
Comput Optim Appl (2014) 57:45–69
DOI 10.1007/s10589-013-9590-3

Implementation of a block-decomposition algorithm
for solving large-scale conic semidefinite programming
problems

Renato D.C. Monteiro · Camilo Ortiz ·
Benar F. Svaiter

Received: 8 October 2012 / Published online: 10 August 2013
© Springer Science+Business Media New York 2013

Abstract In this paper, we consider block-decomposition first-order methods for
solving large-scale conic semidefinite programming problems given in standard form.
Several ingredients are introduced to speed-up the method in its pure form such as:
an aggressive choice of stepsize for performing the extragradient step; use of scaled
inner products; dynamic update of the scaled inner product for properly balancing the
primal and dual relative residuals; and proper choices of the initial primal and dual it-
erates, as well as the initial parameter for the scaled inner product. Finally, we present
computational results showing that our method outperforms the two most competi-
tive codes for large-scale conic semidefinite programs, namely: the boundary-point
method introduced by Povh et al. and the Newton-CG augmented Lagrangian method
by Zhao et al.

Keywords Complexity · Proximal · Extragradient · Block-decomposition · Convex
optimization · Conic optimization · Semidefinite programing

The work of R.D.C. Monteiro was partially supported by NSF Grants CCF-0808863,
CMMI-0900094 and CMMI-1300221, and ONR Grant ONR N00014-11-1-0062.
The work of B.F. Svaiter was partially supported by CNPq grants no. 474944/2010-7, 303583/2008-8
and FAPERJ grant E-26/110.821/2008.

Electronic supplementary material The online version of this article
(doi:10.1007/s10589-013-9590-3) contains supplementary material, which is available to authorized
users.

R.D.C. Monteiro · C. Ortiz (B)
School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta,
GA 30332-0205, USA
e-mail: camiort@gatech.edu

R.D.C. Monteiro
e-mail: monteiro@isye.gatech.edu

B.F. Svaiter
IMPA, Estrada Dona Castorina 110, 22460-320 Rio de Janeiro, Brazil
e-mail: benar@impa.br

http://dx.doi.org/10.1007/s10589-013-9590-3
mailto:camiort@gatech.edu
mailto:monteiro@isye.gatech.edu
mailto:benar@impa.br

46 R.D.C. Monteiro et al.

1 Introduction

Let X and Y be finite dimensional inner product spaces, with inner products and
associated norms denoted by 〈·, ·〉 and ‖ · ‖, respectively. The conic programming
problem is

min
{〈c, x〉 : Ax = b, x ∈ K

}
, (1)

where A :X → Y is a linear map, b ∈ Y , c ∈X and K ⊂ X is a closed convex cone.
The corresponding dual problem is

max
{〈b, y〉 : c −A∗y ∈ K∗}, (2)

where A∗ denotes the adjoint of A and K∗ is the dual cone of K defined as

K∗ := {
v ∈ X : 〈x, v〉 ≥ 0, ∀x ∈ K

}
. (3)

Let Rn denote the n dimensional Euclidean space and R
n+ denote the cone of non-

negative vectors in R
n. Also, let Sn denote the linear space of all n × n symmetric

matrices and Sn+ denote the cone of n × n symmetric positive semidefinite matri-
ces. In this paper, we report our computational experience with a first-order block-
decomposition (BD) method for solving large-scale conic semidefinite programming
problems (1), where

X = R
nu+nl × Sns , Y = R

m, K = R
nu ×R

nl+ × Sns+ , (4)

and the inner products in X and Y are the standard Euclidean/Frobenius inner prod-
ucts. Iteration-complexity bounds for this method have been studied in [12] (see also
[5]). In particular, paper [12] derives the iteration-complexity of this method by using
the fact that it is a special case of the hybrid proximal extragradient (HPE) method (re-
ferred to here as the HPE framework) introduced in [17, 18] by Solodov and Svaiter,
and whose complexity is derived in [10, 11]. Moreover, as will be seen later on, the
use of the HPE framework to analyze BD methods results in some crucial ideas to-
wards improving their practical performance.

Though the BD methods described in [5, 12] are simple and have nice convergence
properties, their implementation in its pure form is far from being efficient. This paper
introduces several ingredients to the BD method of [12] to obtain a highly efficient
algorithm for solving (1). The first ingredient is the use of an aggressive choice of
stepsize based on a certain error criterion for performing the extragradient step. The
second important idea is the implementation of the method with Y endowed with
a scaled inner product. The third idea is to allow the scaled inner product in the Y
space to dynamically change as the algorithm progresses, with the aim of properly
balancing the sizes of the primal and dual relative residuals so as to make them go to
zero according to the same order of magnitude. The fourth idea is proper choices of
the initial primal and dual iterates, as well as the initial parameter for the scaled inner
product.

Recently, augmented Lagrangian approaches have been proposed to solve the dual
formulation (2) with X , Y and K as in (4) for the case when m, nu and nl are large (up

Implementation of a block-decomposition algorithm for solving 47

to a few millions) and ns is moderate (up to a few thousands). In [9, 15], a boundary-
point method for solving (1) is proposed which can be viewed as variants of the
alternating direction method of multipliers introduced in [7, 8] applied to (2). In [22],
an inexact augmented Lagrangian method is proposed which solves a reformulation
of the augmented Lagrangian subproblem involving only the y variable via a semis-
mooth Newton approach combined with the conjugate gradient method. Moreover,
[9, 15] and [22] report numerical results indicating that their methods are currently
the best alternatives for solving large-scale conic programming problems of the form
(1) and (4). In this paper, we present computational results showing that our method
is faster and more robust than the ones in [9, 15] and [22] in a larger percentage of
conic programming instances.

It should be noted that another highly efficient variant of the BP method, which
performs a more aggressive Lagrange multiplier update, has been studied and im-
plemented by Wen et al. in [21]. The resulting package, namely SDPAD, contains
in fact a number of codes designed to solve different classes of graph-related SDP
relaxations. Moreover, each code is written in such a way as to exploit the special
structure of each SDP class, without requiring the input to be given in standard form.
Since SDPAD is not a general-purpose package (in the sense that it accepts any stan-
dard form conic SDP as input) such as the ones mentioned in the previous paragraph,
we have not included it in our present computational experiments. However, in a
follow-up paper [13], we have compared SDPAD with a specialized version of our
BD method for solving different classes of graph-related SDP relaxations, and have
found that the latter one outperforms the first one in all problem classes.

This paper is organized as follows. Section 2 presents an adaptive block-
decomposition HPE framework in the context of a block-structured monotone in-
clusion problem. This framework is similar to the one presented in [12], but makes
an aggressive choice of extragradient stepsize. An instance of this framework for
solving the conic programming problem (1) in which the Y space is endowed with a
scaled inner product is described in Sect. 3. Section 4 describes in detail all the ingre-
dients needed to speed-up the pure form of the adaptive block-decomposition HPE
method, and presents numerical results demonstrating the efficiency of the resulting
algorithm for solving many large instances of (1) and (4).

1.1 Notation

The norm of a linear operator A : X → Y is defined as

‖A‖ := sup
‖x‖≤1

‖Ax‖.

The norm of the pair (x, y) ∈X ×Y is defined as

∥∥(x, y)
∥∥ :=

√
‖x‖2 + ‖y‖2.

Let a closed convex set C ⊂ X be given. The projection operator ΠC : X → C

onto C and the distance function distC : X → R+ with respect to C are defined as

ΠC(x) := arg min
x̃∈C

{‖x − x̃‖}, distC(x) := min
x̃∈C

{‖x − x̃‖}, ∀x ∈ X . (5)

48 R.D.C. Monteiro et al.

Finally, the indicator function δC : X → R̄ of C is defined as

δC(x) :=
{

0, x ∈ C,

∞, x /∈ C,

and the normal cone operator NC : X ⇒X for C is the point-to-set map given by

NC(x) :=
{

∅, x /∈ C,

{w ∈ X : 〈x̃ − x,w〉 ≤ 0,∀x̃ ∈ C}, x ∈ C.

Clearly, the normal cone operator NC of C can be expressed in terms of its indicator
function as NC = ∂δC (see Sect. 2.1 for the definition of the subdifferential of a map).

2 An adaptive block-decomposition HPE framework

In this section, we discuss an adaptive block-decomposition HPE (A-BD-HPE)
framework which is an extension of the BD-HPE framework introduced in [12]. This
framework is analyzed in the context of a block-structured monotone inclusion prob-
lem similar to the one in Sect. 3 of [12], but with the addition of an adaptive (and
aggressive) stepsize choice for performing the extragradient step. This section is di-
vided into two subsections. The first one reviews some basic definitions and facts
about ε-subdifferentials of functions and ε-enlargements of monotone operators. The
second one presents the A-BD-HPE framework.

2.1 The ε-subdifferential and ε-enlargement of monotone operators

Let Z denote a finite dimensional inner product space. A point-to-set operator T :
Z ⇒Z is a relation T ⊂ Z ×Z and

T (z) := {
v ∈Z : (z, v) ∈ T

}
.

Alternatively, one can consider T as a multi-valued function of Z into the family
℘(Z) = 2(Z) of subsets of Z . Regardless of the approach, it is usual to identify T

with its graph defined as

Gr(T) := {
(z, v) ∈Z ×Z : v ∈ T (z)

}
.

The domain of T , denoted by DomT , is defined as

DomT := {
z ∈ Z : T (z) �= ∅}

.

An operator T :Z ⇒Z is affine if its graph is an affine manifold. Moreover, T : Z ⇒
Z is monotone if

〈v − ṽ, z − z̃〉 ≥ 0, ∀(z, v), (z̃, ṽ) ∈ Gr(T),

Implementation of a block-decomposition algorithm for solving 49

and T is maximal monotone if it is monotone and maximal in the family of monotone
operators with respect to the partial order of inclusion, i.e., S : Z ⇒Z monotone and
Gr(S) ⊃ Gr(T) implies that S = T .

In [3], Burachik, Iusem and Svaiter introduced the ε-enlargement of maximal
monotone operators. In [10] this concept was extended to a generic point-to-set op-
erator in Z as follows. Given T : Z ⇒Z and a scalar ε, define T ε :Z ⇒Z as

T ε(z) := {
v ∈ Z : 〈z − z̃, v − ṽ〉 ≥ −ε,∀z̃ ∈ Z,∀ṽ ∈ T (z̃)

}
, ∀z ∈Z.

The following result, whose proof can be found in Lemma 3.3 in [10], gives the
characterization of the ε-enlargement of the normal cone of a closed convex cone.

Lemma 2.1 (Lemma 3.3 in [10]) If K is a nonempty closed convex cone and K∗ is
its dual cone defined in (3), then for every x ∈ K , we have

−q ∈ (NK)ε(x) ⇐⇒ q ∈ K∗, 〈x, q〉 ≤ ε.

For a scalar ε ≥ 0, the ε-subdifferential of a function f : X → R̄ is the operator
∂εf : X ⇒X defined as

∂εf (x) := {
w ∈ X : f (x̃) ≥ f (x) + 〈x̃ − x,w〉 − ε,∀x̃ ∈X

}
, ∀x ∈ X .

When ε = 0, the operator ∂εf is simply denoted by ∂f and is referred to as the
subdifferential of f . The operator ∂f is trivially monotone if f is proper. If f is a
proper lower semi-continuous convex function, then ∂f is maximal monotone [16].

Finally, we refer the reader to [2, 19] for further discussion on the ε-enlargement
of a maximal monotone operator.

2.2 The A-BD-HPE framework

In this subsection, we discuss the A-BD-HPE framework which is an extension of the
BD-HPE framework introduced in [12].

This framework is analyzed in the context of a block-structured monotone inclu-
sion problem similar to the one in Sect. 3 of [12]. In what follows we give the details
of this block-structured monotone inclusion problem.

Let 〈·, ·〉X and 〈·, ·〉Y be arbitrary inner products in X and Y , respectively, and
denote their induced norms by ‖ · ‖X and ‖ · ‖Y , respectively. We endow the product
space X ×Y with the inner product 〈·, ·〉X ,Y defined as

〈
(x, y),

(
x′, y′)〉

X ,Y := 〈
x, x′〉

X + 〈
y, y′〉

Y , ∀(x, y),
(
x′, y′) ∈ X ×Y,

and denote its induced norm by ‖ · ‖X ,Y . Consider the block-structured monotone
inclusion problem of finding (x, y) ∈ X ×Y such that

0 ∈ [
F + (C ⊗ D)

]
(x, y), (6)

where C : X ⇒X , D : Y ⇒ Y and the operator C ⊗ D : X ×Y ⇒X ×Y is defined
as

(C ⊗ D)(x, y) = C(x) × D(y), ∀(x, y) ∈ X ×Y .

50 R.D.C. Monteiro et al.

We make the following assumptions regarding (6):

A.1 C and D are maximal monotone operators (with respect to 〈·, ·〉X and 〈·, ·〉Y ,
respectively);

A.2 F : DomF ⊆ X × Y → X × Y is a continuous map such that DomF ⊇ X ×
cl (DomD);

A.3 F is monotone on DomC × DomD (with respect to 〈(·, ·), (·, ·)〉X ,Y);
A.4 there exists Lyx > 0 such that

∥∥Fy

(
x′, y

) − Fy(x, y)
∥∥
Y ≤ Lyx

∥∥x′ − x
∥∥
X , ∀y ∈ DomD, ∀x, x′ ∈X .

Assumption A.1 implies that C ⊗ D is maximal monotone. Hence, in view of
Assumption A.2 above and Proposition A.1 of [11], it follows that the operator
F + C ⊗ D in (6) is maximal monotone.

We now state an extension of the BD-HPE framework of [12] which uses an adap-
tive rule for aggressively choosing the extragradient stepsize.

A-BD-HPE Framework: An adaptive block-decomposition HPE framework for (6)

(0) Let x0 ∈ X , y0 ∈ Y , σ ∈ (0,1], σy ∈ [0,1] and σx, σ̃y ∈ [0,1) be given and set
k = 1;

(1) choose λ̃k > 0 such that

σk := λmax

([
σ 2

y λ̃kσ̃yLyx

λ̃kσ̃yLyx σ 2
x + λ̃2

kL
2
yx

])1/2

≤ σ ; (7)

(2) compute ỹk, d̃k ∈ Y and ε
y
k ≥ 0 such that

d̃k ∈ Dε
y
k (ỹk),

∥∥λ̃k

[
Fy(xk−1, ỹk)+ d̃k

]+ ỹk −yk−1
∥∥2
Y +2λ̃kε

y
k ≤ σ 2

y ‖ỹk −yk−1‖2
Y ,

(8)
∥∥λ̃k

[
Fy(xk−1, ỹk) + d̃k

] + ỹk − yk−1
∥∥
Y ≤ σ̃y‖ỹk − yk−1‖Y ; (9)

compute x̃k, c̃k ∈ X and εx
k ≥ 0 such that

c̃k ∈ Cεx
k (x̃k),

∥∥λ̃k

[
Fx(x̃k, ỹk) + ãk

] + x̃k − xk−1
∥∥2
X + 2λ̃kε

x
k ≤ σ 2

x ‖x̃k − xk−1‖2
X ; (10)

(3) choose λk to be the largest λ > 0 such that

∥∥λ
[
F(x̃k, ỹk) + (c̃k, d̃k)

] + (x̃k, ỹk) − (xk−1, yk−1)
∥∥2
X ,Y + 2λ

(
εx
k + ε

y
k

)

≤ σ 2
∥
∥(x̃k, ỹk) − (xk−1, yk−1)

∥
∥2
X ,Y ; (11)

(4) set

(xk, yk) = (xk−1, yk−1) − λk

[
F(x̃k, ỹk) + (c̃k, d̃k)

]
, (12)

and k ← k + 1, and go to step 1.

Implementation of a block-decomposition algorithm for solving 51

The A-BD-HPE framework is a more aggressive version of the BD-HPE frame-
work studied in [12]. In contrast to the A-BD-HPE framework which chooses the
extragradient stepsize as the largest scalar satisfying (11), the BD-HPE framework in
[12] performs the extragradient step with λk = λ̃k . The following result shows that λ̃k

satisfies (11) and, as a consequence, guarantees the well-definedness of the adaptive
extragradient stepsize λk in step 3 of the A-BD-HPE framework.

Proposition 2.2 Consider the sequences {(xk, yk)}, {(x̃k, ỹk)}, {(c̃k, d̃k)}, {λ̃k} and
{(εx

k , ε
y
k)} generated by the A-BD-HPE framework. Then, for every k ∈N,

F(x̃k, ỹk) + (c̃k, d̃k) ∈ [
F + (C ⊗ D)ε

x
k +ε

y
k
]
(x̃k, ỹk) ⊂ [

F + (C ⊗ D)
]εx

k +ε
y
k (x̃k, ỹk)

(13)
and λ = λ̃k satisfies (11). As a consequence λk ≥ λ̃k .

Proof This result follows from Proposition 3.1 in [12]. �

In view of (11), (12) and (13), it follows that the A-BD-HPE framework is a spe-
cial case of the HPE framework for solving (6). This observation allows us to obtain
complexity results for the A-BD-HPE framework using the general complexity re-
sults derived in [10]. In what follows, we state two convergence results whose proofs
are analogous to those of Theorems 3.2 and 3.3 of [12], but use Proposition 2.2 above
instead of Proposition 3.1 in [12].

Theorem 2.3 Assume that σ < 1 and consider the sequences {(x̃k, ỹk)}, {(c̃k, d̃k)},
{λk} and {(εx

k , ε
y
k)} generated by the A-BD-HPE framework and let d0 denote the

distance of the initial point (x0, y0) ∈X ×Y to the solution set of (6) with respect to
‖(·, ·)‖X ,Y . Then, for every α ∈ R and k ∈N,

(c̃k, d̃k) ∈ Cεx
k (x̃k) × Dε

y
k (ỹk),

and there exists i ≤ k such that

∥∥F(x̃i , ỹi) + (c̃i , d̃i)
∥∥
X ,Y ≤ d0

√√√
√ (1 + σ)

(1 − σ)

(
λα−2

i∑k
j=1 λα

j

)
,

εx
i + ε

y
i ≤ d2

0σ 2

2(1 − σ 2)

(
λα−1

i∑k
j=1 λα

j

)
.

Theorem 2.4 Assume that F is affine and consider the sequences {(x̃k, ỹk)},
{(c̃k, d̃k)}, {λk} and {(εx

k , ε
y
k)} generated by the A-BD-HPE framework and define

52 R.D.C. Monteiro et al.

for every k ∈ N:

(
x̃a
k , ỹa

k

) = 1

Λk

k∑

i=1

λi(x̃i , ỹi),

(
c̃a
k , d̃a

k

) = 1

Λk

k∑

i=1

λi(c̃k, d̃k),

(14)

and

ε
x,a
k := 1

Λk

k∑

i=1

λi

(
εx
i + 〈

x̃i − x̃a
k , c̃i

〉) ≥ 0,

ε
y,a
k := 1

Λk

k∑

i=1

λi

(
ε
y
i + 〈

ỹi − ỹa
k , d̃i

〉) ≥ 0,

where Λk = ∑k
i=1 λi . Let d0 denote the distance of the initial point (x0, y0) ∈ X ×Y

to the solution set of (6) with respect to ‖(·, ·)‖X ,Y and σxy = max{σx,σy}. Then,
for every k ∈ N,

(
c̃a
k , d̃a

k

) ∈ Cε
x,a
k

(
x̃a
k

) × Dε
y,a
k

(
ỹa
k

)
,

∥∥F
(
x̃a
k , ỹa

k

) + (
c̃a
k , d̃a

k

)∥∥
X ,Y ≤ 2d0

Λk

,

ε
x,a
k + ε

y,a
k ≤ 2d2

0

Λk

(1 + η̄k),

where

η̄k := 2
√

2σ

1 − σxy

(
1 + 1

(1 − σy)2

)1/2

.

Observe that the convergence rate bounds described in Theorems 2.3 (with α = 1)
and 2.4 suggest that the rate of convergence of the A-BD-HPE framework becomes
better the larger the stepsize λk is chosen (under the condition that (11) is satisfied so
as to guarantee that Theorems 2.3 and 2.4 still apply). In fact, the choice of λk at step
3 of the A-BD-HPE framework is motivated by this observation.

3 A scaled A-BD method for conic programming

In this section, we introduce an instance of the A-BD-HPE framework applied to (1)
in which 〈·, ·〉X = 〈·, ·〉 and 〈·, ·〉Y is a scaled inner product constructed by means of
the original inner product 〈·, ·〉 in Y . (Recall that the original inner products in X and
Y are both being denoted by 〈·, ·〉.) Even though there is nothing new in this section
from the theoretical point of view, we will use the convergence results of Sect. 2 to
give a plausible argument showing that an appropriate choice of scaled inner product
in the Y space may lead to a substantial speed-up of the BD method relative to its
unscaled version.

Implementation of a block-decomposition algorithm for solving 53

We consider problem (1) with the following assumptions:

C.1 A : X → Y is a surjective linear map and b ∈ Y ;
C.2 there exists x∗ ∈X satisfying the inclusion

0 ∈ c + ∂δK(x) + NM(x), (15)

where M := {x ∈X : A(x) = b}.
We now make a few observations about the above assumptions. First, any x∗ as in C.2
is an optimal solution of (1). Second, observe that a sufficient condition for (15) to
hold is that (1) has an optimal solution and satisfies the Slater condition, i.e. Ax̂ = b

for some x̂ ∈ ri(K). Third, (15) is equivalent to the existence of y∗ ∈ Y such that the
pair (x∗, y∗) satisfies the inclusion

c + ∂δK(x) −A∗y � 0, Ax − b = 0. (16)

Fourth, the set of solutions of the above inclusion is exactly X ∗ × Y∗, where X ∗
and Y∗ denote the set of optimal solutions of (1) and (2), respectively. Fifth, observe
that (16) can be easily put into the form (6) and that Assumptions A.1–A.4 all hold
when X and Y are both endowed with the original inner product 〈·, ·〉. Hence, one
can apply any instance of the A-BD-HPE framework to solve (16).

However, from the computational point of view, it is more efficient to introduce
a scaled inner product in the Y space and work with a scaled version of (16). More
specifically, given a self adjoint positive definite linear mapping U : Y → Y , endow
X and Y with the inner products defined as

〈·, ·〉X := 〈·, ·〉, 〈·, ·〉Y := 〈·,U ·〉, (17)

respectively, and define F , C and D as

F(x, y) :=
(

c −A∗y
U−1

(
Ax − b

)
)

, C(x) = ∂δK(x) = NK(x), D(y) = 0,

(18)
where the normal cone NK(x) is with respect to 〈·, ·〉X := 〈·, ·〉.

The following proposition can be easily shown.

Proposition 3.1 F , C and D defined in (18) and the above inner products defined in
(17) satisfy Assumptions A.1–A.4 of Sect. 2 with Lyx = ‖U−1/2A‖ .

As a consequence of the above proposition, any instance of the A-BD-HPE frame-
work of Sect. 2 with F , C and D as in (18) and the inner products 〈·, ·〉X and 〈·, ·〉Y
defined as in (17) will satisfy the global convergence rate properties described in
Theorems 2.3 and 2.4. Below we describe such an instance.

54 R.D.C. Monteiro et al.

Algorithm 1: Scaled adaptive block-decomposition (SA-BD) method for solving (1)
(0) Let x0 ∈X , y0 ∈ Y , 0 < σ ≤ 1 and θ > 0 be given, and set k = 1 and

λ̃ = σ

‖U−1/2A‖; (19)

(1) compute

ỹk = yk−1 − λ̃U−1(Axk−1 − b), x̃k = ΠK

[
xk−1 − λ̃

(
c −A∗ỹk

)]; (20)

(2) define

ṽk =
(

(xk−1 − x̃k)/λ̃

U−1
(
Ax̃k − b

)
)

, (21)

choose λk to be the largest λ > 0 such that
∥
∥∥∥λṽk +

(
x̃k

ỹk

)
−

(
xk−1
yk−1

)∥
∥∥∥
X ,Y

≤ σ

∥
∥∥∥

(
x̃k

ỹk

)
−

(
xk−1
yk−1

)∥
∥∥∥
X ,Y

;

(3) set (xk, yk) = (xk−1, yk−1) − λkṽk and k ← k + 1, and go to step 1.

Proposition 3.2 Let σx = σy = σ̃y = 0 and define the inner products 〈·, ·〉X and
〈·, ·〉Y , and operators F , C and D according to (17) and (18). Consider the sequences
{(xk, yk)} and {(x̃k, ỹk)} generated by Algorithm 1 and, for every k ∈N, define

λ̃k = λ̃, εx
k = ε

y
k = 0, d̃k = 0, c̃k = −z̃k, (22)

where

z̃k := c −A∗ỹk − 1

λ̃
(xk−1 − x̃k). (23)

Then the following statements hold for every k ∈N:

(a) λ̃k satisfies (7) with Lyx = ‖U−1/2A‖;
(b) x̃k ∈ K and z̃k ∈ −NK(x̃k), or equivalently, x̃k ∈ K , z̃k ∈ K∗ and 〈x̃k, z̃k〉 = 0;
(c) λ̃k , yk−1, xk−1, and the triples (ỹk, d̃k, ε

y
k) and (x̃k, c̃k, ε

x
k) satisfy (8), (9) and

(10).

As a consequence, Algorithm 1 is a special instance of the A-BD-HPE framework.

Proof (a) This statement follows straightforwardly from (19).
(b) Define wk := xk−1 − λ̃(c −A∗ỹk) and note that x̃k = ΠK(wk) ∈ K in view of

(20). This together with (23) then imply that

λ̃z̃k = λ̃
(
c −A∗ỹk

) − (
xk−1 − ΠK(wk)

) = −(
wk − ΠK(wk)

) ∈ −NK(x̃k), (24)

where the inclusion follows from the well-known fact that x −ΠK(x) ∈ NK(ΠK(x))

for all x ∈ X . Statement b) now follows from the above observations and the fact

Implementation of a block-decomposition algorithm for solving 55

that NK(x̃k) is a cone. The equivalent statement of b) follows from Lemma 2.1 with
q = z̃k , x = x̃k and ε = 0.

(c) It follows from (22), (23), the definition of F in (18), and the definition of ỹk

in (20) that

λ̃k

[
Fy(xk−1, ỹk) + d̃k

] + ỹk − yk−1 = 0, λ̃k

[
Fx(x̃k, ỹk) + c̃k

] + x̃k − xk−1 = 0.

Clearly, the fact that σx = σy = σ̃y = εx
k = ε

y
k = 0 and the two identities above imply

that all the inequalities in (8), (9) and (10) are satisfied. The inclusions in (8) and
(10) hold from the definitions of D, ε

y
k , d̃k , C, εx

k and c̃k in (18) and (22), and the
inclusion in (24). Hence, statement c) follows.

Finally, the definitions of F in (18), ṽk in (21), and c̃k and d̃k in (22), imply that

ṽk = F(x̃k, ỹk) + (c̃k, d̃k).

This observation together with the fact that εx
k = ε

y
k = 0 then imply that steps 2 and 3

of Algorithm 1 are equivalent to steps 3 and 4 of the A-BD-HPE framework. There-
fore, the conclusion of the proposition follows. �

We now specialize the convergence rate results of Sect. 2, namely Theorems 2.3 and
2.4, to the context of Algorithm 1. First, define for every non-singular linear mapping
B : Y → Y and y ∈ Y \ {0} the following quantity

ξ(B, y) := ‖By‖
‖B‖‖y‖ ∈

[
1

κ(B)
,1

]
, (25)

where κ(B) := ‖B−1‖‖B‖ denotes the condition number of B. Note that for any
scalar θ ∈R \ {0} we have that ξ(θB, y) = ξ(B, y) and ξ(θI, y) = 1.

Theorem 3.3 Consider the sequences {(xk, yk)} and {(x̃k, ỹk)} generated by Algo-
rithm 1, the sequence {z̃k} defined as in (23), the sequences {(x̃a

k , ỹa
k)} and {c̃a

k } de-
fined as in (14), and the sequence {z̃a

k } defined by z̃a
k = −c̃a

k for every k ∈ N. Let
X ∗ and Y∗ denote the set of optimal solutions of (1) and (2), respectively, and
(x∗, y∗) ∈X ∗ ×Y∗ be such that

d0,x := min
{‖x0 − x‖ : x ∈ X ∗} = ∥∥x0 − x∗∥∥,

d0,y := min
{‖y0 − y‖ : y ∈ Y∗} = ∥∥y0 − y∗∥∥.

(26)

Then, for every k ∈N, the following statements hold:

(a) x̃k ∈ K , z̃k ∈ K∗, 〈x̃k, z̃k〉 = 0, and if σ < 1, there exists i ≤ k such that

∥∥A∗ỹi + z̃i − c
∥∥2 + ∥∥U−1/2(Ax̃i − b)

∥∥2

≤
(

1 + σ

1 − σ

)∥
∥U−1/2A

∥
∥2 d2

0,x + ξ0(U)‖U‖d2
0,y

kσ 2
, (27)

where ξ0(U) := [ξ(U1/2, y0 − y∗)]2.

56 R.D.C. Monteiro et al.

(b) x̃a
k ∈ K , z̃a

k ∈ K∗ and

∥∥A∗ŷa
k + z̃a

k − c
∥∥2 + ∥∥U−1/2(Ax̃a

k − b
)∥∥2 ≤ ∥∥U−1/2A

∥∥2 d2
0,x + ξ0(U)‖U‖d2

0,y

(kσ)2
,

〈
x̃a
k , z̃a

k

〉 ≤ (2 + 8σ)
∥∥U−1/2A

∥∥
d2

0,x + ξ0(U)‖U‖d2
0,y

kσ
.

Proof We first prove statement (a). Let k ∈ N be given. First note that from Proposi-
tion 3.2(d) we have z̃k ∈ K∗ and 〈x̃k, z̃k〉 = 0. Observe also that X ∗ ×Y∗ is the set of
solutions of the inclusion problem (6) and (18) (see the fourth observation after (15)).
Let d0 denote the distance of (x0, y0) to X ∗ × Y∗ with respect to the scaled norm
‖ · ‖X ,Y , and observe that the definitions of (x∗, y∗), d0,x , d0,y and ξ0(U) imply

d2
0 ≤ ∥∥x0 − x∗∥∥2

X + ∥∥y0 − y∗∥∥2
Y = ∥∥x0 − x∗∥∥2 + ∥∥U1/2(y0 − y∗)∥∥

= d2
0,x + ξ0(U)‖U‖d2

0,y .

Moreover, by Proposition 3.2 and Theorem 2.3 with α = 1, we conclude that if σ < 1,
there exists i ≤ k such that

∥∥c −A∗ỹi + c̃i

∥∥2
X + ∥∥U−1(Ax̃i − b

) + d̃i

∥∥2
Y

≤
(

1 + σ

1 − σ

)
d2

0

λi

∑k
j=1 λj

≤
(

1 + σ

1 − σ

)
d2

0

λ̃2k

=
(

1 + σ

1 − σ

)∥∥U−1/2A
∥∥2 d2

0

kσ 2
,

where the second inequality follows from Proposition 2.2 with λ̃k = λ̃, and the last
equality follows from the definition of λ̃ in (19). Also, in view of (17) and the defini-
tions of d̃i and c̃i in (22), we have

∥∥c −A∗ỹi + c̃i

∥∥2
X = ∥∥A∗ỹi + z̃i − c

∥∥2
,

∥∥U−1(Ax̃i − b) + d̃i

∥∥2
Y = ∥∥U−1/2(Ax̃i − b)

∥∥2
.

Then, combining the last four relations we obtain (27), and hence statement (a) fol-
lows.

Statement (b) can be proved in a similar way using Theorem 2.4 instead of Theo-
rem 2.3. �

We now make several remarks about Theorem 3.3. For the sake of simplicity, we
will focus our discussion on the point-wise convergence rate bound (27). Define the
self-adjoint positive definite linear mapping U0 : Y → Y as

U0 := AA∗.

Implementation of a block-decomposition algorithm for solving 57

First, the term ‖U−1/2A‖ in the right hand side of (27) is minimized over the class
C(A) consisting of all self-adjoint positive definite linear mappings U : Y → Y satis-
fying ‖U−1/2A‖2 = ‖A‖2/‖U‖, or equivalently,

∥∥U−1/2U1/2
0

∥∥2 = ‖U0‖/‖U‖. (28)

Note that any positive multiple of the identity operator I or the operator U0 belongs to
C(A). In view of this remark, we will assume from now on that U ∈ C(A), and within
this class we will consider the subclass Cθ (A) consisting of the operators U ∈ C(A)

such that ‖U‖ = θ , where θ > 0 is some pre-specified scalar. Second, recall that the
definition of the term ξ0(U) implies that ξ0(U) ∈ [1/κ(U),1] and that ξ0(θI) = 1.
Hence, U = θI maximizes ξ0(U) over Cθ (A). Also, it is interesting to observe that
the best possible value ξ0(U) might take over C(A), namely 1/κ(U), achieves its
minimum value when U is a positive multiple of U0. Indeed, in view of (28) and the
definition of κ(·), we have

κ(U) = ‖U‖∥∥U−1
∥∥ = ‖U‖∥∥U−1/2

∥∥2 ≤ ‖U‖∥∥U−1/2U1/2
0

∥∥2∥∥U−1/2
0

∥∥2

= ‖U‖‖U0‖
‖U‖

∥∥U−1
0

∥∥ = κ(U0), ∀U ∈ C(A).

Third, if you view the vector u0 := (y0 − y∗)/‖y0 − y∗‖ as being uniformly dis-
tributed on the unit sphere, then Lemma 5.1 and the definition of ξ0(U) implies that
the expected value of ξ0(U) with respect to u0 is tr(U)/(m‖U‖), or in words, the
average of the eigenvalues of U divided by the maximum eigenvalue of U . Hence, if
U0 is such that tr(U0)/(m‖U0‖) is of the same order of magnitude as 1/κ(U0) and U0
is ill-conditioned, then the choice of U = θU0/‖U0‖ from the class Cθ (A) for Algo-
rithm 1 will be nearly optimal in the sense of minimizing ξ0(U). Note that the latter
condition happens when U0 is ill-conditioned and most of the eigenvalues of U0 are
relatively close to its minimum eigenvalue.

We will now interpret the bound (27) from a geometrical point of view. Define the
primal and dual manifolds as

Mp := {x :Ax = b}, Md := {
c −A∗y : y ∈ Y

}
,

and define

ξ̂i (U) :=
(

1

ξ(U−1/2U1/2
0 ,U−1/2

0 (Ax̃i − b))

)2

. (29)

For every U ∈ Cθ (A), we can easily see that (27), (28), the definition of distC(·) in
(5), and the fact that ‖U‖ = θ and ‖U−1/2A‖ = ‖U−1/2U1/2

0 ‖, imply

[
distMd

(z̃i)
]2 ≤ ∥∥A∗ỹi + z̃i − c

∥∥2 ≤
(

1 + σ

1 − σ

)‖U0‖
kσ 2

(
d2

0,x

θ
+ ξ0(U)d2

0,y

)
. (30)

We will now bound the distance distMp
(x̃i). First, it is easy to see that

distMp
(x̃i) = ∥∥U−1/2

0 (Ax̃i − b)
∥∥.

58 R.D.C. Monteiro et al.

Hence, for every U ∈ Cθ (A), we have that (27), (25), (29), and the fact that ‖U‖ = θ

and ‖U−1/2A‖ = ‖U−1/2U1/2
0 ‖, imply

[
distMp

(x̃i)
]2 = ∥∥U−1/2

0 (Ax̃i − b)
∥∥2

=
(‖U−1/2(Ax̃i − b)‖

ξ(U−1/2U1/2
0 ,U−1/2

0 (Ax̃i − b))‖U−1/2U1/2
0 ‖

)2

= ξ̂i (U)

‖U−1/2U1/2
0 ‖2

∥∥U−1/2(Ax̃i − b)
∥∥2

≤
(

1 + σ

1 − σ

)
ξ̂i (U)

kσ 2

(
d2

0,x + ξ0(U)θd2
0,y

)
. (31)

Note that the definition of the term ξ̂i (U) implies that ξ̂i (U) ∈ [1, (κ(U−1/2U1/2
0))2].

Hence, the choice of U = θU0/‖U0‖ minimizes ξ̂i (U) over Cθ (A) which, in view of
the observations about the term ξ0(U) above, can lead to nearly optimal bounds for
the distances to the primal and dual manifolds in (31) and (30), respectively.

The convergence rate bounds in (30) and (31), not only highlight the benefits ob-
tained by ξ0(U) ≤ 1 for an ill-conditioned U , but also suggest how the magnitude of
‖U‖ = θ affects the size of the primal and dual residuals. More specifically, viewing
all the quantities in (30) and (31), with the exception of θ , as constants, and noting
that

[
distMp

(x̃i)
]2 = ‖U−1/2

0 (Ax̃i − b)‖2‖U1/2
0 ‖2

‖Ax̃i − b‖2

‖Ax̃i − b‖2

‖U1/2
0 ‖2

= ξ̂i (I)‖Ax̃i − b‖2

‖U0‖ ≥ ‖Ax̃i − b‖2

‖U0‖ ,

we can see that the primal and dual residuals are

‖Ax̃i − b‖2 = O
(
max

{
1, θ1/2}),

∥∥A∗ỹi + z̃i − c
∥∥2 = O

(
max

{
1, θ−1/2}),

respectively. Hence, as θ → 0, the dual residual can become significantly larger than
the primal one while, as θ → ∞, the primal residual can become significantly larger
than the dual one. In fact, we have observed in our computational experiments that
these residuals behave exactly as just described. In Sect. 4, we will use U = θU0 and
a dynamic choice of the scaling parameter θ in our implementation of Algorithm 1 so
as to empirically balance the primal and dual residuals and as a consequence improve
the practical performance of the method.

4 Implementation details and numerical results

In this section, we describe all the ingredients needed to speed-up the implementa-
tion of Algorithm 1, and present numerical results demonstrating the efficiency of the

Implementation of a block-decomposition algorithm for solving 59

resulting method for solving many large instances of (1) and (4). More specifically,
we describe two important ingredients, namely: (i) convenient choice of initial primal
and dual iterates, and initial parameter for the scaled inner product (17) on the space
X , and; (ii) dynamic change of the scaled inner product in the X space as the algo-
rithm progresses, with the aim of properly balancing the sizes of the primal and dual
relative residuals. This section also contains five subsections reporting computational
results which compare our method with the ones in [9, 15] and [22] for various types
of conic semidefinite programming problems.

For every k ∈ N, define the primal and dual relative residuals as

εP,k := ‖Ax̃k − b‖
1 + ‖b‖ , εD.k := ‖A∗ỹk + z̃k − c‖

1 + ‖c‖ , (32)

where {x̃k} and {ỹk} are the sequence generated by Algorithm 1, and {z̃k} is given by
(23). In our implementation, we used the stopping criterion

max{εP,k, εD,k} ≤ ε̄, (33)

where ε̄ > 0 is a given tolerance. We observe that the complementarity measure is
〈x̃k, z̃k〉 = 0 for every k ∈N, in view of Theorem 3.3(a). We note that the two methods
we compare our code to also use the stopping criterion (33) and satisfy the later
complementarity property.

Our implementation chooses the initial iterates x0 and y0 as

x0 = 0, y0 = arg min
∥∥A∗y − c

∥∥ = U−1
0 Ac. (34)

Another possibility would be to choose x0 as the vector with minimum norm lying in
the manifold {x ∈ X : Ax = b}. However, the computational results reported in this
paper are based on the choice of the initial iterates given by (34).

Our benchmark is based on an implementation of Algorithm 1 in which σ = 0.99
and the operator U is chosen as

U = θU0, (35)

where θ is dynamically updated whenever a specified number of iterations is per-
formed. In the next two paragraphs we discuss how to initialize θ and the scheme for
dynamically updating it.

First we discuss how to initialize θ . Note that the choice (35) of U implies that
‖U−1/2A‖ = θ−1/2, and hence

λ̃ = σθ1/2,

in view of (19). This observation together with (32), (23) and (34) imply that the
initial relative residuals εP,1 and εD,1 as a function of θ are given by

εP,1 = εP,1(θ) := ‖Ax̃1(θ) − b‖
1 + ‖b‖ ,

εD,1 = εD,1(θ) := ‖(x0 − x̃1(θ))/λ̃‖
1 + ‖c‖ = ‖σ−1θ−1/2x̃1(θ)‖

1 + ‖c‖ ,

(36)

60 R.D.C. Monteiro et al.

where

x̃1 = x̃1(θ) := ΠK

[
x0 − λ̃

(
c −A∗ỹ1

)] = ΠK

[
x0 − λ̃

(
c −A∗(y0 − λ̃U−1(Ax0 − b)

))]

= σθ1/2ΠK

[−c +A∗(y0 + σθ1/2U−1b
)]

.

Using the definition of y0 in (34), we easily see that ‖A∗y0 − c‖ ≤ ‖c‖, and hence ,
as θ → 0, we have from (36) that

εP,1(θ) → ‖b‖
1 + ‖b‖ < 1,

εD,1(θ) → ‖ΠK [A∗y0 − c]‖
1 + ‖c‖ ≤ ‖A∗y0 − c‖

1 + ‖c‖ ≤ ‖c‖
1 + ‖c‖ < 1,

As a consequence, we can always choose an initial θ so as to enforce max{εP,1, εD,1}
to be O(1). In fact, in our implementation we use the following procedure. Given a
constant ρ ≥ 1, we check whether max{εP,1(1), εD,1(1)} ≤ ρ. If so, we set the ini-
tial θ to be 1, otherwise we successively divide the current value of θ by 2 until
max{εP,1(θ), εD,1(θ)} ≤ ρ is satisfied, and use this value as the initial θ . The moti-
vation behind this initial choice of θ is to guarantee that the initial primal and dual
relative residuals εP,k and εD,k are not too large at the first iteration of Algorithm 1.

Even though, the convergence rate bounds of Theorem 3.3 are guaranteed for a
fixed value of θ , we have used in our computational results the heuristic of changing
θ every time a specified number k̄ of iterations have been performed. The motivation
for dynamically changing θ , is that our preliminary computational experiments have
suggested us that the performance of the method is improved as εP,k and εD,k are of
the same order of magnitude. More specifically, if θk denotes the dynamic value of θ

at the kth iteration of the algorithm, we use the following rule for updating θk ,

θk =

⎧
⎪⎨

⎪⎩

θk−1, k �≡ 0 mod k̄ or γ −1 ≤ εP,k−1/εD,k−1 ≤ γ,

θk−1 · τ, k ≡ 0 mod k̄ and εP,k−1/εD,k−1 > γ,

θk−1/τ, k ≡ 0 mod k̄ and εD,k−1/εP,k−1 > γ,

∀k ≥ 2,

for some pre-specified integer k̄ ≥ 1, and scalars γ > 1 and 0 < τ < 1. In our com-
putational experiments, we have used k̄ = 5, γ = 1.5 and τ = 0.9. Note that this up-
date rule is motivated by the last observation in Sect. 3. In summary, the update rule
changes the value of θ at most a single time in the right direction, so as to balance
the sizes of the primal and dual relative residuals based on the information provided
by their values at the previous iteration. We should emphasize that convergence rate
bounds for Algorithm 1 endowed with this updating rule are not available, but we
have observed that this variant of Algorithm 1 performs extremely well.

In our computational experiments, we will refer to the variant of Algorithm 1
described above as the dynamically scaled adaptive block-decomposition (DSA-BD)
method for solving (1). This variant was implemented for spaces X and Y , and cone
K given as in (4). Hence, our code is able to solve conic programming problems given
in standard form (i.e., as in (1)) with nu unrestricted scalar variables, nl nonnegative
scalar variables and an ns × ns positive semidefinite symmetric matrix variable. The

Implementation of a block-decomposition algorithm for solving 61

inner products (before scaling) used in X and Y are the standard ones, namely: the
scalar inner product in Y and the following inner product in X

〈x, x̃〉 := xT
v x̃v + Xs • X̃s,

for every x = (xv,Xs) ∈ R
nu+nl × Sns and x̃ = (x̃v, X̃s) ∈ R

nu+nl × Sns , where
X • Y := Tr(XT Y) for every X,Y ∈ Sns .

We present a computational benchmark of our algorithm (DSA-BD) compared to
the semismooth Newton-CG augmented Lagrangian (SDPNAL) method in [22] and
the boundary-point (BP) method in [9, 15]. We implemented the DSA-BD method in
MATLAB using the SDPT3 data structures described in [20], but without exploiting
any possible block sparsity on the semidefinite variable Xs . All the tests were made
using a server with 2 Xeon X5460 processors at 3.16 GHz and 32 GB RAM.

Various large-scale SDP problems are solved to obtain this benchmark, ranging
from purely random to SDP relaxations of combinatorial optimization problems such
as the frequency assignment problem (FAP), the binary integer quadratic (BIQ) prob-
lem, the quadratic assignment problem (QAP) and the maximum stable set problem
(Lovász θ -function and θ+-function). In the following subsections, we describe in de-
tail the problems included in our computational tests but before that, we make some
general remarks about how the results are reported on the several tables given in the
electronic supplementary material. In Tables 1 and 11, we compare our method to BP
and SDPNAL methods while, in Tables 3, 5, 6, 9 and 13, we compare it against SDP-
NAL only due to the fact that the current version of the BP method available to us
only accepts conic optimization SDP problems without nonnegative scalar variables.
In some of these tables, we report computational results for the same problem using
two different tolerances. They are listed in two different rows of the table to the right
of the name and size of the instance. We mark the time and the residual for a method
in red, and also with an asterisk (*), whenever the instance cannot be solved to the re-
quired accuracy, with the convention that the time and residual reported are the ones
obtained at the last iteration of the method. Also, the time marked in blue in a row
is the best one among the times listed in that row under the convention that when a
method cannot solve the instance, the corresponding time is assumed to be ∞.

Observe that the final relative residuals obtained by BP and DSA-BD are very
close to the desired accuracy when the latter is achieved. On the other hand, the ones
obtained by SDPNAL can be noticeably smaller than the desired accuracy when the
latter is achieved. This is due to the fact that SDPNAL is a second-order method and
therefore it performs much fewer (and computationally more expensive) iterations
than the other two methods. As a result, SDPNAL improves the relative residuals in
a single iteration substantially more than the other two methods.

In Tables 2, 4, 7, 8, 10, 12 and 14, we report more detailed computational results
obtained by our method DSA-BD. We do not report the violations to the conditions
x̃ ∈ K , z̃ ∈ K∗, 〈x̃, z̃〉 = 0, since they are satisfied up to machine precision at every
iteration of the DSA-BD algorithm applied to all the instances in our benchmark.

Finally, we recall the following definition of a performance profile. For a given
instance, a method A is said to be at most x times slower than method B , if the time
taken by method A is at most x times the time taken by method B . A point (x, y) is
in the performance profile curve of a method if it can solve exactly (100y) % of all

62 R.D.C. Monteiro et al.

Fig. 1 Performance profiles of
DSA-BD and SDPNAL for
solving 281 conic semidefinite
programming problems with
accuracy ε̄ = 10−6

the tested instances x times slower than any other competing method. Figure 1 plots
the performance profiles (see [6]) of DSA-BD and SDPNAL methods based on all
instances used in our benchmark. Note that the curve for SDPNAL becomes flat for
x ≥ 6 at a y value equal to about 0.5. This is due to the fact that SDPNAL fails to
solve about 50 % of the instances, although it is faster than DSA-BD on 18 % of the
instances. Other performance profiles based on instances belonging to the same class
of conic programming problems will be reported in the subsequent subsections.

4.1 Random SDPs

This subsection compares the performance of our method DSA-BD with that of BP
and SDPNAL on a collection of random sparse SDP problems. These instances were
also used in [9] to report the performance of BP introduced in [15].

Table 1 compares the three methods on a collection of random sparse SDP in-
stances using the tolerance ε̄ = 10−6. Table 2 gives more detailed computational
results on these instances obtained by our method DSA-BD, such as the objective
values, number of iterations, and the primal and dual relative residuals. Figure 2 plots
the performance profiles of the three methods based on these random sparse SDP
instances only.

Note that DSA-BD finds a solution with an accuracy of at least 10−6 faster than
BP and SDPNAL do in most of the random sparse SDP instances tested. In particular,
DSA-BD is the fastest method on the larger instances.

Implementation of a block-decomposition algorithm for solving 63

Fig. 2 Performance profiles of
DSA-BD, SDPNAL and BP for
solving 24 random SDP
problems with accuracy
ε̄ = 10−6

4.2 Frequency assignment problems

This subsection compares the performance of our method DSA-BD with that of SDP-
NAL on a collection of SDP relaxations of FAPs.

The SDP relaxation of the FAP can be described as follows (see for example
Sect. 2.4 in [4]). Given a network represented by a graph G and an edge-weight
matrix W , the frequency assignment problem on G can be formulated as a k-cut
problem

max

[(
k − 1

2k

)
L(G,W) − 1

2
Diag(We)

]
• X

s.t. − Eij • X ≤ 2/(k − 1) ∀(i, j)

− Eij • X = 2/(k − 1) ∀(i, j) ∈ U ⊆ E

diag(X) = e, X � 0, rank(X) = k,

where k > 1 is an integer, L(G,W) := Diag(We)−W is the Laplacian matrix, Eij =
eie

T
j + ej e

T
i with ei ∈ R

n the vector with all zeros except in the ith position and
e ∈ R

n is the vector with all ones. An SDP relaxation of the problem above is obtained
by dropping the rank restriction and the inequality constraint for the non-edges to
obtain the following formulation

max

[(
k − 1

2k

)
L(G,W) − 1

2
Diag(We)

]
• X

64 R.D.C. Monteiro et al.

Fig. 3 Performance profiles of
DSA-BD and SDPNAL for
solving 10 SDP relaxations of
FAPs with accuracy ε̄ = 10−6

s.t. − Eij • X ≤ 2/(k − 1) ∀(i, j) ∈ E \ U

− Eij • X = 2/(k − 1) ∀(i, j) ∈ U ⊆ E

diag(X) = e, X � 0.

Table 3 compares the two methods on a collection of SDP relaxations of FAPs
using the tolerances ε̄ = 10−5,10−6. In this table, computational results for each
instance are reported in two rows, the first one for ε̄ = 10−5, and the second one
for ε̄ = 10−6. Table 4 gives more detailed computational results on these instances
obtained by our method DSA-BD, such as the objective values, number of iterations,
and the primal and dual relative residuals. Figure 3 plots the performance profiles of
both methods based on these SDP relaxations of FAPs.

Note that our method performs better than SDPNAL on large SDP relaxations of
FAPs (i.e., fap25 and fap36).

4.3 Binary integer quadratic problems

This subsection compares the performance of our method DSA-BD with that of SDP-
NAL on a collection of SDP relaxations of BIQ problems.

The SDP relaxation of the BIQ problem can be described as follows (see for ex-
ample Sect. 7 in [22]). Given an n × n symmetric matrix Q the BIQ problem can be
formulated as

min
{
xT Qx : x ∈ {0,1}n}.

Implementation of a block-decomposition algorithm for solving 65

Fig. 4 Performance profiles of
DSA-BD and SDPNAL for
solving 161 SDP relaxations of
BIQ problems with accuracy
ε̄ = 10−6

By representing the binary set {0,1}n as {x ∈ R
n|x2

i − xi = 0}, we obtain an SDP
relaxation as follows

min Q • X

s.t. diag(X) − x = 0, α = 1,
[

X x

xT α

]
� 0, X ≥ 0, x ≥ 0.

Tables 5 and 6 compare the two methods on a collection of SDP relaxations of
BIQ problems using the tolerance ε̄ = 10−6. Tables 7 and 8 give more detailed com-
putational results on these instances obtained by our method DSA-BD, such as the
objective values, number of iterations, and the primal and dual relative residuals. Fig-
ure 4 plots the performance profiles of both methods based on these SDP relaxations
of BIQ problems.

Note that SDPNAL takes more time than DSA-BD to find a solution with an ac-
curacy of at least 10−6 in almost all of the SDP relaxations of BIQ problems tested,
and it fails to compute such a solution on more than half of these instances. On the
other hand, our method DSA-BD was able to find a solution with an accuracy of at
least 10−6 for all of the SDP relaxations of BIQ problems tested.

4.4 Quadratic assignment problems

This subsection compares the performance of our method DSA-BD with that of SDP-
NAL on a collection of SDP relaxations of QAPs.

66 R.D.C. Monteiro et al.

Fig. 5 Performance profiles of
DSA-BD and SDPNAL for
solving 36 SDP relaxations of
QAPs with accuracies
ε̄ = 10−4,10−5

Given the set Π of n × n permutation matrices and A,B ∈ R
n×n, the quadratic

assignment problem can be formulated as

min
{〈X,AXB〉 : X ∈ Π

}
.

For a matrix X = [x1, . . . , xn] ∈ R
n×n, we will identify it with the n2-vector x =

(x1; . . . ;xn). For a matrix Y ∈ R
n2×n2

, we let Y ij be the n × n block corresponding
to xix

T
j in the matrix xxT . In [14], it is shown that an SDP relaxation of the QAP is

max 〈B ⊗ A,Y 〉

s.t.
n∑

i=1

Y ii = I,
〈
I,Y ij

〉 = δij ∀1 ≤ i ≤ j ≤ n,

〈
E,Y ij

〉 = 1, ∀1 ≤ i ≤ j ≤ n,

Y � 0, Y ≥ 0,

where E ∈R
n×n is the matrix of ones, and δij = 1 if i = j , and 0 otherwise.

Table 9 compares the two methods on a collection of SDP relaxations of QAPs
using the tolerances ε̄ = 10−4,10−5. In this table, computational results for each
instance are reported in two rows, the first one for ε̄ = 10−4, and the second one
for ε̄ = 10−5. Table 10 gives more detailed computational results on these instances
obtained by our method DSA-BD, such as the objective values, number of iterations,
and the primal and dual relative residuals.

Implementation of a block-decomposition algorithm for solving 67

Fig. 6 Performance profiles of
DSA-BD, SDPNAL and BP for
solving 25 θ(G) problems with
accuracy ε̄ = 10−6

Figure 5 plots the performance profiles of both methods based on these SDP re-
laxations of QAPs. Note that SDPNAL fails to find a solution with an accuracy of at
least 10−4 for almost all of the SDP relaxations of QAPs tested. On the other hand,
our method DSA-BD was able to find a solution with an accuracy of at least 10−5 for
almost all of the SDP relaxations of QAPs tested. Observe also that a flat line in this
figure means that the corresponding method is faster for some instances, but fails to
solve the rest of them. For example, SDPNAL is the fastest method for solving ∼8 %
of the instances with an accuracy of ε̄ = 10−5, but fails to obtain a solution for the
other ∼92 % of the instances.

4.5 SDPs arising from relaxation of maximum stable set problems

This subsection compares the performance of our method DSA-BD with that of BP
and SDPNAL on a collection of SDPs corresponding to θ -functions and θ+-functions
of graph stable set problems.

The SDPs for θ -functions and θ+-functions of graph stable set problems can be
described as follows. Given a graph G with n nodes and an edge set E, the SDP
relaxations θ(G) and θ+(G) of the maximum stable set problem are defined as

θ(G) := max
{
C • X, Xij = 0, (i, j) ∈ E, I • X = 1, X � 0

}
,

θ+(G) := max
{
C • X, Xij = 0, (i, j) ∈ E, I • X = 1, X � 0, , X ≥ 0

}
,

where C = eeT , X ∈ Sn and e ∈R
n is the vector with all ones.

Tables 11 and 13 compare the three methods on a collection of θ(G) and θ+(G)

problems using the tolerance ε̄ = 10−6. Tables 12 and 14 give more detailed com-

68 R.D.C. Monteiro et al.

Fig. 7 Performance profiles of
DSA-BD and SDPNAL for
solving 25 θ+(G) problems
with accuracy ε̄ = 10−6

putational results on these instances obtained by our method DSA-BD, such as the
objective values, number of iterations, and the primal and dual relative residuals. Fig-
ures 6 and 7 plot the performance profiles of the three methods based on these θ(G)

and θ+(G) problems.
Note that even though SDPNAL is faster than BP and DSA-BD on more than 60 %

of the θ(G) instances, BP and DSA-BD are more robust, as they are able to solve
almost all of the θ(G) instances to an accuracy of at least 10−6, while SDPNAL fails
to do so in more than 35 % of them. Also, BP takes more time than DSA-BD to find
a solution with an accuracy of at least 10−6 in almost all of the θ(G) instances tested.

Note also that our method DSA-BD was able to find a solution with an accuracy
of at least 10−6 for almost all of the θ+(G) instances tested, while SDPNAL fails to
do so for almost half of them.

Appendix: Technical results

Lemma 5.1 Theorem 2.2 in [1] Given a self adjoint positive definite linear mapping
U : Y → Y and a random vector y ∈ Y uniformly distributed on a ball, we have that

E

(‖U1/2y‖2

‖U‖‖y‖2

)
= 1

σm

∑
σi

m
≤ 1

where σ1 ≤ · · · ≤ σm are the eigenvalues values of U .

Implementation of a block-decomposition algorithm for solving 69

References

1. Bottcher, A., Grudsky, S.: The norm of the product of a large matrix and a random vector. Electron.
J. Probab. 8, 7 (2003), 29 p., electronic only. URL: http://eudml.org/doc/124759

2. Burachik, R.S.S., Svaiter, B.F.: Maximal monotone operators, convex functions and a special family
of enlargements. Set-Valued Anal. 10, 297–316 (2002). doi:10.1023/A:1020639314056

3. Burachik, R.S., Iusem, A.N., Svaiter, B.F.: Enlargement of monotone operators with applications to
variational inequalities. Set-Valued Anal. 5, 159–180 (1997). doi:10.1023/A:1008615624787

4. Burer, S., Monteiro, R.D.C., Zhang, Y.: A computational study of a gradient-based log-barrier al-
gorithm for a class of large-scale SDPs. Math. Program. 95, 359–379 (2003). doi:10.1007/s10107-
002-0353-7

5. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications
to imaging. J. Math. Imaging Vis. 40, 120–145 (2011). doi:10.1007/s10851-010-0251-1

6. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles (January
2002). doi:10.1007/s101070100263

7. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems
via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976). doi:10.1016/0898-
1221(76)90003-1. URL: http://www.sciencedirect.com/science/article/pii/0898122176900031

8. Glowinski, R., Marrocco, A.: Sur l’approximation par éléments finis et la résolution par pénalisation-
dualité d’une classe de problèmes de dirichlet non linéaires. RAIRO. Anal. Numér. 2, 41–76 (1975)

9. Malick, J., Povh, J., Rendl, F., Wiegele, A.: Regularization methods for semidefinite programming.
SIAM J. Optim. 20(1), 336–356 (2009). doi:10.1137/070704575

10. Monteiro, R.D.C., Svaiter, B.F.: On the complexity of the hybrid proximal extragradient method for
the iterates and the ergodic mean. SIAM J. Optim. 20(6), 2755–2787 (2010). doi:10.1137/090753127.
URL: http://link.aip.org/link/?SJE/20/2755/1

11. Monteiro, R.D.C., Svaiter, B.F.: Complexity of variants of Tseng’s modified F-B splitting and Ko-
rpelevich’s methods for hemivariational inequalities with applications to saddle-point and convex
optimization problems. SIAM J. Optim. 21(4), 1688–1720 (2011). doi:10.1137/100801652. URL:
http://link.aip.org/link/?SJE/21/1688/1

12. Monteiro, R., Svaiter, B.: Iteration-complexity of block-decomposition algorithms and the alternating
direction method of multipliers. SIAM J. Optim. 23(1), 475–507 (2013). doi:10.1137/110849468

13. Monteiro, R.D.C., Ortiz, C., Svaiter, B.F.: A first-order block-decomposition method for solving two-
easy-block structured semidefinite programs. Optimization-online preprint 3544, pp. 1–33 (2012).
URL: http://www.optimization-online.org/DB_HTML/2012/07/3544.html

14. Povh, J., Rendl, F.: Copositive and semidefinite relaxations of the quadratic assignment prob-
lem. Discrete Optim. 6(3), 231–241 (2009). doi:10.1016/j.disopt.2009.01.002. URL: http://www.
sciencedirect.com/science/article/pii/S1572528609000036

15. Povh, J., Rendl, F., Wiegele, A.: A boundary point method to solve semidefinite programs. Computing
78, 277–286 (2006). doi:10.1007/s00607-006-0182-2

16. Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 33, 209–
216 (1970)

17. Solodov, M.V., Svaiter, B.F.: A hybrid approximate extragradient—proximal point algorithm using
the enlargement of a maximal monotone operator. Set-Valued Anal. 7(4), 323–345 (1999)

18. Solodov, M.V., Svaiter, B.F.: A hybrid projection-proximal point algorithm. J. Convex Anal. 6(1),
59–70 (1999)

19. Svaiter, B.F.: A family of enlargements of maximal monotone operators. Set-Valued Anal. 8, 311–328
(2000). doi:10.1023/A:1026555124541

20. Toh, K.C., Todd, M.J., Tütüncü, R.H.: Sdpt3—a Matlab software package for semidefinite program-
ming. Optim. Methods Softw. 11, 545–581 (1999)

21. Wen, Z., Goldfarb, D., Yin, W.: Alternating direction augmented Lagrangian methods for semidefinite
programming. Math. Program. Comput. 2, 203–230 (2010). doi:10.1007/s12532-010-0017-1

22. Zhao, X.-Y., Sun, D., Toh, K.-C.: A Newton-CG augmented Lagrangian method for semidefinite
programming. SIAM J. Optim. 20(4), 1737–1765 (2010). doi:10.1137/080718206. URL: http://link.
aip.org/link/?SJE/20/1737/1

http://eudml.org/doc/124759
http://dx.doi.org/10.1023/A:1020639314056
http://dx.doi.org/10.1023/A:1008615624787
http://dx.doi.org/10.1007/s10107-002-0353-7
http://dx.doi.org/10.1007/s10107-002-0353-7
http://dx.doi.org/10.1007/s10851-010-0251-1
http://dx.doi.org/10.1007/s101070100263
http://dx.doi.org/10.1016/0898-1221(76)90003-1
http://dx.doi.org/10.1016/0898-1221(76)90003-1
http://www.sciencedirect.com/science/article/pii/0898122176900031
http://dx.doi.org/10.1137/070704575
http://dx.doi.org/10.1137/090753127
http://link.aip.org/link/?SJE/20/2755/1
http://dx.doi.org/10.1137/100801652
http://link.aip.org/link/?SJE/21/1688/1
http://dx.doi.org/10.1137/110849468
http://www.optimization-online.org/DB_HTML/2012/07/3544.html
http://dx.doi.org/10.1016/j.disopt.2009.01.002
http://www.sciencedirect.com/science/article/pii/S1572528609000036
http://www.sciencedirect.com/science/article/pii/S1572528609000036
http://dx.doi.org/10.1007/s00607-006-0182-2
http://dx.doi.org/10.1023/A:1026555124541
http://dx.doi.org/10.1007/s12532-010-0017-1
http://dx.doi.org/10.1137/080718206
http://link.aip.org/link/?SJE/20/1737/1
http://link.aip.org/link/?SJE/20/1737/1

	Implementation of a block-decomposition algorithm for solving large-scale conic semideﬁnite programming problems
	Abstract
	Introduction
	Notation

	An adaptive block-decomposition HPE framework
	The epsilon-subdifferential and epsilon-enlargement of monotone operators
	The A-BD-HPE framework

	A scaled A-BD method for conic programming
	Implementation details and numerical results
	Random SDPs
	Frequency assignment problems
	Binary integer quadratic problems
	Quadratic assignment problems
	SDPs arising from relaxation of maximum stable set problems

	Appendix: Technical results
	References

