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IMPROVED POINTWISE ITERATION-COMPLEXITY
OF A REGULARIZED ADMM AND OF A REGULARIZED

NON-EUCLIDEAN HPE FRAMEWORK∗

MAX L. N. GONÇALVES† , JEFFERSON G. MELO† , AND RENATO D. C. MONTEIRO‡

Abstract. This paper describes a regularized variant of the alternating direction method of
multipliers (ADMM) for solving linearly constrained convex programs. It is shown that the pointwise
iteration-complexity of the new variant is better than the corresponding one for the standard ADMM
method and that, up to a logarithmic term, is identical to the ergodic iteration-complexity of the
latter method. Our analysis is based on first presenting and establishing the pointwise iteration-
complexity of a regularized non-Euclidean hybrid proximal extragradient framework whose error
condition at each iteration includes both a relative error and a summable error. It is then shown that
the new ADMM variant is a special instance of the latter framework where the sequence of summable
errors is identically zero when the ADMM stepsize is less than one or a nontrivial sequence when the
stepsize is in the interval [1, (1 +

√
5)/2).
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1. Introduction. The goal of this paper is to present a regularized variant of
the alternating direction method of multipliers (ADMM) for solving the linearly con-
strained convex problem

(1) inf{f(y) + g(s) : Cy +Ds = c},

where X , Y, and S are finite-dimensional inner product spaces, f : Y → (−∞,∞] and
g : S → (−∞,∞] are proper closed convex functions, C : Y → X and D : S → X are
linear operators, and c ∈ X . Many methods have been proposed to solve problems
with separable structure such as (1) (see, for example, [1, 4, 7, 10, 12, 13, 14, 16, 17,
20, 31, 32, 33] and the references cited therein).

A well-known class of ADMM instances for solving (1) recursively computes a
sequence {(sk, yk, xk)} as follows. Given (sk−1, yk−1, xk−1), the kth triple (sk, yk, xk)
is determined as

sk = argmins

{
g(s)−〈xk−1, Ds〉+

β

2
‖Cyk−1 +Ds− c‖2 +

1

2
〈s− sk−1, H(s−sk−1)〉

}
,

∗Received by the editors January 5, 2016; accepted for publication (in revised form) November
23, 2016; published electronically March 7, 2017.

http://www.siam.org/journals/siopt/27-1/M105553.html
Funding: The work of the first and second authors was supported in part by CNPq

grants 406250/2013-8, 444134/2014-0, 309370/2014-0, 200852/2014-0, and 201047/2014-4 and by
FAPEG/GO. This work was done while these authors were postdocs at the School of Industrial and
System Engineering Georgia Institute of Technology, Atlanta, GA. The work of the third author was
partially supported by NSF grant CMMI-1300221.
†Institute of Mathematics and Statistics, Federal University of Goias, Campus II, Caixa Postal
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yk = argminy

{
f(y)−〈xk−1, Cy〉+

β

2
‖Cy +Dsk − c‖2 +

1

2
〈y − yk−1, G(y−yk−1)〉

}
,

(2)

xk = xk−1 − θβ [Cyk +Dsk − c] ,

where β > 0 is a fixed penalty parameter, θ > 0 is a fixed stepsize, and H, G are
fixed positive semidefinite self-adjoint linear operators. If (H,G) = (0, 0) in the above
class, we obtain the standard ADMM.

The ADMM was introduced in [14, 16] and is thoroughly discussed in [3, 15].
Recently, there has been some growing interest in ADMM (see, for instance, [2, 8,
11, 17, 19, 32, 39] and the references cited therein). To discuss the complexity results
about ADMM, we use the terminology weak pointwise or strong pointwise bounds to
refer to complexity bounds relative to the best of the k first iterates or the last iterate,
respectively, to satisfy a suitable termination criterion. The first iteration-complexity
bound for the ADMM was established only recently in [31] under the assumption
that C is injective. More specifically, the ergodic iteration-complexity for the standard
ADMM is derived in [31] for any θ ∈ (0, 1], while a weak pointwise iteration-complexity
easily follows from the approach in [31] for any θ ∈ (0, 1). Subsequently, without
assuming that C is injective, [21] established an ergodic convergence rate bound for
instances of the ADMM class (2) with G = 0 and θ = 1 and, as a consequence, of
the well-known split inexact Uzawa method [40] which chooses H = αI − βD∗D for
some α ≥ β‖D‖2. Paper [20] establishes weak pointwise and ergodic convergence rate
bounds of another collection of ADMM instances which includes the standard ADMM
for any θ ∈ (0, (1 +

√
5)/2). It should be noted, however, that [20, 21] do not provide

any details on how to obtain an easily verifiable ergodic termination criterion with a
well-established iteration-complexity bound. A strong pointwise iteration-complexity
bound for the ADMM class (2) with G = 0 and θ = 1 is derived in [22]. Finally, a
number of papers (see, for example, [8, 9, 12, 18, 19, 27] and references therein) have
extended most of these complexity results to the context of the ADMM class (2) as
well as other more general ADMM classes.

Although different termination criteria are used in the aforementioned papers,
their complexity results can be rephrased in terms of a simple termination, namely,
for given ρ, ε > 0, terminate with a quadruple (s, y, x, x′) ∈ S ×Y ×X ×X satisfying

max{‖Cy +Ds− c‖, ‖x′ − x‖} ≤ ρ, 0 ∈ ∂εg(s)−D∗x, 0 ∈ ∂εf(y)− C∗x′.

In terms of this termination criterion, the best ergodic iteration-complexity bound
is O(max{ρ−1, ε−1}), while the best pointwise one is O(ρ−2). (The latter bound is
independent of ε since, in the pointwise case, the two inclusions above are shown to
hold with ε = 0.) This paper presents a regularized variant of the ADMM class (2)
whose strong pointwise iteration-complexity is O(ρ−1 log(ρ−1)) for any stepsize θ ∈
(0, (1+

√
5)/2). Note that the latter complexity is better than the pointwise iteration-

complexity by an O(ρ log(ρ−1)) factor.
It was shown in [31] that the standard ADMM with θ ∈ (0, 1] and C injective can

be viewed as an inexact proximal point (PP) method, more specifically, as an instance
of the hybrid proximal extragradient (HPE) framework proposed by [37]. In contrast
to the original Rockafellar’s PP method which is based on a summable error condition,
the HPE framework is based on a relative HPE error condition involving Euclidean
distances. Convergence results for the HPE framework are studied in [37], and its weak
pointwise and ergodic iteration-complexities are established in [29] (see also [30, 31]).
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Applications of the HPE framework to the iteration-complexity analysis of several
zero-order (resp., first-order) methods for solving monotone variational inequalities
and monotone inclusions (resp., saddle-point problems) are discussed in [24, 23, 29,
30, 31]. Paper [38] describes and studies the convergence of a non-Euclidean HPE
(NE-HPE) framework which essentially generalizes the HPE one to the context of
general Bregman distances. The latter framework was further generalized in [26],
where its ergodic iteration-complexity was established. More specifically, consider
the monotone inclusion problem (MIP) 0 ∈ T (z), where T is a maximal monotone
operator, and let w be a convex differentiable function. Recall that for a given pair
(z−, λ) = (zk−1, λk), the exact PP method computes the next iterate z = zk as the
(unique) solution of the prox-inclusion λ−1[∇w(z−)−∇w(z)] ∈ T (z). An instance of
the NE-HPE framework described in [26] computes an approximate solution of this
inclusion based on the following relative NE-HPE error criterion: for some tolerance
σ ∈ [0, 1], a triple (z̃, z, ε) = (z̃k, zk, εk) is computed such that

(3) r :=
1

λ
[∇w(z−)−∇w(z)] ∈ T ε(z̃), (dw)z(z̃) + λε ≤ σ(dw)z−(z̃),

where dw is the Bregman distance given by (dw)z(z
′) = w(z′)−w(z)−〈∇w(z), z′ − z〉

for every z, z′ and T ε denotes the ε-enlargement [5] of T (it has the property that
T ε(u) ⊃ T (u) for each u with equality holding when ε = 0). Clearly, if σ = 0 in (3),
then z = z̃ and ε = 0, and the inclusion in (3) reduces to the prox-inclusion. Also,
the HPE framework is the special case of the NE-HPE one in which w(·) = ‖ · ‖2/2
and ‖ · ‖ is the Euclidean norm.

Section 2 considers a MIP of the form 0 ∈ (S+T )(z), where S and T are maximal
monotone, S is µ-monotone with respect to w for some µ > 0 (see condition A1), and
w is a regular distance generating function (see Definition 2.2). It then presents
and establishes the strong pointwise iteration-complexity of a variant of the NE-HPE
framework for solving such a MIP in which the inclusion in (3) is strengthened to
r ∈ S(z̃)+T ε(z̃) but its error condition is weakened in that an additional nonnegative
tolerance is added to the right-hand side of the inequality in (3) which is τ -upper
summable. This extension of the error condition will be useful in the analysis of the
regularized ADMM class of section 4 with ADMM stepsize θ > 1.

Section 3 presents and establishes the strong pointwise iteration-complexity of
a regularized NE-HPE framework which solves the inclusion 0 ∈ T (z), where T
is maximal monotone. The latter framework is based on the idea of invoking the
above NE-HPE variant to solve perturbed MIPs of the form 0 ∈ (S + T )(z), where
S(·) = µ[∇w(·) −∇w(z0)] for some µ > 0, point z0, and regular distance generating
function w.

Section 4 presents and establishes the O(ρ−1 log(ρ−1)) strong pointwise iteration-
complexity of a regularized ADMM class whose description depends on β, θ (as the
standard ADMM) and a regularization parameter µ. It is well-known that (1) can
be reformulated as a MIP of the form 0 ∈ T (z) with z = (s, y, x). The regularized
ADMM class can be viewed as a special instance of the regularized NE-HPE frame-
work applied to the latter inclusion where (i) all stepsizes λk’s are equal to one; (ii) the
distance generating function w depends on β, θ, and operator C as in relation (58);
and (iii) the sequence of τ -upper summable errors is zero when the ADMM stepsize
θ ∈ (0, 1) and nontrival (and hence nonzero) when θ ∈ [1, (1 +

√
5)/2). Hence, the

iteration-complexity analysis of the regularized ADMM class for the case in which
θ ∈ [1, (1 +

√
5)/2) requires both a combination of relative and τ -upper summable

errors, while the one for the case of θ ∈ (0, 1) requires only relative errors. Moreover,
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the distance generating function w is strongly convex only when C is injective but is
always regular and hence fulfills the conditions required for the iteration-complexity
results of section 3 to hold.

This paper is organized as follows. Subsection 1.1 presents the notation and
reviews some basic concepts about convexity and maximal monotone operators. Sec-
tion 2 introduces the class of regular distance generating functions and presents the
aforementioned variant of the NE-HPE framework. Section 3 presents the regularized
NE-HPE framework and its complexity analysis. Section 4 contains two subsections.
Subsection 4.1 describes the regularized ADMM class and its pointwise iteration-
complexity result whose proof is given in subsection 4.2. Finally, the appendix re-
views some basic results about dual seminorms and existence of optimal solutions
and/or Lagrange multipliers for linearly constrained convex programs, and presents
the proofs of one result of section 2 and two results of subsection 4.2.

1.1. Basic concepts and notation. This subsection presents some definitions,
notation, and terminology needed by our presentation.

The set of real numbers is denoted by R. The set of nonnegative real numbers
and the set of positive real numbers are denoted by R+ and R++, respectively. For
t > 0, we let log+(t) := max{log t, 0}.

Let Z be a finite-dimensional real vector space with inner product denoted by
〈·, ·〉 and let ‖ · ‖ denote an arbitrary seminorm in Z. Its dual (extended) seminorm,
denoted by ‖ · ‖∗, is defined as ‖ · ‖∗ := sup{〈·, z〉 : ‖z‖ ≤ 1}. Some basic properties of
the dual seminorm are given in Proposition A.1 in Appendix A. The interior and the
relative interior of a set U ⊂ Z are denoted, respectively, by int(U) and ri(U) (see,
for example, pp. 43–44 of [34] for their definitions).

Given a set-valued operator S : Z ⇒ Z, its domain is denoted by DomS := {z ∈
Z : S(z) 6= ∅} and its inverse operator S−1 : Z ⇒ Z is given by S−1(v) := {z : v ∈
S(z)}. The operator S is said to be monotone if

〈z − z′, s− s′〉 ≥ 0 ∀ z, z′ ∈ Z,∀ s ∈ S(z),∀ s′ ∈ S(z′).

Moreover, S is maximal monotone if it is monotone and, additionally, if T is a
monotone operator such that S(z) ⊂ T (z) for every z ∈ Z then S = T . The
sum S + T : Z ⇒ Z of two set-valued operators S, T : Z ⇒ Z is defined by
(S + T )(x) := {a + b ∈ Z : a ∈ S(x), b ∈ T (x)} for every z ∈ Z. Given a
scalar ε ≥ 0, the ε-enlargement T [ε] : Z ⇒ Z of a monotone operator T : Z ⇒ Z is
defined as

T [ε](z) := {v ∈ Z : 〈v − v′, z − z′〉 ≥ −ε ∀z′ ∈ Z,∀ v′ ∈ T (z′)} ∀z ∈ Z.(4)

Recall that the ε-subdifferential of a convex function f : Z → [−∞,∞] is defined
by ∂εf(z) := {v ∈ Z : f(z′) ≥ f(z) + 〈v, z′ − z〉− ε ∀z′ ∈ Z} for every z ∈ Z. When
ε = 0, then ∂0f(x) is denoted by ∂f(x) and is called the subdifferential of f at x. The
operator ∂f is trivially monotone if f is proper. If f is a proper lower semicontinuous
convex function, then ∂f is maximal monotone [35]. The domain of f is denoted by
dom f and the conjugate of f is the function f∗ : Z → [−∞,∞] defined as

f∗(v) = sup
z∈Z

(〈v, z〉 − f(z)) ∀v ∈ Z.

2. An NE-HPE framework for a special class of MIPs. This section de-
scribes and derives convergence rate bounds for an NE-HPE framework for solving
inclusion problems consisting of the sum of two maximal monotone operators, one
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of which is assumed to be µ-monotone with respect to a Bregman distance for some
µ > 0. The latter concept implies strong monotonicity of the operator when the
Bregman distance is nondegenerate, i.e., its associated distance generating function
is strongly monotone. However, it should be noted that when the Bregman distance
is degenerate, the latter concept does not imply strong monotonicity of the operator.

We start by introducing the definition of a distance generating function and its
corresponding Bregman distance adopted in this paper.

Definition 2.1. A proper lower semicontinuous convex function w : Z →
[−∞,∞] is called a distance generating function if int(domw) = Dom ∂w 6= ∅ and
w is continuously differentiable on this interior. Moreover, w induces the Bregman
distance dw : Z × int(domw)→ R defined as

(5) (dw)(z′; z) := w(z′)− w(z)− 〈∇w(z), z′ − z〉 ∀(z′, z) ∈ Z × int(domw).

For simplicity, for every z ∈ int(domw), the function (dw)( · ; z) will be denoted by
(dw)z so that

(dw)z(z
′) = (dw)(z′; z) ∀(z′, z) ∈ Z × int(domw).

The following useful identities follow straightforwardly from (5):

∇(dw)z(z
′) = −∇(dw)z′(z) = ∇w(z′)−∇w(z) ∀z, z′ ∈ int(domw),(6)

(dw)v(z
′)− (dw)v(z) = 〈∇(dw)v(z), z

′ − z〉(7)

+ (dw)z(z
′) ∀z′ ∈ Z,∀v, z ∈ int(domw).

Our analyses of the NE-HPE frameworks presented in sections 2 and 3 require
an extra property of the distance generating function, namely, that of being regular
with respect to a seminorm.

Definition 2.2. Let distance generating function w : Z → [−∞,∞], seminorm
‖ · ‖ in Z, and convex set Z ⊂ int(domw) be given. For given positive constants m
and M , w is said to be (m,M)-regular with respect to (Z, ‖ · ‖) if

(dw)z(z
′) ≥ m

2
‖z − z′‖2 ∀z, z′ ∈ Z,(8)

‖∇w(z)−∇w(z′)‖∗ ≤M‖z − z′‖ ∀z, z′ ∈ Z.(9)

Note that if the seminorm in Definition 2.2 is a norm, then (8) implies that w
is strongly convex, in which case the corresponding dw is said to be nondegenerate.
However, since we are not necessarily assuming that ‖ · ‖ is a norm, our approach
includes the case of w being not strongly convex or, equivalently, dw being degenerate
(e.g., see Example 2.3(a) below).

It is worth pointing out that if w : Z → [−∞,∞] is (m,M)-regular with respect
to (Z, ‖ · ‖), then

(10)
m

2
‖z − z′‖2 ≤ (dw)z(z

′) ≤ M

2
‖z − z′‖2 ∀z, z′ ∈ Z.

Some examples of regular distance generating functions are as follows.

Example 2.3.
(a) Let A : Z → Z be a self-adjoint positive semidefinite linear operator. The

distance generating function w : Z → R defined by w(·) := 〈A(·), ·〉/2 is a
(1, 1)-regular with respect to (Z, ‖ · ‖), where ‖ · ‖ := 〈A(·), ·〉1/2.
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(b) Let δ ∈ (0, 1] be given and define W := {x ∈ Rn : xi + δ/n > 0 ∀i =
1, . . . , n}. Let the distance generating function w : Rn → [−∞,∞] be defined
by w(x) :=

∑n
i=1(xi + δ/n) log(xi + δ/n) for every x ∈ W and w(x) := ∞

otherwise. Then, w is a (1/(1 + δ), n/δ)-regular with respect to (Z, ‖ · ‖1),
where Z = {x ∈ Rn :

∑n
i=1 xi = 1, xi ≥ 0, i = 1, . . . , n}.

The following result gives some useful properties of regular distance generating
functions.

Lemma 2.4. Let w : Z → [−∞,∞] be an (m,M)-regular distance generating
function with respect to (Z, ‖ · ‖) as in Definition 2.2. Then,

(1 + 1/t)−1(dw)z(z
′) ≤ M

m
[(dw)z(z̃) + t(dw)z̃(z

′)] ∀t > 0, ∀ z, z′, z̃ ∈ Z;(11)

‖∇(dw)z′(z)‖∗ ≤
√

2M√
m

[(dw)z′(z)]
1/2 ∀ z, z′ ∈ Z.(12)

Proof. To show (11), let t > 0 and z, z′, z̃ ∈ Z be given. By (8), we have

(13) (dw)z(z̃) + t(dw)z̃(z
′) ≥ m

2

(
‖z − z̃‖2 + t‖z̃ − z′‖2

)
.

Using the fact that

min
γ1,γ2
{γ21 + tγ22 | γ1, γ2 ≥ 0, γ1 + γ2 ≥ ‖z − z′‖} = (1 + 1/t)−1‖z − z′‖2

and (γ1, γ2) = (‖z − z̃‖, ‖z̃ − z′‖) is a feasible point for the above problem, we then
conclude that

‖z − z̃‖2 + t‖z̃ − z′‖2 ≥ (1 + 1/t)−1‖z − z′‖2,

which, together with the second inequality in (10) and (13), immediately yields (11).
Finally, it is easy to see that (12) immediately follows from (6), (8), and (9).

Throughout this section, we assume that, for some positive scalars m and M ,
w : Z → [−∞,∞] is an (m,M)-regular distance generating function with respect to
(Z, ‖ · ‖), where Z ⊂ int(domw) is a convex set and ‖ · ‖ is a seminorm in Z. Our
problem of interest in this section is the MIP

(14) 0 ∈ (S + T )(z),

where S, T : Z ⇒ Z are point-to-set operators satisfying the following conditions:
A0. S and T are maximal monotone and DomT ⊂ Z;
A1. S is µ-monotone on Z with respect to w, i.e., there exists µ > 0 such that

〈z − z′, s− s′〉 ≥ µ[(dw)z(z
′) + (dw)z′(z)] ∀ z, z′ ∈ Z,∀ s ∈ S(z),∀ s′ ∈ S(z′);

(15)

A2. the solution set (S + T )−1(0) of (14) is nonempty.
We observe that when the seminorm ‖ · ‖ is a norm, then (15) implies that S is

strongly monotone. However, the latter need not be the case when ‖ · ‖ is not a norm.
We now state an NE-HPE framework for solving (14) which generalizes the ones

studied in [26, 38].
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Framework 1 (an NE-HPE variant for solving (14)).
(0) Let z0 ∈ Z, η0 ≥ 0, σ ∈ [0, 1), τ ∈ (0, 1), and λ ∈ R++ be given, and set

k = 1;
(1) choose λk ≥ λ and find (z̃k, zk, εk, ηk) ∈ Z × Z × R+ × R+ such that

rk :=
1

λk
∇(dw)zk(zk−1) ∈

(
S + T [εk]

)
(z̃k),(16)

(dw)zk(z̃k) + λkεk + ηk ≤ σ(dw)zk−1
(z̃k) + (1− τ)ηk−1;(17)

(2) set k ← k + 1 and go to step (1).
end

We now make some remarks about Framework 1. First, it does not specify how
to find λk and (z̃k, zk, εk, ηk) satisfying (16) and (17). The particular scheme for
computing λk and (z̃k, zk, εk, ηk) will depend on the instance of the framework under
consideration and the properties of the operators S and T . Second, if w is strongly
convex on Z, σ = 0, and η0 = 0, then (17) implies that εk = 0, ηk = 0, and zk = z̃k
for every k and hence that rk ∈ (S + T )(zk) in view of (16). Therefore, the HPE
error conditions (16)–(17) can be viewed as a relaxation of an iteration of the exact
non-Euclidean PP method, namely,

(18) 0 ∈ 1

λk
∇(dw)zk−1

(zk) + (S + T )(zk).

Third, if w is strongly convex on Z and S + T is maximal monotone, then Propo-
sition A.2 with T = λk(S + T ) and ẑ = zk−1 implies that the above inclusion has
a unique solution zk and hence that, for any given λk > 0, there exists a quadruple
(z̃k, zk, εk, ηk) of the form (zk, zk, 0, 0) satisfying (16)–(17) with σ = 0 and ηk−1 = 0.
Considering inexact quadruples (i.e., those satisfying the HPE relative error conditions
(16)–(17) with σ > 0) other than an exact one (i.e., one of the form (zk, zk, 0, 0), where
zk is a solution of (18)) has important implications, namely, (i) the resulting HPE
framework contains a variety of methods for convex programming, variational inequal-
ities, and saddle points as special instances (see, for example, [24, 23, 29, 30, 31, 37]),
and (ii) it provides much greater computational flexibility since finding the exact
quadruple is impossible for most MIPs. Fourth, the more general HPE error condi-
tion (17) is clearly equivalent to

(dw)zk(z̃k) + λkεk ≤ σ(dw)zk−1
(z̃k) + η̃k,

where η̃k = (1− τ)ηk−1 − ηk. The consideration of this additional error {η̃k} will be
useful in the analysis of the regularized ADMM class studied in section 4. Observe
that {η̃k} is ξ-upper summable, i.e.,

lim sup
k→∞

k∑
j=1

η̃j
(1− ξ)j

<∞

for any ξ ∈ [0, τ ], since nonnegativity of {ηk} implies

k∑
j=1

η̃j
(1− ξ)j

≤
k∑
j=1

(
ηj−1

(1− ξ)j−1
− ηj

(1− ξ)j

)
= η0 −

ηk
(1− ξ)k

≤ η0 ∀k ≥ 1.
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We now make some remarks about the relationship of Framework 1 with the ones
studied in [26, 28, 38]. First, Framework 1 with S = 0 and {ηk} identically zero
reduces to the one studied in [26] and also to the one in [38] if {εk} is chosen to
be identically zero. However, unless w is constant, condition A1 does not allow us
to take S = 0, and hence the convergence rate results of this section do not apply
to the setting of [26] and hence of [38]. Second, in contrast to [26], the regularity
condition on w and the µ-monotonicity of S with respect to w allow us to establish
a geometric (pointwise) convergence rate for the sequence {(dw)zk(z∗) + ηk} for any
z∗ ∈ (S + T )−1(0) (see Proposition 2.6 below). Third, when w is the usual Euclidean
distance generating function as in Example 2.3(a) with A = I and {ηk} is identically
zero, Framework 1 and the corresponding results derived in this section reduce to the
ones studied in subsection 2.2 of [28].

We also remark that the special case of Framework 1 in which S(·) = µ∇(dw)z0(·)
for some z0 ∈ Z and µ > 0 sufficiently small will be used in section 3 as a way toward
solving the inclusion 0 ∈ T (z). The resulting framework can then be viewed as a
regularized NE-HPE framework in the sense that the operator T is slightly perturbed
and regularized by the operator µ∇(dw)z0(·).

In the remaining part of this section, we focus our attention on establishing con-
vergence rate bounds for the sequence {(dw)zk(z∗) + ηk} and the sequence of residual
pairs {(rk, εk)} generated by any instance of Framework 1. We start by deriving a
preliminary technical result.

Lemma 2.5. For every k ≥ 1, the following statements hold:
(a) for every z ∈ domw, we have

(dw)zk−1
(z)− (dw)zk(z) = (dw)zk−1

(z̃k)− (dw)zk(z̃k) + λk〈rk, z̃k − z〉;

(b) for every z ∈ domw, we have

(dw)zk−1
(z)− (dw)zk(z) + (1− τ)ηk−1 ≥ (1− σ)(dw)zk−1

(z̃k)

+ λk(〈rk, z̃k − z〉+ εk) + ηk;

(c) for every z∗ ∈ (S + T )−1(0), we have

(dw)zk−1
(z∗)− (dw)zk(z∗) + (1− τ)ηk−1 ≥ (1− σ)(dw)zk−1

(z̃k)

+ λkµ(dw)z̃k(z∗) + ηk.

(d) for every z∗ ∈ (S + T )−1(0), we have

(1− σ)(dw)zk−1
(z̃k) ≤ (dw)zk−1

(z∗) + ηk−1, (dw)zk(z̃k)

≤ 1

1− σ
[(dw)zk−1

(z∗) + ηk−1].

Proof.
(a) Using (7) and the definition of rk given in (16), we obtain

(dw)zk−1
(z)− (dw)zk(z) = (dw)zk−1

(zk) + 〈∇(dw)zk−1
(zk), z − zk〉

= (dw)zk−1
(z̃k)− (dw)zk(z̃k) + 〈∇(dw)zk−1

(zk), z − z̃k〉
= (dw)zk−1

(z̃k)− (dw)zk(z̃k) + λk〈rk, z̃k − z〉 ∀z ∈ domw.

(b) This statement follows as an immediate consequence of (a) and (17).
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(c) Let z∗ ∈ (S + T )−1(0). Then, there exists a∗ ∈ Z such that a∗ ∈ S(z∗)
and −a∗ ∈ T (z∗). In view of (16), we can write rk as rk = rak + rbk,
where rak ∈ S(z̃k) and rbk ∈ T εk(z̃k). Since z∗, z̃k ∈ Z, a∗ ∈ S(z∗), and
rak ∈ S(z̃k), condition A1 implies that 〈rak − a∗, z̃k − z∗〉 ≥ µ(dw)z̃k(z∗).
On the other hand, since −a∗ ∈ T (z∗) and rbk ∈ T εk(z̃k), (4) implies that
〈rbk + a∗, z̃k − z∗〉 ≥ −εk. Hence,

(19) 〈rk, z̃k−z∗〉+εk = 〈rak−a∗, z̃k−z∗〉+〈rbk+a∗, z̃k−z∗〉+εk ≥ µ(dw)z̃k(z∗).

Statement (b) with z = z∗ together with the previous inequality then yields (c).
(d) The first inequality of this statement follows directly from (c). Now, since

(dw)zk(z̃k) ≤ σ(dw)zk−1
(z̃k) + ηk−1 (see (17)), the second inequality of this

statement follows from the first one and the fact that σ ∈ [0, 1).

Under the assumption that the sequence of stepsizes {λk} is bounded away from
zero, the following result shows that the sequence {dwzk(z∗) + ηk} converges geomet-
rically to zero for every solution z∗ of (14).

Proposition 2.6. Let µ be as in A1 and define

(20) τ := min

{
m

M

(
1

1− σ
+

1

µλ

)−1
, τ

}
∈ (0, 1).

Then, for every z∗ ∈ (S + T )−1(0) and k > ` ≥ 0, we have

(dw)zk(z∗) + ηk ≤ (1− τ)k−` [(dw)z`(z
∗) + η`] ,(21)

‖∇(dw)z∗(z̃k)‖∗ ≤
√

2M√
m

[
1 +

1√
1− σ

]
(1− τ)(k−`−1)/2[(dw)z`(z

∗) + η`]
1/2.(22)

Proof. Let z∗ ∈ (S + T )−1(0) be given. It follows from Lemma 2.5(c) and in-
equality (11) with t = µλk/(1− σ), z = zk−1, z̃ = z̃k, and z′ = z∗ that

(dw)zk(z∗) + ηk ≤

(
1− m

M

(
1

1− σ
+

1

µλk

)−1)
(dw)zk−1

(z∗) + (1− τ)ηk−1

≤ (1− τ)
[
(dw)zk−1

(z∗) + ηk−1
]
∀k > 0,

where the second inequality is due to the fact that λk ≥ λ ∀k and the definition of τ
in (20). Clearly, (21) follows from the last inequality. Now, using (6), inequality (12),
and the triangle inequality, we have

‖∇(dw)z∗(z̃k)‖∗ ≤ ‖∇(dw)zk−1
(z∗)‖∗ + ‖∇(dw)zk−1

(z̃k)‖∗

≤
√

2M√
m

[
((dw)zk−1

(z∗))1/2 + ((dw)zk−1
(z̃k))1/2

]
,

which, together with (21) with k = k − 1, the first inequality of Lemma 2.5(d), and
the fact that ηk−1 ≥ 0, yields (22).

The next result derives convergence rate bounds for the sequences {rk} and {εk}
generated by an instance of Framework 1.
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Proposition 2.7. Let τ be as defined in (20). Then, for every k ≥ 1, we have
rk ∈ (S + T [εk])(z̃k) and the following convergence rate bounds hold:

(23) ‖rk‖∗ ≤
2
√

2M

λ
√
m

(1− τ)(k−1)/2
√
d0 + η0, εk ≤

1

λ(1− σ)
(1− τ)k−1 [d0 + η0] ,

where d0 := inf{(dw)z0(z) : z ∈ (S + T )−1(0)}.
Proof. The first statement of the proposition follows from (16). Let an arbitrary

z∗ ∈ (S + T )−1(0) be given. Using (6), (16), λk ≥ λ > 0, the triangle inequality, and
inequality (12), we have

‖rk‖∗ =
1

λk
‖∇(dw)zk(zk−1)‖∗ ≤ 1

λ

[
‖∇(dw)zk(z∗)‖∗ + ‖∇(dw)zk−1

(z∗)‖∗
]

≤
√

2M

λ
√
m

[
((dw)zk(z∗))1/2 + ((dw)zk−1

(z∗))1/2
]
,

which combined with (21) with ` = 0 yields

‖rk‖∗ ≤
√

2M

λ
√
m

[
1 + (1− τ)1/2

]
(1− τ)(k−1)/2 [(dw)z0(z∗) + η0]

1/2
.

As τ ∈ (0, 1] (see (20)) and z∗ is an arbitrary point in (S + T )−1(0), the bound on rk
follows from the definition of d0. Now, since λk ≥ λ > 0, it follows from (17) that

λεk ≤ λkεk ≤ σ(dw)zk−1
(z̃k) + (1− τ)ηk−1.

On the other hand, Lemma 2.5(c) implies that

(1− σ)(dw)zk−1
(z̃k) ≤ (dw)zk−1

(z∗) + (1− τ)ηk−1.

Combining the last two inequalities and the fact that σ ∈ [0, 1), we obtain

λεk ≤
σ

1− σ
(dw)zk−1

(z∗) +
1− τ
1− σ

ηk−1 ≤
1

1− σ
[
(dw)zk−1

(z∗) + (1− τ)ηk−1
]
,

which together with (21) with ` = 0 and the fact that τ > 0 implies that

εk ≤
(1− τ)k−1

λ(1− σ)
[(dw)z0(z∗) + η0].

Since z∗ is an arbitrary point in (S + T )−1(0), the bound on εk follows from the
definition of d0.

Proposition 2.7 gives convergence rate bounds on the last triple (z̃k, rk, εk) gener-
ated by Framework 1. The next result, whose proof is given in Appendix B, gives con-
vergence rate bounds on the ergodic triple obtained by averaging the triples (z̃i, ri, εi)
from i = ` + 1 to i = k, where k > ` ≥ 0. More specifically, for k > ` ≥ 0, define
Λ`,k :=

∑k
i=`+1 λi and the (`, k)-ergodic triple (z̃a`,k, r

a
`,k, ε

a
`,k) as

(24)

z̃a`,k :=
1

Λ`,k

k∑
i=`+1

λiz̃i, r
a
`,k :=

1

Λ`,k

k∑
i=`+1

λiri, ε
a
`,k :=

1

Λ`,k

k∑
i=`+1

λi(εi+〈ri, z̃i − z̃al,k〉).
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Proposition 2.8. Let τ be as defined in (20). Then, for every k > ` ≥ 0,

(25) εa`,k ≥ 0, ra`,k ∈ (S + T )
[εa`,k] (z̃al,k)

and the following convergence rate bounds hold:

(26) ‖ra`,k‖∗ ≤
2
√

2M

Λ`,k
√
m

(1−τ)`/2 [d0 + η0]
1/2

, εa`,k ≤
9M

m(1− σ)Λ`,k
(1−τ)` [d0 + η0] ,

where d0 := inf{(dw)z0(z) : z ∈ (S + T )−1(0)}.
We end this section by making two remarks about Proposition 2.8. First, Propo-

sition 2.7 implies Proposition 2.8 when ` = k−1 and yields a slightly better bound on
εk. Second, under the assumption that max{M,m−1} = O(1), Proposition 2.8 with
` = 0 implies that

‖ra`,k‖∗ = O
(

1

kλ
[d0 + η0]

1/2

)
, εa`,k = O

(
1

kλ
[d0 + η0]

)
and with ` = dk/2e implies that

‖ra`,k‖∗ = O
(

1

kλ
(1− τ)k/4 [d0 + η0]

1/2

)
, εa`,k = O

(
1

kλ
(1− τ)k/2 [d0 + η0]

)
.

Hence, the (dk/2e, k)-ergodic triple has the property that k(ra`,k, ε
a
`,k) converges to 0

geometrically.

3. A regularized NE-HPE framework for solving MIPs. This section de-
scribes and establishes the pointwise iteration-complexity of a regularized NE-HPE
framework for solving MIPs which, specialized to the case of the Euclidean distance
and error sequence {ηk} identically zero, reduces to the regularized HPE framework of
[28]. The latter framework has been shown in [28] to have better iteration-complexity
than the one for the usual HPE framework derived in [29]. Moreover, the derived
pointwise iteration-complexity bound for the case of a general Bregman distance is,
up to a logarithm factor, the same as the ergodic iteration-complexity bound for the
standard NE-HPE method obtained in [26].

Our problem of interest in this section is the MIP

0 ∈ T (z),(27)

where T : Z ⇒ Z is a maximal monotone operator such that the solution set T−1(0)
of (27) is nonempty.

We also assume in this section that, for some positive scalars m and M , w : Z →
[−∞,∞] is an (m,M)-regular distance generating function with respect to (Z, ‖ · ‖),
where Z ⊂ int(domw) is a convex set such that DomT ⊂ Z and ‖ · ‖ is a seminorm
in Z. The regularized NE-HPE framework solves (27) based on the idea of solving
the regularized MIP

0 ∈ T (z) + µ∇(dw)z0(z)(28)

for a fixed z0 ∈ Z and a sufficiently small µ > 0. Hence, we also assume that the
solution set of (28)

(29) Z∗µ := {z ∈ Z : 0 ∈ T (z) + µ∇(dw)z0(z)}
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is nonempty for every µ > 0. We remark that if w is strongly convex on Z, then
Proposition A.2 with T = (1/µ)T and ẑ = z0 implies that the latter assumption
holds.

Note that (28) is a special case of (14) with S(·) = µ∇(dw)z0(·), and from the
above assumptions the operators S and T satisfy A0 and A2. Moreover, this operator
S together with w and Z satisfies A1. Indeed, using the definition of S and (6), we
conclude that for every z, z′ ∈ Z,

〈S(z)− S(z′), z − z′〉 = µ〈∇(dw)z′(z), z − z′〉 = µ[(dw)z(z
′) + (dw)z′(z)],

where the last equality is due to (7) with v = z′. Hence, we can use any instance of
Framework 1 with S(·) = µ∇(dw)z0(·) to approximately solve the regularized inclusion
(28), and hence (27) when µ > 0 is sufficiently small.

For every µ > 0, define

d0 := inf
z∈T−1(0)

(dw)z0(z), dµ := inf
z∈Z∗µ

(dw)z0(z).(30)

The following simple result establishes a crucial relationship between d0 and dµ.

Lemma 3.1. For any µ > 0 and z∗µ ∈ Z∗µ, there holds (dw)z0(z∗µ) ≤ d0. As a
consequence, dµ ≤ d0.

Proof. Let µ > 0 and z∗µ ∈ Z∗µ be given. Clearly, −µ∇(dw)z0(z∗µ) ∈ T (z∗µ). Hence,
monotonicity of T implies that any z∗ ∈ T−1(0) satisfies 〈∇(dw)z0(z∗µ)), z∗ − z∗µ〉 ≥ 0.
The latter conclusion and relation (7) with v = z0, z′ = z∗, and z = z∗µ then imply
that

(dw)z0(z∗)− (dw)z0(z∗µ) = 〈∇(dw)z0(z∗µ), z∗ − z∗µ〉+ (dw)z∗µ(z∗) ≥ 0.

As z∗ ∈ T−1(0) is arbitrary, the first part of the lemma follows from the definition
of d0. The second part of the lemma follows from the first one and the definition
of dµ.

Note that, in view of Proposition 2.7, any instance of Framework 1 applied to
(28) generates a triple (z̃k, rk, εk) such that

r̃k := rk − µ∇(dw)z0(z̃k) ∈ T [εk](z̃k)

and the residual pair (rk, εk) satisfies (23) with d0 = dµ, and hence converges to
0. Even though the sequence r̃k does not necessarily converge to 0, it can be made
sufficiently small, i.e., ‖r̃k‖∗ ≤ ρ for some tolerance ρ > 0, by choosing µ = ρ/O(d0).
Indeed, we will show later that there exists D0 = O(d0) such that ‖∇(dw)z0(z̃k)‖∗ ≤
D0 for every k. Hence, choosing µ = ρ/D for some D ≥ 2D0 and computing a triple
(z̃k, rk, εk) such that ‖rk‖∗ ≤ ρ/2 guarantees that

‖r̃k‖∗ ≤ ‖rk‖∗ + µ‖∇(dw)z0(z̃k)‖∗ ≤ ρ

2
+ µD0 = ρ

(
1

2
+
D0

D

)
≤ ρ

and hence that r̃k is a sufficiently small residual for (27). Moreover, Proposition
2.7 implies the iteration-complexity of the proposed scheme increases as D does, or
equivalently, µ decreases. As a result, the best strategy is to choose a scalar D ≥ 2D0

such that D = O(D0). A technical difficulty of the proposed scheme is that D0 can
not be explicitly computed since it depends on d0, which is generally not known.
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Our first framework below is essentially Framework 1 applied to (28) with an
arbitrary guess of D, and hence of µ = ρ/D. In view of the above discussion, it is
guaranteed to work only for large values of D, i.e., when D ≥ 2D0. Subsequently,
we present a dynamic scheme (see Framework 3) which successively calls Framework
2 for a sequence of increasing values of D. It is shown in Theorem 3.3 that the
latter scheme has the same iteration-complexity as the best one for Framework 2
(i.e., the one obtained under the hypothetical assumption that a scalar D ≥ 2D0 and
D = O(D0) is known).

Framework 2 (a static regularized NE-HPE framework for solving (27)).
Input: (z0, η0,D) ∈ Z × R+ × R++ and (σ, τ, λ, ρ, ε) ∈ [0, 1) × (0, 1) ×
R++ × R++ × R++;

(0) set µ = ρ/D and k = 1;
(1) choose λk ≥ λ and find (zk, z̃k, εk, ηk) ∈ Z × Z × R+ × R+ such that

rk :=
1

λk
∇(dw)zk(zk−1) ∈

(
µ∇(dw)z0(z̃k) + T [εk](z̃k)

)
,(31)

(dw)zk(z̃k) + λkεk + ηk ≤ σ(dw)zk−1
(z̃k) + (1− τ)ηk−1;(32)

(2) if ‖rk‖∗ ≤ ρ/2 and εk ≤ ε, then stop and output (z̃k, r̃k, εk) where

r̃k = rk − µ∇(dw)z0(z̃k);

otherwise, set k ← k + 1 and go to step (1).
end

We now make two remarks about Framework 2. First, as mentioned above, it is
the special case of Framework 1 in which S(·) = µ∇(dw)z0(·) and hence solves MIP
(28). Second, since section 2 only deals with convergence rate bounds, a stopping
criterion was not added to Framework 1. In contrast, Framework 2 incorporates a
stopping criterion (see step (2) above) based on which its iteration-complexity bound
is obtained. Clearly, (31) together with the termination criteria ‖rk‖∗ ≤ ρ/2 and
εk ≤ ε provides a certificate of the quality of z̃k as an approximate solution of the
regularized MIP (28).

The next result establishes the pointwise iteration-complexity of Framework 2
and shows that any instance of Framework 2 also solves the original MIP (27) when
D is sufficiently large.

Theorem 3.2. The following statements hold:
(a) for every k ≥ 1,

‖∇(dw)z0(z̃k)‖∗ ≤ D0 :=

√
2M√
m

[
2 +

1√
1− σ

]
(d0 + η0)

1/2
;

(b) Framework 2 terminates in at most

max

{
M

m

(
D
λρ

+
1

1− σ

)
,

1

τ

}
(33)

×
[
2 + max

{
log+

(
32M2(d0 + η0)

(λρ)2m

)
, log+

(
d0 + η0
λ(1− σ)ε

)}]
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iterations with a triple (z̃k, r̃k, εk) satisfying the following conditions:

r̃k ∈ T [εk](z̃k), ‖r̃k + µ∇(dw)z0(z̃k)‖∗ ≤ ρ/2, εk ≤ ε;

moreover, if D ≥ 2D0, then ‖r̃k‖∗ ≤ ρ.
Proof. (a) By first considering (22) with ` = k − 1 and then using (21), we have

‖∇(dw)z∗µ(z̃k)‖∗ ≤
√

2M√
m

(
1 +

1√
1− σ

)
((dw)z0(z∗µ) + η0)1/2

for an arbitrary point z∗µ ∈ Z∗µ. Hence, using (6), (12), and the triangle inequality, we
obtain

‖∇(dw)z0(z̃k)‖∗ ≤ ‖∇dwz0(z∗µ)‖∗ + ‖∇(dw)z∗µ(z̃k)‖∗

≤
√

2M√
m

[
((dw)z0(z∗µ))1/2 +

(
1 +

1√
1− σ

)
((dw)z0(z∗µ) + η0)1/2

]
≤
√

2M√
m

[
2 +

1√
1− σ

] (
(dw)z0(z∗µ) + η0

)1/2
,

which implies the conclusion of (a), in view of Lemma 3.1 and the definition of D0.
(b) Assume that Framework 2 has not terminated at the kth iteration. Then,

either ‖rk‖∗ > ρ/2 or εk > ε. Assume first that ‖rk‖∗ > ρ/2. Since Framework 2 is a
special case of Framework 1 applied to MIP (28) with S(z) = µ∇(dw)z0(z), the latter
assumption and Corollary 2.7 imply that

ρ

2
< ‖rk‖∗ ≤

2
√

2M

λ
√
m

(1− τ)(k−1)/2(dµ + η0)1/2 ≤ 2
√

2M

λ
√
m

(1− τ)(k−1)/2(d0 + η0)1/2,

where the last inequality is due to Lemma 3.1. Rearranging the last inequality, taking
logarithms of both sides of the resulting inequality, and using the fact that log(1−τ) ≤
−τ , we conclude that

k < 1 + τ−1 log

(
32M2(d0 + η0)

(λρ)2m

)
.

If, on the other hand, εk > ε, we conclude by using a similar reasoning that

k < 1 + τ−1 log

(
d0 + η0

(1− σ)λε

)
.

The complexity bound in (b) now follows from the above estimates, the definition of
τ in (20), and the fact that µ = ρ/D.

The last statement of (b) follows immediately from (a) and the first part of (b)
(see the paragraph following Lemma 3.1).

We now make some remarks about Theorem 3.2. First, if (1− σ)−1 and τ−1 are
O(1), and an input D for Framework 2 satisfying 2D0 ≤ D = O(D0) is known, then
the complexity bound (33) becomes

O
(
M

m

(
M(d0 + η0)1/2

λρ
√
m

+ 1

)[
1 + max

{
log+

(
M2(d0 + η0)

(λρ)2m

)
, log+

(
d0 + η0
λε

)}])
,

(34)
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in view of the definition of D0 in Theorem 3.2(a). Second, in general an upper bound
D as in the first remark is not known and, in such a case, bound (33) can be much
worse than the one above, e.g., when D � 2D0.

We now consider the case where an upper bound D ≥ 2D0 such that D = O(D0)
is not known and describe a scheme based on Framework 2 whose iteration-complexity
bound is equal to (34).

Framework 3 (a dynamic regularized NE-HPE framework for solving (27)).
(0) Let z0 ∈ Z, η0 ≥ 0, σ ∈ [0, 1), τ ∈ (0, 1), λ > 0, and a tolerance pair

(ρ, ε) ∈ R++ × R++ be given and set D = λρ;
(1) call Framework 2 with input (z0, η0,D) and (σ, τ, λ, ρ, ε) to obtain (z̃, r̃, ε̃)

as output;
(2) if ‖r̃‖∗ ≤ ρ then stop and output (z̃, r̃, ε̃); else, set D ← 2D and go to

step (1).
end

Each iteration of Framework 3 (referred to as an outer iteration) invokes Frame-
work 2, which performs a certain number of iterations (called inner iterations), which
in turn are bounded by (33). The following result gives the overall inner iteration-
complexity of Framework 3.

Theorem 3.3. Framework 3 with input (z0, η0) ∈ Z × R+ and (σ, τ, λ, ρ, ε) ∈
[0, 1)× (0, 1)×R++×R++×R++ such that (1−σ)−1 and 1/τ are O(1) finds a triple
(z̃, r̃, ε̃) satisfying

r̃ ∈ T [ε̃](z̃), ‖r̃‖∗ ≤ ρ, ε̃ ≤ ε,

by performing a total number of inner iterations bounded by (34).

Proof. Note that at the kth outer iteration of Framework 3, we have D = 2k−1λρ.
Hence, taking D0 as in Theorem 3.2(a), it follows from Theorem 3.2(b) that Frame-
work 3 terminates in at most K outer iterations, where K is the smallest integer k ≥ 1
satisfying 2k−1λρ ≥ 2D0. Thus, K = 1 +

⌈
log+ (2D0/(λρ))

⌉
. In order to simplify the

calculations, let us denote

β1 := 2 + max

{
log+

(
32M2(d0 + η0)

(λρ)2m

)
, log+

(
d0 + η0
λ(1− σ)ε

)}
.(35)

In view of Theorem 3.2(b) and (35), we see that the overall number of inner iterations
is bounded by

K̃ := β1

K∑
k=1

max

{
M

m

(
2k−1 +

1

1− σ

)
,

1

τ

}
≤ β1

[
M

m

(
2K − 1 +

K

1− σ

)
+
K

τ

]
and hence

K̃ ≤ Mβ1
m

[
1 +

1

1− σ
+

1

τ

]
2K .(36)

To end the proof, it suffices to show that K̃ is bounded by (34). If K = 1, then
(35) combined with (36) and the fact that (1 − σ)−1 and 1/τ are O(1) show that
(34) trivially holds. Assume now that K > 1 and note that k := K − 1 violates
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the inequality 2k−1λρ ≥ 2D0 and hence that 2K < 8D0/(λρ). The latter estimate
combined with inequality (36) implies that

K̃ <
8Mβ1
m

[
1 +

1

1− σ
+

1

τ

]
D0

λρ
,

which together with (35) and the fact that (1 − σ)−1 and 1/τ are O(1) and D0 =

O(M(d0 + η0)1/2/
√
m) imply that K̃ is bounded by (34).

We end this section by making two remarks. First, if εk = 0 for every k, then
the complexity bound (34) can clearly be replaced by one that does not depend on ε.
Second, the termination criterion used by Framework 2 (and consequently Framework
3) is based on the last generated triple (x̃k, r̃k, εk). Instead of it, Framework 2 can
also use an ergodic stopping criterion, namely, it terminates when ‖ra`,k‖∗ ≤ ρ/2 and
εa`,k ≤ ε and then outputs the triple (z̃, r̃, ε̃) = (z̃a`,k, r̃

a
`,k, ε

a
`,k), where

r̃ak := rak − µ
k∑
i=1

λi
Λk
∇(dw)z0(z̃i).

It can be shown with the aid of Proposition 2.8 that when ` = 0 and D is prop-
erly initialized, the iteration-complexity of the modified (ergodic) Framework 3 is
O(max{ρ−1, ε−1}). We omit the details for the sake of brevity but note that the
bound is essentially the same as the ergodic iteration-complexity bound for the stan-
dard HPE framework obtained in [31].

4. A regularized ADMM class. The goal of this section is to present a regu-
larized ADMM class for solving (1) with a better pointwise iteration-complexity than
the standard ADMM. It contains two subsections. The first one describes our setting,
our assumptions, the regularized ADMM class, and its improved pointwise iteration-
complexity bound. The second one is dedicated to the proof of the main result stated
in the first subsection.

4.1. A regularized ADMM class and its pointwise iteration-complexity.
In this subsection, let S, Y, and X be finite-dimensional real vector spaces with inner
products denoted by 〈·, ·〉S , 〈·, ·〉Y , and 〈·, ·〉X , respectively. Let us also consider the

norm in X given by ‖ · ‖X := 〈·, ·〉1/2X and the seminorms in S and Y defined by

(37) ‖ · ‖S,H := 〈H(·), ·〉1/2, ‖ · ‖Y,G := 〈G(·), ·〉1/2,

respectively, where H : S → S and G : Y → Y are self-adjoint positive semidefinite
linear operators. Our problem of interest is

(38) inf{f(y) + g(s) : Cy +Ds = c},

where c ∈ X , C : Y → X , and D : S → X are linear operators, and f : Y → (−∞,∞]
and g : S → (−∞,∞] are proper closed convex functions. The following assumptions
are made throughout this section:

B1. the problem (38) has an optimal solution (s∗, y∗) and an associated Lagrange
multiplier x∗, or equivalently, the monotone inclusion

(39) 0 ∈ T (s, y, x) :=

 ∂g(s)−D∗x
∂f(y)− C∗x
Cy +Ds− c


has a solution (s∗, y∗, x∗);
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B2. there exists x ∈ X such that (C∗x,D∗x) ∈ ri (dom f∗)× ri (dom g∗).
We now make two remarks about the above assumptions. First, it follows from

the last conclusion of Proposition A.3 in Appendix A that if the solution set of (38) is
nonempty and bounded, then B2 holds. Second, by Proposition A.3(a), if the infimum
in (38) is finite and B2 holds, then (38) has an optimal solution. Hence, B2 together
with the Slater condition that there exists a feasible pair (s, y) for (38) such that
(s, y) ∈ ri (dom g)× ri (dom f) imply that B1 holds (see Proposition A.3(c)).

We are ready to state the regularized ADMM class for solving (38).

Dynamic regularized alternating direction method of multipliers (DR-
ADMM).
(0) Let (s0, y0, x0) ∈ S × Y × X , positive scalars β and θ, a tolerance ρ > 0, two
self-adjoint positive semidefinite linear operators H : S → S and G : Y → Y which
define the seminorms (37) be given, and set D = ρ;

(1) set µ = ρ/D, β1 = βθ/(θ + µ) and β2 = β(1 + µ) and k = 1, and go to (a);
(a) set

(40) ŝk−1 =
sk−1 + µs0

1 + µ
, ŷk−1 =

yk−1 + µy0
1 + µ

, x̂k−1 =
θxk−1 + µx0

θ + µ

and compute an optimal solution sk ∈ S of the subproblem
(41)

min
s∈S

{
g(s)−〈D∗x̂k−1, s〉S +

β1
2
‖Cyk−1 +Ds−c‖2X +

1 + µ

2
‖s− ŝk−1‖2S,H

}
;

(b) set x̃k and uk as

x̃k = x̂k−1 − β1(Cyk−1 +Dsk − c),(42)

uk = x̃k + β2(Cŷk−1 +Dsk − c)(43)

and compute an optimal solution yk ∈ Y of the subproblem
(44)

min
y∈Y

{
f(y)− 〈C∗uk, y〉Y +

β2
2
‖Cy +Dsk − c‖2X +

1 + µ

2
‖y − ŷk−1‖2Y,G

}
;

(c) update xk as

(45) xk = xk−1 − θβ
[
Cyk +Dsk − c+

µ

θβ
(x̃k − x0)

]
and compute
(46)

bk := sk−1−sk, ak := yk−1−yk, qk := βC(yk−1−yk), pk :=
1

βθ
(xk−1−xk);

(d) if

(47)

(
‖bk‖2S,H + ‖ak‖2Y,G +

1

β
‖qk‖2X + βθ‖pk‖2X

)1/2

≤ ρ/2,

then set (s, y, x̃) = (sk, yk, x̃k), compute (b̃, ã, q̃, p̃) as
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b̃ := bk − µ(sk − s0), ã := ak − µ(yk − y0), q̃ := qk − µβC(yk − y0),(48)

p̃ := pk −
µ

βθ
(x̃k − x0)

and go to (2); else set k ← k + 1 and go to (a); (2) if(
‖b̃‖2S,H + ‖ã‖2Y,G +

1

β
‖q̃‖2X + βθ‖p̃‖2X

)1/2

≤ ρ,(49)

then stop and output (s, y, x̃, b̃, ã, q̃, p̃); otherwise, set D ← 2D and go to
step (1).

end

We now make some remarks about the DR-ADMM. First, assumption B2 together
with Corollary A.4 implies that both subproblems (41) and (44) have optimal solutions
and hence DR-ADMM is well-defined. Second, loop (a)–(d) with µ = 0 is exactly
the ADMM class (2) with penalty parameter β and relaxation stepsize θ (see, for
example, [15]) since in this situation we have β1 = β2 = β, x̂k−1 = uk = xk−1, and
ŷk−1 = yk−1. However, it should be emphasized that DR-ADMM requires µ > 0.
Hence, it does not belong to the ADMM class (2) and the results obtained for the
DR-ADMM in this section do not apply to the latter class. Third, DR-ADMM should
essentially be viewed as a regularized variant of ADMM which dynamically adjusts
the regularization parameter µ > 0 or, equivalently, the parameter D > 0 (as in
section 3). Indeed, it will be shown later on (see Lemmas 4.4, 4.5, and 4.7) that
DR-ADMM is a special instance of Framework 3 in which εk = 0 ∀k ≥ 1. More
specifically, steps (0), (1), and (2) of DR-ADMM correspond exactly to steps (0),
(1), and (2) of Framework 3, respectively. A single execution of steps (1) and (2) is
referred to as an outer iteration of DR-ADMM. A single execution of steps (a)–(d) is
referred to as an inner iteration of DR-ADMM which, in the context of Framework
3, corresponds to an iteration of Framework 2 (see step (1) of Framework 3). The
cycle of inner iterations consisting of (a)–(d) corresponds to the implementation of a
special instance of Framework 2 in which εk = 0 ∀k ≥ 1. Moreover, the two residuals
rk and r̃ computed at the end of steps (1) and (2) of Framework 2, respectively,
correspond in the context of the DR-ADMM to the pairs (Hbk, Gak + C∗qk, pk) and
(Hb̃,Gã + C∗q̃, p̃), respectively (see Lemma 4.4). Fourth, the objective functions of
subproblems (41) and (44) are given by the sum of a convex quadratic function and a
convex function (either g or f). In many applications, they are easily solvable when
the Hessian of the quadratic function is a positive multiple of the identity operator.
Moreover, in most applications, one of the operators is the identity operator which we
may assume to be the operator D. In such a case, choosing H = 0 ensures that the
Hessian of the quadratic term of the objective function of (41) is the identity operator.
Also, choosing G = αI−βC∗C where α is such that G is positive semidefinite ensures
that the Hessian of the quadratic function of (44) is (1 + µ)αI and hence also a
multiple of the identity operator.

The following result, which is the main one of this section, shows that the reg-
ularized ADMM class has an O(ρ−1 log ρ−1) pointwise iteration-complexity which is
better than the O(ρ−2) pointwise iteration-complexity obtained in [20]. Its derived
bound is expressed in terms of the quantity

d0 := inf
(s,y,x)∈T−1(0)

{
1

2
‖s0−s‖2S,H +

1

2
‖y0−y‖2Y,G +

β

2
‖C(y0−y)‖2X +

1

2βθ
‖x0−x‖2X

}
,

(50)

where T is as defined in (39).
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Theorem 4.1. DR-ADMM with stepsize θ ∈ (0, (1 +
√

5)/2) terminates in at
most

(51) O
((

1 +

√
d0
ρ

)[
1 + log+

(√
d0
ρ

)])
iterations with (s, y, x̃, b̃, ã, q̃, p̃) satisfying
(52) Hb̃

Gã+ C∗q̃

p̃

∈
 ∂g(s)−D∗x̃
∂f(y)− C∗x̃
Cy +Ds− c

 ,(‖b̃‖2S,H + ‖ã‖2Y,G +
1

β
‖q̃‖2X + βθ‖p̃‖2X

)1/2

≤ ρ.

4.2. Proof of Theorem 4.1. In this subsection, we establish Theorem 4.1 by
first showing that DR-ADMM is an instance of Framework 3, and then translating
Theorem 3.3 to the context of the DR-ADMM to obtain the complexity bound (51).

The first result below establishes, as a consequence of some useful relations, that
(52) is essentially an invariance of the inner iterations of the DR-ADMM.

Lemma 4.2. The kth iterate (sk, yk, xk, x̃k) obtained during a cycle of inner iter-
ations satisfies

0 ∈ H(sk − sk−1) + [∂g(sk)−D∗x̃k + µH(sk − s0)] ,(53)

0 ∈ (G+ βC∗C)(yk − yk−1) + [∂f(yk)− C∗x̃k + µ(G+ βC∗C)(yk − y0)] ,(54)

0 =
1

θβ
(xk − xk−1) +

[
Cyk +Dsk − c+

µ

θβ
(x̃k − x0)

]
,(55)

x̃k − xk−1 = βC(yk − yk−1) +
xk − xk−1

θ
,(56)

where µ is the constant value of the smoothing parameter during this cycle. As a con-
sequence, the 7-tuple (s, y, x̃, b̃, ã, q̃, p̃) obtained in step (2) of the DR-ADMM satisfies
the inclusion in (52).

Proof. From the optimality condition of (41), we have

(57) 0 ∈ ∂g(sk)−D∗(x̂k−1 − β1(Cyk−1 +Dsk − c)) + (1 + µ)H(sk − ŝk−1),

which, combined with (42) and the definition of ŝk−1 in (40), yields (53). Now, from
the optimality condition of (44) and definition of uk in (43), we obtain

0 ∈ ∂f(yk)− C∗uk + β2C
∗(Cyk +Dsk − c) + (1 + µ)G(yk − ŷk−1)

= ∂f(yk)− C∗x̃k + β2C
∗C(yk − ŷk−1) + (1 + µ)G(yk − ŷk−1).

Also, the definition of β2 in step (1) of the DR-ADMM and the definition of ŷk−1 in
(40) yield

β2(yk − ŷk−1) = β(1 + µ)yk − β(yk−1 + µy0) = β(yk − yk−1) + µβ(yk − y0)

and

(1 + µ)G(yk − ŷk−1) = (1 + µ)Gyk −G(yk−1 + µy0) = G(yk − yk−1) + µG(yk − y0).
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The last two equalities combined with the previous inclusion prove (54). Moreover,
(55) follows immediately from (45). We now prove relation (56). Using the definition
of β1 in step (1) of the DR-ADMM and definitions x̂k−1 and x̃k in (40) and (42),
respectively, we obtain

x̃k − xk−1 +
µ

θ
(x̃k − x0) =

1

θ
[(θ + µ)x̃k − (θxk−1 + µx0)] =

θ + µ

θ
(x̃k − x̂k−1)

= − (θ + µ)β1
θ

(Cyk−1 +Dsk − c) = −β(Cyk−1 +Dsk − c).

Identity (56) now follows by combining the previous relation and (55). Finally, the
inclusion in (52) follows from (53)–(55) and the definitions b̃, ã, q̃, and p̃ in (48).

Define the space Z := S ×Y ×X and endow it with the inner product defined as

〈z, z′〉 := 〈s, s′〉S + 〈y, y′〉Y + 〈x, x′〉X ∀z = (s, y, x), z′ = (s, y, x).

Since our approach toward proving Theorem 4.1 is via showing that DR-ADMM is a
special instance of Framework 3, we need to introduce the elements required by the
setting of section 3, namely, the distance generating function w : Z → [−∞,∞], the
convex set Z ⊂ domw, and the seminorm ‖ · ‖ on Z. Indeed, define w : Z → R, the
seminorm, and set Z as

w(z) :=
1

2
‖(s, y, x)‖2, ‖z‖ :=

(
‖s‖2S,H + ‖y‖2Y,G + β‖Cy‖2X +

1

βθ
‖x‖2X

)1/2

, Z :=Z,

(58)

for every z = (s, y, x) ∈ Z. The Bregman distance associated with w is given by

(59) (dw)z(z
′) =

1

2
‖s′ − s‖2S,H +

1

2
‖y′ − y‖2Y,G +

β

2
‖C(y′ − y)‖2X +

1

2βθ
‖x′ − x‖2X

for every z = (s, y, x) ∈ Z and z′ = (s′, y′, x′) ∈ Z. The following result shows that
w, ‖ · ‖ and Z defined above, as well as the operator T defined in (39), fulfill the
assumptions of section 3.

Lemma 4.3. Let function w, seminorm ‖·‖, and set Z be as defined above. Then,
the following statements hold:

(a) the function w is a (1, 1)-regular distance generating function with respect to
(Z, ‖ · ‖);

(b) the set Z∗µ as in (29) where z0 = (s0, y0, x0) and T is as in (39) is nonempty
for every µ > 0.

Proof.
(a) This statement follows directly from Example 2.3(a) with A given by

A(s, y, x) = (Hs, (G+ βC∗C)y, x/(βθ)) ∀(s, y, x) ∈ Z.

(b) The proof of this statement is given in Appendix C.

The next result gives a sufficient condition for the sequence generated by a cycle
of inner iterations of the DR-ADMM to be an implementation of Framework 2.

Lemma 4.4. Let σ ∈ [0, 1) and τ ∈ (0, 1) be given and consider the operator
T and the Bregman distance dw as in (39) and (59), respectively. Consider the
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sequence {(sk, yk, xk, x̃k, bk, ak, qk, pk)} generated during a cycle of inner iterations of
DR-ADMM with parameter D > 0 and define

(60) zk−1 = (sk−1, yk−1, xk−1), z̃k = (sk, yk, x̃k), λk = 1, εk = 0 ∀k ≥ 1.

Then, the following statements hold:
(a) the sequence {(zk, z̃k, λk, εk)} satisfies inclusion (31) and the left-hand side rk

of this inclusion in terms of bk, ak, pk, and qk is given by rk = (Hbk, Gak +
C∗qk, pk);

(b) if there exists a sequence {ηk} such that {(bk, ak, qk, pk, ηk)} satisfies

[σ(1 + θ)− 1]
‖qk‖2X
2βθ

+
[
σ − (θ − 1)2

] β‖pk‖2X
2θ

+
(σ + θ − 1)

θ
〈qk, pk〉X

≥ ηk − (1− τ)ηk−1 − σ
‖bk‖2S,H

2
− σ
‖ak‖2Y,G

2
,

then the sequence {(zk, z̃k, λk, εk, ηk)} satisfies the error condition (32);
(c) condition (47) is equivalent to ‖rk‖∗ ≤ ρ/2, where rk is as in (31) and ‖ · ‖

is the seminorm defined in (58).
As a consequence, if the assumption of (b) is satisfied, then {(zk, z̃k, λk, εk, ηk)} is an
implementation of Framework 2 with input z0 = (s0, y0, x0), (η0,D), and λ = 1.

Moreover, if every cycle of inner iterations of DR-ADMM satisfies the assumption
of (b), then DR-ADMM is an instance of Framework 3.

Proof.
(a) These statements follows from relations (53)–(55) and definitions in (46), (39),

and (59).
(b) Using (46) and (56), we obtain

(61) xk−1 − x̃k = qk + βpk, xk − x̃k = qk + (1− θ)βpk.

Hence, it follows from (59) and (60) that

(dw)zk(z̃k) + λkεk =
1

2βθ
‖x̃k − xk‖2X

=
1

2βθ

[
‖qk‖2X + β2(θ − 1)2‖pk‖2X + 2(1− θ)β〈qk, pk〉X

]
.

On the other hand, using (59)–(61) and definitions of bk, ak, qk in (46), we
obtain

(dw)zk−1
(z̃k) =

1

2
‖sk−1 − sk‖2S,H +

1

2
‖yk−1 − yk‖2Y,G +

β

2
‖C(yk−1 − yk)‖2X

+
1

2βθ
‖xk−1 − x̃k‖2X

=
1

2
‖bk‖2S,H +

1

2
‖ak‖2Y,G +

1

2β
‖qk‖2X +

1

2βθ
‖qk + βpk‖2X

=
1

2
‖bk‖2S,H +

1

2
‖ak‖2Y,G +

(θ + 1)

2βθ
‖qk‖2X

+
β

2θ
‖pk‖2X +

1

θ
〈qk, pk〉X .

Statement (b) now follows immediately from the above two identities.
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(c) Since ‖·‖2 = 〈A(·), ·〉, where A(s, y, x) = (Hs, (βC∗C+G)y, x/(βθ)) for every
(s, y, x) ∈ Z, it follows from the identity in (a), (46), the definition of A, and
Proposition A.1(a) that

‖rk‖∗ = ‖(Hbk, Gak + C∗qk, pk)‖∗ = ‖A(bk, ak, xk−1 − xk)‖∗

= ‖(bk, ak, xk−1 − xk)‖

=

(
‖bk‖2S,H + ‖ak‖2Y,G +

1

β
‖qk‖2X + βθ‖pk‖2X

)1/2

from which statement (c) follows.
To show the last statement of the lemma, first note that item (a), (46), (48),

and (59) imply that r̃ = (Hb̃,Gã+ C∗q̃, p̃). Now, a similar argument as above using
the definition of p̃ in (48), the definition of A, and Proposition A.1(a) implies that
‖r̃‖∗ = (‖b̃‖2S,H +‖ã‖2Y,G+ 1

β ‖q̃‖
2
X +βθ‖p̃‖2X )1/2, from which the last statement of the

lemma follows.

In view of Lemma 4.4, it suffices to show that DR-ADMM satisfies the assumption
of Lemma 4.4(b) in order to show that it is an instance of Framework 3. We will prove
the latter fact by considering two cases, namely, whether the stepsize θ is in (0, 1) or
in [1, (

√
5 + 1)/2). The next result considers the case in which θ ∈ (0, 1) and Lemma

4.7 below considers the other case.

Lemma 4.5. Assume that the DR-ADMM stepsize θ ∈ (0, 1). Let {(bk, ak, qk, pk)}
be the sequence generated during a cycle of inner iterations of DR-ADMM with param-
eter D > 0 and define ηk = 0 for every k ≥ 0. Then, the sequence {(bk, ak, qk, pk, ηk)}
satisfies the assumption of Lemma 4.4(b) with σ = θ + (θ − 1)2 ∈ (0, 1) and any
τ ∈ (0, 1).

Proof. Using the definition of σ, we have

[σ(1 + θ)− 1]
‖qk‖2X
2βθ

+
[
σ − (θ − 1)2

] β‖pk‖2X
2θ

+
(σ + θ − 1)

θ
〈qk, pk〉X

=
θ2

2β
‖qk‖2X +

β‖pk‖2X
2

+ θ〈qk, pk〉X =
1

2β
‖θqk + βpk‖2X ≥ 0.

Hence the lemma follows due to the definition of {ηk}.
Before handling the other case in which θ ∈ [1, (

√
5 + 1)/2), we first establish the

following technical result.

Lemma 4.6. Consider the sequence {(yk, xk, x̃k, ak, qk, pk)} generated during a cy-
cle of inner iterations of DR-ADMM with parameter D > 0. Then, the following
statements hold:

(a) if θ ∈ [1, 2), then

‖q1‖X ‖p1‖X + ‖a1‖2Y,G ≤
8θmax{β, β−1}

2− θ
d0,

where d0 is as in (50);
(b) for any k ≥ 2, we have

(62) 〈qk, pk〉X ≥ (1− θ)〈qk, pk−1〉X +
1

2
‖ak‖2Y,G −

1

2
‖ak−1‖2Y,G.

Proof. The proof of this lemma is given in Appendix D.
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In contrast to the case in which θ ∈ (0, 1), the following result shows that the case
in which θ ∈ [1, (

√
5 + 1)/2) requires a nontrivial choice of sequence {ηk} and hence

uses the full generality of the approach of section 3.

Lemma 4.7. Assume that the DR-ADMM stepsize θ ∈ [1, (
√

5 + 1)/2) and con-
sider the sequence {(bk, ak, qk, pk)} generated during a cycle of inner iterations of
DR-ADMM with parameter D > 0. Then, there exist σ ∈ [1/2, 1) and τ ∈ (0, 1/2]
such that the sequence {(bk, ak, qk, pk, ηk)}, where {ηk} is defined as

η0 =
8(σ + θ − 1) max{β, β−1}

(2− θ)(1− τ)
d0, ηk =

[σ − (θ − 1)2]β

2θ
‖pk‖2X +

σ + θ − 1

2θ(1− τ)
‖ak‖2Y,G

∀k ≥ 1, satisfies the assumption of Lemma 4.4(b).

Proof. It follows from the definition of η1 and the Cauchy–Schwarz inequality
that

[σ(1 + θ)− 1]
‖q1‖2X
2βθ

+
[
σ − (θ − 1)2

] β‖p1‖2X
2θ

+ σ
‖a1‖2Y,G

2
+

(σ + θ − 1)

θ
〈q1, p1〉X

≥ [σ(1 + θ)− 1]
‖q1‖2X
2βθ

+

[
σ +

(σ + θ − 1)(1− 2τ)

θ(1− τ)

] ‖a1‖2Y,G
2

+ η1

− (σ + θ − 1)

θ

(
‖q1‖X ‖p1‖X + ‖a1‖2Y,G

)
≥ η1 −

(σ + θ − 1)

θ

(
‖q1‖X ‖p1‖X + ‖a1‖2Y,G

)
≥ η1 − (1− τ)η0,

where the second inequality holds for any θ ∈ [1, 2), σ ≥ 1/2, and τ ∈ (0, 1/2] and the
third inequality is due to Lemma 4.6(a) and definition of η0. Therefore, the inequality
in Lemma 4.4(b) with k = 1 holds for any θ, σ, and τ as above.

Also, using Lemma 4.6(b) and the definition of {ηk} in the statement of the
lemma, and performing some algebraic manipulations, we easily see that a sufficient
condition for the inequality in Lemma 4.4(b) with k ≥ 2 to hold is that

(σ(1 + θ)− 1)
‖qk‖2X

2β
+ (1− τ)[σ − (θ − 1)2]

β‖pk−1‖2X
2

+ [θσ − τ(σ + θ + σθ − 1)]
‖ak‖2Y,G
2(1− τ)

+ (σ + θ − 1)(1− θ)〈qk, pk−1〉X ≥ 0.

Clearly, in view of the Cauchy–Schwarz inequality, the above inequality holds if the
matrix

M(θ, σ, τ) =


σ(1 + θ)− 1 (σ + θ − 1)(1− θ) 0

(σ + θ − 1)(1− θ) (1− τ)[σ − (θ − 1)2] 0

0 0 θσ − τ(σ + θ + σθ − 1)


is positive semidefinite. Since for any θ ∈ [1, (

√
5 + 1)/2), the matrix M(θ, 1, 0) is

easily seen to be positive definite, it follows that there exist σ ∈ [1/2, 1) close to 1 and
τ ∈ (0, 1/2] close to 0 such that the above matrix is positive semidefinite. We have
thus established that the conclusion of the lemma holds.

Now we are ready to prove Theorem 4.1.
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Proof of Theorem 4.1. First note that (52) follows from the last statement in
Lemma 4.2 and (49). Now, it follows by combining Lemmas 4.4, 4.5, and 4.7 that
DR-ADMM with θ ∈ (0, (1+

√
5)/2) is an instance of Framework 3 applied to problem

(39) in which {(zk, z̃k, λk, εk)} is as in (60) and {ηk} is as defined in Lemma 4.5 if
θ ∈ (0, 1) or as in Lemma 4.7 if θ ∈ [1, (1 +

√
5)/2). This conclusion together with

Lemma 4.3(a) then implies that Theorem 3.3, as well as the observation following it,
holds with λ = m = M = 1. Hence, estimate in (51) now follows from the latter
observation and the definition of η0.

Appendix A. Some basic technical results. The following result gives some
properties of the dual seminorm whose simple proof is omitted.

Proposition A.1. Let A : Z → Z be a self-adjoint positive semidefinite linear
operator and consider the seminorm ‖ · ‖ in Z given by ‖z‖ = 〈Az, z〉1/2 for every
z ∈ Z. Then, the following statements hold:

(a) dom ‖ · ‖∗ = Im (A) and ‖Az‖∗ = ‖z‖ for every z ∈ Z;
(b) if A is invertible, then ‖z‖∗ = 〈A−1z, z〉1/2 for every z ∈ Z.

The following result discusses the existence of solution for a certain MIP.

Proposition A.2. Let T : Z ⇒ Z be a maximal monotone operator and w :
Z → [−∞,∞] be a distance generating function such that int(domw) ⊃ ri (DomT )
and w is strongly convex on ri (DomT ). Then, for every ẑ ∈ int(domw), the inclusion
0 ∈ (T + ∂(dw)ẑ)(z) has a unique solution z, which must necessarily be on DomT ∩
int(domw) and hence satisfy the inclusion 0 ∈ (T +∇(dw)ẑ)(z).

Proof. Let ẑ ∈ int(domw) be given. First note that

int(domw) ⊂ Dom ∂w = Dom ∂(dw)ẑ ⊂ domw,

from which we conclude that ri (Dom ∂(dw)ẑ) = int(domw). Moreover, by Propo-
sition 2.40 and Theorem 12.41 of [36], we have that ri(DomT ) 6= ∅. These two
observations then imply that

(63) ri (DomT ) ∩ ri (Dom ∂(dw)ẑ) = ri (DomT ) ∩ int(domw) = ri (DomT ) 6= ∅.

Clearly, (dw)ẑ(·) is a proper lower semicontinuous function due to Definition 2.1 and
(5), and hence ∂(dw)ẑ is maximal monotone in view of Theorem 12.17 of [36]. Thus,
it follows from (63), the last conclusion, the assumption that T is maximal monotone,
and Corollary 12.44 of [36] that T + ∂(dw)ẑ is maximal monotone. Moreover, since
w is strongly convex on ri (DomT ), it follows that ∂(dw)ẑ is strongly monotone on
ri (DomT ). By using a simple limit argument and the fact that ∂w is a continuous map
on int(domw) due to Definition 2.1, we conclude that ∂(dw)ẑ is strongly monotone on
the larger set DomT ∩ int(domw). Since the latter set is equal to Dom(T + ∂(dw)ẑ)
and T is monotone, we conclude that T + ∂(dw)ẑ is strongly monotone. The first
conclusion of the proposition now follows from Proposition 12.54 of [36]. The second
conclusion follows immediately from the first one and the fact that, by Definition 2.1,
Dom ∂w = int(domw).

The next proposition discusses the existence of solutions of a problem related to
(39).

Proposition A.3. Let a linear operator E : Z → Z̃, a vector e ∈ ImE, and a
proper closed convex function h : Z → R ∪ {+∞} be such that

(64) inf
z∈Z
{h(z) : Ez = e} <∞.
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Then, the following statements hold:
(a) if ri (domh∗) ∩ Im (E∗) 6= ∅, then (64) has an optimal solution z∗;
(b) the optimal solution set of (64) is nonempty and bounded if and only if 0 ∈

int(domh∗ + Im (E∗));
(c) if the assumption of (a) holds and (64) has a Slater point, i.e., a point z̄ ∈

ri (domh) such that Ez̄ = e, then there exists a Lagrange pair (z, x) = (z∗, x∗)
satisfying

0 ∈ ∂h(z)− E∗x, Ez = e.

As a consequence of (b), if the set of optimal solutions of (64) is nonempty and
bounded, then ri (domh∗) ∩ Im (E∗) 6= ∅.

Proof. Since h is a proper closed convex function, we have (h∗)∗ = h. Hence, the
proof of (a) and (b) follows from Lemma 2.2.2 in Chapter X of [25] with A0 = E∗,
g = h∗, and s = e and the discussion following Theorem 2.2.3. The proof of (c) follows
easily from [34, Corollary 28.2.2].

Corollary A.4. Let E, e, and the function h be as in Proposition A.3 and
assume that ri (domh∗) ∩ Im (E∗) 6= ∅. Then, the problem

(65) inf
z∈Z

{
h(z) +

1

2
‖Ez − e‖2

}
has an optimal solution.

Proof. The proof follows by noting that the above problem is equivalent to

inf
z∈Z

{
h(z) +

1

2
‖w‖2 : Ez − w = e

}
and by applying Proposition A.3(a) to the latter problem.

Appendix B. Proof of Proposition 2.8. First, let us show that for every
k > ` ≥ 0, the following inequalities hold:

(66) Λ`,k ε
a
`,k ≤ (dw)z`(z̃

a
l,k) + η` ≤ max

i=`+1,...,k
(dw)z`(z̃i) + η`.

Indeed, it follows from Lemma 2.5(b) that for every z ∈ domw,

(dw)z`(z)−(dw)zk(z)+(1−τ)η` ≥ (1−σ)

k∑
i=`+1

(dw)zi−1
(z̃i)+

k∑
i=`+1

λi(〈ri, z̃i−z〉+εi).

Taking z = z̃al,k in the last inequality and using that τ > 0 and σ < 1, we have

(dw)z`(z̃
a
l,k) + η` ≥

k∑
i=`+1

λi(〈ri, z̃i − z̃al,k〉+ εi),

which combined with the definition of εa`,k in (24) proves the first inequality of the
lemma. The second inequality of the lemma follows from the definition of z̃al,k and
convexity of the function (dw)z`(·).

The proof of (25) follows from the weak transportation formula [6, Theorem 2.3]
and the fact that rk ∈ (S + T [εk])(z̃k) ⊂ (S + T )[εk](z̃k). Now, (6), (16), and (24)
imply that

(67) Λ`,kr
a
`,k =

k∑
i=`+1

λiri =

k∑
i=`+1

∇(dw)zi(zi−1) = ∇(dw)zk(z`).
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Also, (6), (12), and (21) yield

‖∇(dw)zk(z`)‖∗ ≤
√

2M√
m

[
((dw)zk(z∗))1/2 + ((dw)z`(z

∗))1/2
]

≤
√

2M√
m

[
(1− τ)(k−`)/2 + 1

]
[(dw)z`(z

∗) + η`]
1/2 ≤ 2

√
2M√
m

[(dw)z`(z
∗) + η`]

1/2
.

Combining the last inequality with (67) and using relation (21) with k = ` and ` = 0,
we obtain

‖ra`,k‖∗ ≤
2
√

2M

Λ`,k
√
m

(1− τ)`/2 [((dw)z0(z∗)) + η0]
1/2

.

Hence, since z∗ is an arbitrary point in (S+T )−1(0), the first bound in (26) is proved.
Let us now prove the second bound in (26). It follows from property (10), the triangle
inequality, and 2ab ≤ a2 + b2 ∀a, b ≥ 0 that, for every i > ` ≥ 0,

(dw)z`(z̃i) ≤
M

2
‖z̃i − z`‖2 ≤

M

2
(‖z̃i − zi‖+ ‖zi − z∗‖+ ‖z∗ − z`‖)2

≤ 3M

2
(‖z̃i − zi‖2 + ‖zi − z∗‖2 + ‖z∗ − z`‖2).

Hence, property (8) and the fact that m ≤M (see (10)) yield

(dw)z`(z̃i) + η` ≤
3M

m
((dw)zi(z̃i) + (dw)zi(z

∗) + (dw)z`(z
∗) + η`) ∀ i > ` ≥ 0.

Since (21) implies that the sequence {(dw)zi(z
∗)+ηi} is nonincreasing, it follows from

the last inequality and Lemma 2.5(d) that ∀ i > ` ≥ 0,

(dw)z`(z̃i) + η` ≤
3M

m

(
1

1− σ
+ 2

)
[(dw)z`(z

∗) + η`] ≤
9M

m(1− σ)
[(dw)z`(z

∗) + η`],

which, combined with (66) and (21), yields

εa`,k ≤
9M

m(1− σ)Λ`,k
(1− τ)` [(dw)z0(z∗) + η0] .

Since z∗ is an arbitrary point in (S + T )−1(0), the proof is concluded.

Appendix C. Proof of Lemma 4.3(b). Let a scalar µ > 0 and note that
(s, y, x) ∈ Z∗µ if and only if (s, y, x) satisfies

0 ∈ ∂g(s)−D∗x+ µH(s− s0), 0 ∈ ∂f(y)− C∗x+ µβC∗C(y − y0),(68)

Cy +Ds− c+
µ

βθ
(x− x0) = 0.

Hence, the proof of Lemma 4.3(b) will follow if we show that (68) has a solution.
Toward this goal, let us consider the problem

inf
(s,y,u)

{
g(s) + f(y) +

µ

2
‖s− s0‖2S,H +

µβ

2
‖C(y − y0)‖2X +

βθ

2µ
‖u(69)

+
µ

βθ
x0‖2X : Ds+ Cy + u = c

}
.
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It is easy to see that (s, y, c − Ds − Cy) is a Slater point of the above problem for
any (s, y) ∈ ri (dom g)× ri (dom f) 6= ∅. Hence, since condition B2 easily implies that
the assumption of Proposition A.3(a) holds, it follows from Proposition A.3(c) that
problem (69) has a solution (s̄, ȳ, ū) ∈ S×Y×X and an associated Lagrange multiplier
x̄ ∈ X . The latter conclusion and the optimality conditions for (70) immediately imply
that (s̄, ȳ, x̄) satisfies (69).

Appendix D. Proof of Lemma 4.6. (a) Let a point z∗µ := (s∗µ, y
∗
µ, xµ) ∈ Z∗µ

(see Lemma 4.3(b)) and consider (z0, z1, z̃1, λ1, ε1) as in (60). It follows from the
definitions of p1 and q1, 2ab ≤ a2 + b2 ∀ a, b ≥ 0 and θ ≥ 1 that

‖p1‖X ‖q1‖X =
1

θ
‖x1 − x0‖X ‖C(y1 − y0)‖X ≤

1

2θ

(
‖x1 − x0‖2X + ‖C(y1 − y0)‖2X

)
≤ 1

θ
‖x1 − x∗µ‖2X + ‖C(y1 − y∗µ)‖2X +

1

θ
‖x0 − x∗µ‖2X + ‖C(y0 − y∗µ)‖2X .

(70)

Using the definition of a1 and simple calculus, we obtain

‖a1‖2Y,G = ‖y1 − y0‖2Y,G ≤ 2(‖y1 − y∗µ‖2Y,G + ‖y0 − y∗µ‖2Y,G),

which, combined with (70) and definitions of z0, z1, and dw (see (59)), yields

(71) ‖p1‖X ‖q1‖X + ‖a1‖2Y,G ≤ 4 max{β, β−1}
(
(dw)z1(z∗µ) + (dw)z0(z∗µ)

)
.

On the other hand, Lemma 4.4(a) implies that inclusion (31) is satisfied for (z0, z1, z̃1)
and (λ1, ε1), and hence it follows from Lemma 2.5(a) with z = z∗µ, λ1 = 1, and the
fact that 〈r1, z̃1 − z∗µ〉 ≥ 0 (see (19) with k = 1, z∗ = z∗µ, and ε1 = 0) that

(72) (dw)z1(z∗µ) ≤ (dw)z0(z∗µ) + (dw)z1(z̃1)− (dw)z0(z̃1).

Using the definitions in (59), (60), (46), and (61), we obtain

(dw)z1(z̃1)− (dw)z0(z̃1) ≤ 1

2βθ
‖q1 + (1− θ)βp1‖2X −

1

2β
‖q1‖2X −

1

2βθ
‖q1 + βp1‖2X

=
(θ − 1)β

2
‖p1‖2X −

1

2

∥∥∥∥√βp1 +
q1√
β

∥∥∥∥2
X

≤ (θ − 1)β

2
‖p1‖2X ≤

(θ − 1)

θ

(
‖x1 − x∗µ‖2X

βθ
+
‖x0 − x∗µ‖2X

βθ

)

≤ 2(θ − 1)

θ

[
(dw)z1(z∗µ) + (dw)z0(z∗µ)

]
,

where the third inequality is due to the definition of p1 and the fact that 2ab ≤
a2 + b2 ∀ a, b ≥ 0, and the last inequality is due to (59) and definitions of z0, z1 and
z∗µ. Hence, combining the last estimate with (72), we obtain

(dw)z1(z∗µ) ≤ θ

2− θ

(
1 +

2(θ − 1)

θ

)
(dw)z0(z∗µ) =

3θ − 2

2− θ
(dw)z0(z∗µ).

Therefore, statement (a) follows from (71), the last inequality, and Lemma 3.1.
(b) From the inclusion (54) we see that

C∗(x̃j − βC(yj − yj−1))−G(yj − yj−1) ∈ ∂fµ,β(yj) ∀j ≥ 1
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where fµ,β(y) := f(y) + (βµ/2)‖C(y − y0)‖2X + (µ/2)‖y − y0‖2Y,G for every y ∈ Y.
Hence, (56) yields (1/θ)C∗(xj − (1− θ)xj−1)−G(yj − yj−1) ∈ ∂fµ,β(yj)∀j ≥ 1. For
every k ≥ 2, using the previous inclusion for j = k − 1 and j = k, it follows from the
monotonicity of the subdifferential of fµ,β and the definitions of pk, ak, and qk that

0 ≤ 〈βC∗(pk − (1− θ)pk−1), yk−1 − yk〉Y − 〈Gak −Gak−1, ak〉Y
= 〈pk − (1− θ)pk−1, qk〉Y − ‖ak‖2Y,G + 〈Gak−1, ak〉Y
≤ 〈pk − (1− θ)pk−1, qk〉Y − (1/2)‖ak‖2Y,G + (1/2)‖ak−1‖2Y,G,

where the last inequality is due to fact that 2〈Gak, ak−1〉Y ≤ ‖ak‖2Y,G + ‖ak−1‖2Y,G.
Therefore, (b) follows immediately from the last inequality.
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