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Abstract. In this paper we study primal-dual path-following algorithms for the second-order cone program-
ming (SOCP) based on a family of directions that is a natural extension of the Monteiro-Zhang (MZ) family
for semidefinite programming. We show that the polynomial iteration-complexity bounds of two well-known
algorithms for linear programming, namely the short-step path-following algorithm of Kojima et al. and
Monteiro and Adler, and the predictor-corrector algorithm of Mizuno et al., carry over to the context of SOCP,
that is they have a®@(,/n Iogs—l) iteration-complexity to reduce the duality gap by a factoe oivheren

is the number of second-order cones. Since the MZ-type family studied in this paper includes an analogue
of the Alizadeh, Haeberly and Overton pure Newton direction, we establish for the first time the polynomial
convergence of primal-dual algorithms for SOCP based on this search direction.

Key words. second-order cone programming — ice-cream cone — interior-point methods — polynomial com-
plexity — path-following methods — primal-dual methods — Newton method

1. Introduction

The second-order cone programming (SOCP) problem is to minimize or maximize
a linear function over the intersection of an affine space with the Cartesian product of
a finite number of second-order cones. Recently, this problem has received considerable
attention for its wide range of applications (see [10,14,31]) and for being “easily”
solvable via interior-point algorithms (see [23—26]). In this paper, we study primal-dual
path-following algorithms for the SOCP based on a family of search directions which
is a natural extension of the Monteiro-Zhang family of directions introduced in the
context of the semidefinite programming (SDP) (see [17], [32] and [22]). We establish
polynomial convergence of two path-following algorithms that are natural extensions of
standard linear programming (LP) algorithms, namely the short-step method of Kojima
etal. [12] and Monteiro and Adler[19, 20] and the predictor-corrector method of Mizuno
et al. [16].
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While primal-only interior-point algorithms for solving SOCP, and the import-
ant special case of quadratically constrained convex quadratic programming, were de-
veloped about eight years ago (see [9,15, 23, 24]), it was only recently that primal-dual
algorithms for SOCP have been developed. The first polynomial primal-dual path-
following algorithm for SOCP was proposed by Nesterov and Todd [25,26]. They
develop a general approach for solving the homogeneous and self-dual cone program-
ming which includes SOCP, LP and SDP as special cases. In their work, a direction
called the Nesterov-Todd (NT) direction is proposed and the short-step path-following
algorithm based on this direction is shown to h&g/n logs 1) iteration-complexity,
wheren is the number of second-order cones.

Adler and Alizadeh [1] study a unified primal-dual approach for SDP and SOCP,
and propose a direction for SOCP analogous to the Alizadeh-Haeberly-Overton (AHO)
directionintroduced in [2] for SDP. Recently, Alizadeh and Schmieta studied several the-
oretical and practical aspects of SOCP mainly from the viewpoint of nondegeneracy [3].

Faybusovich studies the homogeneous self-dual cone programming from the view-
point of Euclidean Jordan algebra [7], which provides another framework for handling
homogeneous self-dual cones [4-6]. He extends the AHO direction to homogeneous
self-dual cone programming, gives conditions for it to be well-defined, and studies some
nondegeneracy issues in the context of this problem.

In the recent papers [29] and [30], Tsuchiya extends standard path-following algo-
rithms for LP [11,12,19]and SDP [13,17,22,21]to SOCP. He introduces a primal-dual
product in the context of SOCP which plays exactly the same ro¥esasidS/2X S/2
do in the context of LP and SDP, respectively, and defines neighborhoods of the cen-
tral path in terms of the eigenvalue decomposition of this product. Path-following
algorithms using two major scaling invariant directions, namely the Helmberg-Rendl-
Vanderbei-Wolkowicz/Kojima-Shindoh-Hara/Monteiro (HRVW/KSH/M) [8,13,17] di-
rection and the NT direction, are analyzed in his works [29] and [30], where it is shown
that: (i) the short-step, semilong-step and long-step path-following algorithms using
the HRVW/KSH/M direction have(,/n loge~1), O(n loge~1) andO(n%? loge—1)
iteration-complexities, respectively; (ii) the short-step path-following algorithm using
the NT direction has a®(,/n logs~1) iteration-complexity, and the semilong-step and
long-step algorithms have bo@xn logs~1) iteration-complexity.

In this paper, we show that the short-step path-following and the Mizuno-Todd-Ye
predictor-corrector algorithms based on an extension of the Monteiro and Zhang fam-
ily of search directions have botb(,/n loge 1) iteration-complexity bound. Briefly
speaking, a direction of this family is equivalent to the AHO direction in a certain scaled
space determined by a linear transformation which leaves the cone invariant. Since the
central-path neighborhoods, and the distances used to define them, remain invariant
under these linear transformations, an iteration in the original space can be analyzed
from the viewpoint of the scaled space. A main advantage of this viewpoint is that the
analysis of an iteration along the AHO direction suffices to describe the behavior of an
iteration of the algorithm along any direction of the family. The relevance of the MZ-
family is that it contains the three major standard directions, namely the AHO direction,
the HRVW/KSH/M direction and the NT direction, and hence it provides a unifying
framework for the polynomial convergence analysis of path-following algorithms. Poly-
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nomiality of the short-step path-following algorithm for SDP based on the MZ-family
was first established by Monteiro [18].

A major difficulty in analyzing path-following algorithms using the AHO direction
is that it is necessary to estimate a first-order error term (i.e., depending linearly on the
step-size) that appears in the centrality measure for the new iterate. Careful analysis is
needed to show that this term can be bounded by a quantity that depends quadratically
on the opening of the cone and the deviation of the centrality parameter from one. By
choosing the opening of the cone small enough and the centrality parameter not too far
from one, it is possible to show that the error coming from this term is small enough to
ensure that the algorithm have @x,/n loge~1) iteration-complexity. The same kind
of difficulty occurs in the context of SDP (see [18]). However, the technique used to
bound the effect of the first order term in the context of SOCP is quite different from
the one in SDP, and is a major new development of this paper. As in the case of SDP,
the AHO direction is shown to be well-defined only for points close to the central path,
more specifically in theo-norm neighborhood with opening less that31

Finally, after the release of the first version of this paper, Schmieta and Alizadeh [27]
have independently shown that the results of this paper can be extended to most sym-
metric cones by using a completely different approach than ours.

This paper is organized as follows. In Sect. 2, we describe the SOCP problem,
define the central path and its neighborhoods, and introduce the Newton system that
determines the AHO search direction. In Sect. 3, we develop several technical results
that are used in the analysis of Sect. 4, where the short-step path-following algorithm
and the predictor-corrector algorithm using the AHO direction are described and their
polynomial convergence are established. In Sect. 5, we introduce the MZ family of
directions for SOCP and show that the convergence results obtained for the AHO
direction in Sect. 4 also holds for the MZ-family.

1.1. Notation and terminology

The following notation is used throughout the paper. The supersatgiotes transpose.
9RP denotes the-dimensional Euclidean space. The set ofpalt g matrices with real
entries is denoted by P*9. If P andQ are square symmetric matrices, we wite- Q,

or Q < P, to indicate thaP — Q is positive semidefinite. For a square mat@xvith all

real eigenvalues, we denote its smallest and largest eigenvaligsp®] andimax Q1,
respectively. Given a finite number of square matriQes. .. , Qn, we denote the block
diagonal matrix with these matrices as block diagonals by d@g ... , Qn), or by

diag (Q;j : i = 1,...,n). The Euclidean norm and its associated operator norm are
both denoted by - ||; hence,| Q|| = maxy=1 [|Qull for any Q € %P*P. We denote

the interior of a sef2 C RP by intQ.

2. The second-order cone program and preliminary discussion

This section describes the SOCP problem, the central path and the neighborhoods of the
central path that will be used in our presentation. It also introduces the Newton direction,
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referred to as the AHO direction, for the system which characterizes the central path in
terms of a certain Jordan algebra product between the primal variable and the dual slack
variable.

2.1. The second-order cone program

In this paper we consider the following second-order program

n n
(P mini > clx : Y Axi=b, xeki, i:l,...,n}, 1)
i=1 i=1
wherex; € %K, i = 1,...,n, are the variableq) € %™, A € "™k andg e KK,
i =1,...,n, are the data, and the s&t,i = 1,...,n, is the second-order cone of

dimensiork; defined as
Ki ={x = (Xio. Xi1) € R x N1 X0 — [Ixiall = 0}.

It is well-known that the cong; is self-dual, that isC; = K = (s < Rk - qTxi >0,
VX € Ki}. The dual of problem (1) is

O max{b'y: Aly+s=c.s5€ki,i=1....,n} 2)
Defining
KEkl+...+kn, K::K:]_X...XICn,

A= (A1 A ... An) e A™K c=(cs,---,cn) e NK,
X=(X1,..., %) € XK, s=(s1,...,s) e KX,

problems (P) and (D) can be simply written as
(P) min{cTx: Ax=b, xe K},
(D) max{b'y:ATy+s=c, seK}.
The set ofinterior feasible solutionsf (1) and (2) are:
FOP) = {x: Ax=bh, x € K9},
FOD)={(sy: Aly+s=c se kP,

respectively, wher&® denotes the interior of the coi@
Throughout this paper, we make the following assumptions:
Al) FO(P) x FO(D) # #;
A2) the rows of the matribdA = (A1 ... Ap) are linearly independent.
Under assumption Al, it is well-known that (P) and (D) have optimal solutions and

their optimal values coincide. Moreover, solving (P) and (D) is equivalent to finding
(X,8Y) € K x K x %" such that

(PD) x's=0, Ax=b, Aly+s=c.
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2.2. Euclidean Jordan algebra, central path and Newton direction

The primal-dual algorithms studied in this paper are based on the Euclidean Jordan
algebra associated with the second-order cone (see for example [4—7]). The Euclidean
Jordan algebra for the second-order cdes the algebra defined by the following
bilinear form fromgk x Rk to xRk

Xios = (XS, XioS1+SoxXi1), ¥xi,s 9N

The elemeng = (1,0, ..., 0) is the unit element of this algebra. The Jordan algebra
associated with the corié = IC1 x ... x K, is given by

XoS=(X{0Sl,...,Xn0S), VX, sefk,

with e = (eq, ... , &) being its unit element. From now on, the spate will always
be assumed to be endowed with the above Jordan algebra. Given an eteegitt,
we denote bynat(x) the matrix diag(Xy, ... , Xn) with

Xio X"
xi=<'° ) =1 n 3)

X1 Xiol
It is easy to verify that
X o S = mat(x)s = mat(s)x.

It is known thatmat(x) is a symmetric matrix with smallest and largest eigenvalues
given by

Amin(Mat(x)) = min{xjo — |Ixi1ll : 1 =1,...,n}, @)
Amax(Mat(x)) = max{Xjo + [Ixi1ll : 1 =1,...,n}.
Verifying this fact is an easy exercise of linear algebra, and a proof can be found in
Lemma 2.13 of [30]. Note thamat(x) is symmetric positive semidefinite (positive
definite) if and only ifx € K (x € K0).

The central path for (P) and (D) is defined as the set of solutirs y) € I x
K x R™M to the system (see for example [1, 5]):

Xxos=ve, Ax=b, Aly+s=c, (5)

for all v > 0. Under assumptions A1 and A2, it can be shown that: i) system (5)
has exactly one solutiogx, s, y) = (Xy, S, Yo) in K x K x %™, which in fact lies in
KO x KO x :™: i) (x,, s, ») depends continuously (and, analytically) on the parameter
v > 0; iii) any accumulation point of the patk,, s, y,), asv tends to zero, is a solution
of the optimality condition (PD).

The algorithms studied in Sects. 3 and 4 use as search direction the Newton di-
rection for system (5) for some appropriate valuevot 0. More specifically, the
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search direction, which depends on a given centrality parameteth, is a solution
(AX, As, Ay) € RK x K x %™ of the linear system of equations

SAX + XAs=oue— Xs (6a)
ATAy+ As=c—s— ATy, (6b)
AAX =b— Ax, (6¢)

where X = mat(x), S = mat(s), © = u(x, 5 = x's/n. Results about the well-
definedness of this direction, which we refer to as the AHO direction, will be given in
Sect. 3where itis shown theAx, As, Ay) exists and is unique for pointg, s, y) lying
close to the central path. Note that (6) is exactly the Newton system at thepa@ny)

with respect to (5) when = op.

2.3. Scaling, eigenvalues and the neighborhoods of the central path

We nextintroduce a group of scaling automorphisms that maps th&conw itself and
define the scaling-invariant neighborhoods of the central path. Consider the following
group of matrices

Gi={iTi:a>0 T enk TT3T =, Too>0} @)

J = (é _0|> e gkixki,

Itis well-known thaiG; is exactly the auto-morphism group of the céfhienamely the set

of all nonsingular matrice$; such thatC; = T; (), whereT; (i) = {TiX; : X € Ki}.

(Since we have not been able to find a reference for this fact, for the sake of completeness,
we include its proof in the appendix.) Let

G={T=diag(Ty,...,Tp) : TTegG,i=1...,n}L

where

Itis easy to see th&l is a subgroup of the auto-morphism group of the ciine
The following proposition gives an explicit formula for the unique symmetric posi-
tive definite matrix inG which carriese to x.

Proposition 1. (Proposition 2.1 of [30]) For any € K°, there exists a unique sym-

metric matrix inG which mapse to x given byTy = diag (Tx,, ... , Tx,) Where, for all
i=1,...,n,
Xio XiTl
T = Xi1X-T s 8)
Xii fl + i1
" IBX ﬂXi =+ Xio
and

Bx, = v Xi20 - ||Xil||2~ 9)

Moreover,Ty is positive definite.
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We define the set ofrReigenvalue$ Aij :i=1,...,n, j=0,1}associated with
an element = (v1, ..., vn) € RK x ... x 93k of the Cartesian algebra as

20 =20 = vig — luirll, A = Atw) = vio + Jviall,

fori =1,...,n. Clearly,v € K if and only if A’ > O for alli, andv € KO if and only
if A? > 0. See Sect. 2.4 of [30] for a motivation and a more detailed explanation of the
notion of eigenvalues in the context of SOCP.

We are now ready to introduce the neighborhoods of the central path. For a pair
(x,9) € K9 x K9, define the distances

da(X, 5) = J Z ()Lij (wxs) — M)z = V2 |wxs — pel.

i=1...n
j=0,1

doo (X, S)

max [3f (wxs) — | = max [lwio+ fwirll = wl, lwio — lwiall — pl],
=64 =he

wherep = u(x, s) and
Wxs = (wl’ ey wn) = TXS- (10)

The neighborhoods of the central path with opening (0, 1) determined by the above
distances are:

No(y) = | (x,8.y) € FO(P) x FO(D) : da(x,9) < yu(x,9) },
Noo) = {(x.5.y) € F(P) x FO(D) : duo(X.9) < yu(x.9) }.

It is easy to show thal,(x, s) < da(x, ) for every(x, s) € K% x K9, and hence that
Na(y) C Noo ().

In the above definitions, the produeks = Txs arises in exactly the same way as
the quantityX1/2SX/2 does in the context of SDP, nameXt/2SXY/? is the scaled
dual variable when the primal variabl is scaled to the identity matrix, which
plays the role of the identity in the associated Euclidean Jordan Algebra. Likewise,
wys IS the scaled dual variable whenis scaled toe. Then, it is intuitive that the
quantity || X2/2SX/2 — ;11| should be replaced by2 |l wxs — re|| when the distance
of a point to the central path is being defined in in the context of SOCP. In fact, in
terms of eigenvalues, the definition of the above distances is completely identical in
both contexts.

The following invariance property of the eigenvaluesi@f has been established in
Proposition 2.4 of [30].

Proposition 2. Suppose thatx, s) € K% x K% andG € G. Let(X,3) = (G'x, G 19),
w = wys andw = wxz. Then:

a) wio = wip and||wi1|| = ||lwi1| foreveryi =1,...,n;

b) Aij(z";‘)) = Aij(w) foreveryi=1,...,nandj =0,1;

C) da2(X,S) = da(x, 5) anddso (X, S) = doo (X, S).
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Remark.As it is known from Faraut and Korayi [7], every homogeneous and self-dual
cone is in one-to-one correspondence with an Euclidean Jordan algebra. Since this
Jordan algebra plays an important role in the generalization of primal-dual algorithms
from LP and/or SDP to SOCP, it may be worthwhile to mention the correspondence
of the concepts used in this paper with the ones used in a more general treatment of
Euclidean Jordan algebra such as the one of [7]. Indeed, the quamt#tés) and Ty
correspond to the termis(x) and P(x1/?) used in [7], respectively, whepe"/? is the
unique element whose square Jordan produsgt idere,L(x) is the linear operator
defined ad (x)s = X oS, wherex o sdenotes the product of the Jordan algebra,R(xql

is the quadratic representation operator associatedwitising this correspondence, it

is possible to extend some of the concepts and results introduced here to any Euclidean
Jordan algebra. We refer the reader to [6] and [28] for some preliminary results along
this direction.

3. Technical results

In this section, we develop the technical results needed to establish the polynomial
convergence of the algorithms presented in Sect. 4. Lemmas 2 and 3 are key results
towards establishing the well-definedness of the AHO direction and obtaining a bound
on the centrality measure of the next iterate in terms of that for the current iterate.
In Lemma 4 and Theorem 1, we show that the AHO direction is well-defined in any
neighborhoodV,, (y) with y € (0, 1/3). Lemmas 8 and 9 are the main results used in
the analysis of the algorithms presented in Sect. 4 and allow us to show that all iterates
remain inside some 2-norm neighborhood and eventually approach the primal-dual
optimal set.

Given(x, s) € K° x K9, let

X = mat(x),

S= mat(s),
Rys = TxX~1ST;, (11)
Wys = mat(wys). (12)

Lemma 1. For anyx e K2, the matricesX and Ty satisfy:
a) X —Ty=Uyx=diag(Uy :i =1,...,n), where

U, — 0 0
L0 (xio — Bx)Px
and Py, is the orthogonal projection matrix onto the subspace orthogonai tp
namely
XX
lIxial12”

Py, (13)

b) kXt = XMy = diag (I — x3'Ux : i = 1,...,n); as a consequence,
T X le=¢g

c) X andTyx commute anK > Ty.
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Proof. Thei-th diagonal block ofX — Ty is the matrixX; — Ty, whereX; and Ty,

are given by (3) and (8), respectively. A simple algebraic manipulation involving (3),
(8) and (9) reveals thaX; — Ty, = Uy;, and hence that a) holds. It is easy to see that
XUy, = Uy Xi = xioUx,, and henceX; *Uy, = x;5'Uy;. Using this and a), we obtain

XM= X"UX-Up = | =Xy = diag(I = X; Uy :i =1,....n)
=diag (I — x;g'Ux :i =1,...,n),

that is b) holds. This implies tha¢ 1Ty is a symmetric matrix, or equivalently tht !
andTy commute. HenceX and Ty commute. The other claim in ¢) thxt > Ty follows
immediately from a) sincéy > O.

O
The next two lemmas play a fundamental role in our analysis.
Lemma 2. We haveRys =diag (R, :i =1,...,n), where
T
wio w;
R = ! ~|1 (14)
wiiz R
with (wip, wi1) = Ty, € % x R~ and
- 1 w'1X-T w Xi1
RiE—[wilxiTl-i‘ﬁ)z(iSO'] = — 4 fwio— 22 1. (15)
Xio Xio Xio

Proof. By (11) and Lemma 1(b), we have
R=Ty X 'STyq = (e X )SXi (XM Tx)
= (I = %g™Ux ) S Xi (I = %6'Ux) (16)

whereX; andS are the -th diagonal blocks oKX and S respectively. Now, using (13)
and the definition oK; andS, we easily see that

1 1 0 ' T
I _ _UXi _ ’ SXI _ p|0 pll i (17)
Xi0 0 I —1Py pir  Z
where
pi=Xios = XS, rizl—%, ZiEXiOSO|+31XiT1- (18)
|
Substituting the identities in (17) into (16), we obtain
R — Pio (pi1 — Py pin)"
pi1 — 7i Py Pi1 Vi ’
where

Vi = (l — T Pxi)Zi(l — T Pxi)~ (19)
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Hence relation (14) follows once we show thab = pio, wi1 = pi1 — 7 Px pi1 and
R = Vi. Indeed, using (17), (18) and Lemma 1(b), we obtain

wi = Tys = (e X[ )Xis = (I =X Ux ) pi = <<| —r?iFo’xinl)’

from which it follows thatwio = pio andwi1 = pi1 — 7 Px, pi1. We will now show that
R = Vi. By (9) and (18), we have

i1 — SoXi1
Zi = xioSol + 81X, = XioSol + Pz~ SoXix 1

Xio '
2 T
S SollXi1 1%
= _O(Xizo — ||Xi1||2)| + Mpxi + PitXiy
Xio Xio Xi0
2 T
Xi 1X;
_ Eﬂil n SollXid|| Py + PizXis
Xio Xio Xio

Substituting this relation into (19) and using the definitiorRpfgiven in (15) and the
identitieswi1 = (I — i Py) pi1, PxXi1 =0 andei = Py, we obtain

.
S0 o 2 solxl? 2 Wwi1Xjq
Vi= 2282 (1 — P )2+ 22 (1 — P )2 Py
! XiOﬂX'( aPx)"+ Xio (1= mB) R + Xio

2 -
Xi Wil X

zﬂﬂi(l _Zripxi +ri2PXi)+M(PXi _2TI PXi +T|2PX|)+&
Xio Xio Xio

=R+ j—‘; (B2 + Ixi2l)(x — 25) + Ixial?] Py = R,

where the last equality follows from the fact that the coefficienPgfon its left hand
side is zero, a fact that can be easily verified by using the definitiofig @hdz; in (9)
and (18). We have thus shown that (14) holds.

It remains to show the identity in (15). A simple calculation using (9) and the fact that
wio = Pio revealthaps so = wioxio— Py Xi1. Using the identitiessi; = piz—1i Py, pi1
and Py xi1 = 0, we easily see that]; i1 = p;xi1. Hence 82 so = wioXio — w;]Xi1,
from which (15) immediately follows.

i
Lemma 3. Let(x, s, y) € K% x K9 x 5™ be a triple such that
max |/ (wes) — v| <yv
for some scalary > 0O andv > 0. Then,
[Rxs — Wasll < 2y v, (20)
[Wxs = v I < yv. (21)

As a consequence,

IRxs — vl < 3yw.
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Proof. We first show that (20) holds. Léiig, wi1) = Tx S, and letW; be thei-th block
of Wys. By Lemma 2 and the definition afs, we have

[Rxs = Wisll =  max [|[R —Wi[| = max R — wiolll.
i=1,....,n i=1,....,n

On the other hand, using (15) we obtain foriatat

2 Jwill IXill

< 2||wi1l
Xio

IR — wiol || = H ;10 [wilxiTl — (wiTlxil)|] H <

= (M (wxd) = W(wxe)) = [A(wxe) = v| + 20 (wxs) —v| < 2pv.
Inequality (20) now follows from the above two relations. Inequality (21) follows
from (4).
]

In the following two results, we establish the well-definedness of the AHO direction
for points lying in any neighborhoatis, (y) with v € (0, 1/3).

Lemma 4. Let(x, s, y) € K% x K0 x 5™ be a triple such that
|Rxs — vl < v, (22)

for some scalars € (0,1) andv > 0. Assume thatu, v) € RK x RK andh € %K
satisfy

Su+Xv=h, u'v>0, (23)

and definel, = || T, tu|| ands, = || Txv||. Then,

[ Texh] 2| TxX"*h|
8 —_, < — 24
u= 1-1v v 1-1 (24)
Proof. It is easy to see that (22) implies that
d"Rsd = (L—pv|d|?. (25)

Multiplying the first relation in (23) on the left by X1 and using the second relation
in (23), we obtain

u™Xtsu < u"™XtSu+uTv = u"Xth.
This relation, (11) and (25) witd = T, 1u imply that
A=pvsf =@ -ov |THu]® < () Re(Ti M)
=u' X 1su<u"™x?th = (Tx_lu)T(TXX‘lh)
< [Tt [TX~*h| = 8u [TX " h].
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from which the first inequality in (24) follows. We now prove the second inequality
of (24). Multiplying the first relation in (23) on the left byxX~1 and using the
definition of Rys, we obtain

ResTy tu + Tyw = Tk X th.

This relation together with (22) and the first inequality of (24) implies that

8 = ITwvll = [ TuX7th = ResT Mu| < [ TeX7th| + || ResTy tul|
1 1 | TxX""h|
= HTXX h” + [Rxsll du = ”TXX hH +A+)v—"——,
11—y

from which the second inequality of (24) follows.
]

As a consequence of the above lemma, we obtain the following result about the
well-definedness of the AHO direction.

Theorem 1. Let(x, s, y) € K% x K% x %™ be a point such that
max |Aij(wxs) —v| <yv
i ]

for some scalary € (0, 1/3) andv > 0. Then, system (6) has exactly one solution. In
particular, the AHO direction is well-defined at every poirts, y) € K9 x K% x ®|™
such thatd. (X, S) < u(x, s)/3.

Proof. To show that (6) has a unique solution, let v, q) € RK x RK x KM be
a solution of the homogeneous system associated with (6). BuenXv =0, Au=10
andATq + v = 0. The last two relations imply that" v = 0. By Lemma 3, (22) holds
with ¢ = 3y < 1. Using Lemma 4 witth = 0, we conclude thatt = v = 0, and
hence thaiATq = 0. Since the rows oA are linearly independent, we hage= 0. We
have thus shown that, v, q) = (0, 0, 0). This implies that system (6) has a unique
solution.

O

Let X() = X + aAX, S(@) = S+ aAS, y(@) = Yy + aAy, and letu(e) =
x() Ts(a)/n. Inthe next four lemmas we develop a bound on the quagBty T, 1 x(a)o
TxS(a) — n(x)e|| which, as we will see in Lemma 9, majorizes the centrality measure

d2(X(@), s(a)).

Lemma 5. Let(x, s, y) € FO(P) x FO(D) and let(Ax, As, Ay) be a solution of (6) for
somes € N. Then, for everw € N, we have:

w() = (1—a+oa)pu, (26)
T, Ix(@) o Ty S(@) — p(@)e = (1 — @) (wxs — 1€) + a(Wys — Reg) AX
+a?AXo As, (27)

whereu = u(x, s) and

Ax = T7IAX,  As = TyAs. (28)
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Proof. Using the assumptionthét, s, y) € FO(P) x FO(D) and relations (6b) and (6c),
we easily see thakx" As = 0. Multiplying (6a) on the left bye™, we obtain

sTAX+xTAs=onu —x's= —(1—o)nu.
Using these two last relations, we obtain
X(@)Ts(@) = (X + aAX) T (s+ aAS) = X' s+ a(sT Ax + X" As) = nu[l — a(1 — o)].
Dividing both sides of this relation hy, we obtain (26). Multiplying (6a) on the left by
T«X~1 and using (10), (11), (28) and Lemma 1(b), we obtain
As = TyAs = TyX L (oue— Xs— SAX) = opue — wys — RysAX.
The last identity, relations (10), (12) and (28) and the factthat = mat(u) v for all
u, v e RK imply that
T X(@) o Ty s(@) = T (X + @AX) o Ty (S+ aA9)
= (e+ a&;() o (wxs+ OlKS)
= Wxs+ « (wxso &3(+ KS) +a2&/Xo KS
= wxs+ a [O’/Le— wys + (Wxs — Rxs) &3(] + a? AX o As.
Combining this identity with (26), we obtain (27).
|

Lemma 6. Assume thaix,s,y) € N2(y) for some scalary € (0,1/3) and let
(Ax, As, Ay) be the unique solution of (6) for sonee € . Then, the directions
Ax and As defined in (28) satisfy:
—~ ® _
[AX| = > [AS]| < Ou, (29)

whereu = u(x, s) and
2 [ v2/24+ (1— (7)2n]1/2

1-—3y '
Proof. Using the fact thatv] e = s" Tye = s"x = nu and||wys — pel| < yu/v/2, we
obtain

O =

lwxs — ol = lwxs — 1€l + e — oue|® + 2(1 — o) (wys — ne)' e
2
< [% +(1- o)zn} 1. (30)

Sinceds (X, 5) < da(X, ) < yu, it follows from Lemma 3 withv = p that (22) holds
with ¢ = 3y < 1 andv = u. Hence, it follows from (10), (30), Lemma 1(b) and
Lemma 4 withv = u, (U, v) = (AX, AS), h = oue— Xsandr = 3y that

~ TeXt — X9 pn? - -1

IAX] < [T X" one— X9 [ n™ _ |lwxs — ouell .8
1-3y 1-3y 2

_ 2 [T X Y(one— Xs 2 —ope

I1AS| < H X (o )H _ lwxs — opell < Opu.
1-3y 1-3y
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Lemma 7. Let ui,vi € %K fori = 1,....,n and defineu = (uy, ..., up) andv =
(v1, ..., vn). Then,

luo vl <~2ullv].

Proof. See Lemma 2.12 of [30].
]

Lemma 8. Assume thaix,s,y) € ANa(y) for some scalary € (0,1/3) and let
(AX, As, Ay) be the unique solution of (6) for somee ). Then, for anyx € [0, 1],
there holds

V2| T%(@) o Txs(@) — p@e| < [A—a)y +vV2ay© +a?0%|u, (31)
whereu = (X, ).

Proof. Sinced (X, ) < da2(X, ), the assumption of Lemma 3 is satisfied with= 1.
Using (20) withv = u, (27), (29) and Lemma 7, we obtain fere [0, 1] that

V2| T tx(@) o Tes(a) — pl@el|
< (1 — a)v2 |lwys — pell + av/2||Res — Ws|| | AX]| + V2 || Ax o AS||
<(@—ayp+v2ayOu+20?|AX|| ||As|
<[@d-w)y+v2ay0+a?60?] L

O

The next lemma allows us to show that the left hand side of (31) majorizes
d2(X(@), s()) (see the proof of Theorem 2).

Lemma 9. Suppose thatx, s) € K9 x K% and let = u(x, 9). Then,
d2(x. 9) = V2 [lwxs — pel| = min V2|xG o sg — el (32)

wherexg = G"x andsg = G~ 1sfor everyG e G.

Proof. The lemma immediately follows from Lemma 2.10 of [30]. Here we give an
alternative proof by using Lemma 1(c). Indeed, first note th@at# T, *thend,(x, s) =
V2 |IxG o sg — €|, from which it follows that the above minimum is less than or equal
to da2(x, s). Now letG € G be given and letX,S) = (XG, sg). Lemma 1(c) implies that
X2 = (Tx)?, whereX = mat(X). Hence,
1Xv[2 = vT X%0 > 0" (Tp)%v = | Txv||2 Vo e %K.

This inequality withv =3 — uXle together with Proposition 2(c) and Lemma 1(b)
implies that

IXG 0 S — pell = X3 — u(X, el = TS — n(X, el = da(X.3) = da(x, 9).

Since this inequality holds for evey € G, (32) follows.
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The next lemma, which is the last result of this section, is used in Sect. 4 to establish
feasibility of the sequence of iterates.

Lemma 10. Let (x,5) € K x K be given. Ifxos € K°, then(x,s) € K° x K°. In
particular, if +/2 || xos—ve|| < yvforsomey e (0, 1) andv > 0, then(x, s) € K% x K°.

Proof. Let p=Xxos. Then, forevery =1,... ,n,
Pio = XioSo + X\ S1, (33)
Pi1 = Xi0S1 + SoXi1. (34)

To show the first statement, assume tpat X°. Then, | pi1ll < pio for all i. This
implies thatxjp > O since otherwise we would have = 0 due to the fact that
Xi € Ki, and hencepjo = 0 due to (33), obtaining a contradiction. By (34), we have
S1 = (Pi1 — SoXi1)/Xio, Wwhich combined with (33) yields

1+ So .2 2y, XiPi1
i0 = Xi — X (piL — SoXi1) = — (X5 — IIXi 2=
Pio ioSo + . i1(Pi1 — SoXi1) XiO( io — IIXiall )+ X0
S0, 2 2 [IXi1l] ||p|1|| S0, 2 2
< (x4 — [Ixi LAERIRIL R Y2 _ lIx: "
< Xio( 0 — Ixiell) + X0 < Xio( 0 — I1xi1ll9) + [l piell

where the last inequality follows from the fact thate ;. Since| pi1ll < pio, We
conclude from the last relation thag > |xi1|| for all i, that is,x € K. In a similar
way, one can show thate K°.

To show the second statement, assumef&ifp — ve|| < yv for somey € (0, 1)
andv > 0. Then, for every, we have

w = V2] pi — vell = v2((pio — )2+ IpielA) Y% = 1pio — vl + Il pial
> v — pio+ |l pisll,

from which it follows thatpio — || pi1ll > (1 — »)v > 0. Hencep € KC.

4. Algorithms and polynomial convergence

In this section, we establish polynomialiteration-complexity bounds for two primal-dual
feasible interior-point algorithms based on the Newton direction determined by (6). Both
algorithms are extensions of well-known algorithms for linear programming: the first
one is a short-step path-following method which generalizes the algorithms presented
in Kojima, Mizuno and Yoshise [12] and Monteiro and Adler [19, 20]; the second one is
a predictor-corrector algorithm similar to the predictor-corrector LP method of Mizuno,
Todd and Ye [16].
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4.1. Short-step path following algorithm

In this subsection, we analyze the polynomial convergence of a short-step path following
algorithm based on the search direction (6).
We start by stating the algorithm that will be considered in this subsection.

Algorithm-I:
Choose constants € (0, 1/3) ands € (0, 1) satisfying condition (36) below
and leto = 1 —§/+/2n. Lete € (0, 1) and(x°, %, y°) € Na(y), and set
po = u(x0,s0).
Repeat until uk < euo, do
(1) Compute the solutiopAxX, As¥, AyK) of system (6) withu = pk
and(x, s, y) = (x, €, y9;
(2) Set(xkt1 gkt yktly = (xk K yK) 4 (AxK ASK, AyK):
(3) Setuky1 = u(xkt1, 81y and incremenk by 1.
End

Settingl’ = y in the following result, we obtain the analysis of one iteration of
Algorithm-I for suitable choices of the constaptands.

Theorem 2. Lety € (0,1/3) and$ € (0, 1) be constants satisfying

4(y2 + §2) ( s )—1
r 1— 1. 35
12" m) (35)

Suppose that, s, y) € Ma(y) and let(Ax, As, Ay) denote the solution of system (6)
witho = 1 —§/+/2n. Then,

S PN

@) (X,5,9Y) = (X+ AX, s+ As, Y+ Ay) € No(D);
(b) k(X3 = (1—8/v/2N)u(x. 9.

Proof. It follows from Lemma 8, the definition of, the fact tha® > /2y and (35)
that for everyx € [0, 1],

NG I T () o Ty s(e) — el <[1L-ay +2a®2]u
8[y%/2+ (1—0)°n]
(1-3y)? }
4<y2+52>}
(1-3y)2

8
=7(1- 1-— T
a-ay+a(i-—=)rla

={1-ao)y+alo}pu,

<{(l—-w)y+a«a

={l-o)y+a«
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and hence, in view of (26),

V2| T (@) o Tys(er) — pl@e]| < max(y, TH1— o + ao)u
= maxy, I'u(a) < pn(a).

Using the last relation together with Lemma 10, we easily see Tiak(a) € K°
and Tys(e) € KO for everya € [0, 1]. In view of Proposition 1, this implies that
(X(a), S(@)) € K% x KO for everya e [0, 1]. Moreover, using the fact thakx = b,
AAX = 0, ATy+s = cand ATAy + As = 0, we easily seeAx(e) = b and
ATy(e) + S(e) = ¢. We have thus shown thét(a), S(@), y(@)) € FO(P) x FO(D), for
everya € [0, 1]. Using Lemma 9 withX = Tx‘lx(a) ands = TxsS(«), we conclude
that

do(X(@), S(@)) < V2| T (@) o Tys(@) — ul@e| < Tu(w,

for anya € [0, 1]. Hence (X,S,Y) = (x(1), s(1), y(1)) € N2(I'). Statement (b) is due
to (26).
O

As an immediate consequence of Theorem 2, we have the following convergence
result for Algorithm-I.

Corollary 1. Assume thay € (0, 1/3) andé € (0, 1) are constants satisfying

4y +62) 8
(1-3y)% (1_E>y‘ (26)

Then, every iteratexk, s¢, y¥) generated by Algorithm-I is in the neighborhat@(y)
k
and satisfies' & = (1— 8/\/2n) x0T, Moreover, Algorithm-I terminates in at

mostO(/n loge~1) iterations.

Examples of constanisands satisfying the conditions of Corollary 1 aye= § =
1/50.

4.2. Predictor-corrector algorithm

In this subsection, we give the polynomial convergence analysis of a predictor-corrector
algorithm which is a direct extension of the LP predictor-corrector algorithm studied by
Mizuno, Todd and Ye [16].

The algorithm considered in this subsection is as follows.
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Algorithm-I1:
Choose a constant@ ¢ < 1/30.
Lete € (0, 1) and(x?, 2, y0) € Na(7), and sefug = u(x0, 0).
Repeat until uk < o, do
(1) Compute the solutiopax¥, As, Ay¥) of system (6) with
o =0and(x,s,y) = (x¥ s y5);
(2) Letax = maxXa € [0, 1] : (xXX(@), XK', yK(@')) € Na(20),
Vo' € [0, a]}, where(xK(a), s%(), Y¥(a)) = (XK + a AxXK,
K+ aASK, YK+ aAYK);
(3) Let (R, 3, 7 = (XK, 8, yK) 4+ an(AXK, AsK, AY¥);
(4) Compute the solutiofAx®, AsS, Ay") of system (6) with
o =1and(x,s y) = X3 J9;
(5) Set(xkt1, et ki) = gk §K) 4 (AXS, ASS, AY);
(6) Setuky1 = u(xkt1, 81y and incremenk by 1.
End

The following result provides the polynomial convergence analysis of the above
algorithm.

Theorem 3. Assume that < (0, 1/30]. Then, Algorithm-II satisfies the following
statements:

a) foreveryk > 0, (XK, K, y&) € Ma(1) and (XX, 3¢, T%) € No(27);
b) for everyk > 0, u(xKt1, st1y = (XK, 8¢ = (1 — ) (XX, &) and

B 1
oWy

ok

c) the algorithm terminates in at mo$k(,/n loge 1) iterations.

Proof. Statement (c) and the well-definedness of Algorithm-I1 follow directly from (a)
and (b). In turn, these two statements follow by a simple induction argument and the
two lemmas below.

O

The following lemma analyzes the predictor step of Algorithm-I1, namely the step
described in items (1)—(4) of Algorithm-II.

Lemma 11. Suppose thatx, s, y) € N2(z) for somer € (0, 1/6). Let (AX, As, Ay)
denote the solution of (6) with = 0. Let @ denote the unique positive root of the
second-order polynomigd(a) = ©2%a? + (v/21 © + 1)a — T where

2(12/ 2+ nl/2

O =
1-37
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Then, for anyr € [0, «], we have:

(@) (X(@), s(), y(@)) € N2(20);
(b) u(@) = 1A - au.

Moreovera = 1/O(n%/?),

Proof. Using Lemma 8 withy = 7 ando = 0, the fact thatp(e) < 0 for« € [0, @],
relation (26) witho = 0 and the definition op(«), we obtain

V2| Ty tx(@) o Tes(e) — pwl@e| < {(1— )7+ V210 +o?0%}u
= 2tiu(e) + pla)pn < 2tiu(a).

An argument similar to the one used in Theorem 2 together with the factthatl23
can be used to show that (a) holds. Statement (b) follows from (26)awith0. The
last assertion of the lemma is due to (26).

|

The following lemma analyzes the corrector step of Algorithm-Il, namely the step
described in items (5)—(7) of Algorithm-I.

Lemma 12. SupposeX, s, V) is in V2(27) for somer € (0, 1/30]. Let (AX, As, Ay)

denote the solution of (6) wittx, s, y) = (X,S,V¥) ando = 1. Then,

(8.9 + (AX, As, Ay) € Na(2),
w(X+ AX, 3+ As) = u(X, 9).
Proof. The result follows immediately from Theorem 2 with= 0, (X, s, y) = (X, S, V),
y = 2t andI’ = 7, and the fact that (35) holds whent < 1/30.
O

5. The MZ family of directions

In this section we introduce the MZ family of directions which is a natural extension of
the Monteiro and Zhang family of directions for SDP to the context of SOCP. As in the
context of SDP, this family arises by computing the AHO direction (6) with respect to
a scaled problem and mapping the direction back to the original space. Each direction
of the family is then associated with the scaling matrix chosen to construct the scaled
problem.

Given a matrixG € G, consider the following change of variables

X=G"x, BV =(G1sy. (37)
Letting

t=Gl, A=AGT, b=bh,
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we easily see that problem (P) and (D) of Sect. 2 can be written in terms of these new
variables as

~

(P ming™x: AX=b, X € £},
(D) maxb'y:ATy+35=¢ Tek).
Due to Proposition 2 and the fact thatx, s) = «(X,S), we have

(X3, V) € Na(y) <= (%, 5, Y) € Na(p),
(X,5,Y) e No(y) <= (X, S, y) € Noc(P),

where/\72(y) and/\N/oo(V) denote the 2-norm angb-norm neighborhoods associated with
the pawofproblemSP D). Moreover, if(X,, S, ¥») denote the point on the central path
with parametep > 0 for the palr(P D) then(X,,3,, %) = (G'x,, G 1s,, y,).

The matrixG € G also determines a scaled Newton direction (with parameter
o > 0) as follows. An interior feasible poirik, s, y) for (P,D) determines an interior
feasible point(%,3,V) for (P, D) as in (37). At the scaled poin&, s, y), the AHO
direction is computed and the resulting directiax, As, Ay) is mapped back into
the original space to yield the scaled AHO direction, or MZ direction with scaling
(AX, As, Ay) = (AXg, Asg, Ayg) given by

AX =G TAX, (As Ay) = (GAs, Ay).

Hence,(AX, As, Ay) = (AXg, ASg, AYyg) is a solution of

SGTAX 4+ XG1As = oue— X3, (39a)
ATAy+As=c—s— ATy, (39b)
AAX =b— Ax, (39¢)

whereX = mat(X) andS = mat(3).

The scaled AHO directionAXg, ASg, Ayg) at the point(x, s, y) depends o165,
and asG varies over the set of nonsingular matrices, we obtain a family of search
directions, which we refer to as the MZ-family. Whén= |, G = TsandG = T;l,
one obtains the AHO direction, the HRVW/KSH/M direction and the dual counterpart
of the HRVW/KSH/M direction. The NT direction is also a member of the MZ family
and is equal to the directigm\Xg, Asg, Ayg) With G = Gys, WhereGys is the unique
pc;sitive definite symmetric matrié e G satisfyingGx = G~!s, or equivalently
G°x =s.

The results obtained in Sects. 3 and 4 for the AHO direction can be extended to the
whole MZ-family due to the fact that any member of this family reduces to the AHO
direction in the scaled space and the fact that the duality gap and the centrality measures
remain invariant. In what follows, we summarize these results.

Corollary 2. LetG € Gand(x, s, y) € K° x K% x %™ be a point such that
max | 2] (wxs) —v| <y v
I’]

for some scalar® < y < 1/3andv > 0. Then, system (39) has exactly one solution.
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Consider the short-step path following algorithm and the Mizuno-Todd-Ye predictor-
corrector algorithm in which at each iteration an arbitrary direction from the MZ family
is computed, that is, at thieth iteration, a matrixGx € G is chosen and the direc-
tion (AXg,, ASc,, AYyg,) is computed. Then, the results obtained in Corollary 1 and
Theorem 3 hold exactly as stated.

Appendix

Proposition 3. The auto-morphism group of the coiig is equal to the sefj defined
in (7).

Proof. We first claim that the auto-morphism group of the/Sety (—Kj) is equal to
[ATi:a>0, T e K, T T = X |, (40)

Indeed, using the equivalenges Kj U (—Kj) < x' Jgx > 0, itis easy to see that that
the set (40) is contained in the auto-morphism grougiaf (—Xi). Conversely, assume
thatT, is in the auto-morphism group &f U (—K;). Then, we have € K; U (—Kj) <

Tix € Ki U (—=Kj), which in turn is equivalent ta” J¢x > 0 < X" T.T J¢ Tix > 0, in
view of the above equivalence. Consider now the minimization problenxhil, x :
xTT.T Js Tix > 0} and observe that its optimal value is zero. Moreover, any point in
dK; is an optimal solution of this problem. Hence, for any0x € 0K, there exists
A(%) € MY such that

(I —A2(X)Bj)x =0. (41)

whereB; = 'I'iT Jk, Ti . Fromthis equation, we easily see that) is a continuous function
of x € (9Kj)\{0} and that.(x) > 0O is an eigenvalue ody Bi‘1 for all x € (8K;)\{0}.
SinceJy Bi‘1 has a finite number of eigenvalues ana) is a continuous function over
the connected s¢i/C; )\ {0}, there existd > 0 such thak.(x) = A forall x € (3/C;)\{0}.
Hence, by (41), it follows thatJ — ABi)x = 0 for all x € (3K;)\{0}. Since the set
(0Ki)\{0} is not contained in any manifold of dimension less tkam simple argument
reveals thatl, = ABj = X T," J Ti, and hence thal, is in the set (40).

Now, assume thaf; is in the auto-morphism group &f;. Then, it is easy to see that
Ti(int ) = int K. Hence,(Ti)oo = (Tig)o > 0 sinceg € int K. This fact together
with the above claim shows that the auto-morphism groufgiofs contained ingG;.
Assume now thalj € G;j. Then, by the above clain; is in the auto-morphism group
of K U (—XK;j). Moreover, we have & (Tj)oo = (Ti&)o, showing thafljg € K. Using
the fact thafT; is invertible and a simple continuity argument, it is now easy to see that
Tix € K; for all x € Kj, or equivalentlyT; (£;) C K;. This fact and the above claim
imply thatT; is in the auto-morphism group &;.

O
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