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Abstract

The change-point detection problem seeks to identify distributional changes at an unknown change-
point k∗ in a stream of data. This problem appears in many important practical settings involving personal
data, including biosurveillance, fault detection, finance, signal detection, and security systems. The
field of differential privacy offers data analysis tools that provide powerful worst-case privacy guarantees.
We study the statistical problem of change-point detection through the lens of differential privacy. We
give private algorithms for both online and offline change-point detection, analyze these algorithms
theoretically, and provide empirical validation of our results.

Keywords: differential privacy, change-point detection, learning theory, online learning, adaptive
data analysis

1 Introduction

The change-point detection problem seeks to identify distributional changes at an unknown change-point k∗

in a stream of data. The estimated change-point should be consistent with the hypothesis that the data
are initially drawn from pre-change distribution P0 but from post-change distribution P1 starting at the
change-point. This problem appears in many important practical settings, including biosurveillance, fault
detection, finance, signal detection, and security systems. For example, the CDC may wish to detect a
disease outbreak based on real-time data about hospital visits, or smart home IoT devices may want
to detect changes changes in activity within the home. In both of these applications, the data contain
sensitive personal information.

The field of differential privacy offers data analysis tools that provide powerful worst-case privacy
guarantees. Informally, an algorithm that is ε-differentially private ensures that any particular output
of the algorithm is at most eε more likely when a single data entry is changed. In the past decade, the
theoretical computer science community has developed a wide variety of differentially private algorithms
for many statistical tasks. The private algorithms most relevant to this work are based on the simple
output perturbation principle that to produce an ε-differentially private estimate of some statistic on the
database, we should add to the exact statistic noise proportional to ∆/ε, where ∆ indicates the sensitivity
of the statistic, or how much it can be influenced by a single data entry.
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We study the statistical problem of change-point detection through the lens of differential privacy.
We give private algorithms for both online and offline change-point detection, analyze these algorithms
theoretically, and then provide empirical validation of these results.

1.1 Related work

The change-point detection problem originally arose from industrial quality control, and has since been
applied in a wide variety of other contexts including climatology [LR02], econometrics [BP03], and DNA
analysis [ZS12]. The problem is studied both in the offline setting, in which the algorithm has access to
the full dataset X = {x1, . . . , xn} up front, and in the online setting, in which data points arrive one at a
time X = {x1, . . .}. Change-point detection is a canonical problem in statistics that has been studied
for nearly a century; selected results include [She31, Pag54, Shi63, Rob66, Lor71, Pol85, Pol87, Mou86,
Lai95, Lai01, Kul01, Mei06, Mei08, Mei10, Cha17].

Our approach is inspired by the commonly used Cumulative Sum (CUSUM) procedure [Pag54]. It
follows the generalized log-likelihood ratio principle, calculating

`(k) =

n∑
i=k

log
P1(xi)

P0(xi)

for each k ∈ [n] and declaring that a change occurs if and only if `(k̂) ≥ T for MLE k̂ = argmaxk `(k)
and appropriate threshold T > 0. The existing change-point literature works primarily in the asymptotic
setting when k∗n/n→ r for some r ∈ (0, 1) as n→∞ (see, e.g., [Hin70, Car88]). In contrast, we consider
finite databases and provide the first accuracy guarantees for the MLE from a finite sample (n <∞).

In offering the first algorithms for private change-point detection, we primarily use two powerful tools
from the differential privacy literature. ReportMax [DR14] calculates noisy approximations of a stream
of queries on the database and reports which query produced the largest noisy value. We instantiate this
with partial log-likelihood queries to produce a private approximation of the the change-point MLE in
the offline setting. AboveThresh [DNPR10] calculates noisy approximations on a stream of queries on
the database iteratively and aborts as soon as a noisy approximation exceeds a specified threshold. We
extend our offline results to the harder online setting, in which a bound on k∗ is not known a priori, by
using AboveThresh to identify a window of fixed size n in which a change is likely to have occurred so
that we can call our offline algorithm on that window to estimate the true change-point.

Recently, [CKM+19] also provided a private change-point detection algorithm based on the more
general problem of private hypothesis testing. Their algorithm partitions time series data into batches
of size equal to the sample complexity of the hypothesis testing problem, and then outputs the batch
number most consistent with a change-point. Their bound gives the minimum number of data points
needed to distinguish between two distributions with constant advantage but does not necessarily imply
the closest possible approximation of the true change-point. Their accuracy guarantees and ours alike are
quantified with respect to distance measures between modified versions of the hypothesized distributions,
and comparability of the bounds depends on the specific distributions from which data are drawn.

1.2 Our results

We use existing tools from differential privacy to solve the change-point detection problem in both offline
and online settings, neither of which have been studied in the private setting before.

Private offline change-point detection. We develop an offline private change-point detection
algorithm OfflinePCPD (Algorithm 3) that is accurate under one of two assumptions about the
distributions from which data are drawn. As is standard in the privacy literature, we give accuracy
guarantees that bound the additive error of our estimate of the true change-point with high probability.
Our accuracy theorem statements (Theorems 6 and 8) also provide guarantees for the non-private
estimator for comparison. Since traditional statistics typically focuses on the the asymptotic consistency
and unbiasedness of the estimator, ours are the first finite-sample accuracy guarantees for the standard
(non-private) MLE. As expected, MLE accuracy decreases with the sensitivity of the measured quantity
but increases as the pre- and post-change distribution grow apart. Interestingly, it is constant with respect
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to the size of the database. In providing MLE bounds alongside accuracy guarantees for our private
algorithms, we are able to quantify the cost of privacy as roughly DKL(P0||P1)/ε.

We are able to prove ε-differential privacy under both distributional assumptions, by instantiating
the general-purpose ReportMax algorithm from the privacy literature with our log-likelihood queries
(Theorem 5). Noting that when the measured quantity has unbounded sensitivity, we introduce a clamping
function so that the sensitivity is still bounded by a certain threshold. Importantly and in contrast to our
accuracy results, the distributional assumption need only apply to the hypothesized distributions from
which data are drawn; privacy holds for arbitrary input databases.

Private online change-point detection. In OnlinePCPD (Algorithm 6), we extend our offline
results to the online setting by using the AboveThresh framework to first identify a window in which the
change is likely to have happened and then call the offline algorithm to identify a more precise approximation
of when it occurred. Standard ε-differential privacy under our first distributional assumption follows
from composition of the underlying privacy mechanisms (Theorem 9). Accuracy of our online mechanism
relies on appropriate selection of the threshold that identifies a window in which a change-point has likely
occurred, at which point the error guarantees are inherited from the offline algorithm (Theorem 10).

Empirical validation. Finally, we run several Monte Carlo experiments to validate our theoretical
results for both the online and offline settings. We consider data drawn from Bernoulli distribution, which
satisfies our first distributional assumption, as well as Gaussian and Gamma distributions, which satisfy
our second distributional assumptions. Our offline experiments are summarized in Figure 1, which shows
that change-point detection is easier when P0 and P1 are further apart and harder when the privacy
requirement is stronger (ε is smaller). Additionally, these experiments enhance our theoretical results,
finding that OfflinePCPD performs well even when we relax the assumptions required for our theoretical
accuracy bounds by running our algorithm on imperfect hypotheses P0 and P1 that are closer together
than the true distributions from which data are drawn. Figure 3 shows that OnlinePCPD also performs
well, consistent with our theoretical guarantees.

2 Preliminaries

Our work considers the statistical problem of change-point detection through the lens of differential
privacy. Section 2.1 defines the change-point detection problem, Section 2.2 describes the differentially
private tools that will be brought to bear, and Section 2.3 give several concentration inequalities which
will be used in our proofs.

2.1 Change-point background

Let X = {x1, . . . , xn} be n real-valued data points. The change-point detection problem is parametrized
by two distributions, P0 and P1. The data points in X are hypothesized to initially be sampled i.i.d. from
P0, but at some unknown change time k∗ ∈ [n], an event may occur (e.g., epidemic disease outbreak) and
change the underlying distribution to P1. The goal of a data analyst is to announce that a change has
occurred as quickly as possible after k∗. Since the xi may be sensitive information—such as individuals’
medical information or behaviors inside their home—the analyst will wish to announce the change-point
time in a privacy-preserving manner.

In the standard non-private offline change-point literature, the analyst wants to test the null hypothesis
H0 : k∗ =∞, where x1, . . . , xn ∼iid P0, against the composite alternate hypothesis H1 : k∗ ∈ [n], where
x1, . . . , xk∗−1 ∼iid P0 and xk∗ , . . . , xn ∼iid P1. The log-likelihood ratio of k∗ =∞ against k∗ = k is given
by

`(k,X) =

n∑
i=k

log
P1(xi)

P0(xi)
. (1)

The maximum likelihood estimator (MLE) of the change time k∗ is given by

k̂(X) = argmaxk∈[n]`(k,X). (2)

When X is clear from context, we will simply write `(k) and k̂.

3



We always use log to refer to the natural logarithm, and when necessary, we interpret log 0
0

= 0. An
important quantity in our accuracy analysis will be the Kullback-Leibler distance between probability
distributions P0 and P1, defined as DKL(P1||P0) =

∫∞
−∞ P1(x) log P1(x)

P0(x)
dx = Ex∼P1 [log P1(x)

P0(x)
]. For given

distributions P0, P1, our proofs will use the following three variations of KL-divergence:

C = min {DKL(P0||P1), DKL(P1||P0)} (3)

CM = min

{
DKL(P0||

P0 + P1

2
), DKL(P1||

P0 + P1

2
)

}
= min
i=0,1

Ex∼Pi
[
log

2Pi(x)

P0(x) + P1(x)

]
(4)

CA = min

{
−Ex←P0

[
log

P1(x)

P0(x)

]A/2
−A/2

,Ex←P1

[
log

P1(x)

P0(x)

]A/2
−A/2

}
, (5)

where A is a pre-specified (input) truncation parameter.
We will measure the additive error of our estimations of the true change point as follows.

Definition 1 ((α, β)-accuracy). A change-point detection algorithm that produces a change-point estimator
k̃(X) where a distribution change occurred at time k∗ is (α, β)-accurate if Pr[|k̃− k∗| < α] ≥ 1− β, where
the probability is taken over randomness of the algorithm and sampling of X.

2.2 Differential privacy background

Differential privacy bounds the maximum amount that a single data entry can affect analysis performed
on the database. Two databases X,X ′ are neighboring if they differ in at most one entry.

Definition 2 (Differential Privacy [DMNS06]). An algorithm M : Rn → R is ε-differentially private if
for every pair of neighboring databases X,X ′ ∈ Rn, and for every subset of possible outputs S ⊆ R,

Pr[M(X) ∈ S] ≤ exp(ε) Pr[M(X ′) ∈ S].

One common technique for achieving differential privacy is by adding Laplace noise. The Laplace

distribution with scale b is the distribution with probability density function: Lap(x|b) = 1
2b

exp
(
− |x|

b

)
.

We will write Lap(b) to denote the Laplace distribution with scale b, or (with a slight abuse of notation)
to denote a random variable sampled from Lap(b).

The sensitivity of a function or query f is defined as ∆(f) = maxneighbors X,X′ |f(X)− f(X ′)|. The
Laplace Mechanism of [DMNS06] takes in a function f , database X, and privacy parameter ε, and outputs
f(X) + Lap(∆(f)/ε). Since our algorithms estimate a change-point based on log-likelihood ratios, it will
be useful to denote the sensitivity of the log-likelihood function given distributions P0, P1 as follows:

∆(`) = max
x∈R

log
P1(x)

P0(x)
− min
x′∈R

log
P1(x′)

P0(x′)
. (6)

Our algorithms rely on two existing differentially private algorithms, ReportMax [DR14] and
AboveThresh [DNPR10]. The ReportMax algorithm takes in a collection of queries, computes a noisy
answer to each query, and returns the index of the query with the largest noisy value. We use this as the
framework for our offline private change-point detector OfflinePCPD in Section 3 to privately select
the time k with the highest log-likelihood ratio `(k).

Algorithm 1 Report Noisy Max: ReportMax(X,∆, {f1, . . . , fm}, ε)
Input: database X, set of queries {f1, . . . , fm} each with sensitivity ∆, privacy parameter ε
for i = 1, . . . ,m do

Compute fi(X)
Sample Zi ∼ Lap(∆

ε )
end for
Output i∗ = argmax

i∈[m]

(fi(X) + Zi)

Theorem 1 ([DR14]). ReportMax is ε-differentially private.
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The AboveThresh algorithm, first introduced by [DNPR10] and refined to its current form by [DR14],
takes in a potentially unbounded stream of queries, compares the answer of each query to a fixed noisy
threshold, and halts when it finds a noisy answer that exceeds the noisy threshold. We use this algorithm
as a framework for our online private change-point detector OnlinePCPD in Section 4 when new data
points arrive online in a streaming fashion.

Algorithm 2 Above Noisy Threshold: AboveThresh(X,∆, {f1, f2, . . .}, T, ε)
Input: database X, stream of queries {f1, f2, . . .} each with sensitivity ∆, threshold T , privacy
parameter ε
Let T̂ = T + Lap( 2∆

ε )
for each query i do

Let Zi ∼ Lap( 4∆
ε )

if fi(X) + Zi > T̂ then
Output ai = >
Halt

else
Output ai = ⊥

end if
end for

Theorem 2 ([DNPR10]). AboveThresh is ε-differentially private.

Theorem 3 ([DNPR10]). For any sequence of m queries f1, . . . , fm with sensitivity ∆ such that |{i < m :
fi(X) ≥ T−α}| = 0, AboveThresh outputs with probability at least 1−β a stream of a1, . . . , am ∈ {>,⊥}
such that ai = ⊥ for every i ∈ [m] with f(i) < T − α and ai = > for every i ∈ [m] with f(i) > T + α as
long as

α ≥ 8∆ log(2m/β)

ε
.

2.3 Concentration inequalities

Our proofs will use the following bounds on partial sums of independent random variables.

Lemma 1 (Ottaviani’s inequality [VDVW96]). For independent random variables U1, . . . , Um, for Sk =∑
i∈[k] Ui for k ∈ [m], and for λ1, λ2 > 0, we have

Pr

[
max

1≤k≤m
|Sk| > λ1 + λ2

]
≤ Pr [|Sm| > λ1]

1−max1≤k≤m Pr [|Sm − Sk| > λ2]
.

If we additionally assume the Ui above are i.i.d. with mean 0 and take values from an interval of
bounded length L, we can apply Hoeffding’s inequality for the following corollary:

Corollary 2. For independent and identically distributed random variables U1, . . . , Um with mean zero
and support strictly bounded by an interval of length L, for Sk =

∑
i∈[k] Ui for k ∈ [m], and for λ1, λ2 > 0,

we have

Pr[ max
k∈[m]

|Sk| > λ1 + λ2] ≤ 2 exp(−2λ2
1/(mL

2))

1− 2 exp(−2λ2
2/(mL

2))
.

When our random variables do not come from a bounded-length interval, we will require Bernstein’s
inequality instead of Hoeffding’s to attain a similar result on their partial sums.

Lemma 3 (Bernstein’s inequality [VDVW96]). For independent random variables Y1, . . . , Ym with mean

zero such that E
[
e|Yi|/M − 1− |Yi|

M

]
M2 ≤ 1

2
vi for constants M and vi for all i ∈ [m], we have

Pr[|Y1 + . . .+ Yn| > x] ≤ 2 exp

(
−1

2

x2

v +Mx

)
,

for v ≥ v1 + . . .+ vm.
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Corollary 4. For independent and identically distributed random variables Y1, . . . , Ym with mean zero

such that E
[
e|Yi| − 1− |Yi|

]
≤ 1

2
v, for constant v for all i ∈ [m], and for Sk =

∑
i∈[k] Yi for k ∈ [m], and

for λ1, λ2 > 0, we have

Pr[ max
k∈[m]

|Sk| > λ1 + λ2] ≤ 2 exp(−λ2
1/(2mv + 2λ1))

1− 2 exp(−λ2
2/(2mv + 2λ2))

.

3 Offline private change-point detection

In this section, we investigate the differentially private change-point detection problem in the setting
that n data points X = {x1, . . . , xn} are known to the algorithm in advance. Given two hypothesized
distributions P0 and P1, our algorithms privately approximate the MLE k̂ of the change time k∗. We
consider accuracy of change-point estimation with and without the assumption that the distributions
have uniformly bounded likelihood ratios.

First, we provide finite-sample accuracy guarantees for the MLE in each of these cases in Section 3.1.
Second, we offer an algorithm OfflinePCPD in Section 3.2 that achieves privacy by introducing noise
proportional to the sensitivity of the log-likelihood calculation. To detect changes in certain distributions
such as Gaussians, our OfflinePCPD algorithm requires infinite noise and therefore provides no accuracy.
Therefore, we finally provide a second private algorithm OfflinePTCPD in Section 3.3, which has no
restriction on the distributions and instead uses a truncation parameter A > 0 to control the sensitivity
of the log-likelihood calculation. In Table 1 we summarize accuracy bounds for both the MLE and the
output of our algorithms under these assumptions.

Quantity Accuracy guarantee α

MLE k̂ min
{

2∆(`)2

C2 log 32
3β ,

35
C2
M

log 32
3β

}
OfflinePCPD max

{
8∆(`)2

C2 log 64
3β ,

4∆(`)
Cε log 16

β

}
OfflinePTCPD max

{
8A2

C2
A

log 64
3β ,

4A
CAε

log 16
β

}
Table 1: Summary of accuracy guarantees for non-private and private offline change-point
detection under the alternate hypothesis H1. The expressions k̂, ∆(`), C, CM and CA are
defined in (2), (6), (3), (4), (5), respectively.

Although our algorithms only guarantee accuracy if the analyst supplies the true distributions P0, P1

from which data are drawn, it is important to note that the algorithms are ε-differentially private for
any hypothesized distributions P0, P1 and privacy parameter ε > 0 regardless of the distributions from
which X is drawn. In the change-point or statistical process control (SPC) literature, when the pre- and
post- change distributions are unknown in practical settings, researchers often choose hypotheses P0, P1

with the smallest justifiable distance. While it is easier to detect and accurately estimate a larger change,
larger changes are often associated with a higher-sensitivity MLE, requiring more noise (and therefore
additional error) or truncation (and therefore information loss) to preserve privacy. We propose that
practitioners using our private change-point detection algorithm choose input hypotheses accordingly.
This practical setting is considered in our numerical studies, presented in Section 5.

3.1 Finite sample accuracy guarantees for the MLE

Here we provide two accuracy bounds for the standard (non-private) MLE. These are the first finite-sample
accuracy guarantees for this estimator. Such non-asymptotic properties have not been previously studied
in traditional statistics, which typically focuses on consistency and unbiasedness of the estimator, with
less attention to the convergence rate. We show that the additive error of the MLE is constant with
respect to the sample size, which means that the convergence rate is OP (1). These results provide a
baseline for quantifying the cost of privacy, since the techniques used in the theorem below mirror those
used later in the accuracy proofs for our private algorithms.

A technical challenge that arises in proving accuracy of the estimator is that the xi are not identically
distributed when the true change-point k∗ ∈ (1, n], and so the partial log-likelihood ratios `(k) are
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dependent across k. Hence we need to investigate a sequence of `(k) that may be neither independent nor

identically distributed. Fortunately, the differences `(k)− `(k + 1) = log P1(xk)
P0(xk)

are piecewise i.i.d. This
property is key in our proof. Moreover, we show that we can divide the possible outputs of the algorithm
into regions of doubling size with exponentially decreasing probability of being selected by the algorithm,
resulting in accuracy bounds that are independent of the number of data points n.

Note that our first accuracy guarantee depends on two measures ∆(`) and C of the distances between
distributions P0 and P1. Accuracy is best for distributions for which ∆(`) is small relative to KL-
divergence, which is consistent with the intuition that larger changes are easier to detect but output
sensitivity degrades the robustness of the estimator, harming accuracy. This will be true for our first
private algorithm OfflinePCPD, whose accuracy is additionally harmed by the extra noise required to
protect privacy when output sensitivity is higher.

This dependence on ∆(`) is not inherent, however. Allowing ∆(`) to be infinite precludes our use
of the same concentration inequalities in obtaining the accuracy guarantee, but the main idea in the
proof can be salvaged by decomposing the change from P0 to P1 into a change from P0 to the average
distribution (P0 + P1)/2 and then the average distribution to P1. Correspondingly, our second accuracy
guarantee will use the alternative distance measure

CM = min

{
DKL(P0||

P0 + P1

2
), DKL(P1||

P0 + P1

2
)

}
,

which will allow us provide an MLE accuracy guarantee for arbitrary distributions.

Theorem 4. For n data points drawn from P0, P1 such that ∆(`) <∞ with true change time k∗ ∈ (1, n],
the MLE k̂ is (α, β)-accurate for any β > 0 and

α =
2∆(`)2

C2
log

32

3β
. (7)

For n data points drawn from arbitrary P0, P1 with true change time k∗ ∈ (1, n), the MLE k̂ is
(α, β)-accurate for any β > 0 and

α =
35

C2
M

log
32

3β
, (8)

where C and CM are defined in (3) and (4), respectively.

Proof. Given some true change-point k∗ and error tolerance α > 0, we can partition the set of bad
possible outputs k̂ into sub-intervals of exponentially increasing size as follows. For i ≥ 1, let

R−i = [k∗ − 2iα, k∗ − 2i−1α)

R+
i = (k∗ + 2i−1α, k∗ + 2iα]

Ri = R−i ∪R
+
i

Then we can bound the probability of the bad event as follows:

β = Pr[|k̂ − k∗| > α] ≤
∑
i≥1

Pr[max
k∈Ri
{`(k)− `(k∗)} > 0] (9)

This requires us to reason about the probability that the log-likelihood ratios for the data are not
too far away from their expectation. Although the `(k) are not independent across k, their pairwise
differences `(k + 1) − `(k) are. When ∆(`) < ∞ we can apply our corollary of Ottaviani’s inequality
(Corollary 2) to bound the probability that `(k) exceeds `(k∗) by appropriately defining several random
variables corresponding to a data stream X drawn according to the change-point model.

Specifically, we can decompose the empirical log-likelihood difference between the true change-point
k∗ and any candidate k into the expected value of this difference and the sum of i.i.d. random variables
with mean zero as follows:

Uj :=

{
− log

P0(xj)

P1(xj)
+DKL(P0||P1), j < k∗

− log
P1(xj)

P0(xj)
+DKL(P1||P0), j ≥ k∗

`(k)− `(k∗) =

{∑k∗−1
j=k Uj − (k∗ − k)DKL(P0||P1), k < k∗∑k−1
j=k∗ Uj − (k − k∗)DKL(P1||P0), k ≥ k∗
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We also define random variable Sm to denote the sum of m i.i.d. random variables as follows, noting
that Sm is distributed like

∑k∗−1
j=k∗+m Uj for m < 0 and like

∑k∗+m−1
j=k∗ Uj for m > 0.

Sm =

{∑
k∗+m≤j<k∗ Uj , m < 0∑
k∗≤j<k∗+m Uj m > 0

With these random variables, we bound the probability that the MLE lives in any particular bad
subinterval Ri, i ≥ 1 as follows:

Pr[max
k∈Ri
{`(k)− `(k∗)} > 0]

= Pr[ max
k∈R−i

{
k∗−1∑
j=k

Uj − (k∗ − k)DKL(P0||P1)} > 0]

+ Pr[ max
k∈R+

i

{
k−1∑
j=k∗

Uj − (k − k∗)DKL(P1||P0)} > 0]

≤ Pr[ max
k∈[2i−1α]

|S−k| > 2i−1αC] + Pr[ max
k∈[2i−1α]

|Sk| > 2i−1αC]

≤ 4 · exp(−2i−2αC2/∆(`)2)

1− 2 · exp(−2i−2αC2/∆(`)2)
(10)

≤ 8 exp(−2i−2αC2/∆(`)2) (11)

= 8

(
exp(

−αC2

2∆(`)2
)

)2i−1

where the first inequality comes from the definitions of Ri and C, inequality (10) follows from an
application of Corollary 2 with λ1 = λ2 = 2i−2αC and L = ∆(`), and the denominator can be simplified

as in (11) under the assumption that α ≥ 2∆(`)2 log 4

C2 , which is satisfied by the final bound on α in (7).
We now consider the sum of these terms over all i, which will be needed for the final bound on Equation

(9). We note that this sum is bounded above by a geometric series with ratio exp(−αC2/(2∆(`)2)) since
2i−1 ≥ i, yielding the second and third inequalities. For the fourth inequality, the same assumed lower
bound on α is used to simplify the denominator as in (11):

∑
i≥1

Pr[max
k∈Ri
{`(k)− `(k∗)} > 0] ≤ 8

∑
i≥1

(
exp(

−αC2

2∆(`)2
)

)2i−1

≤ 8
∑
i≥1

(
exp(

−αC2

2∆(`)2
)

)i

≤
8 exp( −αC

2

2∆(`)2
)

1− exp( −αC
2

2∆(`)2
)

≤ 32

3
exp

(
−αC2

2∆(`)2

)
.

For α as in (7) in the theorem statement, the expression above is bounded by β as required.
In the case that ∆(`) is infinite, we instead define i.i.d. random variables Vj with mean zero, according

to an alternative log-likelihood as follows:

Vj :=

− log
P0(xj)

(
P0+P1

2
)(xj)

+DKL(P0||P0+P1
2

), j < k∗

− log
P1(xj)

(
P0+P1

2
)(xj)

+DKL(P1||P0+P1
2

), j ≥ k∗

This new set of random variables is necessary when ∆(`) is infinite, because the Uj no longer have bounded
support, so we cannot apply Corollary 2. Instead we will apply a corollary of Bernstein’s inequality
(Corollary 4) to get similar bounds.
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With these random variables, we can bound the empirical log-likelihood difference between the true
change-point k∗ and any candidate k by,

1

2
[`(k)− `(k∗)] ≤

{∑k∗−1
j=k Vj − (k∗ − k)DKL(P0||P0+P1

2
), k < k∗∑k−1

j=k∗ Vj − (k − k∗)DKL(P1||P0+P1
2

), k ≥ k∗.

The inequality follows by concavity of the log function, which gives that 1
2

log P1(x)
P0(x)

≤ log (P0+P1
2

)(x)P0(x)

for any x. Next we bound each term in (9) for any i ≥ 1 as follows, noting that the 1/2 multiplier has no
effect when we are only concerned with the maximum being positive:

Pr[max
k∈Ri
{`(k)− `(k∗)} > 0]

≤ Pr[ max
k∈R−i

{
k∗−1∑
j=k

Vj − (k∗ − k)DKL(P0||
P0 + P1

2
)} > 0]

+ Pr[ max
k∈R+

i

{
k−1∑
j=k∗

Vj − (k − k∗)DKL(P1||
P0 + P1

2
)} > 0]

≤ Pr[ max
k∈[2i−1α]

|
∑k∗−1
j=k∗−k Vj | > 2i−1αCM ] + Pr[ max

k∈[2i−1α]
|
∑k∗+k−1
j=k∗ Vj | > 2i−1αCM ] (12)

≤
4 exp

(
− 2i−3αC2

M
CM+8

)
1− 2 exp

(
− 2i−3αC2

M
CM+8

) (13)

≤ 8 exp

(
−2i−3αC2

M

CM + 8

)
(14)

where (12) follows from the definitions of Ri and CM , and (13) follows from an application of Corollary 4
with λ1 = λ2 = 2i−2αCM and v = 4. The denominator is simplified in (14) using our final bound on α in

(8) and direct calculations to show that α ≥ 35
C2
M

log 32
3β
> 82/C2

M implies 2 exp
(
− 2i−3αC2

M
CM+8

)
< 1/2.

To verify the application of Corollary 4 used in Equation (13), we need to show that for all j,

E [exp(|Vj |)− 1− |Vj |] ≤ 2. (15)

To show this, let Yj be the biased i.i.d. alternative log-likelihood ratio as follows:

Yj =


(
P0+P1

2
)(xj)

P0(xj)
, j < k∗

(
P0+P1

2
)(xj)

P1(xj)
, j ≥ k∗

Because Pi(x)/(P0+P1
2

)(x) ≤ 2 for i = 0, 1, we have 0 ≤ DKL(Pi||(P0 + P1)/2) ≤ log 2, and thus

eDKL(Pi||(P0+P1)/2) ∈ [1, 2]. It suffices to note that E [exp(|Vj |)] ≤ 3, because E [exp(|Vj |)− 1− |Vj |] ≤
E [exp(|Vj |)− 1]. We present the analysis when j < k∗, and the following expectation is taken under P0.
Note that the other side j ≥ k∗ is similar with the expectation taken under P1.

E [exp(|Vj |)] = E [exp(| log Yj − E [log Yj ] |)]
≤ E [exp(log Yj − E [log Yj ])] + E [exp(E [log Yj ]− log Yj)]

= E [Yj ] e
DKL(P0||(P0+P1)/2) +

E [1/Yj ]

eDKL(P0||(P0+P1)/2)

≤ eDKL(P0||(P0+P1)/2) +
2

eDKL(P0||(P0+P1)/2)
(16)

≤ 2
√

2 ≤ 3, (17)

where (16) follows from E [Yj ] = 1, and E [1/Yj ] = E
[
P0(x)/(P0+P1

2
)(x)

]
≤ 2, and (17) follows from the

optimization that x+ 2/x ≤ 2
√

2 for x ∈ [1, 2].

9



Finally, we consider the sum of the terms (14) over all i:

∑
i≥1

Pr[max
k∈Ri
{`(k)− `(k∗)} > 0] ≤

∑
i≥1

8

(
exp

(
− αC2

M

4(CM + 8)

))2i−1

≤
∑
i≥1

8

(
exp

(
− αC2

M

4(CM + 8)

))i

≤
8 exp

(
− αC2

M
4(CM+8)

)
1− exp

(
− αC2

M
4(CM+8)

)
≤ 32

3
exp

(
−αC

2
M

35

)
. (18)

The denominator is simplified in 18 using the condition that exp
(
− αC2

M
4(CM+8)

)
< 1/4. For α as in (8) in

the theorem statement, the expression above is bounded by β, completing the proof.

3.2 Offline algorithm under the uniform bound assumption

Our first private offline algorithm OfflinePCPD applies the report noisy max algorithm [DR14] to the
change-point problem by adding Laplace noise with parameter ∆(`)/ε to each finite-sensitivity partial
log-likelihood ratio `(k) in order to estimate the private change-point. We note that our algorithm can be
easily modified to additionally output an approximation of `(k̃) and incur 2ε privacy cost by composition.

Algorithm 3 Offline private change-point detector: OfflinePCPD(X,P0, P1, ε, n)

Input: database X, distributions P0, P1, privacy parameters ε, database size n

Let ∆(`) = maxx log P1(x)
P0(x) −minx′ log P1(x′)

P0(x′)

for k = 1, . . . , n do

Compute `(k) =
∑n
i=k log P1(xi)

P0(xi)

Sample Zk ∼ Lap(∆(`)
ε )

end for
Output k̃ = argmax

1≤k≤n
{`(k) + Zk}

Privacy of OfflinePCPD follows by instantiation of ReportMax [DR14] with queries `(k) for
k ∈ [n], which have sensitivity ∆(`); this proof is included for completeness.

Theorem 5. For arbitrary data X and ε > 0, OfflinePCPD(X,P0, P1, ε) is ε-differentially private.

Proof. Fix any two neighboring databases X,X ′ that differ on index j. For any k ∈ [n], denote the
respective partial log-likelihood ratios as `(k) and `′(k). By (1), we have

`′(k) = `(k) + ∆I{j ≥ k} with ∆ = log
P1(x′j)

P0(x′j)
− log

P1(xj)

P0(xj)
. (19)

Next, for a given 1 ≤ i ≤ n, fix Z−i, a draw from [Lap(∆(`)/ε)]n−1 used for all the noisy log likelihood
ratio values except the ith one. We will bound from above and below the ratio of the probabilities that
the algorithm outputs k̃ = i on inputs X and X ′. Define the minimum noisy value in order for i to be
select with X:

Z∗i = min{Zi : `(i) + Zi > `(k) + Zk ∀k 6= i}

If ∆ < 0, then for all k 6= i we have

`′(i) + ∆(`) + Z∗i ≥ `(i) + Z∗i > `(k) + Zk ≥ `′(k) + Zk.

10



If ∆ ≥ 0, then for all k 6= i we have

`′(i) + Z∗i ≥ `(i) + Z∗i > `(k) + Zk ≥ `′(k)−∆(`) + Zk.

Hence, Z′i ≥ Z∗i + ∆(`) ensures that the algorithm outputs i on input X ′, and the theorem follows from
the following inequalities for any fixed Z−i, with probabilities over the choice of Zi ∼ Lap(∆(`)/ε).

Pr[k̃ = i | X ′, Z−i] ≥ Pr[Z′i ≥ Z∗i +A | Z−i] ≥ e−ε Pr[Zi ≥ Z∗i | Z−i] = e−ε Pr[k̃ = i | X,Z−i]

Next we provide an accuracy guarantee for the output k̃ of our private algorithm OfflinePCPD
when the data are drawn from P0, P1 with true change point k∗ ∈ (1, n). By providing this bound using a
technique mirroring that of Theorem 4 to bound the error of the non-private MLE, Theorem 6 quantifies
the marginal cost of requiring privacy in change-point detection. This additional cost comes from the fact
that not only may the randomness of the n data points X result in an incorrect MLE, but the randomness
of the Laplace noise added for privacy may also result in an incorrect noisy estimate of the MLE.

Theorem 6. For hypotheses P0, P1 such that ∆(`) <∞ and n data points X drawn from P0, P1 with true
change time k∗ ∈ (1, n], and for privacy parameter ε > 0, OfflinePCPD(X,P0, P1, ε, n) is (α, β)-accurate
for any β > 0 and

α = max

{
8∆(`)2

C2
log

64

3β
,

4∆(`)

Cε
log

16

β

}
. (20)

Proof. Our proof is structured around the observation that the algorithm only outputs a particular
incorrect k̃ 6= k∗ if there exists some k in with `(k) + Zk > `(k∗) + Zk∗ for a set of random noise values
{Zk}k∈[n] selected by the algorithm. For the algorithm to output an incorrect value, there must either
be a k that nearly beats the true change point on the noiseless data or there must be a k that receives
much more noise than k∗. Intuitively, this captures the respective scenarios that unusual data causes
non-private ERM to perform poorly and that unusual noise draws causes our private algorithm to perform
poorly.

As in the proof of Theorem 4, given some true change-point k∗ and error tolerance α > 0, we partition
the set of bad possible outputs k into sub-intervals of exponentially increasing size. For i ≥ 1, let

R−i = [k∗ − 2iα, k∗ − 2i−1α)

R+
i = (k∗ + 2i−1α, k∗ + 2iα]

Ri = R−i ∪R
+
i

Then for any range-specific thresholds ti for i ≥ 1, our previous observations allow us to bound the
probability of the bad event as follows:

β = Pr[|k̃ − k∗| > α] ≤
∑
i≥1

Pr[max
k∈Ri
{`(k)− `(k∗)} > −ti] +

∑
i≥1

Pr[max
k∈Ri
{Zk − Zk∗} ≥ ti] (21)

We bound each term in the above expression separately for ti = 2i−2αC, and we will set α to ensure
that each term is at most β/2. As in Theorem 4, we can bound the first set of terms using Corollary 2
to bound the probability that `(k) significantly exceeds `(k∗) by appropriately defining several random
variables corresponding to a data stream X drawn according to the change-point model:

Uj =

{
− log

P0(xj)

P1(xj)
+DKL(P0||P1), j < k∗

− log
P1(xj)

P0(xj)
+DKL(P1||P0), j ≥ k∗

`(k)− `(k∗) =

{∑k∗−1
j=k Uj − (k∗ − k)DKL(P0||P1), k < k∗∑k−1
j=k∗ Uj − (k − k∗)DKL(P1||P0), k ≥ k∗

We also define random variable Sm to denote the sum of m i.i.d. random variables as follows, noting
that Sm is distributed like

∑k∗−1
j=k∗+m Uj for m < 0 and like

∑k∗+m−1
j=k∗ Uj for m > 0.

Sm =

{∑
k∗+m≤j<k∗ Uj , m < 0∑
k∗≤j<k∗+m Uj m > 0

11



With these random variables, we bound each term in the first set of terms in (21) for any i ≥ 1 and
threshold ti = 2i−2αC as follows:

Pr[max
k∈Ri
{`(k)− `(k∗)} > −2i−2αC]

≤ Pr[ max
k∈R−i

{
k∗−1∑
j=k

Uj − (k∗ − k)DKL(P0||P1)} > −2i−2αC]

+ Pr[ max
k∈R+

i

{
k−1∑
j=k∗

Uj − (k − k∗)DKL(P1||P0)} > −2i−2αC]

≤ Pr[ max
k∈[2i−1α]

|S−k| > 2i−2αC] + Pr[ max
k∈[2i−1α]

|Sk| > 2i−2αC]

≤ 4 · exp(−2i−4αC2/∆(`)2)

1− 2 · exp(−2i−4αC2/∆(`)2)
(22)

≤ 8 exp(−2i−4αC2/∆(`)2) (23)

= 8

(
exp(

−αC2

8∆(`)2
)

)2i−1

where (22) follows from an application of Corollary 2 with λ1 = λ2 = 2i−3αC and L = ∆(`), and the

denominator can be simplified as in (23) under the assumption that α ≥ 8∆(`)2 log 4

C2 , which is satisfied by
our final bounds.

We now consider the sum of these terms over all i, which will be needed for the final bound on Equation
(21). We note that this sum is bounded above by a geometric series with ratio exp(−αC2/(8∆(`)2)) since
2i−1 ≥ i, yielding the second and third inequalities. For the fourth inequality, the same assumed lower
bound on α is used to simplify the denominator as in (23):

∑
i≥1

Pr[max
k∈Ri
{`(k)− `(k∗)} > −2i−2αC] ≤ 8

∑
i≥1

(
exp(

−αC2

8∆(`)2
)

)2i−1

≤ 8
∑
i≥1

(
exp(

−αC2

8∆(`)2
)

)i

≤
8 exp( −αC

2

8∆(`)2
)

1− exp( −αC
2

8∆(`)2
)

≤ 32

3
exp

(
−αC2

8∆(`)2

)
(24)

The first term in (20) in the theorem statement ensures that the expression above is bounded by β/2.
It remains to show that the second term in (20) is enough to guarantee that the Laplace noise added for
privacy will not harm accuracy except with probability β/2.

Next we bound the second set of terms of (21). We can easily bound one term in this set for any
i ≥ 1 since each Zk and Zk∗ are independent draws from a Laplace distribution with parameter ∆(`)/ε,
allowing us to apply a union bound over all indices in Ri:

Pr[max
k∈Ri
{Zk − Zk∗} ≥ 2i−2αC] ≤ Pr[2 max

k∈Ri
|Zk| ≥ 2i−2αC]

≤ 2iαPr[|Lap(∆(`)/ε)| ≥ 2i−3αC]

≤ 2iα · exp(
−2i−3αCε

∆(`)
)

= 2iα

(
exp(

−αCε
4∆(`)

)

)2i−1
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Then by summing over all ranges and assuming in (25) that α ≥ 4∆(`) ln 2
Cε

to simplify the denominator
(which will be satisfied by our final bound on α, we obtain a bound on the probability of large noise
applied to any possible k far from k∗.

∑
i≥1

Pr[max
k∈Ri
{Zk − Zk∗} > 2i−2αC] ≤ α

∑
i≥1

2i
(

exp(
−αCε
4∆(`)

)

)2i−1

≤ 2α
∑
i≥1

i

(
exp(

−αCε
4∆(`)

)

)i

= 2α
exp(−αCε

4∆(`)
)

(1− exp(−αCε
4∆(`)

))2

≤ 8α exp

(
−αCε
4∆(`)

)
(25)

Since x/2 ≥ lnx, requiring α ≥ 4∆(`) log(16/β)
Cε

suffices to ensure that (25) is at most β/2 as required.

3.3 Offline algorithm for arbitrary distributions

In this subsection, we give an offline private change-point detector OfflinePTCPD that offers guarantees
even when ∆(`) is infinite. Relaxing the uniform bound assumption means that we may have a single
data point xj that dramatically increases `(k) for k ≥ j, so we cannot add noise proportional to ∆(`).
Instead we truncate the log-likelihood ratio and add noise proportional to the post-truncation range. We
compute the A-truncated log-likelihood ratio of k as

`A(k) =

n∑
i=k

[
log

P1(xi)

P0(xi)

]A/2
−A/2

,

where [x]ba denotes the projection of x onto the interval [a, b]. This truncation scheme yields privacy
immediately by instantiation of ReportMax [DR14] with queries `A(k) for k ∈ [n], which have sensitivity
∆(`A) = A.

Algorithm 4 Offline private change-point detector: OfflinePTCPD(X,P0, P1, ε, n,A)

Input: database X, distributions P0, P1, privacy parameter ε, database size n, truncation
parameter A
for k = 1, . . . , n do

Compute `A(k) =
∑n
i=k

[
log P1(xi)

P0(xi)

]A/2
−A/2

Sample Zk ∼ Lap(Aε )
end for
Output k̃ = argmax

1≤k≤n
{`A(k) + Zk} . Report noisy argmax

.

Theorem 7. For arbitrary data X and ε > 0, OfflinePTCPD(X,P0, P1, ε, A) is ε-differentially private.

Since we are no longer able to uniformly bound P1(x)/P0(x), our accuracy results include a truncation
parameter A in place of ∆(`) since A is the sensitivity of `A. Rather than C, the distributional difference
measure parametrizing our results correspondingly depends on the truncation parameter A, which must
be chosen to ensure CA is positive:

CA = min

{
−Ex←P0

[
log

P1(x)

P0(x)

]A/2
−A/2

,Ex←P1

[
log

P1(x)

P0(x)

]A/2
−A/2

}
.
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We note that for Gaussian and Gamma distributions, any A > 0 ensures CA > 0. In Section 5 we illustrate
that for these distributions, it is best to choose small A to avoid excess noise and effectively rely on the sign
of the log-likelihood ratio for accuracy. For general P0 6= P1, A > 2 is a sufficient condition by the following

argument. When A > 2, we have [log x]
A/2

−A/2 ≤ x−1, and thus EP0

[
log P1(x)

P0(x)

]A/2
−A/2

< EP0

[
P1(x)
P0(x)

− 1
]

= 0

and EP1

[
log P1(x)

P0(x)

]A/2
−A/2

= −EP1

[
log P1(x)

P0(x)

]A/2
−A/2

> 0.

With these definitions, we are ready to present the accuracy of OfflinePTCPD, in which the

quantities A and E
[
log P1(x)

P0(x)

]A/2
−A/2

play roles analogous to `(k) and DKL in Theorem 6.

Theorem 8. For arbitrary hypotheses P0, P1 and n data points X drawn from P0, P1 with true change
time k∗ ∈ (1, n), for privacy parameter ε > 0, and for truncation parameter A that satisfies CA > 0,
OfflinePTCPD(X,P0, P1, ε, n,A) is (α, β)-accurate for any β > 0 and

α = max

{
8A2

C2
A

log
64

3β
,

4A

CAε
log

16

β

}
, (26)

where CA is defined in (5).

Proof. Given some true change-point k∗ and error tolerance α > 0, we can partition the set of bad
possible outputs k into sub-intervals of exponentially increasing size as follows. Following the notation of
Theorem 6, for i ≥ 1 we let

R−i = [k∗ − 2iα, k∗ − 2i−1α)

R+
i = (k∗ + 2i−1α, k∗ + 2iα]

Ri = R−i ∪R
+
i ,

and for range-specific thresholds ti for i ≥ 1, we will bound the probability of a bad output as follows:

Pr[|k̃ − k∗| > α] ≤
∑
i≥1

Pr[max
k∈Ri
{`A(k)− `A(k∗)} > ti] +

∑
i≥1

Pr[max
k∈Ri
{Zk − Zk∗} ≥ ti] (27)

In order to do this, we decompose the truncated log-likelihood difference between the true change-point
k∗ and any candidate k into the sum of i.i.d. random variables with mean zero and the expected value of
this difference as follows:

Uj =


[
log

P1(xj)

P0(xj)

]A/2
−A/2

− Ex←P0

[
log P1(x)

P0(x)

]A/2
−A/2

, j < k∗

−
[
log

P1(xj)

P0(xj)

]A/2
−A/2

+ Ex←P1

[
log P1(x)

P0(x)

]A/2
−A/2

, j ≥ k∗

`A(k)− `A(k∗) =


∑k∗−1
j=k Uj + (k∗ − k)Ex←P0

[
log P1(x)

P0(xi)

]A/2
−A/2

, k < k∗∑k−1
j=k∗ Uj − (k − k∗)Ex←P1

[
log P1(x)

P0(xi)

]A/2
−A/2

, k ≥ k∗

The rest of the proof follows exactly as the proof of the accuracy of OfflinePCPD from Theorem 6
with ` replaced with `A, with ∆(`) replaced with A, and with C replaced with CA. As before, we
set ti = 2i−2αCA, and the constants are inherited exactly as is because the truncated log-likelihood
is applicable to the concentration inequalities in the same way that the non-truncated but uniformly
bounded log-likelihood was in Theorem 6.

4 Online private change-point detection

In this section, we give new differentially private algorithms for change-point detection in the online setting.
In this setting, the algorithm initially receives n data points x1, . . . , xn and then continues to receive data
points one at a time. As before, the goal is to privately identify an approximation of the time k∗ when
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the data change from distribution P0 to P1, and now we additionally want to identify this change shortly
after it occurs. We first give an algorithm OnlinePCPD for detecting a single change-point, and then
we show how it can be extended to OnlinePMCPD to detect multiple change-points. Our algorithms
use OfflinePCPD as a subroutine, but can be modified in a straightforward way to use log-likelihood
truncation and OfflinePTCPD if distributions do not satisfy the assumption of uniform boundedness.

4.1 Single change-point

Even in the single change-point setting, our offline algorithm is not directly applicable because we do
not know a priori how many points must arrive before a true change-point occurs. To resolve this,
OnlinePCPD works like AboveThresh(presented in Section 2.2), determining after each new data entry
arrives whether it is likely that a change occurred in the most recent n entries. When OnlinePCPD at
time j detects a sufficiently large (noisy) partial log-likelihood ratio `(k, j) =

∑j
i=k log P1(xi)

P0(xi)
for some k

within n data points of j, it calls OfflinePCPD to privately determine the most likely change point k̃ in
the window {xj−n+1, . . . , xj}.

Privacy of OnlinePCPD is immediate from composition of AboveThresh and OfflinePCPD, each
with privacy loss ε/2. As before, accuracy requires X to be drawn from P0, P1 with some true change
point k∗. This algorithm also requires a suitable choice of log-likelihood threshold T to guarantee that
OfflinePCPD is called for a window of data that actually contains k∗. Specifically, T should be large
enough that the algorithm is unlikely to call OfflinePCPD when j < k∗ but small enough so that it is
likely to call OfflinePCPD by time j = k∗ + n/2. When both of these conditions hold, we inherit the
accuracy of OfflinePCPD.

With our final bounds, we note that n� ∆(`)
C

log(k∗/β) suffices for existence of a suitable threshold,
and an analyst must have a reasonable approximation of k∗ in order to choose such a threshold. Otherwise,
the accuracy bound itself has no dependence on the change-point k∗.

Algorithm 5 Online private change-point detector: OnlinePCPD(X,P0, P1, ε, n, T )

Input: database X, distributions P0, P1, privacy parameter ε, starting size n, threshold T

Let ∆(`) = maxx log P1(x)
P0(x) −minx′ log P1(x′)

P0(x′)

Let T̂ = T + Lap(4∆(`)/ε)
for each new data point xj , j ≥ n do

Compute `j = maxj−n+1≤k≤j{`(k, j)} = maxj−n+1≤k≤j{
∑j
i=k log P1(xi)

P0(xi)
}

Sample Zj ∼ Lap( 8∆(`)
ε )

if `j + Zj > T̂ then
Output (j − n) + OfflinePCPD({xj−n+1, . . . , xj}, P0, P1, ε/2, n)
Halt

end if
end for

Theorem 9. For arbitrary data X and ε > 0, OnlinePCPD(X,P0, P1, ε, n, T ) is ε-differentially private.

Theorem 10. For hypotheses P0, P1 such that ∆(`) <∞, a stream of data points X with starting size n
drawn from P0, P1 with true change time k∗ ≥ n/2, privacy parameter ε > 0, and threshold T ∈ [TL, TU ]
with

TL := 2∆(`)

√
2 log

64k∗

β
− C +

16∆(`)

ε
log

8k∗

β
,

TU :=
nC

2
− ∆(`)

2

√
n log(8/β)− 16∆(`)

ε
log

8k∗

β
,

we have that OnlinePCPD(X,P0, P1, ε, n, T ) is (α, β)-accurate for any β > 0 and

α = max{8∆(`)2

C2
log

128

3β
,

8∆(`)

Cε
log

32

β
}.
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In the above expressions, C = min{DKL(P0||P1), DKL(P1||P0)}.

Proof. We first give a range [TL, TU ] of thresholds that ensure that except with probability β/4, the
randomly sampled data stream satisfies the following two conditions for some α′. These conditions are
inherited from the requirements for AboveThreshaccuracy, respectively capturing the requirements that
the threshold is not reached too early and that it is reached at least by the time the window is centered
around k∗:

1. For T ≥ TL, maxk∈[j−n+1,j] `(k, j) < T − α′ for every j < k∗.

2. For T ≤ TU , maxk∈[k∗−n/2,k∗+n/2−1] `(k, k + n/2) > T + α′.

When these conditions are satisfied, the AboveThresh guarantee ensures that except with probability
β/4, the randomness of the online algorithm ensures that it calls the offline algorithm on a window of
data containing the true change-point. Then we will argue that our overall accuracy follows from the
offline guarantee, where we will allow failure probability β/2.

We will get the first condition by taking a union bound over all windows tested before the change-point,
of the probability that the maximum log-likelihood maxk `(k) for n elements X = {x1, . . . , xn} sampled
from P0 exceeds a given threshold. To bound this probability, we first define the following random
variables.

Uj = − log
P0(xj)

P1(xj)
+DKL(P0||P1) Sm =

∑
1≤j≤m

Uj

We note that each `(k) is the sum of i.i.d. random variables, and that the maximum log-likelihood over
m consecutive elements is equal in distribution to maxk∈[m] Sk − kDKL(P0||P1). This yields the first
inequality below. Inequality (28) comes from applying Corollary 2 with λ1 = λ2 = 2i−2C + t/2 and
interval length L = ∆(`).

Pr

[
max

1≤k≤n
{`(k)} > t

]
≤
∑
i≥1

Pr[ max
k∈[2i−1,2i)

{Sk − kDKL(P0||P1)} > t]

≤
∑
i≥1

Pr[ max
k∈[2i−1]

Sk > 2i−1C + t]

≤
∑
i≥1

2 exp(−(2i−2C + t/2)2/(2i−2∆(`)2))

1− 2 exp(−(2i−2C + t/2)2/(2i−2∆(`)2))
(28)

≤4
∑
i≥1

exp(−(2i−2C + t/2)2/(2i−2∆(`)2)) (29)

≤8 exp(−(2−1C + t/2)2/(2−1∆(`)2)) (30)

≤ β

8k∗
(31)

Inequalities (29), (30), and (31) follow by plugging in t = 2∆(`)
√

2 log 64k∗
β
− C. This ensures that

1− 2 exp(−(2i−2C + t/2)2/(2i−2∆(`)2)) ≥ 1/2, giving Inequality (29), and that the series is increasing
exponentially in i, so we can collapse the sum with another factor of 2 by considering only i = 1 as in
Inequality (30). Plugging in this same value of t to Inequality (30) also immediately gives Inequality (31).
Taking a union bound over all the windows prior to the change-point, this shows that Condition 1 holds

for TL = 2∆(`)
√

2 log 64k∗
β
− C + α′ except with probability β/8.

To show that the second condition holds except with additional probability β/8, we consider the
window of data with the first half of data drawn from P0 and the second half drawn from P1 and
bound the probability that `(k∗) in this window is less than a given threshold as follows. We note that

`(k∗, k∗ + n/2− 1) is the sum of n/2 i.i.d. random variables log P1(xi)
P0(xi)

, although these variables are not

mean-zero. Instead, we define mean-zero random variables Vj = − log
P1(xj)

P0(xj)
+DKL(P1||P0), and write

`(k∗, k∗ + n/2− 1) in terms of these new variables, analogously to above. We can then bound the sum of
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the Vj using Hoeffding’s inequality to get Equation (32):

Pr[ max
k∗−n/2≤k<k∗+n/2

{`(k, k∗ + n/2− 1)} < t] ≤ Pr[`(k∗, k∗ + n/2− 1) < t]

≤ Pr[
∑

j=k∗,...,k∗+n/2−1

Vj > nC/2− t]

≤ exp(−4(nC/2− t)2/(n∆(`)2)) (32)

Plugging in t = nC
2
− ∆(`)

2

√
n log(8/β) in this final expression ensures that (32) ≤ β/8. This ensures that

Condition 2 is satisfied except with probability β/8 for TU = nC/2−∆(`)
√
n log(8/β)− α′.

Then we can instantiate the AboveThresh accuracy guarantee with privacy parameter ε/2 and

accuracy parameter β/4 to ensure that for α′ = 16∆(`) log(8k∗/β)
ε

when Conditions 1 and 2 are satisfied,
AboveThresh will identify a window containing the true change-point except with probability β/4.
Combining this with the β/4 probability that Conditions 1 and 2 fail to hold when T ∈ [TL, TU ], we get
that OnlinePCPD calls OfflinePCPD in a window containing the change-point except with probability
β/2 over the randomness of the data and of the online portion of the algorithm.

We next instantiate OfflinePCPD with appropriate parameters to ensure that conditioned on being
called in the correct window, it will output a k̃ that is within α of the true change-point k∗ with probability
at most β/2. We can then complete the proof by taking a union bound over all the failure probabilities.

Our offline accuracy guarantee requires data points are sampled i.i.d. from P0 before the change point
and from P1 thereafter. However, it remains to be shown that conditioning on the event that we call the
offline algorithm in a correct window does not harm the accuracy guarantee too much. For a window
size n, change-point k∗, stream X of at least k∗ + n/2 data points, set of random coins required by
OnlinePCPD and its call to OfflinePCPD, and a stopping index ν > n/2, let N(ν) denote the event
that OnlinePCPD calls OfflinePCPD on a window centered at ν, i.e., {xν−n/2, . . . , xν+n/2−1}, and let
F (ν) denote the event that OfflinePCPD on the window centered at ν fails to output an approximation
within α of k∗. Our previous arguments bound the probability of all N(ν) for ν outside of a good range
G = (k∗ − n/2, k∗], and our offline guarantee bounds the probability of F (ν) for any ν ∈ G as long as the
data are truly distributed according to the change-point model.

Failure of the online algorithm can be due to either failure to halt on a correct window or failure of
the offline algorithm on a window containing the true change. Thus we can then bound the probability of
failure of the online algorithm as:

Pr[|k̃ − k∗| > α] ≤
∑
ν 6∈G

Pr[N(ν)] + Pr[
⋃
ν∈G

F (ν)]

The first summation is at most β/2 by our previous arguments on the accuracy of the online portion
of the algorithm. It remains to calculate the second term. We can still partition the set of bad possible
output into sub-intervals of exponentially increasing size as follows. For i ≥ 1, let

R−i = [k∗ − 2iα, k∗ − 2i−1α)

R+
i = (k∗ + 2i−1α, k∗ + 2iα]

Ri = R−i ∪R
+
i
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Then we can bound the probability that the offline algorithm fails on any correct window as:

Pr[
⋃
ν∈G

F (ν)] ≤ Pr

max
ν∈G

 max
ν−n/2≤k≤ν+n/2−1

s.t. |k−k∗|>α

{`(k, ν + n/2− 1) + Zk − `(k∗, ν + n/2− 1)− Zk∗}

 > 0


= Pr

max
ν∈G

 max
ν−n/2≤k≤ν+n/2−1

s.t. |k−k∗|>α

ν+n/2−1∑
j=k

log
P1(xj)

P0(xj)
+ Zi −

ν+n/2−1∑
j=k∗

log
P1(xj)

P0(xj)
− Zk∗

 > 0



= Pr

 max
k∗−n+1≤k≤k∗+n/2−1

s.t. |k−k∗|>α


k∗∑
j=k

log
P1(xj)

P0(xj)
+ Zk − Zk∗

 > 0


≤
∑
i≥1

Pr[max
k∈Ri
{
k∗∑
j=k

log
P1(xj)

P0(xj)
} > −ti] +

∑
i≥1

Pr[max
k∈Ri
{Zk − Zk∗} > ti]

Notice that the final line above is identical to Equation (21) in the proof of Theorem 6 for the
accuracy of OfflinePCPD: the first term is the empirical log-likelihood difference between the true
change-point k∗ and any candidate k, and the second term is difference between two independent draws of
Laplace noise. Thus the remainder of the analysis follows that of Theorem 6 instantiated with parameters
β/2 and ε/2. This instantiation of Theorem 6 gives that Pr[

⋃
ν∈G F (ν)] is also bounded by β/2 when

α = max{ 8∆(`)2

C2 log 128
3β
, 8∆(`)

Cε
log 32

β
}.

Combining this with our previous bound on the N(ν) terms, we get that Pr[|k̃ − k∗| > α] ≤ β for the
desired α value in the theorem statement.

4.2 Multiple changes

We now show how to extend our OnlinePCPD algorithm to detect multiple change-points. In this
setting, the data change from distribution P0 to P1, from P1 to P2, . . ., and from Pm−1 to Pm at times k∗1 ,
k∗2 , . . . , k∗m, respectively. As data arrive, OnlinePMCPD makes online determinations about when the
current window is sufficiently likely to contain a change-point and calls OfflinePCPD when so. After
each private report of a change-point k̃i the algorithm simply restarts the remaining stream of data points
after the next n data points arrive and resumes scanning for subsequent change-points.

The idea of this algorithm is similar to the extension from AboveThresh to Sparse, but by assuming
that the m change-points are separated pairwise by at least the starting database size n and by setting
the thresholds to ensure that with high probability a changepoint k∗i is detected by time k∗i + n/2, we can
update our sliding window between change-point detections to ensure that each entry only participates in
one call to OnlinePCPD and we never miss a change-point. This means that privacy of OnlinePMCPD
is immediate from privacy of OnlinePCPD and Sparse, and the accuracy cost is only logm rather than√
m.
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Algorithm 6 Online private multiple change-point detector:
OnlinePMCPD(X,P0, . . . , Pm, ε, n, T1, . . . , Tm)

Input: database X, distributions P0, . . . , Pm, privacy parameter ε, starting size n, thresholds
T1, . . . , Tm
Let ∆1 = maxx log P1(x)

P0(x) −minx′ log P1(x′)
P0(x′)

Let T̂1 = T1 + Lap(4∆1/ε)
Let i = 1
for each new data point xj , j ≥ n do

Compute `j = maxj−n+1≤k≤j{`i(k, j)} = maxj−n+1≤k≤j{
∑j
ι=k log Pi(xι)

Pi−1(xι)
}

Sample Zj ∼ Lap( 8∆i

ε )

if `j + Zj > T̂i then

Output k̃i = (j − n) + OfflinePCPD({xj−n+1, . . . , xj}, Pi−1, Pi, ε/2, n)
if i = m then

Halt
else

Let i = i+ 1
Let ∆i = maxx log Pi(x)

Pi−1(x) −minx′ log Pi(x
′)

Pi−1(x′)

Let T̂i = Ti + Lap(4∆i/ε)
Wait for n new data points, i.e., let j advance by n

end if
end if

end for

Theorem 11. For arbitrary data X and ε > 0, OnlinePMCPD(X,P0, . . . , Pm, ε, n, T1, . . . , Tm) is
ε-differentially private.

It remains to prove accuracy for OnlinePMCPD. As before, accuracy requires X to be drawn from
P0, P1, . . . , Pm with some true change-points k∗1 , k∗2 , . . . , k∗m. To detect each change-point k∗i , the choice
of log-likelihood threshold Ti may need to be modified according to the hypothesized distributions and
possibly to the expected time until the next change-point, which depends on the accuracy of the previous
output.

Theorem 12. For hypotheses P0, P1, . . . , Pm such that ∆i = maxx log Pi(x)
Pi−1(x)

−minx′ log Pi(x
′)

Pi−1(x′) <∞
for i = 1, . . . ,m, a stream of data points X with starting size n drawn from P0, P1, . . . , Pm with true
change times k∗0 , k

∗
1 , . . . , k

∗
m with k∗0 = 0, k∗1 ≥ n/2, k∗i − k∗i−1 ≥ 3n/2 for i = 2, . . . ,m, privacy parameter

ε > 0, and thresholds Ti ∈ [TL,i, TU,i] with

TL,i := 2∆i

√
2 log

64m(k∗i − k∗i−1)

β
− Ci +

16∆i

ε
log

8m(k∗i − k∗i−1)

β
,

TU,i :=
nCi

2
− ∆i

2

√
n log(8m/β)− 16∆i

ε
log

8m(k∗i − k∗i−1)

β

for i = 1, . . . ,m, we have that OnlinePMCPD(X,P0, . . . , Pm, ε, n, T1, . . . , Tm) is (α, β)-accurate for any
β > 0 and

α = max

{
8∆2

C2
log

128m

3β
,

8∆

Cε
log

32m

β

}
.

In the above expressions, ∆ = max{∆1, . . . ,∆m}, Ci = min{DKL(Pi−1||Pi), DKL(Pi||Pi−1)} and
C = min{C1, . . . , Cm}.

Proof. For α as in the theorem statement, we will decompose the probability that the algorithm fails to
output α-approximations for every k∗i into the sum of m conditional probabilities, each of which can be
bounded by β/m by an instantiation of our accuracy theorem for OnlinePCPD. In the proof below, we
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let Si for i ∈ [m] denote the event that OnlinePMCPD calls OnlinePCPD for the ith time with k∗i in
the latter half of the window and OnlinePCPD outputs an α-approximation of k∗i . Then we have that

Pr[OnlinePMCPD(X,P0, . . . , Pm, ε, n, T1, . . . , Tm) fails] ≤ Pr[S̄1] +

m∑
i=2

Pr[S̄i ∩ S1 ∩ · · · ∩ Si−1]

≤ Pr[S̄1] +

m∑
i=2

Pr[S̄i ∩ Si−1] ≤
∑
i∈[m]

Pr[OnlinePCPD(X ′i, Pi−1, Pi, ε, n, Ti) fails], (33)

for X ′i drawn according to the single change-point model with initial distribution Pi−1 and post-change
distribution Pi with change-point k∗i − k∗i−1. The third inequality is because the event S̄i conditioned
on S1 ∩ · · · ∩ Si−1 is equivalent to the failure of OnlinePCPD on a data stream consistent with the
single change-point model, and in particular, failure is most likely when there are as many data points
drawn from Pi−1 as possible. Then bounding each term follows from instantiation of the theorem for
OnlinePCPD because we can treat the ending point of the previous detection window as the starting
point of a new detection procedure.

To be more mathematically rigorous, for i = 2, . . . ,m, we have

Pr[S̄i ∩ Si−1] ≤ Pr[S̄i|Si−1] = E[Pr(S̄i|Si−1, ji−1)|Si−1] = E[Pr(S̄i|ji−1)|Si−1], (34)

where the last equality follows from the fact that Si−1 and S̄i are independent conditional on ji−1.
This conditional independence is an immediate consequence of the fact that Si−1 depends only on the
data x1, . . . , xji−1 and S̄i depends only on the data xji−1+1, xji−1+2 . . ., which are mutually independent
conditional on ji−1, as ji−1 is a stopping time.

Our final goal is to bound Pr(S̄i|ji−1), which can be done by invoking Theorem 10. The only difference
here is that the index of the first sample is ji−1+1, instead of 1. Thus we have to modify the upper and lower

thresholds in Theorem 10. Define TL,i(j) := 2∆i

√
2 log

64m(k∗i−j)
β

−Ci+ 16∆i
ε

log
8m(k∗i−j)

β
, and TU,i(j) =:

nCi
2
− ∆i

2

√
n log(8m/β)− 16∆i

ε
log

8m(k∗i−j)
β

. For Ti ∈ [TL,i, TU,i] where TL,i = 2∆i

√
2 log

64m(k∗i−k
∗
i−1)

β
−

Ci + 16∆i
ε

log
8m(k∗i−k

∗
i−1)

β
and TU,i = nCi

2
− ∆i

2

√
n log(8m/β) − 16∆i

ε
log

8m(k∗i−k
∗
i−1)

β
, we have TL,i ≤

TL,i(j) ≤ Ti ≤ TU,i(j) ≤ TU,i(j) for any j ∈ [k∗i−1, k
∗
i−1 + n/2]. Then by instantiation of Theorem 10, we

have that Pr(S̄i|ji−1 = j) ≤ β/m provided that j ∈ [k∗i−1, k
∗
i−1 + n/2]. Note that the event Si−1 implies

ji−1 ∈ [k∗i−1, k
∗
i−1 + n/2]. Thus, Pr[S̄i ∩ Si−1] is bounded above by β/m, and (33) is bounded above by β.

5 Numerical studies

In this section, we present results from Monte Carlo experiments designed to validate the theoretical
results of previous sections. The theoretical privacy guarantees hold in the worst-case over all databases
and over all outputs of the algorithm, so it is only necessary to empirically validate the accuracy of our
algorithms. Our simulations consider both offline (Section 5.1) and online settings (Section 5.2) for the
canonical problems of detecting a change in the mean of Bernoulli or Gaussian distributions. In the
offline setting, we additionally show that our algorithms can accurately detect changes in the variance of
Gaussian distribution and detect changes in the shape parameter of a Gamma distribution.

For completeness, we state the PMF of a Bernoulli distribution, and the PDF of Gaussian and Gamma
distributions below.

• Bernoulli distribution: Pr(x = 1) = p and Pr(x = 0) = 1− p.
• Gaussian distribution: f(x;µ, σ) = (2πσ2)1/2 exp(−(x− µ)2/(2σ2)), where µ is the mean and σ is

the standard deviation.

• Gamma distribution: f(x; k, θ) = (Γ(k)θk)−1xk−1 exp(−x/θ), where θ is the scale parameter and k
is the shape parameter.

20



5.1 Evaluating the offline algorithms

Each simulation is characterized by a probability distribution family (Bernoulli, Gaussian, or Gamma),
a distribution parameter that changes (mean, standard deviation, or shape), and a change magnitude
(large, small, or underspecified). The large and small change regimes correspond respectively to large
and small changes in the distribution parameter of interest. The underspecified regime corresponds to
the setting where the true change is large, but the input parameters correspond to a small change. This
setting goes beyond our theoretical results to suggest that our algorithm still performs well, even when
the distributional parameters are misspecified. All parameters are stated in the caption.

For Bernoulli distributions, the log-likelihood ratio is uniformly bounded and so we use OfflinePCPD;
for Gaussian and Gamma distributions, we set A = 0.1 (for reasons discussed later in this section) and
use OfflinePTCPD. We vary privacy parameter ε = 0.1, 0.5, 1 and ∞, representing the non-private case.
For each of our simulations, we use n = 200 observations where the true change occurs at time k∗ = 100.
This process is repeated 104 times. The results of these simulations are presented in Figure 1, which plots
the empirical probabilities β = Pr[|k̃ − k∗| > α] as a function of α. All the parameters of each simulation
are stated in the caption.
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(a) Bernoulli: p0 = 0.2; p1 = 0.8
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(b) Bernoulli: p0 = 0.2; p1 = 0.4
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(c) Bernoulli: underspecified p change
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(d) Gaussian σ = 1: µ0 = 0;µ1 = 1
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(e) Gaussian σ = 1: µ0 = 0;µ1 = 0.5
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(f) Gaussian: underspecified µ change
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(g) Gaussian µ = 0: σ0 = 1;σ1 = 5
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(h) Gaussian µ = 0: σ0 = 1;σ1 = 3
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(i) Gaussian: underspecified σ change
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(j) Gamma θ = 2: k0 = 3; k1 = 1
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(k) Gamma θ = 2: k0 = 3; k1 = 2
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(l) Gamma: underspecified k change

Figure 1: Measured accuracy of offline algorithms on simulated change-point data. For large and small
changes (Columns 1 and 2, resp.), parameters specify distributions from which data are drawn and
hypothesized distributions given as inputs to the algorithm; for underspecified changes (Column 3), data
are drawn according to large change values but algorithm is provided hypothesized distributions consistent
with small change values.
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Figure 1 illustrates three important results for our offline algorithms when data are drawn from
Bernoulli, Gaussian, or Gamma distributions: accuracy deteriorates as privacy improves but performs
quite well even for strong privacy guarantees (ε < 1), accuracy is best when the true change in distribution
is large (Columns 1 vs 2), and the algorithm performs well even when the true change is larger than
that hypothesized (Column 3). The performance in the underspecified change experiments bolster our
theoretical results substantially, indicating that our hypotheses can be quite far from the distributions of
the true data and our algorithms will still identify a change-point relatively accurately.

Choice of truncation parameter A. The OfflinePCPD algorithm does not provide meaningful
results when the sensitivity of the log-likelihood ratio is infinite, as in the case of Gaussian and Gamma
distributions, so we must instead use OfflinePTCPD with some truncation parameter A. Theorem 8
shows that accuracy guarantees are strongest when A/CA is smallest. Since CA is a function of the
hypothesized distributions as well as A, the value of A should be chosen on a case-by-case basis.

The first row of Figure 2 numerically plots A against A/CA for the large change cases we simulated.
The plots suggest that a small A also leads to a small A/CA, and A/CA converges to a constant as A
goes to 0. The second row verifies optimality of small A by simulation, plotting the empirical probabilities
β as a function of accuracy α under different choices of A.

Intuitively, since the mechanism outputs argmaxk∈[n]{
∑n
i=k

[
log P1(xi)

P0(xi)

]A/2
−A/2

+ Lap(A/ε)}, there is a

trade-off between how much information is lost from truncation in the first term and how much noise
is added in the second term. As A→ 0+, each data point contributes ±A/2. For natural distributions,
it appears that giving some data points more weight than others does not provide enough additional
information to offset the additional required noise.
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(a) Gaussian large mean change
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(b) Gaussian large variance change
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(c) Gamma large shape change
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(d) Gaussian large mean change
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(e) Gaussian large variance change
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(f) Gamma large shape change

Figure 2: First row plots A/CA as a function of A varying from 0 to 4 for different types of
changes; theoretical accuracy bounds are strongest when A/CA is smallest. Second row shows
simulated accuracy under different choices of A for different types of change. Each simulation
involves 104 runs of OfflinePTCPD on data generated by 200 i.i.d. samples from appropriate
distributions with change-point k∗ = 100.
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5.2 Evaluating the online algorithm

We also run Monte Carlo simulations of our online change-point detection algorithm OnlinePCPD when
the data points arrive sequentially and the true change occurs at time k∗ = 5000. We consider only large
mean changes in Bernoulli and Gaussian distributions. For the Gaussian distributions, we truncate the
log-likelihoods in the main algorithm and call OfflinePTCPD with A = 0.1. The new challenge is to
choose an appropriate sliding window size n and corresponding threshold T in order to achieve good
overall accuracy. The window size of n = 200 used in the offline simulations does not permit any threshold
that reasonably controls both false positive and false negative rates, so we choose a larger window size of
n = 700 and restrict our online simulations to ε = 0.5, 1,∞. We choose the appropriate threshold T by
setting a constraint that an algorithm must have positive and negative false alarm rates both at most 0.1.

For the online simulations, we chose the lower and upper bounds of T via numerical methods in
both Bernoulli and Gaussian models instead of using the theoretical bounds, as these bounds are overly
conservative for the Bernoulli model and do not immediately apply for truncation method that is
necessary in Gaussian model. We use several key ideas from Section 4 to speed up the numerical search
of the threshold T . To limit the false positive rate to 0.10 with up to k∗ = 5000 sliding windows, a
conservative lower bound for threshold T is the 1− 0.10/5000 = 0.99998 quantile of the noisy versions
of Wn = max1≤k≤n `(k) or Wn = max1≤k≤n `A(k) with n = 700 under the pre-change distribution. To
limit the false negative rate, an upper bound for threshold T is the 10% quantile of the noisy versions of
CUSUM statistics Wn with n = 700 when the change occurs at time 350. This will guarantee that the
online algorithms raise an alarm with probability at least 0.9 during the time interval [4650, 5350].

To determine these lower and upper bounds for T , we simulate 106 realizations of the CUSUM
statistics W700 in both the pre-change and post-change cases. In each case, we speed up the computation
of Wi by using the recursive form Wi = max{Wi−1, 0}+ log(P1(Xi)/P0(Xi)) or Wi = max{Wi−1, 0}+

[log(P1(Xi)/P0(Xi))]
A/2

A/2 for i ≥ 1. The empirical quantiles of the noisy versions of W700 under the pre-
and post- change cases will yield the lower and upper bounds of the threshold T . When the range of
acceptable thresholds T was non-empty, we chose the upper bound. For the Bernoulli model, this resulted
in a choice of T = 220 for all values of ε = 0.5, 1,∞. In the Gaussian model, we chose T = 8, 4.5, 100 for
ε = 0.5, 1,∞, respectively. Figure 3 (a and c) indeed show that with these parameters, the algorithm
works well except with probability about 0.2, and comparison with plots b and d, we can see that almost
all of the error for reasonable values of α is due to failure to abort on a window containing the true
change-point. This indicates that the primary challenge in the online setting is determining when to raise
an alarm in a sequence of sliding windows of observations. Once such window is identified correctly, the
offline estimation algorithm can be used to accurately estimate the change-point.
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(a) Bernoulli: Online accuracy
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(b) Bernoulli: Accuracy when online halts
on correct window
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(c) Gaussian: Online accuracy

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α

β

ε=0.5
ε=1
MLE(ε=∞)

(d) Gaussian: Accuracy when online halts
on correct window

Figure 3: Probability that the online algorithm produces an inaccurate estimate (left) and
probability that the online algorithm produces an inaccurate estimate conditioned on halting in
a window containing k∗ (right) for Bernoulli and Gaussian large mean changes. Each simulation
involves 106 runs of OnlinePCPD or its 0.1-truncated variant with window size n = 700 and
varying ε on data generated by i.i.d. samples from appropriate distributions with change point
k∗ = 5000. See text for description of choices of threshold T .
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