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This paper presents a simplified and self-contained global convergence proof for
the affine scaling algorithm applied to degenerate linear programming problems.
Convergence of the sequence of dual estimates to the center of the optimal diial face
is also proven. In addition, we give a sharp rate of convergence result for the sequence
of objective function values. All these results are proved with respect to the long step
version of the affine scaling algorithm in which we move a fraction A, where
A G {0,2/3], of the step to the boundary of the feasible region.

1. Introduction

The affine scaling algorithm, introduced by Dikin [6] in 1967, is one of the
simplest and most efficient interior point algorithms for solving linear program-
ming (LP) problems. Because of the theoretical and practical importance of the
affine scaling algorithm, there are a number of papers which study its global and
local convergence [3, 6-8, 11, 16, 19-24] and the behavior of its associated con-
tinuous trajectories [2, 4, 16, 25]. As in the simplex algorithm, the analysis of the
affine scaling algorithm for (primal) degenerate LP problems is much harder than
for (primal) nondegenerate LP problems.
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Recently, Dikin [8] and Tsuchiya and Muramatsu [22] have succeeded in
proving the global convergence for degenerate LP problems of the long step version
of the affine scaling algorithm, that is, the version in which the next iterate is deter-
mined by taking a fixed fraction A € (0,1) of the whole step to the boundary of the
feasible region. Their studies have definitely settled satisfactory answers to the case
where A e (0,2/3].

Unfortunately, none of these two papers are self-contained. In order to fully
understand Tsuchiya and Muramatsu's paper, it is necessary to read two of
Tsuchiya's preceding papers [20, 21] which contain nontrivial matrix decompo-
sition results and long derivations. The same can be said about Dikin's paper which
refers the reader to Tsuchiya's paper [20] in some important steps.

The main goal of this paper is to give a compact and self-contained global
convergence proof of the long step version of the affine scahng algorithm. Two
major simplifications are made in our analysis compared to the analysis of [22].
The first one is obtained when showing that the sequence of primal iterates con-
verges. The way we prove this result is based on techniques contained in Tseng
and Luo [19]. Another major simphfication is obtained by showing that the non-
trivial and long matrix decomposition results derived in Tsuchiya [20, 21] are no
longer needed. Instead, we use techniques which have been employed in Adler
and Monteiro [2]. . .

All the main results given in this paper have already been proved in the
revised version of Tsuchiya and Muramatsu [22]. Namely, assuming that A < 2/3,
we show that the sequence of primal iterates converges to a point lying in the
relative interior of the primal optimal face and that the sequence of dual estimates
converge to the analytical center of the dual optimal face. Under the same assump-
tions, we also show that the sequence of objective function values converges
Q-hnearly with convergence rate equal to 1 - A. As a natural consequence of the
results of this paper, we also derive the global convergence of the long step version
of the affine scaling algorithm under primal nondegeneracy, for any fraction
A €(0,1).

The history behind the affine scaling algorithm is as follows. The affine scal-
ing algorithm was introduced by the Russian mathematician Dikin [6] in 1967, who
pubhshed a convergence proof [7] in 1974. Dikin assumes primal nondegeneracy
and takes a full step to the boundary of the inscribed ellipsoid. In 1985, the affine
scaling algorithm was rediscovered in the western community by Barnes [3],
Karmarkar and Ramakrishnan [15] and Vanderbei et al. [24] following the introduc-
tion of the projective scaling algorithm by Karmarkar [14] in 1984. Both Vanderbei
et al. [24] and Barnes [3] assume primal and dual nondegeneracy in the global
convergence analysis, but, as opposed to the ellipsoid version of Barnes [3] and
Dikin [7], Vanderbei et al. study the long step version of the affine scaling algorithm
for any A € (0,1). The long step version was also studied by Gonzaga [11] under
primal nondegeneracy only. Results demonstrating the good performance of the
long step version (with A = 0.95 or A = 0.995) of the affine scahng algorithm
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have been reported in several papers (e.g., Adler et al. [1] and Monma and Morton
[17]).

The papers mentioned in the previous paragraph all assume primal nonde-
generacy. Several papers gradually showed that this assumption could also be
removed. Adler and Monteiro [2] and Witzgall et al. [25] independently investi-
gated the convergence of the continuous trajectories of the affine scaling algorithm
and their associated dual estimate trajectories without imposing any nondegeneracy
condition. Assuming only dual nondegeneracy, Tsuchiya [21] shows the global con-
vergence of the ellipsoid version of the affine scaling algorithm with fraction < 1/8.
In a subsequent paper, Tsuchiya [20] shows that the dual nondegeneracy condition
could be removed from the analysis of [21]. One of the main ideas used in these two
papers is the use of a potential function to analyze the local behavior of the affine
scaUng algorithm near the boundary of the feasible region. This potential function
was also used in the subsequent analysis of Dikin [8] and Tsuchiya and Muramatsu
[22]. Slightly prior to [20], Tseng and Luo [19] proved the global convergence of a
very short step version of the affine scahng algorithm under no nondegeneracy
condition, where the step-size is taken to be 2~*^^ '̂ and L is the input size of the
problem.

Finally, the long step version was studied for degenerate LP problems by
Dikin [8] and Tsuchiya and Muramatsu [22] with the fraction A satisfying
A < 1/2 and A < 2/3, respectively. Convergence of the sequence of dual estimates
to the analytical center of the dual optimal face is also discussed in these two
papers. One of the important ideas used in these two papers is given in the paper
by Dikin [9] which analyzes the reduction of the potential function using long steps.

The global convergence of the affine scahng algorithm when the fraction A is
larger than 2/3 is still an open problem. However, as was conjectured by Tsuchiya et
a l , [12] shows that the sequence of dual estimates may no longer converge when
A > 2/3 (see also section 6 of the revised version of [22]).

Our paper is organized as follows. In section 2, we show that the sequence of
primal iterates converges to a point lying in a dual degenerate face, for any fraction
A € (0,1). We end the section showing how this result can be used to derive the
global convergence of the affine scaling algorithm when applied to primal nonde-
generate LP problems. In section 3, we show the global convergence of the affine
scaling algorithm when applied to degenerate LP problems, for any A < 2/3. In
section 4, also assuming that A < 2/3, we show that the sequence of dual estimates
converges to the analytical center of the dual optimal face and that the sequence of
objective function values converges to the optimal value Q-Unearly with conver-
gence rate equal to 1 - A.

One may find that some "well-known results" about the affine scaling
algorithm, including its global convergence for nondegenerate LP problems, the
boundedness of the sequence of dual estimates etc., are duplicated in this paper.
Our aim was to make the paper as much self-contained as possible, and to present
most of the important convergence results on the affine scaling algorithm in an
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organized way. Consequently, this article is also a survey or review on the conver-
gence theory of the affine scaling algorithm. (While this paper was being revised for
pubhcation, we learned of another, more recent survey article by Saigal [18].)

The following notation is used throughout our paper. We denote the vector
of all ones by e. Its dimension is always clear from the context. R", R^ and R++
denote the ^-dimensional Euchdean space, the nonnegative orthant of R" and the
positive orthant of R", respectively. The set of all w x n matrices with real entries
is denoted by R'"''". Given an index set J C {1,...,«} and a vector w e R", we
denote by Wj the subvector of w corresponding to J. Similarly, if £ is an m x /i
matrix then Ej denotes the m x \J\ submatrix of E corresponding to / . For a vector
w, we let x[M denote the largest component of w. The Euclidean norm, the I-norm
and the oo-norm are denoted by ||-!|, ||-||i and ||-||oo> respectively. The diagonal
matrix corresponding to a vector w is denoted by diag{w). If y is a finite index set
then |y| denotes its cardinality, that is, the number of elements of/. The superscript
^ denotes transpose.

2. Convergence of the primal sequence

In this section, we state the main terminology and assumptions used through-
out our paper. We then briefly describe the affine scaling algorithm. The main result
of this section (stated as theorem 2.6 and theorem 2.9) shows that the sequence of
primal iterates generated by the affine scaling algorithm converges to a point lying
in a dual degenerate face of the feasible region, that is, a face on which the objective
function is constant. Using this result, we give an alteraative proof of the global
convergence of the affine scaling algorithm applied to primal nondegenerate LP
problems (see theorem 2.11).

The most crucial result used in the proof of the convergence result mentioned
above is theorem 2.5. This theorem is based on theorem 2 of Tseng and Luo [19].

Consider the following linear programming problem

minimize^ c^x
(1)

subject Xo Ax = b, x> 0,

and its associated dual problem

maximize^, 3j b^y •
subject to A^y + 5 = c, .s > 0,

where A e R'"''", c,x, J € R" and b,y € R'".
We next introduce some notation which will be used throughout our paper. We

frequently consider (possibly, empty) subsets of the affine space {x\Ax = b} or of the
feasible region {x\Ax = b,x>{^} obtained by making some components of the
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vector X equal to 0. We adopt the convention of denoting by N the set of indices for
which the associated variables are enforced to be equal to 0, and by B the complement
o f A'' with respect to { I , . . . , « } . Formally, we consider the following notation:

b,x^ = 0}; (3)

(5)

SN = c^,^^ = 0}; (6)

(7)

. (8)

When AT = 0, we denote the sets ̂ ^, 0"^ and ^jj"^ by ^ , •̂*" and ^'^^, respectively.
The sets ^"^ and ^^"^ are the sets of feasible solutions and strictly feasible solutions
of problem (1). Similarly, when Â  = {1 , . . . , «} , we denote the sets ^jv.^;v and^^"*"
by SI, B'^ and B'^'^, respectively. "̂*" and ̂ ^"'" are the sets of feasible solutions and
strictly feasible solutions of problem (2).

We impose the following assumptions throughout this paper.

ASSUMPTION 1

Rank(A) = m.

ASSUMPTION 2

The objective function c^x is not constant over the feasible region of (I).

ASSUMPTION 3

Problem (1) has an interior feasible solution, that is ̂ "'""'" ̂  0.

ASSUMPTION 4

Problem (1) has an optimal solution.

We now introduce important functions which are used in the description and
in the analysis of the affine scaling algorithm. For every x G M+4., let

y(x) = [AX^A^yUx^c, (9a)

s(x)~c-A^y{xl (9b)

d(x) = Xh{x) = XII-XA'^{AX^A'^)-^AX]XC, (9C)
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where X~ diag{x). We note that assumption 1 implies that the inverse of
exists for every x > 0. The pair {y{x),s(x)) is called the dual estimate associated
with the point x. d(x) is referred to as the affine scaling direction associated with x.

The following result provides characterizations of the affine scahng direction
d{x) and the dual estimate {y{x)^s[x)) as optimal solutions of certain quadratic pro-
gramming problems.

PROPOSITION 2.1

The following statements hold.

(a) For every x > 0, d{x) is the unique optimal solution of the following QP
problem:

maximizê  c^p - \ W'^pf'

subject to Ap = 0,

where X = diag{x).
(b) For every x > 0, {y(x),s{x)) is the unique solution of the following QP

problem:

^^ (U)
subject to A^y -^s — c.

We leave the trivial proof of proposition 2.1 to the reader.
We are now in a position to describe the affine scaUng algorithm. For a good

motivation of the method, we refer the reader to Dikin [6], Barnes [3], Vanderbei et
al. [24] and Vanderbei and Lagarias [23].

AFFINE SCALING ALGORITHM

initially: Choose a fixed constant A G (0,1) and assume that ;c'' G ^ "*""*• is available;
forA: = 0,1,2,...

(12)

end for
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Recall that xl'] is used to denote the maximum component of a vector.
We note that assumptions 1-4 imply that d{x) must have at least one positive
component so that x[X~^<^{x)] > 0. Hence, the expression which determines x*"*"̂
in the affine scaling algorithm is well-defined. Observe also that if A were equal to
I, the next iterate would lie in the boundary of the feasible region. Thus, since we
choose A 6 (0,1), the next iterate is ensured to be an interior point.

LEMMA 2.2

For any (y,s} € ^, there holds

S''d{x) = cMx) = \\X-'d{x)f = \\Xs{x)\\\ Vx > 0, (13)

where X = diag(x).

Proof

By proposition 2.1, we know that

Ad(x) = 0, A'^y{x) + s{x) = c. (14)

Hence, we obtain

i^dix) = (c- A^y)^d{x) = c^d(x) -y'^Ad{x) = c'^d{x). (15)

From (14), we have that (y{x),s{x)) e ^. Hence, using (15) we obtain

where the third equality follows from (9c). •

From now on, we denote the sequence of dual estimates
simply by {{y'^^s'^)}. The following basic result has been proved in several papers
(see for example Vanderbei and Lagarias [23]). For the sake of completeness, we
give its proof here.

PROPOSITION 2.3

The following statements hold for the affine scaling algorithm,

(a) x'' € ^+"*" for all A: > 0.
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(b) The sequence of objective function values {c^x*} strictly decreases and con-
verges to a finite value.

(c) X^s'^ ^ 0 as A: -> 00, where JT* = diag{x'^).

Proof

Assume that x^ 6 ^'^'^. Using (12), we obtain
/ vk\-\ jk

from which (a) follows, using (12) and lemma 2.2, we obtain

and hence

from which (b) and (c) obviously follow. D

Proposition 2.3 does not guarantee that the sequence {x } converges and not
even that {x* } is a bounded sequence. We now concentrate our efforts in showing
that the sequence {x'^} converges. The following result, which is due to Hoffman,
plays an important role in proving this fact. For a proof of the result below, we
refer the reader to Hoffman [13].

LEMMA 2.4

Let F G R^""^ be given. Then, there exists a constant C = C{F) with the fol-
lowing property: for/€ M.^ such that the system Fw =fis feasible and z e IR̂ , there
exists a solution w of Fw =/such that

The following crucial result is based on theorem 2 of Tseng and Luo [19]. Its
proof uses Hoffman's lemma.
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THEOREM 2.5

Let v^W and E € R'"^"^ be given. Then, there exists a constant L = L(v, E)
with the property that for any diagonal matrix D > 0, the (unique) optimal solution
p ' = / ( / ) ) of

subject to Ep = 0

satisfies

11/11 <Lt;V. (18)

Proof

Uv e Range{E^) then ;?'(£)) = 0 for every diagonal matrix D>Q, and (18)
obviously holds if we choose any L > 0. We may therefore assume that
v^ Range{E^). In this case, it is easy to verify that v^p* > 0 for every
p* =p*[D). To show that (18) also holds in this case, assume by contradiction
that there exists a sequence of positive diagonal matrices {D'^} such that

lim ^ = oo, (19)

where p^ is the (unique) optimal solution of (17) with D — /)*. This implies that
there exist a constant A/" > 0, an index set / C {1 , . . . , ^} , 7 ^ 0, and a subsequence
{p }igjf with the property that

(20)

(21)

Consider the following linear system

v'^p = v^p^^ (22a)

Ep = 0, (22b)

vy^y, (22c)
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and note that;? is a solution of this system. By lemma 2.4, (22) has a
such that

(23)

where C is a positive constant depending only on v and £. Hence, we have by (20)
that

(24)

for all k e K, where Mi = C[l + {n — \J\)M]. Also, (21) implies that there exists
/ > 0 such that for a.\lk>l,keK

From (24) and (25), we have

\p'\>\\p% V;€/,VA:>/,VfceX (26)

Hence, it follows from (22c) and (26) that

Relations (22a) and (27) then imply

v'p' - ^ \\DYf > v'p' - ^ \\DY\\\ \fk > /, Vfc € K, (28)

which together with (22b) contradicts the fact thatp* is an optimal solution of (17)
with D = D^. a
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The following result was proved in Tseng and Luo [19] and Tsuchiya [20].
Our proof, which is an immediate consequence of theorem 2.5, is based on
the presentation of Tseng and Luo [19]. (See also [5] and [18] for alternative
proofs.)

THEOREM 2.6

For the affine scaling algorithm, the following statements hold.

(a) There exists a constant M = M{c, 4̂) > 0 such that

| | / | | < M c V , VA:>0. (29)

(b) The sequence {x } converges to a point jc* € "̂*".
(c) For all fc > 0, we have \\x''- x*\\ < M{c^x''-v'), where u* = c V =

lim.k^^c^x''.

Proof

By proposition 2.1, we know that the affine scaling direction i/* is the optimal
solution of

maximize^ c'^p - i ||(X*)"Vf

subject to Ap = 0,

where X* = diag{x'^). Then, (a) follows directly from theorem 2.5. We now prove
(b). Using (29), we obtain

which, in view of (12), is equivalent to

llr*"*"' — r*ll < Mfr^r'' — ^^r*"'"h \/lr > 0 Hfli

Since {c'^x*} converges, (30) implies that

u k-\-] kw jf 1' l ^ / T 0 T ) t \ ^

t=0 *""~
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This implies that {x^} is a Cauchy sequence, and therefore a convergent sequence.
Clearly, hm^_oo ^* = x ' € ^"*". We now show (c). From (30), we also obtain

\W -A\< M[c^x'' - c'^x'), \/l>k>0.

Letting / —• oo, we obtain

11̂ * - '̂11 < M{c^x'' - t;'), VA: > 0.

D

The constant M{c,A) appearing in theorem 2.6 will henceforth be denoted
by M. We will now show that the smallest face containing the point x" is a dual
degenerate face. First, we formalize the notion of a dual degenerate face. A non-
empty set ofthe form ^ ^ , where ^ C { 1 , . . . ,n}, is called a face of ^ ^ . The face
is called dual degenerate if the objective function c^x is a constant over the face.
If the set ^ j j is a dual degenerate face and 0''!^'^ ^ 0 then we call Â  a dual degener-
ate index set. The following result gives conditions under which N is a. dual
degenerate index set.

PROPOSITION 2.7

Let Â  C { 1 , . . . , n} be given. The index set A" is dual degenerate if and only if
^;J+ 7̂  0 and cs € Range{A\).

The equivalent condition stated in proposition 2.7 can also be simply stated
as ^^ "̂'" ^ 0 and ^^v ¥" 0- We leave the trivial proof of proposition 2.7 to the reader.

We now define the following index sets associated with x*:

B, = {i\x] > 0}, (31a)

Â , = {i|x: = O}. (31b)

Then, the smallest face containing x* is the set ^^J^.
The following result is well-known and its proof can be found in Vanderbei

and Lagarias [23]. For the sake of completeness, we give in the appendix a new
proof of this result based on Hoffman's lemma.

PROPOSITION 2.8

The set {{y{x),s(x))\x > 0} is bounded. In particular, the sequence of the
dual estimates {{y ,5*)} generated by the affine scaling algorithm is bounded.

Using the face that {(y , j )} is a bounded sequence, we can now prove that
Â , is a dual degenerate index set.
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PROPOSITION 2.9

The set Â* is dual degenerate and the smallest face ^J^ which contains x* is
dual degenerate.

Proof

The last assertion follows immediately from the first one. Since {(7*,5*)}
is a bounded sequence, it must have an accumulation point {y*,s*). Clearly,
A^y" -{-s' — c. Using proposition 2.3(c), we obtain A'V = 0, where
X" = diag{x*). Since X'B^ > 0, this implies that S*B, = 0. Hence, A^y' = Cg^ which
shows that cg^ e Range(A\). By proposition 2.7, it follows that A'', is a dual degen-
erate index set. Q

Before moving to the proof of the global convergence of the affine scaling
algorithm under primal nondegeneracy, we give one more basic result on the local
linear convergence property of this algorithm. This result was established under the
primal nondegeneracy assumption by Dikin and Zorkaltsev [10] and more recently
by Barnes [3]. A proof of this result that does not require primal nondegeneracy was
finally given by Tseng and Luo [19, theorem 1 and lemma 2(c)]. We use this result in
section 4 to show global convergence ofthe sequence of dual estimates and to obtain
a sharper convergence rate for the case in which A G (0,2/3). For the sake of
completeness, we give a proof of the result below in the appendix.

LEMMA 2.10

The sequence {x } generated by the affine scahng algorithm satisfies

-V*
lim sup - . p

Now, using theorem 2.6(b), we give a different global convergence proof for
the affine scaling algorithm applied to primal nondegenerate LP problems.

THE0REM2.il

Assume that (1) is primal-nondegenerate, that is {A^A^y^ exists for all
X G ^ ^ , where x = diag{x). Then, the following statements hold:

(a) The limit ;c' of the sequence {x*} generated by the affine scaling algorithm is
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an optimal solution of (1) and the sequence of dual estimates
converges to the unique optimal solution {y*,s*) = {y{x*),s{x*)) of (2).

(b) The pair of optimal solutions x* and {y*,s*) satisfies strict complementarity,
or equivalently x' lies in the relative interior of the optimal face of (1).

Proof

We first prove (a). Under the primal-nondegeneracy assumption, the function
{y{x),s{x)) defined in (9) is a continuous function of ;c € ^"'". Since {.x*} converges
to :c" e ^"^, the sequence ( C K * , / ) } also converges to {y\s*) = {y{x*),s{x*)) G S.
By lemma 2.3(c), we have x*s' = 0, where x' ~ diag{x*). Hence, it is sufficient to
show that 5* > 0 in order to prove that x' and (y*,s*) are optimal solutions for
(1) and (2), respectively. Indeed, since X*B, > 0 we have jj^ = 0. Next, we show
that jĵ ^ > 0. Assume by contradiction that there exists ajeN, such that Sj < 0.
Then we can find an integer ^ > 0 such that

5/ < 0, V/c > K.

Hence, using (12) we obtain

/+' / xffsf > xf, VJt > K,

where Q^ = \/x[{X'^)~^d^] > 0 and x'^ = diag{x'^). But this contradicts the fact
that xf converges to x] = 0. We next prove (b). Let Z= {j\sj > 0}. Using (9)
and the fact that s' = c — A y* and s* = 0 for ally ^ Z, we obtain

s,(x) = i ' - (AffiAX^A^y^AXh*
^ ^ ' (33)

f ^ ' ^ ' l ' V/- ^ Z,
where Aj denotes they'th column of A. It is easy to see that (33) implies that there
exists Cl > 0 such that

. (34)

We will now show that

<oo. (35)

Indeed, since Sz> 0 and lim^_oo j ^ = -̂ z > 0, there exist an integer kQ>0 and a
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scalar /x > 0 such that

Hence, ify G Z we have

4 > lie, Vfc > (36)

(37)

which obviously implies (35). We finally prove that Xj > 0 for alljf Z and hence
that statement (b) holds. Indeed, let C2 > 0 be a constant such that

VA:>0.

Using (34), (35) and (38), we obtain

t

(38)

00, V; ^ Z. (39)

It is easy to verify that this last relation implies

log <oo,

which in turn implies that \\ X^ = Xj > 0, for ally ^ Z. D

3. Global convergence of the affine scaling algorithm

This section is organized as follows. In subsection 3.1, we show that the limit
x' ofthe primal sequence [x'^} is an optimal solution of (1). In this subsection, we
state theorem 3.2 without proof. Subsection 3.2 contains important technical
lemmas which are used to derive asymptotic estimates near dual degenerate faces
for several quantities associated with the affine scaling algorithm. These estimates
are then used in subsection 3.3 to derive a proof of theorem 3.2.
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3.1. MAIN THEOREMS

We have shown in section 2 that the primal sequence {x*} converges to some
X* € ^"*'. In this section, we show that ;>:* isanoptimalsolutionof problem (1) if the
fraction X G (0,2/3]. An important ingredient used in the proof of these results is a
potential function which in general can be defined with respect to any degenerate
index set N. This potential function was used in the global convergence of the affine
scaling algorithm presented in Tsuchiya [20, 21], Dikin [8] and Tsuchiya and
Muramatsu [22].

We start by introducing the aforementioned potential function.

DEFINITION 1

Let Â  be a dual degenerate index set and let v/^ denote the constant value of
c^x over the face ^ ^ . The potential function with respect to Â  is defined as

^jv(^) = l-̂ l log (c^x — Vf^) — y2 log Xj (40)

for every ;c e ^'^'^ such that c^x > v^.

Note that when N = N,,VJQ have Vfj^ = v*. Hence, the potential function with
respect to the dual degenerate index set Â , can be written as

The fact that the limit point JC* is an optimal solution of problem (1) follows
from two results stated below, namely lemma 3.1 and theorem 3.2. Lemma 3.1
follows as an immediate consequence of theorem 2.6(c). The proof of theorem 3.2 is
the main goal of subsection 3.3. Theorem 3.3 combines these two results to obtain
the conclusion that x' is an optimal solution of (1),

LEMMA 3.1

For the affine scaling algorithm, there exists a constant e > 0 such that

Proof

By theorem 2.6(c), we know that for some M >0,
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Since x)̂ ^ = 0, this implies

Then, we obtain

f ^ V ^ i ^ l l - ^ ^ . II < VW7\M{c'^x^ - v ) , VA: > 0 .

Letting e = \l(y/\FQM), we obtain (42). D

The proof of the next result is one of the main goals of this section and is
postponed to a later stage of this section after several preliminary results have
been proved. Theorem 3.2 has been proved in Tsuchiya and Muramatsu [22]. How-
ever, our proof of this result differs in many ways from and is considerably simpler
than the one given in [22] which uses complicated matrix decomposition results in
[20].

THEOREM 3.2

For the affine scaling algorithm, assume that A < 2/3. If x* is not an optimal
solution lying in the relative interior of the optimal face of problem (1) then there
exist a constant C > 0 ^nd an integer K such that

i^N. (•^* '̂) - i>N. (^ ') < -C, V^ > K. (43)

Combining lemma 3.1 and theorem 3.2, we can now show that jc' is an
optimal solution of problem (1).

THEOREM 3.3

For the affine scaling algorithm, assume that A < 2/3. Then the limit x* of the
primal sequence {x*} is an optimal solution lying in the relative interior of the
optimal face of problem (1).

Proof

Assume by contradiction that x' is not an optimal solution lying in the rela-
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tive interior of the optimal face of (1). By theorem 3.2, it follows that

lim ^'/ . .(x*)^-00. (44)
k—oo

Noting the fact that

we obtain

(45)

Relations (44) and (45) then imply

lim ^^ r = 0,

which contradicts lemma 3.1. •

In the next two subsections, we concentrate our efforts in the proof of
theorem 3.2. Before going into the details, we provide below an intuitive justifi-
cation for using the potential function (40) and for the result of theorem 3.2. As
is obviously seen from its form, the potential function (40) is based on Karmarkar's
potential function [14]. As was observed in Bayer and Lagarias [4], Kannarkar*s
algorithm is equivalent to the affine scaling algorithm applied to a homogeneous
linear programming problem. For the homogeneous hnear programming
problem, we can show that the affine scaling algorithm uniformly reduces the
associated Karmarkar's potential function at every iteration.

We apply the above observations to our context as follows. Consider the LP
problem

minimize^ cjf Xj^ -\- cl {xg - X*B )
(46)

subject to A^^Xf^^ + ^BS^B. ~ X*B.) = 0, xj^^ > 0,

which arises from (1) by discarding the constraints Xg^ > 0. By introducing a new
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variable Vg^ = xg, - x'g^, one can transform this problem to a homogeneous LP
problem. Then the potential function (41) is the associated Karmarkar potential
function for this problem. As mentioned above, we can reduce (41) by taking
long steps of the affine scaUng algorithm appUed to this homogeneous problem.
On the other hand, we can show that the affine scaUng direction for problem (46)
at X* asymptotically converges to the affine scaling direction for problem (I) at
X , as long as Xg^ is uniformly bounded away from zero. Hence, by moving along
the affine scaUng direction for (1), we should also be able to asymptotically reduce
the potential function (40).

Although a proof along the above lines could be pursued in this paper, we use
a slightly different approach. We note, however, that the above idea is used in the
approach of Tsuchiya and Muramatsu [22].

3.2. TECHNICAL LEMMAS

In this subsection, we prove some technical results to analyze the asymptotic
behavior of the affine scaling direction and the dual estimate in a neighborhood of a
dual degenerate face. Lemma 3.6 and lemma 3.7 play an important role in the
approach used in this paper. Although they can be implicitly obtained from the
approach of Tsuchiya and Muramatsu [22], they are stated expUcitly for the first
time here. In addition, their proofs are new.

LEMMA 3.4

Let Â  C {1 , . . . , n} be a dual degenerate index set and let {y,s) € ̂ jv be given.
Then, the following statements hold:

(b) slMx) = s'^d(x) = c^d{x) = \\X-^d{x)f = \\Xs{x)\\\ Vx > 0 and X =
diag{x);

(c) | |Jr-'4x)|| < WXf^Sf^l Vx > 0 and X=diag{x).

Proof

We first prove (a). We know that-v;^ = c^x for any x G ^iJ- Using the fact
that A{x- x) = 0, we obtain

c X — Uv ^ c [X — x)

= {A^y-\-s)^{x-'x) (47)

= f{x-x)= "
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where the last equality follows from the fact that i/^ = 0 and sg = 0. Hence,
(a) is proved. Statement (b) is an immediate consequence of lemma 2.2 and
the fact that sg ~ 0. Using lemma 2.2 and the Cauchy-Schwartz inequality, we
obtain

-'< \\Xs\\\\X-'d{x)\\

from which (c) follows.

LEMMA 3.5

Let ̂  C {1 , . . . , n} be a dual degenerate index set and let {y, s) e ^ ^ be given.
Then, the affine scahng direction d{x) is the unique solution of the following QP
problem:

maximizen
^ ... . „ ^^gj

subject to Ap = 0,

where x = diag(x).

Proof

The proof of this lemma follows as an immediate consequence of proposition
2.1 and lemma 3.4(a). •

The estimates obtained in the following two results play a crucial role in
simphfying the proof of theorem 3.2.
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LEMMA 3.6

Let A'̂  be a dual degenerate index set. Then, there exists a constant C > 0 such
that

K'dsix)\\ < c\\Xs'\\\\xM^;;'d^(x)i vx> 0.

Proof

By lemma 3.5 we know that d{x) solves problem (48) where jy
is the A''-component of a vector {y,s) € ^;v It follows that dg{x) solves the
problem

minimizê ^ III^JVBII^ ,^-,
(49)

subject to Agpa = —AffdN{x).

By lemma 2.4, we know that the system Agps = -A^df^{x) has a solution pg €
such that

where C is a constant independent of .x. Hence, we have

<

•
LEMMA 3.7

Let A b̂e a dual degenerate index set. Then, there exists a constant C > 0 such
that for all ;c> 0,

min{||.W -.1110-,.) e B^} < C\\Xs'f\M\\ (50)

where Xg = ciiag{xg).
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Proof

Recall that any point [y, s) e ^;v is a solution of the linear system

T

SB = 0.

By applying lemma 2.4 with z = {y{x),s{x)), we know that there exists a constant
Cl > 0 with the following property: for every .x > 0, there exists {j'{x),s{x)) G ^^
such that

II^W-iWII<c,|M.x)||. (51)

Squaring both sides of this expression and using the fact that Sg = 0, we obtain

or equivalently,

\ M ) ^ ] f . (52)

By proposition 2.8, we know that {s{x)\x > 0} is bounded. Using (52), it also
follows that {s^{x)\x > 0} is bounded. Then, let A/" > 0 be such that for all x > 0,

II^WII<^, \Mx)\\<M. (53)

On the other hand, using the fact that {y{x),s{x)) is the optimal solution of (11) and
that {y{x),s{x)) is feasible to (11), we obtain

where Xf^ = diag(xi^), and this implies
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(54)

where the last inequality follows from (53) and (52). From (54), it immediately
follows that

In view of (51), this last relation gives

which impHes (50) if we let C = lMCx(C\ - 1)^^^ D

3.3. PROOF OF THEOREM 3.2

The main goal of this subsection is to provide a proof of theorem 3.2.
The following notation is used frequently in order to make the ideas clearer

and the proofs more concise. Let {r*^} and {/3*} be two sequences of real number's.
We write r* = 0(/3*) to indicate that there exist an integer ^o ^ *̂  ^"^ ^ scalar r > 0
such that Ir̂ l < r/3t for all k > k^. Clearly, if ^A > 0 for aU /c > 0 then Ir ĵ < r^k-
holds for all ^ > 0 by taking a larger scalar r if necessary.

We next examine the change in the potential function (41) at two consecutive
iterates generated by the affine scaling algorithm. Define the normalized scaled
search direction as follows:

k

z rk

where X*^ — diag{x'^). Using lemma 2.2, we obtain that the ratio between
ĉ jc*"*"' - V* and c x'^ — v' in terms of u* is given as follows:

— V*

A c'd'
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= ,_ ^

In a similar manner, we have

' • ' " = C ^ = 1 - : A T 4 - (57)

Using these relations, we obtain

(58)

The direction (55) plays an important role in the subsequent analysis.

LEMMA 3.8

The normalized scaled search direction u has the following properties:

(a) 114. II/II4. II = 0(114.11).
(b) The sequence {u*} is bounded and | |M|J| = j

(d) x["''] = x["jv.] for all k sufficiently large.

Proof

Using lemma 3.6 with Â  = A .̂, we obtain

H .
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where XQ^ = diag{xB_), which immediately implies (a). We now show (b). First
observe that, by theorem 2.6(c), there exists Af > 0 such that

(59)

Let {y,s) € ^^y, be given. Using (59) and lemma 3.4(c) with AT = iV,, we obtain

M" =

rk r=

Hence, {u*} is bounded and in view of (a), this obviously implies that ||WBJ| =
C>(||;c^J|). We now show (c). Using lemma 3.7 with N = N^, we find that for all
k > 0,'there exists CP*,i*) € ^ f̂. such that

(60)

Since CP*,i*) € ^^ , , we know from lemma 3.4(a) with N = N, that

Hence, it foUows from (55), (59), (60) and (61) that

— v'

^

(61)

Statement (d) follows easily from (a), (b) and (c). a
The following lemma was proved by Tsuchiya and Muramatsu [22, lemma

5.1 (lemma 3.1 in the revised version)]. It is an improvement of a result obtained
in Dikin [9], and plays a substantial role in the proof of theorem 3.2. For the
sake of completeness, its proof is given in the appendix.
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LEMMA 3.9

Let w € K'' and p ^R. Define

- P\M?) - y^ log( l - pwi), (62)

(63)
q-p

and consider the set

Then, the following inequahty holds:

To make use of lemma 3.9 to find an upper bound for (58), we introduce

...ft _ ^N. jt _ A . .

y^N,- T Jb ' P = r fe T ( 6 4 )

Note that w^^ is obtained from Wv by enforcing the condition e Wf^^ = 1 by a coni-
cal projection. Note also that Wj^i^ is well-defined for all sufficiently large k due to
lemma 3.8(c).

LEMMA 3.10

Consider the sequences {w^.} and {/?*} as above and let q = |^, | . For suffi-
ciently large k, we have

4 ^ (65)

^ 2). (66)

where H and Hg{-, •) are defined in lemma 3.9.

To prove lemma 3.10, we need two technical lemmas.
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LEMMA 3.11

Consider the sequences {«*}, {w]v.}, and {p*} which are defined in relations
(55) and (64). Then, the following statements hold;

(a)
(b)
(c)
(d)
(e)

Proof

Using statements (b) and (c) of lemma 3.8, we obtain

..T..ft II

<

and hence (a) follows. We now show (b) and (c) together. The equahties in (b)
and (c) follow from (a) and lemma 3.8(d'). In view of (64), we have e^w^^ = 1
and this obviously implies that x W J ^ Vl^.i. fo"̂  ^̂ ^ ^ > 0. Hence,
Hminfi_ooXl^Jv.] ^ ^/W*\ ^^^ (b) follows. To complete the proof of (c), we will
show that x("*] '< I/A for all k>0. Indeed, since c^x'' - u' > 0 for all A: > 0, we
obtain from relation (56) that.

Hence,

|> | | « ' | |>X[" ' ] , VA:>0,

as desired. Statements (d) and (e) now follow immediately from (64) and statements
(b) and (c). D

LEMMA 3.12

For sufficiently large k, we have

Xl" 1
(67)



470 R.D.C. Monteiro et a!./Convergence proof of the affine scaling algorithm

Furthermore, there exists a constant 6> 0 such that

6< 1 - (68)

Proof

The inequality in (67) is obvious. Using relation (64) and lemma 3.8(d), we
can easily verify the equality in (67). We now show the equality in (68). Using (c)
and (d) of lemma 3.8 and relation (64), we can easily show that

(69)

Hence,

+ /(ll"'ll'-ll4.

where the last equality follows from (a) and (b) of lemma 3.8, (a) and (e) of lemma
3.11 and relation (69). This last relation shows the equality in (68). Let {y,s) € 3)^
be given. We will show that the inequality in (68) holds for 6 = {\ - A)/(A/||%. ll)>
where M is the constant introduced in theorem 2.6(c). Indeed, using (56), lemma
3.4(a), theorem 2.6(c) and (57), we obtain

T it * — - T

C^X'^—V sir

D

Now we are ready to prove lemma 3.10.
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Proof of lemma 3.10

From (67) to (68), it is easy to see that (wj^.,p*) € H, for all k sufficiently
large, so that H^{w^^,p'') and G^(M;^_,/?^) are well-defined. From relations (58),
(63), (67) and lemma 3.9, we have for all k sufficiently large

= 1̂ ,1 log f 1 -

where

From relation (68) of lemma 3.12, it is easy to see r*" = O(||A:^|P). Hence the lemma
follows. •

The following result gives an upper bound for ^^,(:c*"''') - I^NS^^) "̂ terms
of the distance between the vectors w^^ and

THEOREM 3.13

For the affine scaling algorithm, assume that A < 2/3. For all k>0, define.
7)1^ = \\w^^ — {l/\N,\)e\\. Then, for all k sufficiently large, we have

Proof

Let q = |A .̂|. Using lemma 3.1 l(d), we obtain

lim i n f - ^ > - ^ > X\ (72)
A —oo q — p q — X^

Using the fact that e^w^^ = 1 and T]/^ = \\w^^ - {l/q)e\\, we can easily show that

* i + ̂  = i±*, v*>o. (73)
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Using relations (64) and (73) and the fact that A < 2/3, we obtain

-q
A 1

(74)

Using lemma 3.10 and relations (63), (72) and (74), we obtain

q-p' • <l

for all k sufficiently large. •

We are now in a position to give the proof of theorem 3.2.

Proof of theorem 3.2

Assume that x* is not a point lying in the relative interior of the optimal face
of (1). Assume by contradiction that there exists a subsequence {x*}k€K for which

JV (^ ^ ) — '̂ jv (-Jc ) > 0. Due to relation (71) of theorem 3.13, we have

lim
1

= 0.

By lemma 3.1 l(a), this implies li
K if necessary, we may assume that

= 0. By taking a subset of

A S
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Clearly, this relation implies that s^^ > 0 for all k € K. Hence, from theorem,2.6(c) it
follows that

(75)
2|/V, c^x'^ —

By proposition 2.8, the sequence {{y ,s )}it^K^s bounded, and hence it has an accu-
mulation point Cv*, 5*) such that jj/^ > 0 due to (75). In view of proposition 2.3(c) and
the definition of 5*, we have X*/ = Oand;c5_ > 0. Hence, x* and (y ' , / ) satisfy the
strict complementarity condition. This implies that x* is a point lying in the relative
interior of the primal optimal face, contradicting our assumption. Q

4. Convergence of the dual estimates

In this section we show that the sequence of dual estimates converges to the
analytical center ofthe optima] dual face ('theorem 4.3). We also give a sharp rate of
convergence result for the sequence {c^x —v*} (theorem 4.2).

The proof of the next lemma has almost been worked out in section 3. We
only need to put the pieces together.

LEMMA 4.1

For the affine scaling algorithm, assume that A < 2/3. Then,

r fc 1 • '

l im H-v =7TT-re

Proof

In view of lemma 3.1 l(a), it is sufficient to show that the first time limit in
relation (76) holds. Assume by contradiction that the first limit in (76) does not
hold. Then there exists a constant 6 > 0 such that the set ^ =

II > (5 > 0} is infinite. By theorem 3.13, we have

\X ) — Tpfif y^X )) <. yj. \' ')

a

As a consequence, we have
^+')-VAr(;c*) = -oo. (78)
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Moreover, theorem 3.13 also implies that

and hence there exists a constant C > 0 such that

Using this relation and theorem 2.6(c) and lemma 2.10, we obtain

(79)

Combining relations (78) and (79), we obtain

and this implies that limA^oo^ ĵv.l̂ *) = -°o- Using a similar argument as that
used in the proof of theorem 3.3, we can easily obtain a contradiction. Hence, (76)
holds. . ,n

We can now show that a sharper rate of convergence holds for the sequence
"^;c*-v'} when A<2/3 .

THEOREM 4.2

The following relation holds:

'-m—r = i -^ - (80)



R.D.C. Monteiro et al. I Convergence proof of the affine scaling algorithm 475

Proof

Using relation (56), lemma 3.8(b) and lemma 4.1, we obtain '

hm —=-T = hm 1 - A-V-rr = I - A.
k — oo C^X'^ — V *-»oo X [ " j

The next result shows that the sequence of dual estimates {{y'',s'^)} con-
verges to the center of the dual optimal face. The center of the dual optimal face
is the point [y'^s") e ^A^. such that

^s*) = argmax ^ logj;

subject to Asy = CB,, ^ '

It can be easily verified that (y^.s^^J is characterized as the unique point satisfying
the following conditions.

•sjv. > 0; (82a)

^N.i^kr^ e Range{AB,); (82b)

f ^ , (82c)

where {s'^J = {Sp^J e and S^^ = diag{s*s,)-

We are now ready to state the main result of this section.

THEOREM 4.3

For the affine scaling algorithm, assume that A < 2/3. Then,
lim (7*,5*) = (y\s*). (83)

Proof

By lemma 4.1, we know that

yk k .
lim wjv = lim ^ '—'— = -—-e., (84)

fc-,00 * k^ooc^x^ —v' \NA
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where X^ = diag{x'^). We next show that

X ^ 4 . - ( 5 ] ^ . ) " ' . (85)

Note first that by lemma 3.1, the sequence {x^J{c^x'' -v*)} is bounded. Let
df^^ e K'^"' be an accumulation point of this sequence, that is,

(86)
- V *

where ATC {0,1,2,...} is an infinite set. Using (84) and the fact that {J*} is
bounded, it is easy to see that (3̂ ^ > 0. We will show that (a^ .̂)"^ satisfies the con-
ditions (82), where (OATJ"' denotes the vector whose components are the inverses of
the corresponding components of o^ .̂ Clearly, {a^J~^ > 0. Also,

which implies that As^cis. ^ Range{Ag) due to relation (86) and the fact that
Range{AgJ is a closed set. Using (84) and (86), it follows that

lim SM = (OK ) ~ .
keK •

Since

we have

[0) ^N ] — lini [s£ ,s»] ^ c + Range(A ).
keK '

Hence, {a^^^)~' satisfies the conditions (82), and therefore a« = {sl/^)~'. Since a^f^ is
an arbitrary accumulation point of the sequence {x^J{c x'^ - v*)}, (85) follows.
Clearly, (84) and (85) imply that iim^t^ooi* = s*. Since rank{A) = m, it also fol-
lows that lim^^oo^* = y'. Hence, (83) follows. Q
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Appendix

In this appendix we give the proofs of proposition 2.8, lemma 2.10 and
lenima 3.9.

We start with the proof of proposition 2.8. First, we need the following
lemma whose proof uses Hoffman's lemma.

LEMMA A. 1

Let H e R'""^ and /i G R ' be given such that h € Range{H). Then, there exists
a constant Af > 0 such that for every diagonal matrix i) > 0, the (unique) optimal
solution w = w{D) e R^ of the problem

minimize^ II-̂ ^H-JI
(87)

subject to Hw — h

satisfies \\w\\ < M.

Proof

Assume by contradiction that there exists a sequence of diagonal matrices
D* > 0 such that solution w* = >v(Z)*) of (87) satisfies

lim ||w*|| = o o .
*-too

This implies that there exist a constant L > 0, an index set 7 C {1 ,2 , . . . . n}, 7 7̂  0,
and a subsequence {w'^jkeK with the property that

<L, ^jfJ.'ikeK; (88)

lim 1̂ /1 = 00, v y e / . (89)

Consider the system

(90a)

(90b)

and observe that w'^ is a solution of this system. By lemma 2.4, (90) has a solution vv*
such that
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where L^ is a constant independent of/c. It follows from (88) and (91) that

, V i e A:, ' (92)

which shows that H-* is bounded. In view of (89), there exists an integer ô ^ 0 such
that

\wf\ > Z,2, V;t >kQ,ke K, V; G /. (93)

Then, it follows from (90b), (92) and (93) that

which together with (90a) contradicts the fact that w* is an optimal solution of (87)
with D=^ D''. ' D

We are now in a position to prove proposition 2.8.

Proof of proposition 2.8

By proposition 2.1, we know that (y(x),s[x)) is the unique solution of (11).
Let {y,s) ^9 and let / / e R^"""'''"' be a matrix whose rows form a basis of the
null space of ^. Then, for {y,s) € M'" x R", we have

A'^y -\-s = c <=> Hs = Hs.

Therefore, s[x) is also the unique solution of the following problem

maximize, 4 \\Xs\?'

subject to Hs — Hs,

where X = diag{x). Hence, by lemma A.I, we know that the {J(;C)|.T>0} is
bounded. Since rank{A) = m, it also follows that {;'(;c)|x > 0} is bounded. D

Below we give a proof of lemma 2.10.
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Proof of lemma 2.10

It is easy to verify that d'^/\\{X'^)~^d'^\\ is the optimal solution of

maximize^ c p

subject to Ap = 0, (95)

where ^* = diagix''). Hence, since/- = (;c*̂  - A:*)/||(A'*)-'(A:* - .:c*)|| is feasible for
(95), we obtain

(96)

where the two equalities follow from the lemma 2.2. Since {x } converges to JC', it is
easy to verify that for some integer ô > 0.

- ' ( ^ ' - x ' ) | | < A Vk>ko. (97)

Using relations (16), (96) and (97), we obtain

< 1 - A

T i -

"r(jc* - X')

1

Finally, we prove lemma 3.9.

Proof of lemma 3.9

Introducting a new variable v = w- e/q, we have

1 _ PH,. ^ 1 _ ^ _ ^ . , 1 _ p||w||2 = 1 - ^ - P\\vf.
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Since w e = 1, we obtain

0<p<g, (98)

X[t)] = x W - ^ > 0 , (99)

iFe = 0.

Using (98), we can write Gg in terms of v as follows:

G,iw,p) = qlog{l-9\\vf)-J2^og(\~9v,l (100)

where

We now make use of the following well-known inequalities:

> E f-ki-¥-^--)+ E

, 0 < x H < l ) .

Plugging these inequalities into (100) and using (99), we obtain

1=1
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provided that Oxlv] < 1 and 0\\v\\^ < 1. It is easy to see that these conditions are
satisfied under the assumptions of the lemma, since they are equivalent to
PxM < I and p\\w\\^ < 1.

Substituting the definitions of u and 0 into the rightmost hand side of (101),
we obtain

1
w — e

q-p

U
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