
Digital Object Identifier (DOI) 10.1007/s101070000137

Math. Program., Ser. A 88: 61–83 (2000)

Renato D.C. Monteiro· Takashi Tsuchiya

Polynomial convergence of primal-dual algorithms for
the second-order cone program based on the MZ-family
of directions

Received: June 5, 1998 / Accepted: September 8, 1999
Published online April 20, 2000 – Springer-Verlag 2000

Abstract. In this paper we study primal-dual path-following algorithms for the second-order cone program-
ming (SOCP) based on a family of directions that is a natural extension of the Monteiro-Zhang (MZ) family
for semidefinite programming. We show that the polynomial iteration-complexity bounds of two well-known
algorithms for linear programming, namely the short-step path-following algorithm of Kojima et al. and
Monteiro and Adler, and the predictor-corrector algorithm of Mizuno et al., carry over to the context of SOCP,
that is they have anO(

√
n logε−1) iteration-complexity to reduce the duality gap by a factor ofε, wheren

is the number of second-order cones. Since the MZ-type family studied in this paper includes an analogue
of the Alizadeh, Haeberly and Overton pure Newton direction, we establish for the first time the polynomial
convergence of primal-dual algorithms for SOCP based on this search direction.

Key words. second-order cone programming – ice-cream cone – interior-point methods – polynomial com-
plexity – path-following methods – primal-dual methods – Newton method

1. Introduction

The second-order cone programming (SOCP) problem is to minimize or maximize
a linear function over the intersection of an affine space with the Cartesian product of
a finite number of second-order cones. Recently, this problem has received considerable
attention for its wide range of applications (see [10,14,31]) and for being “easily”
solvable via interior-point algorithms (see [23–26]). In this paper, we study primal-dual
path-following algorithms for the SOCP based on a family of search directions which
is a natural extension of the Monteiro-Zhang family of directions introduced in the
context of the semidefinite programming (SDP) (see [17], [32] and [22]). We establish
polynomial convergence of two path-following algorithms that are natural extensions of
standard linear programming (LP) algorithms, namely the short-step method of Kojima
et al. [12] and Monteiro and Adler [19,20] and the predictor-correctormethod of Mizuno
et al. [16].
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While primal-only interior-point algorithms for solving SOCP, and the import-
ant special case of quadratically constrained convex quadratic programming, were de-
veloped about eight years ago (see [9,15,23,24]), it was only recently that primal-dual
algorithms for SOCP have been developed. The first polynomial primal-dual path-
following algorithm for SOCP was proposed by Nesterov and Todd [25,26]. They
develop a general approach for solving the homogeneous and self-dual cone program-
ming which includes SOCP, LP and SDP as special cases. In their work, a direction
called the Nesterov-Todd (NT) direction is proposed and the short-step path-following
algorithm based on this direction is shown to haveO(

√
n logε−1) iteration-complexity,

wheren is the number of second-order cones.

Adler and Alizadeh [1] study a unified primal-dual approach for SDP and SOCP,
and propose a direction for SOCP analogous to the Alizadeh-Haeberly-Overton (AHO)
direction introduced in [2] for SDP. Recently, Alizadeh and Schmieta studied several the-
oretical and practical aspects of SOCP mainly from the viewpoint of nondegeneracy [3].

Faybusovich studies the homogeneous self-dual cone programming from the view-
point of Euclidean Jordan algebra [7], which provides another framework for handling
homogeneous self-dual cones [4–6]. He extends the AHO direction to homogeneous
self-dual cone programming, gives conditions for it to be well-defined, and studies some
nondegeneracy issues in the context of this problem.

In the recent papers [29] and [30], Tsuchiya extends standard path-following algo-
rithms for LP [11,12,19] and SDP [13,17,22,21] to SOCP. He introduces a primal-dual
product in the context of SOCP which plays exactly the same role asXsandS1/2XS1/2

do in the context of LP and SDP, respectively, and defines neighborhoods of the cen-
tral path in terms of the eigenvalue decomposition of this product. Path-following
algorithms using two major scaling invariant directions, namely the Helmberg-Rendl-
Vanderbei-Wolkowicz/Kojima-Shindoh-Hara/Monteiro(HRVW/KSH/M) [8,13,17] di-
rection and the NT direction, are analyzed in his works [29] and [30], where it is shown
that: (i) the short-step, semilong-step and long-step path-following algorithms using
the HRVW/KSH/M direction haveO(

√
n logε−1), O(n logε−1) andO(n3/2 logε−1)

iteration-complexities, respectively; (ii) the short-step path-following algorithm using
the NT direction has anO(

√
n logε−1) iteration-complexity, and the semilong-step and

long-step algorithms have bothO(n logε−1) iteration-complexity.

In this paper, we show that the short-step path-following and the Mizuno-Todd-Ye
predictor-corrector algorithms based on an extension of the Monteiro and Zhang fam-
ily of search directions have bothO(

√
n logε−1) iteration-complexity bound. Briefly

speaking, a direction of this family is equivalent to the AHO direction in a certain scaled
space determined by a linear transformation which leaves the cone invariant. Since the
central-path neighborhoods, and the distances used to define them, remain invariant
under these linear transformations, an iteration in the original space can be analyzed
from the viewpoint of the scaled space. A main advantage of this viewpoint is that the
analysis of an iteration along the AHO direction suffices to describe the behavior of an
iteration of the algorithm along any direction of the family. The relevance of the MZ-
family is that it contains the three major standard directions, namely the AHO direction,
the HRVW/KSH/M direction and the NT direction, and hence it provides a unifying
framework for the polynomial convergence analysis of path-following algorithms. Poly-
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nomiality of the short-step path-following algorithm for SDP based on the MZ-family
was first established by Monteiro [18].

A major difficulty in analyzing path-following algorithms using the AHO direction
is that it is necessary to estimate a first-order error term (i.e., depending linearly on the
step-size) that appears in the centrality measure for the new iterate. Careful analysis is
needed to show that this term can be bounded by a quantity that depends quadratically
on the opening of the cone and the deviation of the centrality parameter from one. By
choosing the opening of the cone small enough and the centrality parameter not too far
from one, it is possible to show that the error coming from this term is small enough to
ensure that the algorithm have anO(

√
n logε−1) iteration-complexity. The same kind

of difficulty occurs in the context of SDP (see [18]). However, the technique used to
bound the effect of the first order term in the context of SOCP is quite different from
the one in SDP, and is a major new development of this paper. As in the case of SDP,
the AHO direction is shown to be well-defined only for points close to the central path,
more specifically in the∞-norm neighborhood with opening less than 1/3.

Finally, after the release of the first version of this paper, Schmieta and Alizadeh [27]
have independently shown that the results of this paper can be extended to most sym-
metric cones by using a completely different approach than ours.

This paper is organized as follows. In Sect. 2, we describe the SOCP problem,
define the central path and its neighborhoods, and introduce the Newton system that
determines the AHO search direction. In Sect. 3, we develop several technical results
that are used in the analysis of Sect. 4, where the short-step path-following algorithm
and the predictor-corrector algorithm using the AHO direction are described and their
polynomial convergence are established. In Sect. 5, we introduce the MZ family of
directions for SOCP and show that the convergence results obtained for the AHO
direction in Sect. 4 also holds for the MZ-family.

1.1. Notation and terminology

The following notation is used throughout the paper. The superscriptT denotes transpose.
<p denotes thep-dimensional Euclidean space. The set of allp× q matrices with real
entries is denoted by<p×q. If P andQ are square symmetric matrices, we writeP � Q,
or Q � P, to indicate thatP−Q is positive semidefinite. For a square matrixQ with all
real eigenvalues, we denote its smallest and largest eigenvalues byλmin[Q] andλmax[Q],
respectively. Given a finite number of square matricesQ1, . . . ,Qn, we denote the block
diagonal matrix with these matrices as block diagonals by diag(Q1, . . . ,Qn), or by
diag (Qi : i = 1, . . . ,n). The Euclidean norm and its associated operator norm are
both denoted by‖ · ‖; hence,‖Q‖ ≡ max‖u‖=1 ‖Qu‖ for any Q ∈ <p×p. We denote
the interior of a set� ⊂ <p by int�.

2. The second-order cone program and preliminary discussion

This section describes the SOCP problem, the central path and the neighborhoods of the
central path that will be used in our presentation. It also introduces the Newton direction,
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referred to as the AHO direction, for the system which characterizes the central path in
terms of a certain Jordan algebra product between the primal variable and the dual slack
variable.

2.1. The second-order cone program

In this paper we consider the following second-order program

(P) min

{
n∑

i=1

cT
i xi :

n∑
i=1

Ai xi = b, xi ∈ Ki , i = 1, . . . ,n

}
, (1)

wherexi ∈ <ki , i = 1, . . . ,n, are the variables,b ∈ <m, Ai ∈ <m×ki andci ∈ <ki ,
i = 1, . . . ,n, are the data, and the setKi , i = 1, . . . ,n, is the second-order cone of
dimensionki defined as

Ki =
{

xi = (xi0, xi1) ∈ <× <ki−1 : xi0 − ‖xi1‖ ≥ 0
}
.

It is well-known that the coneKi is self-dual, that isKi = K∗i ≡ {si ∈ <ki : sT
i xi ≥ 0,

∀xi ∈ Ki }. The dual of problem (1) is

(D) max
{

bT y : AT
i y+ si = ci , si ∈ Ki , i = 1, . . . ,n

}
. (2)

Defining

K ≡ k1+ . . .+ kn, K = K1× . . .×Kn,

A= (A1 A2 . . . An) ∈ <m×K , c= (c1, · · · , cn) ∈ <K ,

x = (x1, . . . , xn) ∈ <K , s= (s1, . . . , sn) ∈ <K ,

problems (P) and (D) can be simply written as

(P) min
{

cT x : Ax= b, x ∈ K } ,
(D) max

{
bT y : AT y+ s= c, s ∈ K } .

The set ofinterior feasible solutionsof (1) and (2) are:

F0(P) ≡ {x : Ax= b, x ∈ K0},
F0(D) ≡ {(s, y) : AT y+ s= c, s ∈ K0},

respectively, whereK0 denotes the interior of the coneK.
Throughout this paper, we make the following assumptions:

A1) F0(P)× F0(D) 6= ∅;
A2) the rows of the matrixA= (A1 . . . An) are linearly independent.

Under assumption A1, it is well-known that (P) and (D) have optimal solutions and
their optimal values coincide. Moreover, solving (P) and (D) is equivalent to finding
(x, s, y) ∈ K×K×<m such that

(PD) xTs= 0, Ax= b, AT y+ s= c.
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2.2. Euclidean Jordan algebra, central path and Newton direction

The primal-dual algorithms studied in this paper are based on the Euclidean Jordan
algebra associated with the second-order cone (see for example [4–7]). The Euclidean
Jordan algebra for the second-order coneKi is the algebra defined by the following
bilinear form from<ki ×<ki to<ki :

xi ◦ si =
(
xT

i si , xi0si1 + si0xi1
)
, ∀xi , si ∈ <ki .

The elementei = (1,0, . . . ,0) is the unit element of this algebra. The Jordan algebra
associated with the coneK = K1 × . . .×Kn is given by

x ◦ s= (x1 ◦ s1, . . . , xn ◦ sn), ∀x, s ∈ <K ,

with e≡ (e1, . . . ,en) being its unit element. From now on, the space<K will always
be assumed to be endowed with the above Jordan algebra. Given an elementx ∈ <K ,
we denote bymat(x) the matrix diag(X1, . . . , Xn) with

Xi =
(

xi0 xT
i1

xi1 xi0I

)
, i = 1, . . . ,n. (3)

It is easy to verify that

x ◦ s= mat(x)s= mat(s)x.

It is known thatmat(x) is a symmetric matrix with smallest and largest eigenvalues
given by

λmin(mat(x)) = min{xi0− ‖xi1‖ : i = 1, . . . ,n},
λmax(mat(x)) = max{xi0 + ‖xi1‖ : i = 1, . . . ,n}. (4)

Verifying this fact is an easy exercise of linear algebra, and a proof can be found in
Lemma 2.13 of [30]. Note thatmat(x) is symmetric positive semidefinite (positive
definite) if and only ifx ∈ K (x ∈ K0).

The central path for (P) and (D) is defined as the set of solutions(x, s, y) ∈ K ×
K×<m to the system (see for example [1,5]):

x ◦ s= νe, Ax= b, AT y+ s= c, (5)

for all ν > 0. Under assumptions A1 and A2, it can be shown that: i) system (5)
has exactly one solution(x, s, y) = (xν, sν, yν) in K × K × <m, which in fact lies in
K0×K0×<m; ii) (xν, sν, yν) depends continuously (and, analytically) on the parameter
ν > 0; iii) any accumulation point of the path(xν, sν, yν), asν tends to zero, is a solution
of the optimality condition (PD).

The algorithms studied in Sects. 3 and 4 use as search direction the Newton di-
rection for system (5) for some appropriate value ofν > 0. More specifically, the
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search direction, which depends on a given centrality parameterσ ∈ <, is a solution
(1x,1s,1y) ∈ <K ×<K ×<m of the linear system of equations

S1x+ X1s= σµe− Xs, (6a)

AT1y+1s= c− s− AT y, (6b)

A1x = b− Ax, (6c)

where X ≡ mat(x), S ≡ mat(s), µ = µ(x, s) ≡ xTs/n. Results about the well-
definedness of this direction, which we refer to as the AHO direction, will be given in
Sect. 3 where it is shown that(1x,1s,1y) exists and is unique for points(x, s, y) lying
close to the central path. Note that (6) is exactly the Newton system at the point(x, s, y)
with respect to (5) whenν = σµ.

2.3. Scaling, eigenvalues and the neighborhoods of the central path

We next introduce a group of scaling automorphisms that maps the coneK onto itself and
define the scaling-invariant neighborhoods of the central path. Consider the following
group of matrices

Gi ≡
{
λT̃i : λ > 0, T̃i ∈ <ki×ki , T̃T

i Jki T̃i = Jki , (T̃i )00 > 0
}
, (7)

where

Jki ≡
(

1 0
0 −I

)
∈ <ki×ki .

It is well-known thatGi is exactly the auto-morphism group of the coneKi, namely the set
of all nonsingular matricesTi such thatKi = Ti (Ki ), whereTi (Ki ) ≡ {Ti xi : xi ∈ Ki }.
(Since we have not been able to find a reference for this fact, for the sake of completeness,
we include its proof in the appendix.) Let

G ≡ { T = diag(T1, . . . , Tn) : Ti ∈ Gi , i = 1, . . . ,n }.
It is easy to see thatG is a subgroup of the auto-morphism group of the coneK.

The following proposition gives an explicit formula for the unique symmetric posi-
tive definite matrix inG which carriese to x.

Proposition 1. (Proposition 2.1 of [30]) For anyx ∈ K0, there exists a unique sym-
metric matrix inG which mapse to x given byTx ≡ diag (Tx1, . . . , Txn) where, for all
i = 1, . . . ,n,

Txi =
 xi0 xT

i1

xi1 βxi I +
xi1xT

i1

βxi + xi0

 , (8)

and

βxi =
√

x2
i0 − ‖xi1‖2. (9)

Moreover,Tx is positive definite.
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We define the set of 2n eigenvalues{ λ j
i : i = 1, . . . ,n, j = 0,1 } associated with

an elementv = (v1, . . . , vn) ∈ <k1 × . . .×<kn of the Cartesian algebra as

λ0
i = λ0

i (v) ≡ vi0 − ‖vi1‖, λ1
i = λ1

i (v) ≡ vi0 + ‖vi1‖,
for i = 1, . . . ,n. Clearly,v ∈ K if and only if λ0

i ≥ 0 for all i , andv ∈ K0 if and only
if λ0

i > 0. See Sect. 2.4 of [30] for a motivation and a more detailed explanation of the
notion of eigenvalues in the context of SOCP.

We are now ready to introduce the neighborhoods of the central path. For a pair
(x, s) ∈ K0 ×K0, define the distances

d2(x, s) ≡
√√√√ ∑

i=1,... ,n
j=0,1

(
λ

j
i (wxs)− µ

)2 = √2‖wxs− µe‖.

d∞(x, s) ≡ max
i=1,... ,n

j=0,1

∣∣λ j
i (wxs)− µ

∣∣ = max
i=1,... ,n

[|wi0 + ‖wi1‖ − µ| , |wi0 − ‖wi1‖ − µ|
]
,

whereµ ≡ µ(x, s) and

wxs= (w1, . . . , wn) ≡ Txs. (10)

The neighborhoods of the central path with openingγ ∈ (0,1) determined by the above
distances are:

N2(γ) =
{
(x, s, y) ∈ F0(P)× F0(D) : d2(x, s) ≤ γµ(x, s)

}
,

N∞(γ) =
{
(x, s, y) ∈ F0(P)× F0(D) : d∞(x, s) ≤ γµ(x, s)

}
.

It is easy to show thatd∞(x, s) ≤ d2(x, s) for every(x, s) ∈ K0 × K0, and hence that
N2(γ) ⊂ N∞(γ).

In the above definitions, the productwxs = Txs arises in exactly the same way as
the quantityX1/2SX1/2 does in the context of SDP, namelyX1/2SX1/2 is the scaled
dual variable when the primal variableX is scaled to the identity matrixI , which
plays the role of the identity in the associated Euclidean Jordan Algebra. Likewise,
wxs is the scaled dual variable whenx is scaled toe. Then, it is intuitive that the
quantity‖X1/2SX1/2−µI‖F should be replaced by

√
2‖wxs−µe‖ when the distance

of a point to the central path is being defined in in the context of SOCP. In fact, in
terms of eigenvalues, the definition of the above distances is completely identical in
both contexts.

The following invariance property of the eigenvalues ofwxs has been established in
Proposition 2.4 of [30].

Proposition 2. Suppose that(x, s) ∈ K0 ×K0 andG ∈ G. Let (̃x, s̃) ≡ (GT x,G−1s),
w ≡ wxs andw̃ ≡ wx̃̃s. Then:

a) w̃i0 = wi0 and‖w̃i1‖ = ‖wi1‖ for everyi = 1, . . . ,n;

b) λ j
i (w̃) = λ j

i (w) for everyi = 1, . . . ,n and j = 0,1;

c) d2(̃x, s̃) = d2(x, s) andd∞(̃x, s̃) = d∞(x, s).
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Remark.As it is known from Faraut and Koráyi [7], every homogeneous and self-dual
cone is in one-to-one correspondence with an Euclidean Jordan algebra. Since this
Jordan algebra plays an important role in the generalization of primal-dual algorithms
from LP and/or SDP to SOCP, it may be worthwhile to mention the correspondence
of the concepts used in this paper with the ones used in a more general treatment of
Euclidean Jordan algebra such as the one of [7]. Indeed, the quantitiesmat(x) andTx
correspond to the termsL(x) and P(x1/2) used in [7], respectively, wherex1/2 is the
unique element whose square Jordan product isx. Here, L(x) is the linear operator
defined asL(x)s≡ x◦s, wherex◦sdenotes the product of the Jordan algebra, andP(x)
is the quadratic representation operator associated withx. Using this correspondence, it
is possible to extend some of the concepts and results introduced here to any Euclidean
Jordan algebra. We refer the reader to [6] and [28] for some preliminary results along
this direction.

3. Technical results

In this section, we develop the technical results needed to establish the polynomial
convergence of the algorithms presented in Sect. 4. Lemmas 2 and 3 are key results
towards establishing the well-definedness of the AHO direction and obtaining a bound
on the centrality measure of the next iterate in terms of that for the current iterate.
In Lemma 4 and Theorem 1, we show that the AHO direction is well-defined in any
neighborhoodN∞(γ) with γ ∈ (0,1/3). Lemmas 8 and 9 are the main results used in
the analysis of the algorithms presented in Sect. 4 and allow us to show that all iterates
remain inside some 2-norm neighborhood and eventually approach the primal-dual
optimal set.

Given(x, s) ∈ K0 ×K0, let

X ≡ mat(x),

S≡ mat(s),

Rxs ≡ Tx X−1STx, (11)

Wxs ≡ mat(wxs). (12)

Lemma 1. For anyx ∈ K0, the matricesX andTx satisfy:

a) X− Tx = Ux = diag (Uxi : i = 1, . . . ,n), where

Uxi =
[

0 0
0 (xi0 − βxi )Pxi

]
and Pxi is the orthogonal projection matrix onto the subspace orthogonal toxi1,
namely

Pxi ≡ I − xi1xT
i1

‖xi1‖2 ; (13)

b) TxX−1 = X−1Tx = diag (I − x−1
i0 Uxi : i = 1, . . . ,n); as a consequence,

TxX−1e= e;
c) X andTx commute andX � Tx.
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Proof. The i -th diagonal block ofX − Tx is the matrixXi − Txi , whereXi and Txi

are given by (3) and (8), respectively. A simple algebraic manipulation involving (3),
(8) and (9) reveals thatXi − Txi = Uxi , and hence that a) holds. It is easy to see that
Xi Uxi = Uxi Xi = xi0Uxi , and henceX−1

i Uxi = x−1
i0 Uxi . Using this and a), we obtain

X−1Tx = X−1(X −Ux) = I − X−1Ux = diag
(
I − X−1

i Uxi : i = 1, . . . ,n
)

= diag
(
I − x−1

i0 Uxi : i = 1, . . . ,n
)
,

that is b) holds. This implies thatX−1Tx is a symmetric matrix, or equivalently thatX−1

andTx commute. Hence,X andTx commute. The other claim in c) thatX � Tx follows
immediately from a) sinceUx � 0.

ut
The next two lemmas play a fundamental role in our analysis.

Lemma 2. We haveRxs= diag (Ri : i = 1, . . . ,n), where

Ri =
[
wi0 wT

i1

wi1 R̃i

]
(14)

with (wi0, wi1) = Txi si ∈ <× <ki−1 and

R̃i ≡ 1

xi0

[
wi1xT

i1 + β2
xi

si0 I
]
= wi1xT

i1

xi0
+
(
wi0 − w

T
i1xi1

xi0

)
I. (15)

Proof. By (11) and Lemma 1(b), we have

Ri = Txi X
−1
i Si Txi =

(
Txi X

−1
i

)
Si Xi

(
X−1

i Txi

)
= (I − x−1

i0 Uxi

)
Si Xi

(
I − x−1

i0 Uxi

)
(16)

whereXi andSi are thei -th diagonal blocks ofX andS, respectively. Now, using (13)
and the definition ofXi andSi , we easily see that

I − 1

xi0
Uxi =

[
1 0

0 I − τi Pxi

]
, Si Xi =

[
pi0 pT

i1

pi1 Zi

]
, (17)

where

pi ≡ xi ◦ si = Xi si , τi ≡ 1− βxi

xi0
, Zi ≡ xi0si0 I + si1xT

i1. (18)

Substituting the identities in (17) into (16), we obtain

Ri =
[

pi0 (pi1 − τi Pxi pi1)
T

pi1− τi Pxi pi1 Vi

]
,

where

Vi ≡
(
I − τi Pxi

)
Zi
(
I − τi Pxi

)
. (19)
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Hence relation (14) follows once we show thatwi0 = pi0, wi1 = pi1 − τi Pxi pi1 and
R̃i = Vi . Indeed, using (17), (18) and Lemma 1(b), we obtain

wi = Txi si =
(
Txi X

−1
i

)
Xi si =

(
I − x−1

i0 Uxi

)
pi =

(
pi0

(I − τi Pxi )pi1

)
,

from which it follows thatwi0 = pi0 andwi1 = pi1− τi Pxi pi1. We will now show that
R̃i = Vi . By (9) and (18), we have

Zi = xi0si0 I + si1xT
i1 = xi0si0 I + pi1− si0xi1

xi0
xT

i1

= si0

xi0

(
x2

i0 − ‖xi1‖2
)
I + si0‖xi1‖2

xi0
Pxi +

pi1xT
i1

xi0

= si0

xi0
β2

xi
I + si0‖xi1‖2

xi0
Pxi +

pi1xT
i1

xi0
.

Substituting this relation into (19) and using the definition ofR̃i given in (15) and the
identitieswi1 = (I − τi Pxi )pi1, Pxi xi1 = 0 andP2

xi
= Pxi , we obtain

Vi = si0

xi0
β2

xi

(
I − τi Pxi

)2+ si0‖xi1‖2
xi0

(
I − τi Pxi

)2
Pxi +

wi1xT
i1

xi0

= si0

xi0
β2

xi

(
I − 2τi Pxi + τ2

i Pxi

)+ si0‖xi1‖2
xi0

(
Pxi − 2τi Pxi + τ2

i Pxi

)+ wi1xT
i1

xi0

= R̃i + si0

xi0

[(
β2

xi
+ ‖xi1‖2

)(
τ2

i − 2τi
)+ ‖xi1‖2

]
Pxi = R̃i ,

where the last equality follows from the fact that the coefficient ofPxi on its left hand
side is zero, a fact that can be easily verified by using the definitions ofβxi andτi in (9)
and (18). We have thus shown that (14) holds.

It remains to show the identity in (15). A simple calculation using (9) and the fact that
wi0 = pi0 reveal thatβ2

xi
si0 = wi0xi0− pT

i1xi1. Using the identitieswi1 = pi1−τi Pxi pi1

andPxi xi1 = 0, we easily see thatwT
i1xi1 = pT

i1xi1. Hence,β2
xi

si0 = wi0xi0 − wT
i1xi1,

from which (15) immediately follows.
ut

Lemma 3. Let (x, s, y) ∈ K0×K0×<m be a triple such that

max
i, j

∣∣ λ j
i

(
wxs

) − ν
∣∣ ≤ γ ν

for some scalarsγ > 0 andν > 0. Then,

‖Rxs−Wxs‖ ≤ 2γ ν, (20)

‖Wxs− ν I‖ ≤ γ ν. (21)

As a consequence,

‖Rxs− νI‖ ≤ 3γ ν.



Primal-dual algorithms for second-order cone programs 71

Proof. We first show that (20) holds. Let(wi0, wi1) = Txi si , and letWi be thei -th block
of Wxs. By Lemma 2 and the definition ofWxs, we have

‖Rxs−Wxs‖ = max
i=1,... ,n

‖Ri −Wi‖ = max
i=1,... ,n

‖R̃i −wi0 I‖.

On the other hand, using (15) we obtain for alli that

‖R̃i −wi0 I‖ =
∥∥∥∥ 1

xi0

[
wi1xT

i1 −
(
wT

i1xi1
)
I
] ∥∥∥∥ ≤ 2‖wi1‖ ‖xi1‖

xi0
≤ 2‖wi1‖

= (λ1
i (wxs)− λ0

i (wxs)
) ≤ ∣∣λ1

i (wxs)− ν
∣∣+ ∣∣λ0

i (wxs)− ν
∣∣ ≤ 2γν.

Inequality (20) now follows from the above two relations. Inequality (21) follows
from (4).

ut
In the following two results, we establish the well-definedness of the AHO direction

for points lying in any neighborhoodN∞(γ) with γ ∈ (0,1/3).

Lemma 4. Let (x, s, y) ∈ K0×K0×<m be a triple such that

‖Rxs− νI‖ ≤ τν, (22)

for some scalarsτ ∈ (0,1) andν > 0. Assume that(u, v) ∈ <K × <K andh ∈ <K

satisfy

Su+ Xv = h, uTv ≥ 0, (23)

and defineδu ≡ ‖T−1
x u‖ andδv ≡ ‖Txv‖. Then,

δu ≤
∥∥TxX−1h

∥∥
(1− τ)ν , δv ≤ 2

∥∥TxX−1h
∥∥

1− τ . (24)

Proof. It is easy to see that (22) implies that

dT Rxsd ≥ (1− τ) ν ‖d ‖2. (25)

Multiplying the first relation in (23) on the left byuT X−1 and using the second relation
in (23), we obtain

uT X−1S u ≤ uT X−1S u+ uTv = uT X−1h.

This relation, (11) and (25) withd = T−1
x u imply that

(1− τ) ν δ2
u = (1− τ)ν

∥∥T−1
x u

∥∥2 ≤ (
T−1

x u
)T

Rxs
(
T−1

x u
)

= uT X−1S u ≤ uT X−1h = (
T−1

x u
)T(

Tx X−1h
)

≤ ∥∥T−1
x u

∥∥ ∥∥TxX−1h
∥∥ = δu

∥∥TxX−1h
∥∥,
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from which the first inequality in (24) follows. We now prove the second inequality
of (24). Multiplying the first relation in (23) on the left byTx X−1 and using the
definition of Rxs, we obtain

RxsT
−1
x u+ Txv = Tx X−1h.

This relation together with (22) and the first inequality of (24) implies that

δv = ‖Txv‖ =
∥∥Tx X−1h− RxsT

−1
x u

∥∥ ≤ ∥∥TxX−1h
∥∥+ ∥∥RxsT

−1
x u

∥∥
≤ ∥∥TxX−1h

∥∥+ ‖Rxs‖ δu ≤
∥∥Tx X−1h

∥∥+ (1+ τ) ν ∥∥TxX−1h
∥∥

(1− τ)ν ,

from which the second inequality of (24) follows.
ut

As a consequence of the above lemma, we obtain the following result about the
well-definedness of the AHO direction.

Theorem 1. Let (x, s, y) ∈ K0 ×K0 ×<m be a point such that

max
i, j

∣∣ λ j
i

(
wxs

) − ν
∣∣ ≤ γ ν

for some scalarsγ ∈ (0,1/3) andν > 0. Then, system (6) has exactly one solution. In
particular, the AHO direction is well-defined at every point(x, s, y) ∈ K0 ×K0 × <m

such thatd∞(x, s) < µ(x, s)/3.

Proof. To show that (6) has a unique solution, let(u, v,q) ∈ <K × <K × <m be
a solution of the homogeneous system associated with (6). Then,Su+ Xv = 0, Au= 0
andATq+ v = 0. The last two relations imply thatuTv = 0. By Lemma 3, (22) holds
with τ = 3γ < 1. Using Lemma 4 withh = 0, we conclude thatu = v = 0, and
hence thatATq = 0. Since the rows ofA are linearly independent, we haveq = 0. We
have thus shown that(u, v,q) = (0,0,0). This implies that system (6) has a unique
solution.

ut
Let x(α) ≡ x + α1x, s(α) ≡ s + α1s, y(α) ≡ y + α1y, and letµ(α) ≡

x(α)Ts(α)/n. In the next four lemmas we develop a bound on the quantity
√

2‖T−1
x x(α)◦

Txs(α) − µ(α)e‖ which, as we will see in Lemma 9, majorizes the centrality measure
d2(x(α), s(α)).

Lemma 5. Let (x, s, y) ∈ F0(P)× F0(D) and let(1x,1s,1y) be a solution of (6) for
someσ ∈ <. Then, for everyα ∈ <, we have:

µ(α) = (1− α+ σα)µ, (26)

T−1
x x(α) ◦ Tx s(α)− µ(α)e= (1− α)(wxs− µe)+ α(Wxs− Rxs)1̃x

+α21̃x ◦ 1̃s, (27)

whereµ ≡ µ(x, s) and

1̃x ≡ T−1
x 1x, 1̃s ≡ Tx1s. (28)
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Proof. Using the assumption that(x, s, y) ∈ F0(P)×F0(D) and relations (6b) and (6c),
we easily see that1xT1s= 0. Multiplying (6a) on the left byeT , we obtain

sT1x+ xT1s= σnµ− xTs= −(1− σ)nµ.
Using these two last relations, we obtain

x(α)Ts(α) = (x+ α1x)T(s+ α1s) = xTs+ α(sT1x+ xT1s) = nµ[1− α(1− σ)].
Dividing both sides of this relation byn, we obtain (26). Multiplying (6a) on the left by
TxX−1 and using (10), (11), (28) and Lemma 1(b), we obtain

1̃s = Tx1s = TxX−1 (σµe− Xs− S1x) = σµe−wxs− Rxs1̃x.

The last identity, relations (10), (12) and (28) and the fact thatu ◦ v = mat(u) v for all
u, v ∈ <K imply that

T−1
x x(α) ◦ Tx s(α) = T−1

x (x+ α1x) ◦ Tx (s+ α1s)

= (e+ α1̃x
) ◦ (wxs+ α1̃s

)
= wxs+ α

(
wxs ◦ 1̃x+ 1̃s

)+ α2 1̃x ◦ 1̃s

= wxs+ α
[
σµe−wxs+ (Wxs− Rxs) 1̃x

]+ α2 1̃x ◦ 1̃s.

Combining this identity with (26), we obtain (27).
ut

Lemma 6. Assume that(x, s, y) ∈ N2(γ) for some scalarγ ∈ (0,1/3) and let
(1x,1s,1y) be the unique solution of (6) for someσ ∈ <. Then, the directions
1̃x and1̃s defined in (28) satisfy:

‖1̃x‖ ≤ 2

2
, ‖1̃s‖ ≤ 2µ, (29)

whereµ ≡ µ(x, s) and

2 ≡ 2
[
γ 2/2+ (1− σ)2n

]1/2
1− 3γ

.

Proof. Using the fact thatwT
xse= sT Txe= sT x = nµ and‖wxs− µe‖ ≤ γµ/√2, we

obtain

‖wxs− σµe‖2 = ‖wxs− µe‖2+ ‖µe− σµe‖2 + 2(1− σ)µ(wxs− µe)Te

≤
[
γ 2

2
+ (1− σ)2n

]
µ2. (30)

Sinced∞(x, s) ≤ d2(x, s) ≤ γµ, it follows from Lemma 3 withν = µ that (22) holds
with τ = 3γ < 1 andν = µ. Hence, it follows from (10), (30), Lemma 1(b) and
Lemma 4 withν = µ, (u, v) = (1x,1s), h = σµe− Xsandτ = 3γ that

‖1̃x‖ ≤
∥∥TxX−1(σµe− Xs)

∥∥µ−1

1− 3γ
= ‖wxs− σµe‖µ−1

1− 3γ
≤ 2

2
,

‖1̃s‖ ≤ 2
∥∥Tx X−1(σµe− Xs)

∥∥
1− 3γ

= 2 ‖wxs− σµe‖
1− 3γ

≤ 2µ.

ut
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Lemma 7. Let ui , vi ∈ <ki for i = 1, ...,n and defineu ≡ (u1, ...,un) and v ≡
(v1, ..., vn). Then,

‖u ◦ v‖ ≤ √2‖u‖‖v‖.
Proof. See Lemma 2.12 of [30].

ut
Lemma 8. Assume that(x, s, y) ∈ N2(γ) for some scalarγ ∈ (0,1/3) and let
(1x,1s,1y) be the unique solution of (6) for someσ ∈ <. Then, for anyα ∈ [0,1],
there holds
√

2
∥∥ T−1

x x(α) ◦ Tx s(α)− µ(α)e∥∥ ≤ [
(1− α)γ +√2α γ 2+ α222 ]µ, (31)

whereµ ≡ µ(x, s).
Proof. Sinced∞(x, s) ≤ d2(x, s), the assumption of Lemma 3 is satisfied withν = µ.
Using (20) withν = µ, (27), (29) and Lemma 7, we obtain forα ∈ [0,1] that

√
2
∥∥ T−1

x x(α) ◦ Tx s(α)− µ(α)e∥∥
≤ (1− α)√2‖wxs− µe‖ + α√2‖Rxs−Wxs‖ ‖1̃x‖ + α2

√
2‖1̃x ◦ 1̃s‖

≤ (1− α)γ µ+√2α γ 2µ+ 2α2‖1̃x‖ ‖1̃s‖
≤ [ (1− α) γ +√2α γ 2+ α222 ]µ.

ut
The next lemma allows us to show that the left hand side of (31) majorizes

d2(x(α), s(α)) (see the proof of Theorem 2).

Lemma 9. Suppose that(x, s) ∈ K0 ×K0 and letµ ≡ µ(x, s). Then,

d2(x, s) ≡
√

2‖wxs− µe‖ = min
G∈G
√

2‖xG ◦ sG − µe‖, (32)

wherexG ≡ GT x andsG ≡ G−1s for everyG ∈ G.

Proof. The lemma immediately follows from Lemma 2.10 of [30]. Here we give an
alternative proof by using Lemma 1(c). Indeed, first note that ifG = T−1

x thend2(x, s) =√
2‖xG ◦ sG−µe‖, from which it follows that the above minimum is less than or equal

to d2(x, s). Now letG ∈ G be given and let(̃x, s̃) ≡ (xG, sG). Lemma 1(c) implies that
X̃2 � (T̃x)

2, whereX̃ ≡ mat(̃x). Hence,

‖X̃v‖2 = vT X̃2v ≥ vT(T̃x)
2v = ‖T̃x v‖2, ∀v ∈ <K .

This inequality withv = s̃− µX̃−1e together with Proposition 2(c) and Lemma 1(b)
implies that

‖xG ◦ sG − µe‖ = ‖X̃̃s− µ(̃x, s̃)e‖ ≥ ‖T̃x s̃− µ(̃x, s̃)e‖ = d2(̃x, s̃) = d2(x, s).

Since this inequality holds for everyG ∈ G, (32) follows.
ut
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The next lemma, which is the last result of this section, is used in Sect. 4 to establish
feasibility of the sequence of iterates.

Lemma 10. Let (x, s) ∈ K × K be given. Ifx ◦ s ∈ K0, then(x, s) ∈ K0 × K0. In
particular, if

√
2‖x◦s−νe‖ ≤ γν for someγ ∈ (0,1) andν > 0, then(x, s) ∈ K0×K0.

Proof. Let p≡ x ◦ s. Then, for everyi = 1, . . . ,n,

pi0 = xi0si0 + xT
i1si1, (33)

pi1 = xi0si1 + si0xi1. (34)

To show the first statement, assume thatp ∈ K0. Then,‖pi1‖ < pi0 for all i . This
implies thatxi0 > 0 since otherwise we would havexi = 0 due to the fact that
xi ∈ Ki , and hencepi0 = 0 due to (33), obtaining a contradiction. By (34), we have
si1 = (pi1 − si0xi1)/xi0, which combined with (33) yields

pi0 = xi0si0 + 1

xi0
xT

i1(pi1 − si0xi1) = si0

xi0

(
x2

i0 − ‖xi1‖2
)+ xT

i1 pi1

xi0

≤ si0

xi0

(
x2

i0 − ‖xi1‖2
)+ ‖xi1‖ ‖pi1‖

xi0
≤ si0

xi0

(
x2

i0 − ‖xi1‖2
)+ ‖pi1‖,

where the last inequality follows from the fact thatxi ∈ Ki . Since‖pi1‖ < pi0, we
conclude from the last relation thatxi0 > ‖xi1‖ for all i , that is,x ∈ K0. In a similar
way, one can show thats ∈ K0.

To show the second statement, assume that
√

2‖p− νe‖ ≤ γν for someγ ∈ (0,1)
andν > 0. Then, for everyi , we have

γν ≥ √2‖pi − νe‖ =
√

2
(
(pi0 − ν)2+ ‖pi1‖2

)1/2 ≥ |pi0− ν| + ‖pi1‖
≥ ν − pi0 + ‖pi1‖,

from which it follows thatpi0− ‖pi1‖ ≥ (1− γ)ν > 0. Hence,p ∈ K0.
ut

4. Algorithms and polynomial convergence

In this section, we establish polynomial iteration-complexitybounds for two primal-dual
feasible interior-point algorithms based on the Newton direction determined by (6). Both
algorithms are extensions of well-known algorithms for linear programming: the first
one is a short-step path-following method which generalizes the algorithms presented
in Kojima, Mizuno and Yoshise [12] and Monteiro and Adler [19,20]; the second one is
a predictor-corrector algorithm similar to the predictor-corrector LP method of Mizuno,
Todd and Ye [16].
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4.1. Short-step path following algorithm

In this subsection, we analyze the polynomial convergence of a short-step path following
algorithm based on the search direction (6).

We start by stating the algorithm that will be considered in this subsection.

Algorithm-I:
Choose constantsγ ∈ (0,1/3) andδ ∈ (0,1) satisfying condition (36) below
and letσ ≡ 1− δ/√2n. Let ε ∈ (0,1) and(x0, s0, y0) ∈ N2(γ), and set
µ0 ≡ µ(x0, s0).
Repeat untilµk ≤ εµ0, do

(1) Compute the solution(1xk,1sk,1yk) of system (6) withµ = µk

and(x, s, y) = (xk, sk, yk);
(2) Set(xk+1, sk+1, yk+1) ≡ (xk, sk, yk)+ (1xk,1sk,1yk);
(3) Setµk+1 ≡ µ(xk+1, sk+1) and incrementk by 1.

End

Setting0 = γ in the following result, we obtain the analysis of one iteration of
Algorithm-I for suitable choices of the constantsγ andδ.

Theorem 2. Letγ ∈ (0,1/3) andδ ∈ (0,1) be constants satisfying

0 ≡ 4(γ 2+ δ2)

( 1− 3γ )2

(
1− δ√

2n

)−1

< 1. (35)

Suppose that(x, s, y) ∈ N2(γ) and let(1x,1s,1y) denote the solution of system (6)
with σ ≡ 1− δ/√2n. Then,

(a) (̂x, ŝ, ŷ) ≡ (x+1x, s+1s, y+1y) ∈ N2(0);
(b) µ(̂x, ŝ) = (1− δ/√2n

)
µ(x, s).

Proof. It follows from Lemma 8, the definition ofσ , the fact that2 ≥ √2γ and (35)
that for everyα ∈ [0,1],
√

2
∥∥ T−1

x x(α) ◦ Tx s(α)− µ(α)e∥∥ ≤ [ (1− α)γ + 2α22 ]µ
≤
{
(1− α)γ + α 8 [γ 2/2+ (1− σ)2n ]

( 1− 3γ )2

}
µ

=
{
(1− α)γ + α4 (γ 2+ δ2 )

( 1− 3γ )2

}
µ

=
{
(1− α)γ + α

(
1− δ√

2n

)
0

}
µ

= {(1− α) γ + α0 σ}µ,
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and hence, in view of (26),

√
2
∥∥T−1

x x(α) ◦ Txs(α) − µ(α)e∥∥ ≤ max{γ, 0}(1− α+ ασ)µ
= max{γ, 0}µ(α) < µ(α).

Using the last relation together with Lemma 10, we easily see thatT−1
x x(α) ∈ K0

and Txs(α) ∈ K0 for everyα ∈ [0,1]. In view of Proposition 1, this implies that
(x(α), s(α)) ∈ K0 × K0 for everyα ∈ [0,1]. Moreover, using the fact thatAx = b,
A1x = 0, AT y + s = c and AT1y + 1s = 0, we easily seeAx(α) = b and
AT y(α)+ s(α) = c. We have thus shown that(x(α), s(α), y(α)) ∈ F0(P)× F0(D), for
everyα ∈ [0,1]. Using Lemma 9 with̃x = T−1

x x(α) and s̃ = Txs(α), we conclude
that

d2(x(α), s(α)) ≤
√

2
∥∥ T−1

x x(α) ◦ Tx s(α)− µ(α)e∥∥ ≤ 0µ(α),

for anyα ∈ [0,1]. Hence,(̂x, ŝ, ŷ) = (x(1), s(1), y(1)) ∈ N2(0). Statement (b) is due
to (26).

ut

As an immediate consequence of Theorem 2, we have the following convergence
result for Algorithm-I.

Corollary 1. Assume thatγ ∈ (0,1/3) andδ ∈ (0,1) are constants satisfying

4 (γ 2+ δ2 )

( 1− 3γ )2
≤
(

1− δ√
2n

)
γ. (36)

Then, every iterate(xk, sk, yk) generated by Algorithm-I is in the neighborhoodN2(γ)

and satisfiesxkT
sk =

(
1− δ/√2n

)k
x0T

s0. Moreover, Algorithm-I terminates in at

mostO(
√

n logε−1) iterations.

Examples of constantsγ andδ satisfying the conditions of Corollary 1 areγ = δ =
1/50.

4.2. Predictor-corrector algorithm

In this subsection, we give the polynomial convergence analysis of a predictor-corrector
algorithm which is a direct extension of the LP predictor-corrector algorithm studied by
Mizuno, Todd and Ye [16].

The algorithm considered in this subsection is as follows.
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Algorithm-II:
Choose a constant 0< τ ≤ 1/30.
Let ε ∈ (0,1) and(x0, s0, y0) ∈ N2(τ), and setµ0 ≡ µ(x0, s0).
Repeat untilµk ≤ εµ0, do

(1) Compute the solution(1xk,1sk,1yk) of system (6) with
σ = 0 and(x, s, y) = (xk, sk, yk);

(2) Letαk ≡ max{α ∈ [0,1] : (xk(α′), xk(α′), yk(α′)) ∈ N2(2τ),
∀α′ ∈ [0, α]}, where(xk(α), sk(α), yk(α)) ≡ (xk + α1xk,

sk + α1sk, yk + α1yk);
(3) Let (̂xk, ŝk, ŷk) ≡ (xk, sk, yk)+ αk(1xk,1sk,1yk);

(4) Compute the solution(1̂x
k
, 1̂s

k
, 1̂y

k
) of system (6) with

σ = 1 and(x, s, y) = (̂xk, ŝk, ŷk);

(5) Set(xk+1, sk+1, yk+1) ≡ (̂xk, ŝk, ŷk)+ (1̂x
k
, 1̂s

k
, 1̂y

k
);

(6) Setµk+1 ≡ µ(xk+1, sk+1) and incrementk by 1.
End

The following result provides the polynomial convergence analysis of the above
algorithm.

Theorem 3. Assume thatτ ∈ (0,1/30]. Then, Algorithm-II satisfies the following
statements:

a) for everyk ≥ 0, (xk, sk, yk) ∈ N2(τ) and (̂xk, ŝk, ŷk) ∈ N2(2τ);
b) for everyk ≥ 0, µ(xk+1, sk+1) = µ(̂xk, ŝk) = (1− αk)µ(xk, sk) and

αk = 1

O(
√

n)
.

c) the algorithm terminates in at mostO(
√

n logε−1) iterations.

Proof. Statement (c) and the well-definedness of Algorithm-II follow directly from (a)
and (b). In turn, these two statements follow by a simple induction argument and the
two lemmas below.

ut

The following lemma analyzes the predictor step of Algorithm-II, namely the step
described in items (1)–(4) of Algorithm-II.

Lemma 11. Suppose that(x, s, y) ∈ N2(τ) for someτ ∈ (0,1/6). Let (1x,1s,1y)
denote the solution of (6) withσ = 0. Let ᾱ denote the unique positive root of the
second-order polynomialp(α) ≡ 22α2 + (√2τ 2+ τ)α− τ where

2 ≡ 2(τ2/2+ n)1/2

1− 3τ
.
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Then, for anyα ∈ [0, ᾱ], we have:

(a) (x(α), s(α), y(α)) ∈ N2(2τ);
(b) µ(α) = (1− α)µ.

Moreover,ᾱ = 1/O(n1/2).

Proof. Using Lemma 8 withγ = τ andσ = 0, the fact thatp(α) ≤ 0 for α ∈ [0, ᾱ],
relation (26) withσ = 0 and the definition ofp(α), we obtain

√
2
∥∥ T−1

x x(α) ◦ Tx s(α)− µ(α)e∥∥ ≤ {(1− α)τ +√2α τ 2+ α222}µ
= 2τµ(α)+ p(α)µ ≤ 2τµ(α).

An argument similar to the one used in Theorem 2 together with the fact that 2τ < 1/3
can be used to show that (a) holds. Statement (b) follows from (26) withσ = 0. The
last assertion of the lemma is due to (26).

ut
The following lemma analyzes the corrector step of Algorithm-II, namely the step

described in items (5)–(7) of Algorithm-II.

Lemma 12. Suppose(̂x, ŝ, ŷ) is inN2(2τ) for someτ ∈ (0,1/30]. Let (1̂x, 1̂s, 1̂y)
denote the solution of (6) with(x, s, y) = (̂x, ŝ, ŷ) andσ = 1. Then,

(̂x, ŝ, ŷ)+ (1̂x, 1̂s, 1̂y) ∈ N2(τ),

µ(̂x+ 1̂x , ŝ+ 1̂s) = µ(̂x , ŝ).

Proof. The result follows immediately from Theorem 2 withδ = 0,(x, s, y) = (̂x, ŝ, ŷ),
γ = 2τ and0 = τ, and the fact that (35) holds when 0< τ ≤ 1/30.

ut

5. The MZ family of directions

In this section we introduce the MZ family of directions which is a natural extension of
the Monteiro and Zhang family of directions for SDP to the context of SOCP. As in the
context of SDP, this family arises by computing the AHO direction (6) with respect to
a scaled problem and mapping the direction back to the original space. Each direction
of the family is then associated with the scaling matrix chosen to construct the scaled
problem.

Given a matrixG ∈ G, consider the following change of variables

x̃ ≡ GT x, (̃s, ỹ) ≡ (G−1s, y). (37)

Letting

c̃= G−1c, Ã≡ AG−T , b̃≡ b,
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we easily see that problem (P) and (D) of Sect. 2 can be written in terms of these new
variables as

(P̃) min{c̃T x̃ : Ã̃x = b̃, x̃ ∈ K},
(D̃) max{̃bT ỹ : ÃT ỹ+ s̃= c̃, s̃ ∈ K}.

Due to Proposition 2 and the fact thatµ(x, s) = µ(̃x, s̃), we have

(̃x, s̃, ỹ) ∈ Ñ2(γ)⇐⇒ (x, s, y) ∈ N2(γ),

(̃x, s̃, ỹ) ∈ Ñ∞(γ)⇐⇒ (x, s, y) ∈ N∞(γ),
whereÑ2(γ)andÑ∞(γ)denote the 2-norm and∞-norm neighborhoodsassociated with
the pair of problems(̃P, D̃). Moreover, if(̃xν, s̃ν, ỹν) denote the point on the central path
with parameterν > 0 for the pair(̃P, D̃), then(̃xν, s̃ν, ỹν) = (GT xν,G−1sν, yν).

The matrix G ∈ G also determines a scaled Newton direction (with parameter
σ > 0) as follows. An interior feasible point(x, s, y) for (P,D) determines an interior
feasible point(̃x, s̃, ỹ) for (̃P, D̃) as in (37). At the scaled point(̃x, s̃, ỹ), the AHO
direction is computed and the resulting direction(1̃x, 1̃s, 1̃y) is mapped back into
the original space to yield the scaled AHO direction, or MZ direction with scalingG,
(1x,1s,1y) = (1xG,1sG,1yG) given by

1x = G−T1̃x, (1s,1y) = (G1̃s, 1̃y).

Hence,(1x,1s,1y) = (1xG,1sG,1yG) is a solution of

S̃GT1x+ X̃G−11s= σµe− X̃̃s, (39a)

AT1y+1s= c− s− AT y, (39b)

A1x = b− Ax, (39c)

whereX̃ ≡ mat(̃x) andS̃≡ mat(̃s).
The scaled AHO direction(1xG,1sG,1yG) at the point(x, s, y) depends onG,

and asG varies over the set of nonsingular matrices, we obtain a family of search
directions, which we refer to as the MZ-family. WhenG = I , G = Ts andG = T−1

x ,
one obtains the AHO direction, the HRVW/KSH/M direction and the dual counterpart
of the HRVW/KSH/M direction. The NT direction is also a member of the MZ family
and is equal to the direction(1xG,1sG,1yG) with G = Gxs, whereGxs is the unique
positive definite symmetric matrixG ∈ G satisfying Gx = G−1s, or equivalently
G2x = s.

The results obtained in Sects. 3 and 4 for the AHO direction can be extended to the
whole MZ-family due to the fact that any member of this family reduces to the AHO
direction in the scaled space and the fact that the duality gap and the centrality measures
remain invariant. In what follows, we summarize these results.

Corollary 2. Let G ∈ G and(x, s, y) ∈ K0×K0×<m be a point such that

max
i, j

∣∣ λ j
i (wxs)− ν

∣∣ ≤ γ ν
for some scalars0< γ < 1/3 andν > 0. Then, system (39) has exactly one solution.
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Consider the short-step path following algorithm and the Mizuno-Todd-Ye predictor-
corrector algorithm in which at each iteration an arbitrary direction from the MZ family
is computed, that is, at thek-th iteration, a matrixGk ∈ G is chosen and the direc-
tion (1xGk,1sGk,1yGk) is computed. Then, the results obtained in Corollary 1 and
Theorem 3 hold exactly as stated.

Appendix

Proposition 3. The auto-morphism group of the coneKi is equal to the setGi defined
in (7).

Proof. We first claim that the auto-morphism group of the setKi ∪ (−Ki ) is equal to{
λT̃i : λ > 0, T̃i ∈ <ki×ki , T̃T

i Jki T̃i = Jki

}
, (40)

Indeed, using the equivalencex ∈ Ki ∪ (−Ki )⇔ xT Jki x ≥ 0, it is easy to see that that
the set (40) is contained in the auto-morphism group ofKi ∪ (−Ki ). Conversely, assume
thatTi is in the auto-morphism group ofKi ∪ (−Ki ). Then, we havex ∈ Ki ∪ (−Ki )⇔
Ti x ∈ Ki ∪ (−Ki ), which in turn is equivalent toxT Jki x ≥ 0⇔ xT TT

i Jki Ti x ≥ 0, in
view of the above equivalence. Consider now the minimization problem min{xT Jki x :
xT TT

i Jki Ti x ≥ 0} and observe that its optimal value is zero. Moreover, any point in
∂Ki is an optimal solution of this problem. Hence, for any 06= x ∈ ∂Ki , there exists
λ(x) ∈ <ki+ such that

(Jki − λ(x)Bi )x = 0. (41)

whereBi ≡ TT
i Jki Ti . From this equation, we easily see thatλ(x) is a continuous function

of x ∈ (∂Ki )\{0} and thatλ(x) > 0 is an eigenvalue ofJki B−1
i for all x ∈ (∂Ki )\{0}.

SinceJki B−1
i has a finite number of eigenvalues andλ(x) is a continuous function over

the connected set(∂Ki )\{0}, there exists̄λ > 0 such thatλ(x) = λ̄ for all x ∈ (∂Ki )\{0}.
Hence, by (41), it follows that(Jki − λ̄Bi )x = 0 for all x ∈ (∂Ki )\{0}. Since the set
(∂Ki )\{0} is not contained in any manifold of dimension less thanki , a simple argument
reveals thatJki = λ̄Bi = λ̄ TT

i Jki Ti , and hence thatJki is in the set (40).
Now, assume thatTi is in the auto-morphism group ofKi . Then, it is easy to see that

Ti (intKi ) = intKi . Hence,(Ti )00 = (Ti ei )0 > 0 sinceei ∈ intKi . This fact together
with the above claim shows that the auto-morphism group ofKi is contained inGi .
Assume now thatTi ∈ Gi . Then, by the above claim,Ti is in the auto-morphism group
ofKi ∪ (−Ki ). Moreover, we have 0< (Ti )00 = (Ti ei )0, showing thatTi ei ∈ Ki . Using
the fact thatTi is invertible and a simple continuity argument, it is now easy to see that
Ti x ∈ Ki for all x ∈ Ki , or equivalentlyTi (Ki ) ⊂ Ki . This fact and the above claim
imply thatTi is in the auto-morphism group ofKi .

ut
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