
Math. Prog. Comp. manuscript No.
(will be inserted by the editor)

An inexact block-decomposition method for extra
large-scale conic semidefinite programming

Renato D. C. Monteiro · Camilo Ortiz ·
Benar F. Svaiter

Received: date / Accepted: date

Abstract In this paper, we present an inexact block-decomposition (BD)
first-order method for solving standard form conic semidefinite programming
(SDP) which avoids computations of exact projections onto the manifold de-
fined by the affine constraints and, as a result, is able to handle extra large
SDP instances. The method is based on a two-block reformulation of the op-
timality conditions where the first block corresponds to the complementarity
conditions and the second one corresponds to the manifolds consisting of both
the primal and dual affine feasibility constraints. While the proximal subprob-
lem corresponding to the first block is solved exactly, the one corresponding
to the second block is solved inexactly in order to avoid finding the exact
solution of the underlying augmented primal-dual linear system. The error
condition required by the BD method naturally suggests the use of a relative
error condition in the context of the latter augmented primal-dual linear sys-
tem. Our implementation uses the conjugate gradient (CG) method applied

The work of R. D. C. Monteiro was partially supported by NSF Grants CMMI-0900094 and
CMMI- 1300221, and ONR Grant ONR N00014-11-1-0062.

The work of B. F. Svaiter was partially supported by CNPq grants no. 303583/2008-
8, 302962/2011-5, 480101/2008-6, 474944/2010-7, FAPERJ grants E-26/102.821/2008, E-
26/102.940/2011.

R. D. C. Monteiro
School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA,
30332-0205
E-mail: monteiro@isye.gatech.edu

C. Ortiz
School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA,
30332-0205
Tel.: +1-678-644-2561
E-mail: camiort@gatech.edu

B. F. Svaiter
IMPA, Estrada Dona Castorina 110, 22460-320 Rio de Janeiro, Brazil
E-mail: benar@impa.br

2 Renato D. C. Monteiro et al.

to a reduced positive definite dual linear system to obtain inexact solutions
of the augmented linear system. In addition, we implemented the proposed
BD method with the following refinements: an adaptive choice of stepsize for
performing an extragradient step; and a new dynamic scaling scheme that uses
two scaling factors to balance three inclusions comprising the optimality con-
ditions of the conic SDP. Finally, we present computational results showing
the efficiency of our method for solving various extra large SDP instances,
several of which cannot be solved by other existing methods, including some
with at least two million constraints and/or fifty million non-zero coefficients
in the affine constraints.

Keywords complexity · proximal · extragradient · block-decomposition ·
large-scale optimization · conic optimization · semidefinite programing

Mathematics Subject Classification (2000) MSC 49M27 · MSC 49M37 ·
MSC 90C06 · MSC 90C22 · MSC 90C30 · MSC 90C35 · MSC 90C90

1 Introduction

Let R denote the set of real numbers, Rn denote the n-dimensional Euclidean
space, Rn+ denote the cone of nonnegative vectors in Rn, Sn denote the set
of all n × n symmetric matrices and Sn+ denote the cone of n × n symmetric
positive semidefinite matrices. Throughout this paper, we let X and Y be finite
dimensional inner product spaces, with inner products and associated norms
denoted by 〈·, ·〉 and ‖ · ‖, respectively. The conic programming problem is

min
x∈X
{〈c, x〉 : Ax = b, x ∈ K}, (1)

where A : X → Y is a linear mapping, c ∈ X , b ∈ Y, and K ⊆ X is a closed
convex cone. The corresponding dual problem is

max
(z,y)∈X×Y

{〈b, y〉 : A∗y + z = c, z ∈ K∗}, (2)

where A∗ denotes the adjoint of A and K∗ is the dual cone of K defined as

K∗ := {v ∈ X : 〈x, v〉 ≥ 0, ∀x ∈ K}. (3)

Several papers [2,7,9,8,17,18] in the literature discuss methods/codes for solv-
ing large-scale conic semidefinite programming problems (SDP), i.e., special
cases of (1) in which

X = Rnu+nl × Sns , Y = Rm, K = Rnu × Rnl
+ × S

ns
+ . (4)

Presently, the most efficient methods/codes for solving large-scale conic SDP
problems are the first-order projection-type discussed in [7,9,8,17,18] (see also
[14] for a slight variant of [7]).

More specifically, augmented Lagrangian approaches have been proposed
for the dual formulation of (1) with X , Y and K as in (4) for the case when

Title Suppressed Due to Excessive Length 3

m, nu and nl are large (up to a few millions) and ns is moderate (up to a
few thousands). In [7,14], a boundary point (BP) method for solving (1) is
proposed which can be viewed as variants of the alternating direction method
of multipliers introduced in [5,6] applied to the dual formulation (2). In [18],
an inexact augmented Lagrangian method is proposed which solves a refor-
mulation of the augmented Lagrangian subproblem via a semismooth Newton
approach combined with the conjugate gradient method. Using the theory de-
veloped in [11], an implementation of a first-order block-decomposition (BD)
algorithm, based on the hybrid proximal extragradient (HPE) method [16], for
solving standard form conic SDP problems is discussed in [9], and numerical
results are presented showing that it generally outperforms the methods of [7,
18]. In [17], an efficient variant of the BP method is discussed and numerical
results are presented showing its impressive ability to solve important classes
of large-scale graph-related SDP problems. In [8], another BD method, based
on the theory developed in [11], for minimizing the sum of a convex differen-
tiable function with Lipschitz continuous gradient, and two other proper closed
convex (possibly, nonsmooth) functions with easily computable resolvents is
discussed. Numerical results are presented in [8] showing that the latter BD
method generally outperforms the variant of the BP method in [17], as well
as the methods of [7,9,18], in a benchmark that included the same classes of
large-scale graph-related SDP problems tested in [17]. It should be observed
though that the implementations in [17] and [8], are very specific in the sense
that they both take advantage of each SDP problem class structure so as to
keep the number of variables and/or constraints as small as possible. This
contrasts with the codes described in [7], [9] and [18], which always introduce
additional variables and/or constraints into the original SDP formulation to
bring it into the required standard form input.

Moreover, all the methods in the papers [7,9,8,17,18] assume that the
following operations are easily computable (at least once per iteration):

O.1) Evaluation of the linear operator: For given points x ∈ X and y ∈
Y, compute the points Ax and A∗y.

O.2) Projection onto the cone: For a given point x ∈ X , compute xK =
arg min {‖x− x̃‖ : x̃ ∈ K}.

O.3) Projection onto the manifold: For a given point x ∈ X , compute
xM = arg min {‖x− x̃‖ : x̃ ∈M} where M = {x ∈ X : Ax = b}. If A is
surjective, it is easy to see that xM = x + A∗(AA∗)−1(b − Ax). Hence,
the cost involved in this operation depends on the ability to solve linear
systems of the form AA∗y = b̂ where b̂ ∈ Y.

The focus of this paper is on the development of algorithms for solving prob-
lems as in (1) where carrying out O.3 requires significantly more time and/or
storage than both O.1 and O.2. More specifically, we present a BD method
based on the BD-HPE framework of [11] that instead of exactly solving lin-

ear systems of the form AA∗y = b̂, computes inexact solutions of augmented
primal-dual linear systems satisfying a certain relative error condition. The
latter relative error condition naturally appears as part of the HPE error con-

4 Renato D. C. Monteiro et al.

dition which in turn guarantees the overall convergence of the BD method.
Our implementation of the BD method obtains the aforementioned inexact
solutions of the augmented linear systems by applying the conjugate gradient
(CG) method to linear systems of the form (I + αAA∗)y = b̂, where I is
the identity operator and α is a positive scalar. Moreover, the BD method
presented contains two important ingredients from a computational point of
view that are based on the ideas introduced in [9] and [8], namely: an adap-
tive choice of stepsize for performing the extragradient step; and the use of
two scaling factors that change dynamically to balance three blocks of inclu-
sions that comprise the optimality conditions for (1). This latter ingredient
generalizes the dynamic scaling ideas used in [8] by using two scaling parame-
ters instead of one as in [8]. Finally, we present numerical results showing the
ability of the proposed BD method to solve various conic SDP instances of
the form (1) and (4) for which the operation of projecting a point onto the
manifold M (see O.3) is prohibitively expensive, and as a result cannot be
handled by the methods in [7,9,8,17,18]. In these numerical results, we also
show that our method substantially outperforms the latest implementation
(see [1]) of SDPLR introduced in [2,3]. SDPLR is a first-order augmented La-
grangian method applied to a nonlinear reformulation of the original problem
(1) which restricts the ns × ns symmetric matrix component of the variable
x to a low-rank matrix. Even though there are other first-order methods that
avoid projecting onto the manifold M (see for example the BD variant in [9]
with U = I), to the best of our knowledge, SDPLR is computationally the
most efficient one.

Our paper is organized as follows. Section 2 reviews an adaptive block-
decomposition HPE framework in the context of a monotone inclusion problem
consisting of the sum of a continuous monotone map and a separable two-block
subdifferential operator which is a special case of the one presented in [9] and
[8]. Section 3 presents an inexact first-order instance of this framework, and
corresponding iteration-complexity results, for solving the conic programming
problem (1) which avoids the operation of projecting a point onto the manifold
M (see O.3). Section 4 describes a practical variant of the BD method of
Section 3 which incorporates the two ingredients described above and the use
of the CG method to inexactly solve the augmented linear systems. Section
5 presents numerical results comparing SDPLR with the BD variant studied
in this paper on a collection of extra large-scale conic SDP instances. Finally,
Section 6 presents some final remarks.

1.1 Notation

Let a closed convex set C ⊂ X be given. The projection operator ΠC : X → C
onto C is defined by

ΠC(z) = arg min
x̃∈C
{‖x− x̃‖} ∀x ∈ X ,

Title Suppressed Due to Excessive Length 5

the indicator function of C is the function δC : X → R̄ := R∪ {∞} defined as

δC(x) =

{
0, x ∈ C,
∞, otherwise

and the normal cone operator NC : X ⇒ X of C is the point-to-set map given
by

NC(x) =

{
∅, x /∈ C,
{w ∈ X : 〈x̃− x,w〉 ≤ 0, ∀x̃ ∈ C}, x ∈ C.

(5)

The induced norm ‖A‖ of a linear operator A : X → Y is defined as

‖A‖ := sup
x∈X
{‖Ax‖ : ‖x‖ ≤ 1},

and we denote by λmax(A) and λmin(A) the maximum and minimum eigen-
values of A, respectively. Moreover, if A is invertible, the condition number
κ(A) of A is defined as

κ(A) := ‖A‖‖A−1‖.
If A is identified with a matrix, nnz(A) denotes the number of non-zeros of A.

2 An adaptive block-decomposition HPE framework

This section is divided into two subsections. The first one reviews some ba-
sic definitions and facts about subdifferentials of functions and monotone
operators. The second one reviews an adaptive block-decomposition HPE (A-
BD-HPE) framework presented in [9] and [8], which is an extension of the
BD-HPE framework introduced in [11]. To simplify the presentation, the lat-
ter framework is presented in the simpler context of a monotone inclusion
problem consisting of the sum of a continuous monotone map and a separable
two-block subdifferential operator (instead of a separable two-block maximal
monotone operator).

2.1 The subdifferential and monotone operators

In this section, we review some properties of the subdifferential of a convex
function and the monotone operator.

Let Z denote a finite dimensional inner product space with inner product
and associated norm denoted by 〈·, ·〉Z and ‖·‖Z . A point-to-set operator T :
Z ⇒ Z is a relation T ⊆ Z ×Z and

T (z) = {v ∈ Z | (z, v) ∈ T}.

Alternatively, one can consider T as a multi-valued function of Z into the
family ℘(Z) = 2(Z) of subsets of Z. Regardless of the approach, it is usual to
identify T with its graph defined as

Gr(T) = {(z, v) ∈ Z × Z | v ∈ T (z)}.

6 Renato D. C. Monteiro et al.

The domain of T , denoted by DomT , is defined as

DomT := {z ∈ Z : T (z) 6= ∅}.

An operator T : Z ⇒ Z is affine if its graph is an affine manifold. An operator
T : Z ⇒ Z is monotone if

〈v − ṽ, z − z̃〉Z ≥ 0 ∀(z, v), (z̃, ṽ) ∈ Gr(T),

and T is maximal monotone if it is monotone and maximal in the family of
monotone operators with respect to the partial order of inclusion, i.e., S :
Z ⇒ Z monotone and Gr(S) ⊃ Gr(T) implies that S = T . We now state
a useful property of maximal monotone operators that will be needed in our
presentation.

Proposition 2.1. If T : Z ⇒ Z is maximal monotone and F : Dom (F)→ Z
is a map such that DomF ⊃ cl(DomT) and F is monotone and continuous
on cl(DomT), then F + T is maximal monotone.

Proof. See proof of Proposition A.1 in [10].

The subdifferential of a function f : Z → [−∞,+∞] is the operator ∂f :
Z ⇒ Z defined as

∂f(z) = {v | f(z̃) ≥ f(z) + 〈z̃ − z, v〉Z , ∀z̃ ∈ Z} ∀z ∈ Z. (6)

The operator ∂f is trivially monotone if f is proper. If f is a proper lower
semi-continuous convex function, then ∂f is maximal monotone [15, Theorem
A]. Clearly, the normal cone operator NK of a closed convex cone K can be
expressed in terms of its indicator function as NK = ∂δK .

2.2 The A-BD-HPE framework

In this subsection, we review the A-BD-HPE framework with adaptive stepsize
for solving a special type of monotone inclusion problem consisting of the
sum of a continuous monotone map and a separable two-block subdifferential
operator.

Let Z andW be finite dimensional inner product spaces with associated in-
ner products denoted by 〈·, ·〉Z and 〈·, ·〉W , respectively, and associated norms
denoted by ‖ · ‖Z and ‖ · ‖W , respectively. We endow the product space Z×W
with the canonical inner product 〈·, ·〉Z×W and associated canonical norm
‖ · ‖Z×W defined as

〈(z, w), (z′, w′)〉Z×W := 〈z, z′〉Z+〈w,w′〉W , ‖(z, w)‖Z×W :=
√
〈(z, w), (z.w)〉Z×W ,

(7)
for all (z, w), (z′, w′) ∈ Z ×W.

Our problem of interest in this section is the monotone inclusion problem
of finding (z, w) ∈ Z ×W such that

(0, 0) ∈ [F + ∂h1 ⊗ ∂h2](z, w), (8)

Title Suppressed Due to Excessive Length 7

where

F (z, w) = (F1(z, w), F2(z, w)) ∈ Z ×W,

(∂h1 ⊗ ∂h2)(z, w) = ∂h1(z)× ∂h2(w) ⊆ Z ×W,

and the following conditions are assumed:

A.1 h1 : Z → R̄ and h2 : W → R̄ are proper lower semi-continuous convex
functions;

A.2 F : DomF ⊆ Z ×W → Z ×W is a continuous map such that DomF ⊃
cl(Dom ∂h1)×W;

A.3 F is monotone on cl(Dom ∂h1)× cl(Dom ∂h2);
A.4 there exists L > 0 such that

‖F1(z, w′)− F1(z, w)‖Z ≤ L‖w′ − w‖W ∀z ∈ Dom ∂h1, ∀w,w′ ∈ W.
(9)

Since ∂h1 ⊗ ∂h2 is the subdifferential of the proper lower semi-continuous
convex function (z, w) 7→ h1(z) + h2(w), it follows from [15, Theorem A] that
∂h1⊗∂h2 is maximal monotone. Moreover, in view of Proposition 2.1, it follows
that F +∂h1⊗∂h2 is maximal monotone. Note that problem (8) is equivalent
to

0 ∈ F1(z, w) + ∂h1(z), (10a)

0 ∈ F2(z, w) + ∂h2(w). (10b)

For the purpose of motivating and analyzing the main algorithm (see Al-
gorithm 1) of this paper for solving problem (1), we state a rather specialized
version of the A-BD-HPE framework presented in [8] where the sequences
{ε′k}, {ε′′k} and {λ̃k}, and the maximal monotone operators C and D in [8] are

set to ε′k = ε′′k = 0, λ̃k = λ̃, C = ∂h1, and D = ∂h2, and the scalars σx and σ̃x
satisfy σx = σ̃x.

8 Renato D. C. Monteiro et al.

Special-BD Framework: Specialized adaptive block-decomposition HPE
(A-BD-HPE) framework

0) Let (z0, w0) ∈ Z ×W, σ ∈ (0, 1], σz , σw ∈ [0, 1) and λ̃ > 0 be given such that

λmax

([
σ2
z λ̃σzL

λ̃σzL σ2
w + λ̃2L2

])1/2

≤ σ (11)

and set k = 1;
1) compute z̃k, hk1 ∈ Z such that

hk1 ∈ ∂h1(z̃k), ‖λ̃[F1(z̃k, wk−1) + hk1] + z̃k − zk−1‖Z ≤ σz‖z̃k − zk−1‖Z , (12)

2) compute w̃k, hk2 ∈ W such that

hk2 ∈ ∂h2(w̃k), ‖λ̃[F2(z̃k, w̃k) + hk2] + w̃k − wk−1‖W ≤ σw‖w̃k − wk−1‖W ; (13)

3) choose λk as the largest λ > 0 such that∥∥∥∥λ(F1(z̃k, w̃k) + hk1
F2(z̃k, w̃k) + hk2

)
+

(
z̃k

w̃k

)
−
(
zk−1

wk−1

)∥∥∥∥
Z×W

≤ σ
∥∥∥∥(z̃kw̃k

)
−
(
zk−1

wk−1

)∥∥∥∥
Z×W

;

(14)
4) set

(zk, wk) = (zk−1, wk−1)− λk[F (z̃k, w̃k) + (hk1 , h
k
2)], (15)

k ← k + 1, and go to step 1.

The following result follows from Proposition 2.2 of [9] which in turn is an
immediate consequence of Proposition 3.1 of [11].

Proposition 2.2. Consider the sequence {λk} generated by the Special-BD
framework. Then, for every k ∈ N, λ = λ̃ satisfies (14). As a consequence
λk ≥ λ̃.

The following point-wise convergence result for the Special-BD framework
follows from Theorem 3.2 of [11] and Theorem 2.3 of [9].

Theorem 2.3. Consider the sequences {(z̃k, w̃k)}, {(hk1 , hk2)} and {λk} gen-
erated by the Special-BD framework under the assumption that σ < 1 , and let
d0 denote the distance of the initial point (z0, w0) ∈ Z ×W to the solution set
of (8) with respect to ‖(·, ·)‖Z×W . Then, for every k ∈ N, there exists i ≤ k
such that

‖F (z̃i, w̃i) + (hi1, h
i
2)‖Z×W ≤ d0

√√√√1 + σ

1− σ

(
1

λi
∑k
j=1 λj

)
≤
√

1 + σ

1− σ
d0√
kλ̃
.

(16)

Note that the point-wise iteration-complexity bound in Theorem 2.3 is
O(1/

√
k). Theorem 2.4 of [9] derives an O(1/k) iteration-complexity ergodic

bound for the Special-BD framework as an immediate consequence of Theorem
3.3 of [11].

Title Suppressed Due to Excessive Length 9

3 An inexact scaled BD algorithm for conic programming

In this section, we introduce an inexact instance of the Special-BD framework
applied to (1) which avoids the operation of projecting a point onto the man-
ifold M (see O.3 in Section 1), and defines 〈·, ·〉Z and 〈·, ·〉W as scaled inner
products constructed by means of the original inner products 〈·, ·〉 of X and
Y. (Recall from Section 1 that the original inner products in X and Y used in
(1) are both being denoted by 〈·, ·〉.)

We consider problem (1) with the following assumptions:

B.1 A : X → Y is a surjective linear map;
B.2 there exists x∗ ∈ X satisfying the inclusion

0 ∈ c+NM(x) +NK(x), (17)

where M := {x ∈ X : Ax = b}.

We now make a few observations about the above assumptions. First, assump-
tion B.2 is equivalent to the existence of y∗ ∈ Y and z∗ ∈ X such that the
triple (z∗, y∗, x∗) satisfies

0 ∈ x∗ +NK∗
(
z∗
)

= x∗ + ∂δK∗
(
z∗
)
, (18a)

0 = Ax∗ − b, (18b)

0 = c−A∗y∗ − z∗. (18c)

Second, it is well-known that a triple (z∗, y∗, x∗) satisfies (18) if and only if
x∗ is an optimal solution of (1), the pair (z∗, y∗) is an optimal solution of (2)
and duality gap between (1) and (2) is zero, i.e., 〈c, x∗〉 = 〈b, y∗〉.

Our main goal in this section is to present an instance of the Special-BD
framework which approximately solves (18) and does not require computation
of exact projections onto the manifold M (see O.3 in Section 1). Instead of
dealing directly with (18), it is more efficient from a computational point of
view to consider its equivalent scaled reformulation

0 ∈ θ (x∗ +NK∗(z∗)) = θx∗ +NK∗(z∗), (19a)

0 = Ax∗ − b, (19b)

0 = ξ(c−A∗y∗ − z∗), (19c)

where θ and ξ are positive scalars.
We will now show that (19) can be viewed as a special instance of (10)

which satisfies assumptions A.1–A.4. Indeed, let

Z = X , W = Y × X , (20)

and define the inner products as

〈·, ·〉Z := θ−1〈·, ·〉, 〈(y, x), (y′, x′)〉W := 〈y, y′〉+ ξ−1〈x, x′〉 (21)

∀x, x′ ∈ X , ∀y, y′ ∈ Y,

10 Renato D. C. Monteiro et al.

and the functions F , h1 and h2 as

F (z, y, x) =

 θx
Ax− b

ξ(c−A∗y − z)

 , h1(z) = δK∗(z), h2(y, x) = (0, 0), (22)

for all (z, y, x) ∈ X × Y × X .
The following proposition can be easily shown.

Theorem 3.1. The inclusion problem (19) is equivalent to the inclusion prob-
lem (10) where the spaces Z and W, the inner products 〈·, ·〉Z and 〈·, ·〉W , and
the functions F , h1 and h2 are defined as in (20), (21) and (22). Moreover,
assumptions A.1–A.4 of Subsection 2.2 hold with L =

√
θξ, and, as a conse-

quence, (19) is maximal monotone with respect to 〈·, ·〉Z×W (see (7)).

In view of Proposition 3.1, from now on we consider the context in which
(19) is viewed as a special case of (10) with Z, W, 〈·, ·〉Z , 〈·, ·〉W , F , h1 and
h2 given by (20), (21) and (22). In what follows, we present an instance of the
Special-BD framework in this particular context which solves the first block
(12) exactly (i.e., with σz = 0), and solves the second block (13) inexactly
(i.e., with σw > 0) with the help of a linear solver.

More specifically, let {(zk, wk)}, {(z̃k, w̃k)} and {(hk1 , hk2)} denote the se-
quences as in the Special-BD framework specialized to the above context with
σz = 0. For every k ∈ N, in view of (20), we have that zk, z̃k ∈ X , and wk and
w̃k can be written as wk =: (yk, xk) and w̃k =: (ỹk, x̃k), respectively, where
yk, ỹk ∈ Y and xk, x̃k ∈ X . Also, the fact that σz = 0 implies that (12) in step
1 is equivalent to

λ̃[θxk−1 + hk1] + z̃k − zk−1 = 0, hk1 ∈ ∂δK∗(z̃k) = NK∗(z̃k), (23)

and hence, that z̃k satisfies the optimality conditions of the problem

min
z∈K∗

1

2

∥∥∥z − [zk−1 − λ̃θxk−1
]∥∥∥2

.

Therefore, we conclude that z̃k and hk1 are uniquely determined by

z̃k = ΠK∗(zk−1 − λ̃θxk−1), hk1 = −θxk−1 +
(zk−1 − z̃k)

λ̃
. (24)

Moreover, we can easily see that (13) in step 2 is equivalent to setting

(ỹk, x̃k) = (yk−1, xk−1) +∆k, hk2 = (0, 0), (25)

where the displacement ∆k ∈ Y × X satisfies

‖Q∆k − qk‖W ≤ σw‖∆k‖W , (26)

Title Suppressed Due to Excessive Length 11

and, the linear mapping Q : Y × X → Y × X and the vector qk ∈ Y × X are
defined as

Q :=

[
I λ̃A

−λ̃ξA∗ I

]
, qk := λ̃

[
b−Axk−1

ξ
(
A∗yk−1 + z̃k − c

)] .
Observe that finding ∆k satisfying (26) with σw = 0 is equivalent to solving
augmented primal-dual linear system Q∆= qk exactly, which can be easily
seen to be at least as difficult as projecting a point onto the manifold M (see
O.3 in Section 1). Instead, the approach outlined above assumes σw > 0 and
inexactly solves this augmented linear system by allowing a relative error as
in (26). Clearly a ∆k satisfying (26) can be found with the help of a suitable
iterative linear solver.

We now state an instance of the Special-BD framework based on the ideas
outlined above.

Algorithm 1 : Inexact scaled BD method for (1)

0) Let (z0, y0, x0) ∈ X × Y × X , θ, ξ > 0, σw ∈ [0, 1) and σ ∈ (σw, 1] be given, and set

λ̃ :=

√
σ2 − σ2

w

θξ
, (27)

and k = 1;
1) set z̃k = ΠK∗ (zk−1 − λ̃θxk−1);
2) use a linear solver to find ∆k ∈ Y × X satisfying (26), and set

(ỹk, x̃k) = (yk−1, xk−1) +∆k;

3) choose λk to be the largest λ > 0 such that

∥∥∥λ(vkz , v
k
y , v

k
x) + (z̃k, ỹk, x̃k)− (zk−1, yk−1, xk−1)

∥∥∥
Z×W

≤ σ
∥∥∥(z̃k, ỹk, x̃k)− (zk−1, yk−1, xk−1)

∥∥∥
Z×W

,

where

vkz = θ(x̃k−xk−1) +
(zk−1 − z̃k)

λ̃
, vky = Ax̃k− b, vkx = ξ(c−A∗ỹk− z̃k); (28)

4) set (zk, yk, xk) = (zk−1, yk−1, xk−1)− λk(vkz , v
k
y , v

k
x) and k ← k + 1, and go to step 1.

We now make a few observations about Algorithm 1 and its relationship
with the Special-BD framework in the context of (20), (21) and (22). First, it
is easy to check that λ̃ as in (27) satisfies (11) with σz = 0 and L =

√
θξ as

equality. Second, the discussion preceding Algorithm 1 shows that steps 1 and
2 of Algorithm 1 are equivalent to the same ones of the Special-BD framework
with σz = 0. Third, noting that (22), (24) and (25) imply that

(vkz , v
k
y , v

k
x) = F (z̃k, ỹk, x̃k) + (hk1 , h

k
2), (29)

12 Renato D. C. Monteiro et al.

it follows that steps 3 and 4 of Algorithm 1 are equivalent to the same ones of
the Special-BD framework. Fourth, in view of the previous two observations,
Algorithm 1 is a special instance of the Special-BD framework for solving (10)
where Z, W, 〈·, ·〉Z , 〈·, ·〉W , F , h1 and h2 are given by (20), (21) and (22).
Fifth, λk in step 3 of Algorithm 1 can be obtained by solving an easy quadratic
equation. Finally, in Subsection 4.1 we discuss how the CG method is used in
our implementation to obtain a vector ∆k satisfying (26).

We now specialize Theorem 2.3 to the context of Algorithm 1. Even though
Algorithm 1 is an instance of the Special-BD framework applied to the scaled
inclusion (19), the convergence result below is stated with respect to the un-
scaled inclusion (18).

Theorem 3.2. Consider the sequences {(zk, yk, xk)}, {(z̃k, ỹk, x̃k)} and {(vkz , vky , vkx)}
generated by Algorithm 1 under the assumption that σ < 1 and, for every
k ∈ N, define

rkz := θ−1vkz , rky := vkx, rkx := ξ−1vky . (30)

Let P ∗ ∈ X and D∗ ⊆ X × Y denote the set of optimal solutions of (1) and
(2), respectively, and define

d0,P := min{‖x− x0‖ : x ∈ P ∗},
d0,D := min{‖(z, y)− (z0, y0)‖ : (z, y) ∈ D∗}.

Then, for every k ∈ N,

rkz ∈ x̃k +NK∗(z̃k), (31a)

rky = Ax̃k − b. (31b)

rkx = c−A∗ỹk − z̃k, (31c)

and there exists i ≤ k such that√
θ‖riz‖2 + ‖riy‖2 + ξ‖rix‖2

≤

√
ξθ

k (σ2 − σ2
w)

√(
1 + σ

1− σ

)(
max{1, θ−1}d2

0,D + ξ−1d2
0,P

)
. (32)

Proof. Consider the sequences {hk1} and {hk2} defined in (24) and (25). Iden-
tities (31b) and (31c) follow immediately from the two last identities in both
(28) and (30). Also, it follows from the inclusion in (23) and the definitions of
hk1 , vkz and rkz in (24), (28) and (30), respectively, that

rkz = θ−1vkz = x̃k + θ−1hk1 ∈ x̃k +NK∗(z̃k),

and hence, that (31a) holds. Let d0 denote the distance of ((z0, y0), x0) to
D∗×P ∗ with respect to the scaled norm ‖ · ‖Z×W , and observe that (21) and,
the definitions of d0,P and d0,D, imply that

d0 ≤
√

max{1, θ−1}d2
0,D + ξ−1d2

0,P . (33)

Title Suppressed Due to Excessive Length 13

Moreover, (29) together with Theorem 2.3 imply the existence of i ≤ k such
that

‖(viz, viy, vix)‖Z×W ≤
√

1 + σ

1− σ
d0

λ̃
√
k
. (34)

Now, combining (34) with the definitions of ‖ · ‖Z×W , 〈·, ·〉Z , 〈·, ·〉W , rkz , rky
and rkx in (7), (21) and (30) , we have√

θ‖riz‖2 + ‖riy‖2 + ξ‖rix‖2≤
√

1 + σ

1− σ
d0

λ̃
√
k
,

which, together with (33) and the definition of λ̃ in (27), imply (32).

We now make some observations about Algorithm 1 and Theorem 3.2.
First, the point-wise iteration-complexity bound in Theorem 3.2 is O(1/

√
k).

It is possible to derive an O(1/k) iteration-complexity ergodic bound for Al-
gorithm 1 as an immediate consequence of Theorem 3.3 of [11] and Theorem
2.4 of [9]. Second, the bound in (32) of Theorem 3.2 sheds light on how the
scaling parameters θ and ξ might affect the sizes of the residuals riz, r

i
y and

rix. Roughly speaking, viewing all quantities in (32), with the exception of θ,
as constants, we see that∥∥riz∥∥ = O

(
max

{
1, θ−1/2

})
, max

{∥∥riy∥∥ ,∥∥rix∥∥} = O
(

max
{

1, θ1/2
})

.

Hence, the ratio Rθ := max
{∥∥riy∥∥ ,∥∥rix∥∥} / ∥∥riz∥∥ can grow significantly as

θ → ∞, while it can become very small as θ → 0. This suggests that Rθ
increases (resp., decreases) as ξ increases (resp., decreases). Similarly, viewing
all quantities in the bound (32), with the exception of ξ, as constants, we see
that ∥∥rix∥∥ = O

(
max

{
1, ξ−1/2

})
,

∥∥riy∥∥ = O
(

max
{

1, ξ1/2
})

.

Hence, the ratio Rξ :=
∥∥riy∥∥ / ∥∥rix∥∥ can grow significantly as ξ → ∞, while

it can become very small as ξ → 0. This suggests that Rξ increases (resp.,
decreases) as ξ increases (resp., decreases). In fact, we have observed in our
computational experiments that the ratiosRθ andRξ behave just as described.
Finally, observe that while the dual iterate z̃k is in K∗, the primal iterate x̃k

is not necessarily in K. However, the following result shows that it is possible
to construct a primal iterate ũk which lies in K, is orthogonal to z̃k (i.e., ũk

and z̃k are complementary) and lim infk→∞ ‖Aũk − b‖ = 0.

Corollary 3.3. Consider the same assumptions as in Theorem 3.2 and, for
every k ∈ N, define

ũk := x̃k − rkz , rku := Aũk − b. (35)

Then, for every k ∈ N, the following statements hold:

a) ũk ∈ K, z̃k ∈ K∗ and 〈ũk, z̃k〉 = 0;

14 Renato D. C. Monteiro et al.

b) there exists i ≤ k such that

‖riu‖ ≤

√
ξmax{θ, ‖A‖2}
k (σ2 − σ2

w)

√(
1 + σ

1− σ

)(
max{1, θ−1}d2

0,D + ξ−1d2
0,P

)
.

(36)

Proof. To show a), observe that inclusion (31a) and the definition of ũk in (35)
imply ũk ∈ −NK∗(z̃k), and hence a) follows. Statement b) follows from (32)
and the fact that (31b) and (35) imply

‖riu‖ = ‖riy −Ariz‖ ≤ ‖riy‖+ ‖Ariz‖ ≤ max{1, θ−1/2‖A‖} ·
√
θ‖riz‖2 + ‖riy‖2.

4 A practical dynamically scaled inexact BD method

This section is divided into two subsections. The first one introduces a practical
procedure that uses an iterative linear solver for computing ∆k as in step
2 of Algorithm 1. The second one describes the stopping criterion used for
Algorithm 1 and presents two important refinements of Algorithm 1 based on
the ideas introduced in [9] and [8] that allow the scaling parameters ξ and θ
to change dynamically.

4.1 Solving step 2 of Algorithm 1 for large and/or dense problems

In this subsection, we present a procedure that uses an iterative linear solver
for computing ∆k as in step 2 of Algorithm 1. More specifically, we show how
the CG method applied to a linear system with an m × m positive definite
symmetric coefficient matrix yields a displacement ∆k ∈ Y×X satisfying (26),
where m = dimY.

In order to describe the procedure for computing ∆k ∈ Y × X satisfying
(26), define Q̃ : Y → Y and q̃k ∈ Y as

Q̃ := I + λ̃2ξAA∗, (37)

q̃k := λ̃
(
b−Axk−1

)
− λ̃2ξA

(
A∗yk−1 + z̃k − c

)
(38)

and observe that Q̃ is a self-adjoint positive definite linear operator. The CG
method can then be applied to to the linear system Q̃∆y = q̃k to obtain a
solution ∆y

k ∈ Y satisfying

‖Q̃∆y
k − q̃k‖ ≤ σw‖∆y

k‖. (39)

(In our implementation, we choose ∆ = 0 as the initial point for the CG
method.) Setting

∆k = (∆y
k, ∆x

k)

Title Suppressed Due to Excessive Length 15

where

∆x
k = λ̃ξ

(
A∗
(
yk−1 +∆y

k
)

+ z̃k − c
)
,

we can easily check that ∆k satisfy (26).
We now make some observations about the above procedure for computing

the displacement ∆k. First, the arithmetic complexity of an iteration of the CG
method corresponds to that of performing single evaluations of the operators
A and A∗. For example, if X and Y are given by (4) and A is identified
with and stored as a sparse matrix, then the arithmetic complexity of an
iteration of the CG method is bounded by O(nnz(A)). As another example,
if A is the product of two matrices A1 and A2 where nnz(A1) and nnz(A2)
are significantly smaller than nnz(A), the bound on the arithmetic complexity
of an iteration of the CG method can be improved to O(nnz(A1) + nnz(A2)).
Second, in view of (37) and (27), we have Q̃ = I + (σ2 − σ2

w)θ−1AA∗. Hence,
assuming that σ−1

w is O(1), and defining λAmax := λmax(AA∗) and λAmin :=
λmin(AA∗), it follows from Proposition A.1 with δ = σw that the CG method
will compute ∆y

k satisfying (39) in

O
(√

κ(Q̃) log
[√

κ(Q̃)
(
1 + ‖Q̃‖

)])
= O

(√
θ + λAmax

θ + λAmin

log

[√
θ + λAmax

θ + λAmin

(
1 +

λAmax

θ

)])
(40)

iterations, where the equality follows from the fact that ‖Q̃‖ = O(1 +λAmax/θ)
and ‖Q̃−1‖ = O([1 + λAmin/θ]

−1). Third, in view of the latter two observa-
tions, the above procedure based on the CG method is more suitable for those
instances such that: i) the amount of memory required to storeA, either explic-
itly or implicitly, is substantially smaller than the one required to store AA∗
and its Cholesky factorization; and ii) bound (40) multiplied by the arith-
metic complexity of an iteration of the CG method is relatively smaller than
the arithmetic complexity of directly solving the linear system Q̃∆y

k = q̃k (see
O.3 in Section 1). Fourth, the bound in (40) does not depend on the iteration
count k of Algorithm 1 for fixed θ (see Figure 1). Finally, the bound (40) is
strictly decreasing as a function of θ.

4.2 Error measures and dynamic scaling

In this subsection, we describe three measures that quantify the optimality
of an approximate solution of (1), namely: the primal infeasibility measure;
the dual infeasibility measure; and the relative duality gap. We also describe
two important refinements of Algorithm 1 based on the ideas introduced in
[9] and [8]. More specifically, we describe: i) a scheme for choosing the initial
scaling parameters θ and ξ; and ii) a procedure for dynamically updating the
scaling parameters θ and ξ to balance the sizes of three error measures as the
algorithm progresses.

16 Renato D. C. Monteiro et al.

0 50 100 150 200 250 300 350 400
30

32

34

36

38

40

Iteration count of Algorithm 1

C
G

it
e

ra
ti
o

n
s

CG iterations performed at each iteration of Algorithm 1

Fig. 1: This example (random SDP instance) illustrates how
the number of iterations of the CG method does not change
significantly from one iteration of Algorithm 1 to the next when
scaling parameter θ remains constant.

For the purpose of describing a stopping criterion for Algorithm 1, define
the primal infeasibility measure as

εP (x) :=
‖Ax− b‖
‖b‖+ 1

∀x ∈ X , (41)

and the dual infeasibility measure as

εD(y, z) :=
‖c−A∗y − z‖
‖c‖+ 1

∀(y, z) ∈ Y × X . (42)

Finally, define the relative duality gap as

εG(x, y) :=
〈c, x〉 − 〈b, y〉

|〈c, x〉|+ |〈b, y〉|+ 1
∀x ∈ X , ∀y ∈ Y. (43)

For given tolerances ε̄ > 0, we stop Algorithm 1 whenever

max {εP,k, εD,k, |εG,k|} ≤ ε̄, (44)

where

εP,k := εP (ΠK(x̃k)), εD,k := εD(ỹk, z̃k), εG,k := εG(ΠK(x̃k), ỹk).

We now make some observations about the stopping criterion (44). First,
the primal and dual infeasibility measures in (41) and (42) do not take into
consideration violations with respect to the constraints x ∈ K and z ∈ K∗,
respectively. Since we evaluate them at (x, y, z) = (ΠK(x̃k), ỹk, z̃k) and in this
case (x, z) ∈ K × K∗, there is no need to take these violation into account.
Second, from the definition of ΠK , Corollary 3.3(a), and identities (31b) and
(31c), it follows that

εP,k =
‖rky +A(ΠK(x̃k)− x̃k)‖

‖b‖+ 1
, εD,k =

∥∥rkx∥∥
‖c‖+ 1

,

Title Suppressed Due to Excessive Length 17

εG,k =

〈
rkx, x̃

k
〉

+
〈
rky , ỹ

k
〉

+
〈
rkz , z̃

k
〉

+
〈
c,ΠK(x̃k)− xk

〉
|〈c,ΠK(x̃k)〉|+ |〈b, ỹk〉|+ 1

,

‖ΠK(x̃k)− xk‖ ≤ ‖ũk − xk‖ = ‖rkz‖,

which together with Theorem 3.2 imply that zero is a cluster value of the
sequences {εP,k}, {εD,k} and {εG,k} as k → ∞. Hence, Algorithm 1 with the
termination criterion (44) will eventually terminate. Third, another possibil-
ity is to terminate Algorithm 1 based on the quantities ε′P,k = εP (ũk), εD,k
and ε′G,k := εG(ũk, ỹk), which also approach zero (in a cluster sense) due to
Theorem 3.2 and Corollary 3.3. Our current implementation of Algorithm 1
ignores the latter possibility and terminates based on (44). Finally, it should be
observed that the termination criterion (44) requires the evaluation of an addi-
tional projection for computing εP,k and εG,k, namely, ΠK(x̃k). To avoid com-
puting this projection at every iteration, our implementation of Algorithm 1
only checks whether (44) is satisfied when max

{
εP (x̃k), εD,k, |εG(x̃k, ỹk)|

}
≤ ε̄

holds.
We now discuss two important refinements of Algorithm 1 whose goal is to

balance the magnitudes of the scaled residuals

ρz,k :=

∥∥rkz∥∥
|〈c, x̃k〉|+ |〈b, ỹk〉|+ 1

, ρy,k :=

∥∥rky∥∥
‖b‖+ 1

, ρx,k :=

∥∥rkx∥∥
‖c‖+ 1

, , (45)

where rkz , rky and rkx are defined in Theorem 3.2. Observe that (45) imply

that Rθ,k := max{ρy,k, ρx,k}/ρz,k = O
(
max{‖rky‖, ‖rkx‖}/‖rkz‖

)
and Rξ,k :=

ρy,k/ρx,k = O
(
‖rky‖/‖rkx‖

)
. Hence, in view of the second observation in the

paragraph following Theorem 3.2, the ratio Rθ,k (resp., Rξ,k) can grow sig-
nificantly as θ → ∞ (resp, ξ → ∞), while it can become very small as θ → 0
(resp., ξ → 0). This suggests that the ratio Rθ,k (resp., Rξ,k) increases as θ
(resp., ξ) increases, and decreases as θ (resp., ξ) decreases. Indeed, our com-
putational experiments indicate that the ratios Rθ,k and Rξ,k behave in this
manner.

In the following, let θk and ξk denote the dynamic values of θ and ξ at the
kth iteration of Algorithm 1, respectively. Observe that, in view of (28), (30)
and (45), the measures ρz,k, ρy,k and ρx,k depend on z̃k, ỹk and x̃k, whose
values in turn depend on the choice of θk and ξk, in view of steps 1 and 2 of
Algorithm 1. Hence, these measures are indeed functions of θ and ξ, which are
denoted asρz,k(θ, ξ), ρy,k(θ, ξ) and ρx,k(θ, ξ).

We first describe a scheme for choosing the initial scaling parameters
θ1 and ξ1. Let a constant ρ > 1 be given and tentatively set θ = ξ =
1. If ρy,1(θ, ξ)/ρx,1(θ, ξ) > ρ (resp., ρy,1(θ, ξ)/ρx,1(θ, ξ) < ρ−1), we succes-
sively divide (resp., successively multiply) the current value of ξ by 2 until
ρy,1(θ, ξ)/ρx,1(θ, ξ) ≤ ρ (resp., ρy,1(θ, ξ)/ρx,1(θ, ξ) ≥ ρ−1) is satisfied, and set
ξ1 = ξ∗1 where ξ∗1 is the last value of ξ. Since we have not updated θ, at this
stage we still have θ = 1. At the second stage of this scheme, we update θ
in exactly the same manner as above, but in place of ρy,1(θ, ξ)/ρx,1(θ, ξ) we
use the ratio max{ρy,1(θ, ξ), ρx,1(θ, ξ)}/ρz,1(θ, ξ), and set θ1 = θ∗1 where θ∗1

18 Renato D. C. Monteiro et al.

is the last value of θ. Since there is no guarantee that the latter scheme will
terminate, we specify an upper bound on the number of times that ξ and θ
can be updated. In our implementation, we set this upper bound to be 20.

We next describe a procedure for dynamically updating the scaling pa-
rameters θ and ξ to balance the sizes of the measures ρz,k(θ, ξ), ρy,k(θ, ξ) and
ρx,k(θ, ξ) as the algorithm progresses. Similar to the dynamic procedures used
in [9] and [8], we use the heuristic of changing θk and ξk every time a specified
number of iterations have been performed. More specifically, given an integer
k̄ ≥ 1, and scalars γ1, γ2 > 1 and 0 < τ < 1, if

γ2 exp
(
|ln (max{ρ̄y,k, ρ̄x,k}/ρ̄z,k)|

)
> γ1 exp

(
|ln (ρ̄y,k/ρ̄x,k)|

)
we set ξk+1 = ξk and use the following dynamic scaling procedure for updating
θk+1,

θk+1 =

θk, k 6≡ 0 mod k̄ or γ−1

1 ≤ max{ρ̄y,k, ρ̄x,k}/ρ̄z,k ≤ γ1

τ2θk, k ≡ 0 mod k̄ and max{ρ̄y,k, ρ̄x,k}/ρ̄z,k > γ1

τ−2θk, k ≡ 0 mod k̄ and max{ρ̄y,k, ρ̄x,k}/ρ̄z,k < γ−1
1

∀k ≥ 1,

(46)
otherwise, we set θk+1 = θk and use the following dynamic scaling procedure
for updating ξk+1,

ξk+1 =

ξk, k 6≡ 0 mod k̄ or γ−1

2 ≤ ρ̄y,k/ρ̄x,k ≤ γ2

τ2ξk, k ≡ 0 mod k̄ and ρ̄y,k/ρ̄x,k > γ2

τ−2ξk, k ≡ 0 mod k̄ and ρ̄y,k/ρ̄x,k < γ−1
2

∀k ≥ 1, (47)

where

ρ̄z,k =

 k∏
i=k−k̄+1

ρz,i

1/k̄

, ρ̄y,k =

 k∏
i=k−k̄+1

ρy,i

1/k̄

, ρ̄x,k =

 k∏
i=k−k̄+1

ρx,i

1/k̄

∀k ≥ k̄.

(48)
In our computational experiments, we have used k̄ = 10, γ1 = 8, γ2 = 2 and
τ = 0.9. Roughly speaking, the above dynamic scaling procedure changes the
values of θ and ξ at most a single time in the right direction, so as to balance
the sizes of the residuals based on the information provided by their values at
the previous k̄ iterations. We observe that the above scheme is based on similar
ideas as the ones used in [8], but involves two scaling parameters instead of
only one as in [8]. Also, since the bound on the CG iterations (40) increases as
θ decreases, we stop decreasing θ whenever the CG method starts to perform
relatively high number of iterations in order to obtain ∆y

k satisfying (39).
In our computational experiments, we refer to the variant of Algorithm 1 in

which incorporates the above dynamic scaling scheme and uses the CG method
to perform step 2 as explained in Subsection 4.1 as the CG based inexact scaled
block-decomposition (CG-ISBD) method. Figure 2 compares the performance
of the CG-ISBD method on a conic SDP instance against the following three

Title Suppressed Due to Excessive Length 19

0 500 1000 1500 2000

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

CG-ISBD vs VAR1 vs VAR2 vs VAR3

iterations

m
a

x
 {

 ε
P
,

ε D
,

|ε
G

|
}

CG-ISBD
θ

k
=θ

1

*
 and ξ

k
=ξ

1

*

θ
k
=1 and ξ

k
=1

θ
k
=1, ξ

k
=1 and λ

k
=(σ

2
 - σ

w

2
)
1/2

Fig. 2: This example (random SDP instance) illustrates how
all the refinements made in the application of the Special-BD
framework to problem (1) helped improve the performance of
the algorithm.

variants: i) VAR1, the one that removes the dynamic scaling (i.e., set θk = θ∗1
and ξk = ξ∗1 , for every k ≥ 1); ii) VAR2, the one that removes the dynamic
scaling and the initialization scheme for θ1 (i.e., set θk = 1 and ξk = 1, for every
k ≥ 1); and iii) VAR3, the one that removes these latter two refinements and
the use of adaptive stepsize (i.e., set θk = 1, ξk = 1 and λk = λ̃ =

√
σ2 − σ2

w,
for every k ≥ 1).

5 Numerical results

In this section, we compare the CG-ISBD method described in Section 4 with
the SDPLR method discussed in [2,3,1]. More specifically, we compare these
two methods on a collection of extra large-scale conic SDP instances of (1)
and (4) where the size and/or density of the linear operator A is such that the
operation of projecting a point onto the manifold M (see O.3 in Section 1) is
prohibitively expensive.

We have implemented CG-ISBD for solving (1) in a MATLAB code which
can be found at http://www.isye.gatech.edu/~cod3/COrtiz/software/.
This variant was implemented for spaces X and Y, and cone K given as in (4).
Hence, our code is able to solve conic programming problems given in standard
form (i.e., as in (1)) with nu unrestricted scalar variables, nl nonnegative scalar
variables and an ns×ns positive semidefinite symmetric matrix variable. The
inner products (before scaling) used in X and Y are the standard ones, namely:

http://www.isye.gatech.edu/~cod3/COrtiz/software/

20 Renato D. C. Monteiro et al.

the scalar inner product in Y and the following inner product in X

〈x, x̃〉 := xTv x̃v +Xs • X̃s,

for every x = (xv, Xs) ∈ Rnu+nl×Sns and x̃ = (x̃v, X̃s) ∈ Rnu+nl×Sns , where
X • Y := Tr(XTY) for every X,Y ∈ Sns . Also, this implementation uses the
preconditioned CG procedure pcg.m from MATLAB with a modified stopping
criterion to obtain ∆y

k as in Subsection 4.1. On the other hand, we have used
the 1.03-beta C implementation of SDPLR1. All the computational results
were obtained on a single core of a server with 2 Xeon E5-2630 processors at
2.30GHz and 64GB RAM.

In our benchmark, we have considered various large-scale random SDP
(RAND) problems, and two large and dense SDP bounds of the Ramsey mul-
tiplicity problem (RMP). The RAND instances are pure SDPs, i.e., instances
of (1) and (4) with nl = nu = 0, and were generated using the same random
SDP generator used in [7]. In Appendix B, we describe in detail the RMP
and the structure of its SDP bound. For each one of the above conic SDP
instances, both methods stop whenever (44) with ε̄ = 10−6 is satisfied with an
upper bound of 300,000 seconds running time.

We now make some general remarks about how the results are reported on
the tables given below. Table 1 reports the size and the number of non-zeros
of A and AA∗ for each conic SDP instance. All the instances are large and
dense enough so that our server runs out of memory when trying to compute a
projection onto the manifoldM (see O.3 in Section 1) based on the Cholesky
factorization of AA∗. Table 2, which compares CG-ISBD against SDPLR, re-
ports the primal and dual infeasibility measures as described in (41) and (42),
respectively, the relative duality gap as in (43) and the time (in seconds) for
both methods at the last iteration. In addition, Table 2 includes the number
of (outer) iterations and the total number of CG iterations performed by CG-
ISBD. The residuals (i.e., the primal and dual infeasibility measures, and the
relative duality gap) and time taken by any of the two methods for any par-
ticular instance are marked in red, and also with an asterisk (*), whenever it
cannot solve the instance by the required accuracy, in which case the residuals
reported are the ones obtained at the last iteration of the method. Moreover,
the time is marked with two asterisks (**) whenever the method is stopped
due to numerical errors (e.g., NaN values are obtained). Also, the fastest time
in each row is marked in bold.

Finally, Figure 3 plots the performance profiles (see [4]) of CG-ISBD and
SDPLR methods based on all instances used in our benchmark. We recall the
following definition of a performance profile. For a given instance, a method
A is said to be at most x times slower than method B, if the time taken by
method A is at most x times the time taken by method B. A point (x, y) is
in the performance profile curve of a method if it can solve exactly (100y)%
of all the tested instances x times slower than any other competing method.

1 Available at http://dollar.biz.uiowa.edu/~sburer/files/SDPLR-1.03-beta.zip.

http://dollar.biz.uiowa.edu/~sburer/files/SDPLR-1.03-beta.zip

Title Suppressed Due to Excessive Length 21

1 2 4 8 16 32 64 128
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance Profiles (34 problems) tol=10
-6

 (time)

at most x × (the time of the other method)

%
 o

f
p

ro
b

le
m

s

CG-ISBD

SDPLR

Fig. 3: Performance profiles of CG-ISBD and SDPLR for solv-
ing 34 extra large-scale conic SDP instances with accuracy
ε̄ = 10−6.

Table 1: Extra large-scale conic SDP test instances.

Problem Sparsity Problem Sparsity

INSTANCE ns;nl|m nnz(A) nnz(AA∗) INSTANCE ns;nl|m nnz(A) nnz(AA∗)

RAND n1K m200K p4 1000; 0 — 200000 1,194,036 3,050,786 RAND n2K m800K p4 2000; 0 — 800000 4,776,139 12,199,146

RAND n1.5K m250K p4 1500; 0 — 250000 1,492,374 2,225,686 RAND n2K m800K p5 2000; 0 — 800000 7,959,854 32,408,642

RAND n1.5K m400K p4 1500; 0 — 400000 2,387,989 5,462,130 RAND n2K m900K p4 2000; 0 — 900000 5,372,860 15,328,086

RAND n1.5K m400K p5 1500; 0 — 400000 3,980,228 14,444,644 RAND n2K m1M p4 2000; 0 — 1000000 5,969,926 18,804,856

RAND n1.5K m500K p4 1500; 0 — 500000 2,984,924 8,409,200 RAND n2.5K m1.4M p4 2500; 0 — 1400000 8,357,945 23,740,864

RAND n1.5K m500K p5 1500; 0 — 500000 4,974,944 22,420,950 RAND n2.5K m1.5M p4 2500; 0 — 1500000 8,954,920 27,140,896

RAND n1.5K m600K p4 1500; 0 — 600000 3,582,041 11,989,112 RAND n2.5K m1.6M p4 2500; 0 — 1600000 9,551,974 30,769,976

RAND n1.5K m600K p5 1500; 0 — 600000 5,970,139 32,168,670 RAND n2.5K m1.7M p4 2500; 0 — 1700000 10,148,881 34,633,858

RAND n1.5K m700K p4 1500; 0 — 700000 4,179,023 16,202,622 RAND n2.5K m1.8M p4 2500; 0 — 1800000 10,746,281 38,718,638

RAND n1.5K m800K p4 1500; 0 — 800000 4,775,861 21,042,204 RAND n3K m1.6M p4 3000; 0 — 1600000 9,551,975 21,863,148

RAND n1.5K m800K p5 1500; 0 — 800000 7,959,941 56,937,526 RAND n3K m1.7M p4 3000; 0 — 1700000 10,149,092 24,581,412

RAND n2K m250K p4 2000; 0 — 250000 1,492,475 1,364,154 RAND n3K m1.8M p4 3000; 0 — 1800000 10,745,808 27,453,710

RAND n2K m300K p4 2000; 0 — 300000 1,790,965 1,899,818 RAND n3K m1.9M p4 3000; 0 — 1900000 11,343,196 30,485,510

RAND n2K m600K p4 2000; 0 — 600000 3,582,095 7,011,000 RAND n3K m2M p4 3000; 0 — 2000000 11,939,933 33,663,958

RAND n2K m600K p5 2000; 0 — 600000 5,970,069 18,367,654 RMP 1 90; 274668 — 274668 53,986,254 75,442,510,224

RAND n2K m700K p4 2000; 0 — 700000 4,179,126 9,428,520 RMP 2 90; 274668 — 274668 53,986,254 75,442,510,224

RAND n2K m700K p5 2000; 0 — 700000 6,965,068 24,889,158

Based on Table 2 and the performance profiles in Figure 3 and the remarks
that follow, we can conclude that CG-ISBD substantially outperforms SDPLR
in this benchmark. First, CG-ISBD is able to solve all of the test instances with
accuracy ε̄ ≤ 10−6 faster than SDPLR, even though SDPLR fails to obtain a
solution with such accuracy for 50% of them. Second, the performance profiles
in Figure 3 show that SDPLR takes at least 4 and sometimes as much as 100

22 Renato D. C. Monteiro et al.

Table 2: Extra large SDP instances solved using SDPLR and CG-ISBD with
accuracy ε̄ ≤ 10−6.

Problem Error Measures Performance

CG-ISBD SDPLR CG-ISBD SDPLR
INSTANCE ns;nl|m εP εD εG εP εD εG OUT-IT CG-IT TIME TIME

RAND n1K m200K p4 1000; 0 — 200000 9.96 -7 4.33 -8 +6.62 -7 5.92 -12 9.98 -7 +6.37 -7 343 20778 1736 186308

RAND n1.5K m200K p4 1500; 0 — 200000 9.77 -7 7.23 -9 +8.41 -7 1.07 -8 8.18 -7 +8.17 -7 452 18043 4330 16466

RAND n1.5K m250K p4 1500; 0 — 250000 3.17 -7 2.09 -9 +9.51 -7 1.37 -9 4.38 -7 +4.12 -7 448 20050 4880 28980

RAND n1.5K m400K p4 1500; 0 — 400000 9.83 -7 2.62 -8 +2.66 -7 1.48 -9 9.15 -7 -1.80 -7 365 20932 6309 39937

RAND n1.5K m400K p5 1500; 0 — 400000 8.33 -7 1.66 -8 +9.13 -7 3.80 -10 3.47 -7 +9.73 -7 366 14108 5978 30997

RAND n1.5K m500K p4 1500; 0 — 500000 1.44 -7 3.10 -9 +9.60 -7 8.77 -12 1.77 -7 +7.38 -6* 348 23895 6880 300000*

RAND n1.5K m500K p5 1500; 0 — 500000 2.41 -7 5.57 -9 +9.44 -7 3.38 -10 1.99 -7 -8.92 -8 338 15707 7120 34877

RAND n1.5K m600K p4 1500; 0 — 600000 9.39 -7 4.79 -8 +3.32 -7 1.11 -11 9.62 -7 +2.35 -6* 281 22408 8004 284521**

RAND n1.5K m600K p5 1500; 0 — 600000 9.67 -7 3.84 -8 +8.01 -8 4.85 -12 1.02 -6* +2.22 -6* 285 15844 8260 266376**

RAND n1.5K m700K p4 1500; 0 — 700000 9.86 -7 2.18 -9 +6.17 -9 2.80 -11 2.78 -8 -1.42 -6* 284 26690 10987 300000*

RAND n1.5K m800K p4 1500; 0 — 800000 2.77 -7 3.90 -9 +6.35 -7 1.42 -8 6.22 -8 +1.08 -7 291 39274 17508 19056

RAND n1.5K m800K p5 1500; 0 — 800000 9.74 -7 1.27 -8 +7.40 -7 1.34 -9 3.08 -8 -5.43 -7 275 25877 14463 37926

RAND n2K m250K p4 2000; 0 — 250000 9.87 -7 4.81 -8 +3.00 -7 1.84 -10 7.75 -7 +3.28 -6* 292 20743 14362 300000*

RAND n2K m300K p4 2000; 0 — 300000 9.37 -7 3.45 -9 +3.06 -7 9.35 -10 3.75 -6* -9.58 -7 480 17391 8348 300000*

RAND n2K m600K p4 2000; 0 — 600000 9.93 -7 4.84 -9 +3.04 -7 1.99 -10 3.06 -7 +7.60 -7 464 20193 10433 228621

RAND n2K m600K p5 2000; 0 — 600000 9.84 -7 1.72 -8 +3.31 -8 6.72 -9 8.64 -7 -3.30 -7 390 21856 11612 51172

RAND n2K m700K p4 2000; 0 — 700000 9.48 -7 1.27 -8 +8.72 -7 6.63 -10 3.16 -7 +9.76 -7 388 13654 10657 51347

RAND n2K m700K p5 2000; 0 — 700000 9.50 -7 2.12 -8 +9.05 -7 1.06 -10 6.87 -7 +4.12 -6* 369 21296 11033 300000*

RAND n2K m800K p4 2000; 0 — 800000 9.58 -7 1.98 -8 +7.94 -7 8.23 -11 5.67 -7 +2.32 -6* 359 13712 11442 300000*

RAND n2K m800K p5 2000; 0 — 800000 6.72 -7 1.79 -8 +9.77 -7 3.22 -10 9.11 -7 +3.16 -6* 349 23564 13943 300000*

RAND n2K m900K p4 2000; 0 — 900000 5.34 -7 1.13 -8 +9.82 -7 6.94 -10 4.00 -7 +2.15 -7 347 14710 12273 98772

RAND n2K m1M p4 2000; 0 — 1000000 9.62 -7 1.80 -8 +3.64 -6 4.23 -10 9.22 -7 +8.59 -6* 329 23185 14229 300000*

RAND n2.5K m1.4M p4 2500; 0 — 1400000 6.67 -7 1.96 -8 +9.89 -7 5.14 -9 7.97 -7 -3.91 -7 325 22954 22746 184138

RAND n2.5K m1.5M p4 2500; 0 — 1500000 9.39 -7 4.01 -8 +7.77 -7 1.75 -8 8.78 -7 +6.78 -7 300 22011 22572 89482

RAND n2.5K m1.6M p4 2500; 0 — 1600000 9.83 -7 4.15 -8 +2.16 -7 5.49 -10 4.61 -7 +2.05 -6* 290 22605 24094 300000*

RAND n2.5K m1.7M p4 2500; 0 — 1700000 7.71 -7 2.52 -8 +9.99 -7 5.57 -9 5.90 -7 +5.26 -8 283 25173 29111 131184

RAND n2.5K m1.8M p4 2500; 0 — 1800000 9.78 -7 2.74 -8 +7.77 -7 2.88 -9 5.75 -7 +7.37 -7 271 24614 27274 195103

RAND n3K m1.6M p4 3000; 0 — 1600000 9.78 -7 1.81 -8 +3.30 -7 1.17 -8 9.19 -7 +2.72 -6* 365 21464 29711 300000*

RAND n3K m1.7M p4 3000; 0 — 1700000 7.94 -7 1.59 -8 +8.96 -7 6.48 -9 4.80 -7 +7.35 -6* 359 27262 35973 300000*

RAND n3K m1.8M p4 3000; 0 — 1800000 9.72 -7 1.36 -8 +2.36 -6 9.01 -9 6.44 -7 +4.11 -7 351 22780 32586 211309

RAND n3K m1.9M p4 3000; 0 — 1900000 3.08 -7 5.52 -9 +9.63 -7 1.31 -9 4.73 -7 -4.07 -6* 352 26610 37020 300000*

RAND n3K m2M p4 3000; 0 — 2000000 7.49 -7 2.29 -8 +9.16 -7 6.06 -9 1.07 -6* +7.38 -6* 322 23200 33294 300000*

RMP 1 90; 274668 — 274668 7.96 -7 7.36 -7 +5.93 -7 3.22 -11 1.98 +0* +6.60 -2* 5899 204632 158023 300000*

RMP 2 90; 274668 — 274668 4.61 -7 9.49 -9 +3.76 -9 6.78 -13 2.06 +1* -2.39 -3* 1034 58910 52698 164626**

times more running time than CG-ISBD for almost all of the instances that
it was able to solve with accuracy ε̄ ≤ 10−6. Third, CG-ISBD is able to solve
the two largest problems (RAND 3k 1.9M p4 and RAND 3k 2M p4) in terms of
number of constraints in approximately one tenth of the maximum running
time allocated to SDPLR, which in turn was not able to solve them. Finally,
CG-ISBD is able to solve the extremely dense instances RMP 1 and RMP 2 with
accuracy 10−6 on all the residuals, but SDPLR significantly failed to decrease
the dual infeasibility measures and relative duality gaps for both problems.

Title Suppressed Due to Excessive Length 23

6 Concluding remarks

In this section we make a few remarks about solving large-scale conic SDPs
and the method CG-ISBD proposed in this paper.

Roughly speaking a large-scale conic SDP instance as in (1) and (4) falls
into at least one of the following three categories: i) computation of projections
onto the cone K (see O.2 in Section 1) cannot be carried out; ii) large number
of constraints m but computation of projections onto the manifold M (see
O.3 in Section 1) can be carried out; and iii) large m but computation of
projections onto the manifold M cannot be carried out. Clearly, any conic
SDP instance that falls into category i) is beyond the reach of (second-order)
interior-point methods. Also, for categories ii) and iii), it is assumed that m is
large enough so that the instance cannot be solved by interior-point methods.

For conic SDP instances that fall into category i), the only suitable methods
are the low-rank ones as in [2,3,1] (e.g., SDPLR and variations thereof) which
avoid computing projections onto the cone K by representing the ns × ns
symmetric matrix component X of the variable in (1) as X = RRT where
R is a low-rank matrix. Projection-type methods such as the ones developed
in [7,9,8,17,18] are generally quite efficient for conic SDP instances that fall
into category ii) but not i) since all their main operations (see O.1, O.2 and
O.3 in Section 1) can be carried out. In particular, the BD-type methods
presented in [9] and [8] generally outperform the methods of [7,18] and [17],
respectively (see the benchmarks in [9] and [8]). It is worth emphasizing that
none of the methods in [7,9,8,17,18] can be used to solve instances that fall into
category iii) due to the fact that they all require computation of projections
onto the manifoldM and/or solutions of linear systems with coefficient matrix
related to AA∗. Even though there exist exact BD methods (see for example
the variant of the method in [9] with U = I) that avoid computation of
projections onto the manifold M and, as a consequence, can be used to solve
instances that fall into category iii) but not i), we have observed that they
generally do not perform well. In particular, we have observed that the variant
of the method in [9] with U = I failed to solve most of the instances of
our benchmark. Moreover, for the few instances where the latter BD method
succeeded, it required an average of 20 times more running time than CG-
ISBD. Our contribution on this paper was to present a method, namely CG-
ISBD, that avoids computation of projections onto the manifold M and, as
shown in Section 5, is highly efficient for conic SDP instances that fall into
category iii) but not i). The most challenging conic SDP instances are the
ones that fall into category i) and iii) simultaneously and, although one can
(often hopelessly) use one of the methods mentioned above to try to solve
such instances, there is clearly a need to develop alternative methods which
can efficiently solve them.

Finally, we make a few remarks about the method CG-ISBD proposed
in this paper. First, the CG-ISBD method is able to avoid the operation of
projecting onto the manifoldM by iterating a CG subroutine until (13) of step
2 in the Special BD framework is satisfied (see Subsection 4.1). However, an

24 Renato D. C. Monteiro et al.

alternative (more aggressive) possibility is to iterate the CG subroutine until
the HPE condition (14) is satisfied with λ = λ̃. Second, it should be noted
that the goal of the dynamic scaling scheme described in Subsection 4.2 is to
reduce the number of outer iterations performed by CG-ISBD, and does not
take into account the possibility of also reducing the number of inner iterations
performed by the CG subroutine. The development of dynamic scaling schemes
which take into account both the outer and inner iterations in order to improve
the overall performance of the method is a topic for further study.

Acknowledgements We want to thank Susanne Nieß for generously providing us with the
code and data sets to generate SDP bounds of RMPs as in [12].

References

1. Burer, S., Choi, C.: Computational enhancements in low-rank semidefinite pro-
gramming. Optimization Methods and Software 21(3), 493–512 (2006). DOI
10.1080/10556780500286582. URL http://www.tandfonline.com/doi/abs/10.1080/

10556780500286582

2. Burer, S., Monteiro, R.D.C.: A nonlinear programming algorithm for solving semidef-
inite programs via low-rank factorization. Mathematical Programming 95(2), 329–
357 (2003). DOI 10.1007/s10107-002-0352-8. URL http://dx.doi.org/10.1007/

s10107-002-0352-8

3. Burer, S., Monteiro, R.D.C.: Local minima and convergence in low-rank semidefinite
programming. Mathematical Programming 103(3), 427–444 (2005). DOI 10.1007/
s10107-004-0564-1. URL http://dx.doi.org/10.1007/s10107-004-0564-1

4. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles
(2002). DOI http://dx.doi.org/doi:10.1007/s101070100263. URL http://dx.doi.org/

http://dx.doi.org/doi:10.1007/s101070100263

5. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational prob-
lems via finite element approximation. Computers Mathematics with Applications 2(1),
17 – 40 (1976). DOI 10.1016/0898-1221(76)90003-1. URL http://www.sciencedirect.

com/science/article/pii/0898122176900031

6. Glowinski, R., Marrocco, A.: Sur l’approximation, par éléments finis d’ordre un, et la
résolution, par penalisation-dualité, d’une classe de problèmes de dirichlet non linéaires.
RAIRO Anal. Numér. 2, 41 – 76 (1975)

7. Malick, J., Povh, J., Rendl, F., Wiegele, A.: Regularization methods for semidefinite pro-
gramming. SIAM J. on Optimization 20(1), 336–356 (2009). DOI 10.1137/070704575.
URL http://dx.doi.org/10.1137/070704575

8. Monteiro, R.D.C., Ortiz, C., Svaiter, B.F.: A first-order block-decomposition method for
solving two-easy-block structured semidefinite programs. Mathematical Programming
Computation pp. 1–48 (2013). DOI 10.1007/s12532-013-0062-7. URL http://dx.doi.

org/10.1007/s12532-013-0062-7

9. Monteiro, R.D.C., Ortiz, C., Svaiter, B.F.: Implementation of a block-decomposition
algorithm for solving large-scale conic semidefinite programming problems. Com-
putational Optimization and Applications 57(1), 45–69 (2014). DOI 10.1007/
s10589-013-9590-3. URL http://dx.doi.org/10.1007/s10589-013-9590-3

10. Monteiro, R.D.C., Svaiter, B.F.: Complexity of variants of Tseng’s modified F-B split-
ting and korpelevich’s methods for hemivariational inequalities with applications to
saddle-point and convex optimization problems. SIAM Journal on Optimization 21(4),
1688–1720 (2011). DOI 10.1137/100801652. URL http://link.aip.org/link/?SJE/

21/1688/1

11. Monteiro, R.D.C., Svaiter, B.F.: Iteration-complexity of block-decomposition algorithms
and the alternating direction method of multipliers. SIAM Journal on Optimization

http://www.tandfonline.com/doi/abs/10.1080/10556780500286582
http://www.tandfonline.com/doi/abs/10.1080/10556780500286582
http://dx.doi.org/10.1007/s10107-002-0352-8
http://dx.doi.org/10.1007/s10107-002-0352-8
http://dx.doi.org/10.1007/s10107-004-0564-1
http://dx.doi.org/http://dx.doi.org/doi:10.1007/s101070100263
http://dx.doi.org/http://dx.doi.org/doi:10.1007/s101070100263
http://www.sciencedirect.com/science/article/pii/0898122176900031
http://www.sciencedirect.com/science/article/pii/0898122176900031
http://dx.doi.org/10.1137/070704575
http://dx.doi.org/10.1007/s12532-013-0062-7
http://dx.doi.org/10.1007/s12532-013-0062-7
http://dx.doi.org/10.1007/s10589-013-9590-3
http://link.aip.org/link/?SJE/21/1688/1
http://link.aip.org/link/?SJE/21/1688/1

Title Suppressed Due to Excessive Length 25

23(1), 475–507 (2013). DOI 10.1137/110849468. URL http://epubs.siam.org/doi/

abs/10.1137/110849468
12. Nieß, S.: Counting monochromatic copies of K4: a new lower bound for the Ramsey

multiplicity problem. arXiv preprint arXiv:1207.4714 (2012)
13. Nocedal, J., Wright, S.J.: Numerical Optimization, second edn. Springer Series in Op-

erations Research and Financial Engineering. Springer (2006)
14. Povh, J., Rendl, F., Wiegele, A.: A boundary point method to solve semidefi-

nite programs. Computing 78, 277–286 (2006). URL http://dx.doi.org/10.1007/

s00607-006-0182-2. 10.1007/s00607-006-0182-2
15. Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pacific J.

Math. 33, 209–216 (1970)
16. Solodov, M.V., Svaiter, B.F.: A hybrid approximate extragradient–proximal point al-

gorithm using the enlargement of a maximal monotone operator. SetValued Analysis
7(4), 323–345 (1999)

17. Wen, Z., Goldfarb, D., Yin, W.: Alternating direction augmented lagrangian methods
for semidefinite programming. Mathematical Programming Computation 2, 203–230
(2010). URL http://dx.doi.org/10.1007/s12532-010-0017-1. 10.1007/s12532-010-
0017-1

18. Zhao, X.Y., Sun, D., Toh, K.C.: A Newton-CG augmented lagrangian method for
semidefinite programming. SIAM Journal on Optimization 20(4), 1737–1765 (2010).
DOI 10.1137/080718206. URL http://link.aip.org/link/?SJE/20/1737/1

A Iteration-complexity of the CG method

Let a self adjoint positive definite linear operator Q̃ : Y → Y and q̃ ∈ Y be given. Consider
the problem of finding ∆̃ ∈ Y such that∥∥∥Q̃∆̃− q̃∥∥∥ ≤ δ‖∆̃‖. (49)

The following result estimates the number of iterations for the CG method to obtain
a solution of (49). (See for example Algorithm 5.2 of [13] for a nice description of the CG
method.)

Proposition A.1. Let ∆̃i be the ith iterate generated by the CG method applied to the
linear system Q̃∆̃ = q̃ and with initial point ∆̃0 = 0. Then, ∆̃i satisfies (49) for every

i ≥
⌈

1

2

√
κ ln

[
2
√
κ

(
1 +
‖Q̃‖
δ

)]⌉
, (50)

where κ = κ(Q̃).

Proof. Let ∆̃∗ be the solution of the linear system Q̃∆̃ = q̃ and define ei := ∆̃i − ∆̃∗ for
every i ≥ 0. For a given ε > 0, it is well-known (see for example (5.36) of [13]) that

〈ei, Q̃ei〉 ≤ 4

(√
κ− 1
√
κ+ 1

)2i

〈e0, Q̃e0〉 ∀i ≥ 0.

Using the latter inequality, it is easy to see that

‖ei‖ ≤ ε‖e0‖ ∀i ≥
⌈
1
2

√
κ ln 2

√
κ
ε

⌉
.

The latter observation with

ε =
δ

δ + ‖Q̃‖
(51)

and the fact that ε‖Q̃‖ = δ [1− ε] , then imply that, for every i satisfying (50), we have∥∥∥Q̃∆̃i − q̃∥∥∥ =
∥∥∥Q̃∆̃i − Q̃∆̃∗∥∥∥ ≤ ∥∥∥Q̃∥∥∥∥∥ei∥∥ ≤ ε∥∥∥Q̃∥∥∥ ‖e0‖ = δ

[
‖e0‖ − ε‖e0‖

]
≤ δ

[
‖e0‖ − ‖ei‖

]
≤ δ‖e0 − ei‖ = δ‖∆̃0 − ∆̃i‖ = δ‖∆̃i‖,

where the last equality is due to the assumption that ∆̃0 = 0.

http://epubs.siam.org/doi/abs/10.1137/110849468
http://epubs.siam.org/doi/abs/10.1137/110849468
http://dx.doi.org/10.1007/s00607-006-0182-2
http://dx.doi.org/10.1007/s00607-006-0182-2
http://dx.doi.org/10.1007/s12532-010-0017-1
http://link.aip.org/link/?SJE/20/1737/1

26 Renato D. C. Monteiro et al.

B The Ramsey multiplicity problem

Given a graph G and t ∈ N, let Kt denote the complete graph on t vertices, kt(G) denote
the number of cliques of size t in G, and Ḡ denote the complement of G. Given n ∈ N, define
kt(n) as the minimum number of monochromatic copies of Kt in an improper 2-edge-coloring
of Kn, i.e., kt(n) := min{kt(G) + kt(Ḡ) : |G| = n}. If n is sufficiently large compared to t,
it follows from Ramsey’s theorem that kt(n) > 0. Letting

ct := lim
n→∞

kt(n)(
n
t

) ,
the problem of determining ct is known as the Ramsey Multiplicity Problem (RMP). More-
over, a lower bound on ct can be found by solving an SDP of the form

min − x
s.t A(X) + xe ≤ b,

X ∈ Sn+, x ∈ R,

where b ∈ Rm+ , e = (1, . . . , 1)T ∈ Rm and A : Sn → Rm is a linear operator (see [12] for
details).

The SDP instances from this problem class used in Section 5 were made available to us
by S. Nieß.

	Introduction
	An adaptive block-decomposition HPE framework
	An inexact scaled BD algorithm for conic programming
	A practical dynamically scaled inexact BD method
	Numerical results
	Concluding remarks
	Iteration-complexity of the CG method
	The Ramsey multiplicity problem

