)-differentially private, and by Proposition 1, all of Private-FairNR is (ε, δ)-
differentially private as well. We now just need to prove that the utility guarantees hold.

By Kearns et al. [2018], it suffices to show that with probability at least 1− β, (ĥ, λ̄) is a α-approximate
equilibrium in the zero-sum game. To do this we use Theorem 9 by bounding the average regret of the
learner and auditor, denoted by γL and γA.

By Lemma 5, the regret of the sequence D1, . . . , DT implies that:

γL =
1

T

[ T∑
t=1

Eh∼Dt [U(h, λt)]−min
h∈H

T∑
t=1

U(h, λt)
]

≤ ε ·OPT

T
√
mT ln(1/δ)

+
2(1 + ln(n))(2 + C)

√
m ln(1/δ)

ε
√
T

.

By Kearns et al. [2018], with probability 1− β/2 we have

γA ≤
√
c0C2(ln(2T/δ) + d ln(n))

m
,

and except with probability β/2, by Freund and Schapire [1996], the pair (ĥ, λ̄) form an η-approximate
equilibrium for

η = γA + γL +

√
c0C2(ln(2/δ) + d ln(n))

m
.
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Note that η ≤ α as long as we have C = 1/α,

m =
ln(2T/β)d ln(n)C2c0T√

n(1 + C)2 ln(2/β)
, T =

4
√
n ln(2/β)

α4
, and

ε√
ln(1/δ)

≥
24
√

ln(2T/β)d ln(n)c0(1 + ln(n))

α2
√√

n ln(2/β)
. (2)

The conditions on m and T are satisfied by the initialization of the parameters in Algorithm 3. To see why
the condition of Equation (2) is required, we need that the regret γL ≤ cα for some constant c.

εOPT

T
√
mT ln(1/δε)

+
(1 + ln(n))(2 + C)

√
m ln(1/δε)

ε
√
T

≤ cα.

Let m∗ = m/T . Then since the multiplicative term of the regret goes to 0 as T grows, we only need to
consider the growth of the additive term.

2(1 + ln(n))(2 + C)
√
m ln(1/δ)

ε
√
T

≤ cα

2(1 + ln(n))(2 + C)
√
m∗T ln(1/δ)

ε
√
T

≤ cα

2
√
m∗(1 + ln(n))(2 + C)

cα
≤ ε√

ln(1/δ)

2C(2 + C)
√

ln(2T/β)d ln(n)c0(1 + ln(n))

cα(1 + C)
√√

n ln(2/β)
≤ ε√

ln(1/δ)

Setting C = 1/α,

6
√

ln(2T/β)d ln(n)c0(1 + ln(n))

cα2
√√

n ln(2/β)
≤ ε√

ln(1/δ)

Setting c = 1/4, we have our bound.
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