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1 Introduction

The basic problem of interest in this paper is the convex programming (CP) problem

f ∗ := min{ f (x) : A(x) = 0, x ∈ X}, (1.1)

where f : X → IR is a convex function with Lipschitz continuous gradient, X ⊆ �n

is a sufficiently simple compact convex set and A : �n → �m is an affine function.
For the case where the feasible region consists only of the set X , or equivalently

A ≡ 0, Nesterov ([15,17]) developed a method which finds a point x ∈ X such that
f (x)− f ∗ ≤ ε in at mostO(ε−1/2) iterations. Moreover, each iteration of his method
requires one gradient evaluation of f and computation of two projections onto X . It
is shown that his method achieves, uniformly in the dimension, the lower bound on
the number of iterations for minimizing convex functions with Lipschitz continuous
gradient over a closed convex set. When A is not identically 0, Nesterov’s optimal
method can still be applied directly to problem (1.1) but this approachwould require the
computation of projections onto the feasible region X∩{x : A(x) = 0}, which formost
practical problems is as expensive as solving the original problem itself. An alternative
approach for solving (1.1) when A is not identically 0 is to use first-order methods
whose iterations require only computation of projections onto the simple set X .

Following this line of investigation, we studied in [11] two first-order methods for
solving (1.1) based on twowell-known penalization approaches, namely: the quadratic
and the exact penalization approaches. Iteration-complexity bounds for these methods
are then derived to obtain two types of near optimal solutions of (1.1), namely: near
primal and near primal-dual optimal solutions. Variants with possibly better iteration-
complexity bounds than the aforementioned methods are also discussed. In this paper,
we still consider another first-order approach for solving (1.1) based on the classical
augmented Lagrangian approach, where the subproblems are approximately solved by
means of Nesterov’s optimal method. As a by-product, alternative first-order methods
for solving (1.1) involving only computation of projections onto the simple set X are
obtained.

The augmented Lagrangian method, initially proposed by Hestenes [7] and Pow-
ell [21] in 1969, is currently regarded as an effective optimization method for solv-
ing large-scale nonlinear programming problems (see textbooks or monographs:
[1,2,6,19,22]). More recently, it has been used by the convex programming (CP)
community to develop specialized first-order methods for solving large-scale semi-
definite programming problems (see, for example, Burer and Monteiro [3,4], Jarre
and Rendl [8], Zhao et al. [23]), due to its lower iteration-cost compared to that of
Newton-based interior-point methods. The augmented Lagrangian method applied to
problem (1.1) consists of solving a sequence of subproblems of the form

dρ(λk) := min
x∈X

{
Lρ(x, λk) := f (x) + 〈λk,A(x)〉 + ρ

2
‖A(x)‖2

}
, (1.2)

where ρ > 0 is a given penalty parameter and ‖ · ‖ is the norm associated with a given
inner product 〈·, ·〉 in �m . The multiplier sequence {λk} is generated according to the
iterations
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λk+1 = λk + ρA(x∗
k ), (1.3)

where x∗
k is a solution of problem (1.2). Since in most cases (1.2) can only be solved

approximately, x∗
k in (1.3) is replaced by an ηk-approximate solution of (1.2), i.e., a

point xk ∈ X such that Lρ(x, λk) − dρ(λk) ≤ ηk . The inexact augmented Lagrangian
method obtained in this manner, where the subproblems (1.2) are solved by Nesterov’s
method, is the main focus of our investigation in this paper. More specifically, we are
interested in establishing a bound on the total number of Nesterov’s optimal iterations,
i.e., the inner iterations, performed throughout the entire inexact AL method.

Several technical issues are addressed in the aforementioned iteration-complexity
analysis of the inexact AL method. First, the notion of a near primal-dual optimal
solution is introduced and used as a termination criterion by the methods proposed in
this paper. Second, it iswell-known thatA(x∗

k ) is exactly the gradient of the function dρ

defined in (1.2) at λk , and hence that (1.3) can be viewed as a steepest ascent iteration
with stepsize ρ applied to the function dρ . Since, in the inexact AL method, we
approximate dρ(λk) = A(x∗

k ) byA(xk), where xk is an approximate solution of (1.2),
we bound the error of the gradient approximation A(xk), namely ‖A(xk) − A(x∗

k )‖,
in terms of the accuracy ηk of the approximate solution xk , and use this result to derive
sufficient conditions on the sequence {ηk} which guarantee that the corresponding
inexact steepest ascent method λk+1 = λk +ρA(xk) has the same rate of convergence
as the exact one. Third, as ρ increases, it is well-known that the iteration-complexity
of approximately solving each subproblem (1.2) increases, while the number of dual
iterations (1.3), i.e., the outer iterations, decreases. Ways of choosing the parameter ρ

so as to balance these two opposing criterions are then proposed. More specifically,
ρ is chosen so as to minimize the overall number of inner iterations performed by the
inexact AL method.

It turns out that proper selection of the tolerances ηk and the optimal penalty para-
meter ρ requires knowledge of an upper bound t on DΛ := minλ∈Λ∗ ‖λ0 − λ∗‖,
where Λ∗ is the set of Lagrange multipliers associated with the constraint A(x) = 0.
Theoretically, choosing the upper bound t so that t = O(DΛ) yields the lowest prov-
ably iteration-complexity bounds obtained by our analysis. However, since DΛ is not
known a priori, we present a “guess-and-check” procedure which consists of guessing
a sequence of estimates for DΛ and applying the corresponding sequence of inex-
act AL methods (with pre-specified number of outer-iterations) to (1.1) until a near
primal-dual solution is eventually obtained. It is shown that the above guess-and-
check procedure has the same iteration-complexity as the (ideal) inexact AL method
for which the exact value of DΛ is known in advance. Finally, we present variants with
better iteration-complexity bounds than the original inexact AL method and guess-
and-check procedure, which consist of directly applying the original approaches to a
perturbed problem obtained by adding a strongly convex component to the objective
function of (1.1).

Our paper is organized as follows. Section 2 describes the assumptions imposed
on (1.1), the definition of an approximate primal-dual solution of (1.1), and the prop-
erties of the augmented dual function of (1.1), including a key result about how to
approximate its gradient. In Sect. 3, we discuss some basic technical results that will
be used in our analysis. In particular, we review Nesterov’s smooth first-order method
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for solving a certain class of smooth CP problems in Sect. 3.1, present some technical
results about the projected gradient in Sect. 3.2 and about the convergence behavior of
the steepest descent method with inexact gradient in Sect. 3.3. In Sect. 4, we describe
two inexact AL methods and corresponding guess-and-check procedures for solving
(1.1) and establish their iteration-complexity results. More specifically, in Sect. 4.1,
we describe the first inexact AL method and its corresponding guess-and-check pro-
cedure, and present their iteration-complexity results. The second inexact AL method
and its corresponding guess-and-check procedure based on applying the above meth-
ods to a perturbed problem, obtained by adding a strongly convex component to the
objective function of the CP problem (1.1), are discussed in Sect. 4.2. Finally, we give
some concluding remarks in Sect. 5.

1.1 Notation and terminology

We denote the set of real numbers by IR. Also, IR+ and IR++ denote the set of nonnegative
and positive real numbers, respectively. In this paper, we use the notation�p to denote
a p-dimensional vector space inherited with a inner product space 〈 ·, · 〉 and use ‖ · ‖
to denote the inner product norm in �p, i.e., ‖ · ‖ = 〈 ·, · 〉1/2.

Moreover, we define the projection map onto a given closed convex set C ∈ �p by

ΠC(u) := argmin{‖u − c‖ : c ∈ C}, ∀u ∈ �p.

A function f : C ⊆ �p → IR is said to have L-Lipschitz-continuous gradient with
respect to ‖ · ‖ if it is differentiable and

‖∇ f (ũ) − ∇ f (u)‖ ≤ L‖ũ − u‖, ∀u, ũ ∈ C. (1.4)

It is well-known (see Theorem 2.1.5 of [16]) that, for every u, ũ ∈ C, we have:
1

2L
‖∇ f (ũ) − ∇ f (u)‖2 ≤ f (ũ) − f (u) − 〈∇ f (u), (ũ − u)〉 ≤ L

2
‖ũ − u‖2,

(1.5)
1

L
‖∇ f (ũ) − ∇ f (u)‖2 ≤ 〈∇ f (ũ) − ∇ f (u), ũ − u〉 ≤ L‖ũ − u‖2. (1.6)

2 The problem of interest

In this section, we describe the CP problem and the basic approach we will study in
this paper. More specifically, we discuss the assumptions and termination criterion
about problem (1.1) in Sect. 2.1. We review the augmented dual function and discuss
some of its properties in Sect. 2.2.

2.1 Assumptions and termination criterion

The problem of interest in this paper is the CP problem (1.1) where f : X → IR
is a convex function with L f -Lipschitz-continuous gradient. The Lagrangian dual
function and value function associated with (1.1) are defined as
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d(λ) := min{ f (x) + 〈λ,A(x)〉 : x ∈ X}, ∀λ ∈ �m, (2.1)

v(u) := min{ f (x) : A(x) = u, x ∈ X}, ∀u ∈ �m . (2.2)

It is well-known that d is always a concave function. Moreover, the assumption we
made earlier that f is convex, A is affine, and X is convex, implies that the function
v is convex.

The Lagrangian dual of (1.1) is the problem

d∗ := max
λ

d(λ). (2.3)

In addition to the convexity assumptions we made about (1.1), we also make the
following assumptions throughout this paper:

Assumption 1 (1) the set X is nonempty and bounded (and hence f ∗ ∈ IR);
(2) there exists a Lagrange multiplier for (1.1), i.e., a vector λ∗ such that f ∗ = d(λ∗).

Note that x∗ ∈ X is an optimal solution of (1.1) and λ∗ ∈ �m is a Lagrange
multiplier for (1.1) if, and only if, (x∗, λ∗) satisfies

A(x∗) = 0,

∇ f (x∗) + (A0)
∗ λ∗ ∈ −NX (x∗), (2.4)

where NX (x∗) := {s ∈ �n : 〈 s, x − x∗ 〉 ≤ 0, ∀x ∈ X} denotes the normal cone of
X at x∗, and A0 denotes the linear part of A defined by A0 := A − A(0). Based on
this observation, we introduce the following notion.

Definition 1 For a given pair (εp, εd) ∈ IR++ × IR++, (x̃, λ̃) ∈ X × �m is called an
(εp, εd)-primal-dual solution of (1.1) if

‖A(x̃)‖ ≤ εp, (2.5)

∇ f (x̃) + (A0)
∗ λ̃ ∈ −NX (x̃) + B(εd), (2.6)

where B(η) := {x ∈ �n : ‖x‖ ≤ η} for every η ≥ 0.

The main goal of this paper is to study the iteration-complexity of the augmented
Lagrangian method for computing an (εp, εd)-primal-dual solution of (1.1) defined
above.

2.2 The augmented dual function

In this subsection, we review the definition of the augmented dual function associated
with (1.1) and discuss some of its properties.

Given a penalty parameter ρ > 0, the augmented dual function dρ : �m → IR
associated with (1.1) is given by

dρ(λ) := min
x∈X

{
Lρ(x, λ) := f (x) + 〈λ,A(x)〉 + ρ

2
‖A(x)‖2

}
, (2.7)
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and the augmented dual with parameter ρ is defined as

max
λ∈�m

dρ(λ). (2.8)

An alternative characterization for the augmented dual function is given by

dρ(λ) = min
u

{
vρ(u, λ) := v(u) + 〈λ, u〉 + ρ

2
‖u‖2

}
, (2.9)

where v(·) is the value function given by (2.2).

Lemma 1 The following statements hold:

(a) problem (2.9) has an unique optimal solution u∗
λ;

(b) the set of optimal solutions of (2.7) X∗
λ is given by

X∗
λ = {x ∈ X : A(x) = u∗

λ and f (x) = v(u∗
λ)}; (2.10)

(c) for any λ ∈ �m and ρ > 0, we have

vρ(u, λ) − dρ(λ) ≥ ρ

2
‖u − u∗

λ‖2, ∀ u ∈ �m; (2.11)

(d) problem (2.8) has the same optimal value and set of optimal solutions as those of
(2.3).

Proof We first show (a). Observe that convexity of v and Assumption A.1 imply that
the function vρ(·, λ) in (2.9) is a proper lower-semicontinuous convex function for
every λ ∈ �m and ρ > 0. Moreover, vρ(·, λ) is strongly convex with modulus ρ, that
is,

vρ(αu1+ (1− α)u2, λ)≤ αvρ(u1, λ)+ (1− α)vρ(u2, λ) − ρ

2
α(1− α)‖u1 − u2‖2,

(2.12)

for all (u1, u2) ∈ �m ×�m and α ∈ (0, 1). The above two observations clearly imply
(a). Statement (b) follows directly from (a), definition (2.2), and the equivalence of
problems (2.7) and (2.9). To show (c), we let u1 = u and u2 = u∗

λ in (2.12) to obtain

ρ

2
‖u − u∗

λ‖2 ≤ vρ(u, λ) − vρ(αu + (1 − α)u∗
λ, λ)

1 − α

+vρ(u∗
λ, λ) − vρ(αu + (1 − α)u∗

λ, λ)

α

≤ vρ(u, λ) − vρ(αu + (1 − α)u∗
λ, λ)

1 − α
, ∀α ∈ (0, 1)

where the last inequality follows from the fact that u∗
λ is the optimal solution for

problem (2.9). Letting α go to zero in the above inequality, and using the lower-
semicontinuity of vρ and the fact that dρ(λ) = vρ(u∗

λ, λ), we obtain (2.11). Statement
(d) is a well-known. ��

The following proposition summarizes some important properties of dρ .
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Proposition 1 For any ρ > 0, the function dρ is concave, differentiable, and

∇dρ(λ) = u∗
λ, ∀ λ ∈ �m, (2.13)

where u∗
λ is the unique optimal solution of problem (2.9). Moreover, dρ has 1/ρ-

Lipschitz-continuous gradient with respect to the inner product norm on �m.

Proof Under Assumption A.1, the claim follows immediately from Theorem 1 of [17]
applied to the maximization version of (2.9), i.e., the problem maxu{−vρ(u, λ)}.

In view of Proposition 1 and Lemma 1(b), the exact version of the augmented
Lagrangian method stated in Sect. 1 can be viewed as a version of the steepest ascent
method applied to (2.8). Note that one possible drawback of the exact augmented
Lagrangianmethod is that each iteration of thismethod requires the solution of problem
(1.2) for computing the gradient ∇dρ(λk). Since in most applications, problem (1.2)
can only be solved approximately, in this paper we are interested in analyzing the
inexact version of the augmented Lagrangian method where the gradient ∇dρ(λk) is
approximated by A(xk), where xk an approximate solution of problem (1.2).

The following simple but crucial result gives a bound on the error between∇dρ(λk)

and its aforementioned approximation.

Proposition 2 Assume that (x, λ) ∈ X × �m is such that Lρ(x, λ) − dρ(λ) ≤ η.
Then, we have

‖A(x) − ∇dρ(λ)‖ = ‖A(x) − u∗
λ‖ ≤

√
2η

ρ
, (2.14)

where u∗
λ is the unique optimal solution of (2.9).

Proof Letting u := A(x) and observing that f (x) ≥ v(u) due to definition (2.2), we
conclude that

Lρ(x, λ) = f (x) + 〈λ, u〉 + ρ

2
‖u‖2 ≥ v(u) + 〈λ, u〉 + ρ

2
‖u‖2 = vρ(u, λ).

(2.15)
This inequality, relation (2.11), and the assumption that Lρ(x, λ) − dρ(λ) ≤ η then
imply that

Lρ(x, λ) − dρ(λ) ≥ vρ(u, λ) − dρ(λ) ≥ ρ

2
‖u − u∗

λ‖2, (2.16)

and hence that (2.14) holds. ��

3 Nesterov’s optimal method and basic tools

This section discusses some basic technical results that will be used in our analysis.
It consists of three subsections. The first one reviews Nesterov’s smooth first-order
method for solving a certain class of smooth CP problems. The second one develops
several technical results involving gradient mapping. The third subsection develops
the convergence results for the steepest descent method with inexact gradient, which
will play a crucial role in our analysis for the augmented Lagrangian methods.
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3.1 Nesterov’s optimal method

In this subsection, we review Nesterov’s smooth first-order method. Since the variant
of the AL method we consider in this paper uses Nesterov’s method to solve the
augmented Lagrangian subproblems (1.2), the results of this section will play an
important role in the derivation of iteration-complexity bounds for the above AL
variant.

The problem of interest in this section is

φ∗ := min
x∈X

φ(x), (3.1)

where X ⊂ �n is a closed convex set and φ : X → IR is a convex function that has
Lφ-Lipschitz-continuous gradient over X with respect to an inner product norm ‖ · ‖
in �n . Moreover, we assume that the optimal value φ∗ of problem (3.1) is finite and
that its set of optimal solutions is nonempty.

We are now ready to state Nesterov’s smooth first-order method for solving (3.1).
We use the superscript “sd” in the sequence obtained by taking a steepest descent step
and the superscript “ag” (which stands for “aggregated gradient”) in the sequence
obtained by using all past gradients. We also use lφ : �n × X → IR to denote the
“linear approximation” of φ defined as

lφ(x; x̃) = φ(x̃) + 〈∇φ(x̃), x − x̃〉, ∀(x, x̃) ∈ �n × X.

Nesterov’s Algorithm:

(0) Let xsd
0 = xag

0 ∈ X be given and set k = 0
(1) Set xk = 2

k+2 xag
k + k

k+2 xsd
k and compute φ(xk) and φ′(xk).

(2) Compute (xsd
k+1, xag

k+1) ∈ X × X as

xsd
k+1 = argmin

{
lφ(x; xk) + Lφ

2
‖x − xk‖2 : x ∈ X

}
, (3.2)

xag
k+1 = argmin

{
Lφ

2
‖x − x0‖2 +

k∑
i=0

i + 1

2
[lφ(x; xi )] : x ∈ X

}
. (3.3)

(3) Set k ← k + 1 and go to step 1.

end

The main convergence result established by Nesterov [17] regarding the above
algorithm is summarized in the following theorem.

Theorem 1 The sequence {xsd
k } generated by Nesterov’s optimal method satisfies

φ(xsd
k ) − φ∗ ≤ 2Lφ ‖xsd

0 − x̄‖2
k(k + 1)

, ∀k ≥ 1,
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where x̄ is an optimal solution of (3.1). As a consequence, given any ε > 0, the number
of iterations to find a point xsd

k ∈ X satisfying φ(xsd
k ) − φ∗ ≤ ε can be bounded by

⌈
‖xsd

0 − x̄‖
√
2Lφ

ε

⌉
. (3.4)

Moreover, the following result states the iteration complexity of Nesterov’s method
for solving strongly convex problems satisfying

〈∇φ(x) − ∇φ(x̃), x − x̃〉 ≥ μ‖x − x̃‖2 ∀x, x̃ ∈ X (3.5)

for some μ > 0 (see Theorem 2.2.2 of [16] and Theorem 8 of [11]).

Theorem 2 Let ε > 0 be given and suppose that (3.5) holds. Then, the variant
where we restart Nesterov’s optimal method every K := ⌈√8Lφ/μ

⌉
iterations finds

a solution x̃ ∈ X satisfying φ(x̃) − φ∗ ≤ ε in no more than

K max

{
1,

⌈
log

μ ‖xsd
0 − x̄‖2
2ε

⌉}

iterations, where x̄ := argminx∈Xφ(x).

3.2 Gradient mapping

In this subsection, we still consider the CP problem (3.1). It is well-known that x∗ ∈ X
is an optimal solution of (3.1) if and only if ∇φ(x∗) ∈ −NX (x∗). Moreover, this
optimality condition is in turn related to the gradient mapping (or projected gradient)
of the function φ over X defined as follows.

Definition 2 Given a fixed constant τ > 0, we define the gradient mapping of φ at
x̃ ∈ X with respect to X as (see, for example, [16])

∇φ(x̃)]τX := 1

τ

[
x̃ − ΠX (x̃ − τ∇φ(x̃))

]
, (3.6)

where ΠX (·) is the projection map onto X defined in terms of the inner product norm
‖ · ‖ (see Sect. 1.1).

The following proposition (see Proposition 4 in [11] for the proof) relates the
gradient mapping to the aforementioned optimality condition.

Proposition 3 Let x̃ ∈ X be given and define x̃+ := ΠX (x̃ −τ∇φ(x̃)). Then, for any
given ε ≥ 0, the following statements hold:

(a) ‖∇φ(x̃)]τX‖ ≤ ε if, and only if, ∇φ(x̃) ∈ −NX (x̃+) + B(ε);
(b) ‖∇φ(x̃)]τX‖ ≤ ε implies that ∇φ(x̃+) ∈ −NX (x̃+) + B

(
(1 + τ Lφ)ε

)
.
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520 G. Lan, R. D. C. Monteiro

The following result states some properties of the gradient mapping (see [14,16]
and Lemma 5 of [11]).

Lemma 2 Assume that x∗ ∈ Argminx∈Xφ(x). Let x̃ ∈ X be given and define x̃+ :=
ΠX (x̃ − τ∇φ(x̃)). Then, the following statements hold:

(a) φ(x̃+) − φ(x̃) ≤ −τ‖∇φ(x̃)]τX‖2/2 for any τ ≤ 1/Lφ;
(b) for any x ∈ X, we have

φ(x) − φ(x∗) ≥ 1

2Lφ

‖∇φ(x)]1/Lφ

X ‖2. (3.7)

3.3 Steepest descent method with inexact gradient

In this subsection, we consider the unconstrained problem

p∗ := min{p(λ) : λ ∈ �m}, (3.8)

where p : �m → IR is convex and has L p-Lipschitz-continuous gradient. We assume
throughout this subsection that p∗ is finite and that the set of optimal solutions Γ ∗ of
(3.8) is nonempty. We are interested in the situation where the gradient ∇ p(λ) at any
given λ ∈ �m can only be evaluated approximately. The aim is to apply the results
obtained here to p = −dρ in (2.7) in order to prove the main convergence results of
the augmented Lagrangian methods.

An iterate of the steepest descent method with inexact gradient for solving problem
(3.8) consists of:

λk+1 = λk − αk

L p
p′

k (3.9)

where αk > 0 is the stepsize and p′
k is an approximation of the gradient ∇ p(λk).

Define the deviation and the relative deviation between p′
k and ∇ p(λk) respectively

by

δk := p′
k − ∇ p(λk), ek := ‖δk‖

‖p′
k‖

. (3.10)

Before stating themain result of this subsection about the convergence of the inexact
steepest descent method, we first present a few technical results.

Lemma 3 If ek ≤ 1 − αk/2, then p(λk+1) ≤ p(λk).

Proof Using the second inequality of (1.5) with λ = λk and λ̃ = λk+1, relations (3.9)
and (3.10), and the Cauchy-Schwartz inequality, we conclude that
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p(λk+1) − p(λk) ≤ 〈∇ p(λk), λk+1 − λk 〉 + L p

2
‖λk+1 − λk‖2

= − αk

L p
〈 p′

k − δk, p′
k 〉 + α2

k

2L p
‖p′

k‖2

≤ − αk

L p
‖p′

k‖2
(
1 − αk

2
− ‖δk‖

‖p′
k‖
)

= − αk

L p
‖p′

k‖2
(
1 − αk

2
− ek

)
≤ 0,

where the last inequality is due to the assumption that ek ≤ 1 − αk/2. ��
Lemma 4 Assume that ek < 1. Then, for every λ∗ ∈ Λ∗, we have

αkβk〈 ∇ p(λk), λk − λ∗ 〉≤ L p

2

(
‖λk − λ∗‖2 − ‖λk+1 − λ∗‖2

)
+ αk〈 δk, λ

∗ − λk 〉,
(3.11)

where

βk := 1 − αk/[2(1 − ek)
2]. (3.12)

Proof First note that, by (3.10), we have

‖∇ p(λk)‖ = ‖p′
k − δk‖ ≥ ‖p′

k‖ − ‖δk‖ = (1 − ek)‖p′
k‖. (3.13)

This inequality, the assumption that ek < 1 and relations (3.9) and (3.10) then imply

‖λk+1 − λ∗‖2 =
∥∥∥∥λk − αk

L p
p′

k − λ∗
∥∥∥∥
2

= ‖λk − λ∗‖2 − 2αk

L p
〈 p′

k, λk − λ∗ 〉 + α2
k

L2
p
‖p′

k‖2

≤ ‖λk − λ∗‖2 − 2αk

L p
〈 ∇ p(λk) + δk, λk − λ∗ 〉 + α2

k

L2
p(1 − ek)2

‖∇ p(λk)‖2

≤ ‖λk − λ∗‖2+ 2αk

L p
〈 δk, λ

∗− λk 〉 − 2αk

L p

(
1 − αk

2(1 − ek)2

)
〈 ∇ p(λk), λk − λ∗ 〉,

where the last inequality follows from the first inequality in (1.6) and the fact that
∇ p(λ∗) = 0. Rearranging the later inequality and using the definition of βk , we
obtain (3.11). ��
Lemma 5 Assume that, for some constant c1 > 0, we have

ek ≤ 1 −
√

αk + c1
2

. (3.14)
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Then, for any λ∗ ∈ Λ∗ and for all k ≥ 0, we have

αk[p(λk) − p∗] ≤ L p

c1

[(
1 + 2αke2k

c1

)
‖λk − λ∗‖2 − ‖λk+1 − λ∗‖2

]
. (3.15)

Proof By the Cauchy-Schwartz inequality and relations (3.10), (1.5), (3.11) and
(3.13), we have

L p

2

(
‖λk − λ∗‖2 − ‖λk+1 − λ∗‖2

)
+ αkek‖p′

k‖ ‖λk − λ∗‖

≥ L p

2

(
‖λk − λ∗‖2 − ‖λk+1 − λ∗‖2

)
+ αk〈 δk, λ

∗ − λk 〉

≥ αkβk〈 ∇ p(λk), λk − λ∗ 〉 ≥ αkβk

(
[p(λk) − p(λ∗)] + 1

2L p
‖∇ p(λk)‖2

)

≥ αkβk

(
[p(λk) − p(λ∗)] + 1

2L p
(1 − ek)

2‖p′
k‖2
)

.

Letting x = ‖p′
k‖/(L p‖λk − λ∗‖) and rearranging the above inequality, we conclude

that

αβk[p(λk) − p(λ∗)] ≤ L p

2

[(
1 + 2αkek x − αkβk(1 − ek)

2x2
)

× ‖λk − λ∗‖2 − ‖λk+1 − λ∗‖2
]
.

Relation (3.15) now follows from the above inequality by noting that (3.12) and (3.14)
imply that

βk ≥ (1 − ek)
2βk = (1 − ek)

2 − αk

2
≥ c1

2
> 0 (3.16)

and that the quadratic function 1 + 2αkek x − αkβk(1 − ek)
2x2 is bounded above by

1 + αke2k
βk(1 − ek)2

≤ 1 + 2αke2k
c1

.

��
The following theorem states the convergence properties of the inexact steepest

descent method described above.

Theorem 3 Assume that for some positive constants c1, we have

ek ≤ 1 −
√

αk + c1
2

(3.17)
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for every k ≥ 0. Then, the sequence {λk} generated by the inexact steepest descent
method (3.9) satisfies

p(λk) − p∗ ≤ L p

c1
∑k

i=0 αi

[
‖λ0 − λ∗‖2 exp

(
k∑

i=0

2αi e2i
c1

)
− ‖λk+1 − λ∗‖2

]

(3.18)

for every λ∗ ∈ Λ∗, where p∗ is defined in (3.9).

Proof By Lemma 5 we have ‖λk+1 −λ∗‖2 ≤ ‖λ0 −λ∗‖2∏k
i=0(1+2αi e2i /c1). Using

this observation, (3.15), and an inductive argument, we can show that

k∑
i=0

αi [p(λi ) − p∗] ≤ L p

c1

[
‖λ0 − λ∗‖2

k∏
i=0

(
1 + 2αi e2i

c1

)
− ‖λk+1 − λ∗‖2

]

(3.19)

for every k ≥ 0. The above inequality, Lemmas 3 and 5, the inequality log(1+ x) ≤ x
for any x > −1, and assumption (3.17) then imply that

(
k∑

i=0

αi

)
[p(λk) − p∗] ≤

k∑
i=0

αi [p(λi ) − p∗]

≤ L p

c1

[
‖λ0 − λ∗‖2exp

(
k∑

i=0

log(1 + 2αi e
2
i /c1)

)
− ‖λk+1 − λ∗‖

]

≤ L p

c1

[
‖λ0 − λ∗‖2exp

(
k∑

i=0

2αi e2i
c1

)
− ‖λk+1 − λ∗‖

]

for every k ≥ 0. ��

As a consequence of Theorem 3, we obtain the following result which gives an
upper bound on the quantities ‖∇ p(λk)‖ and ‖p′(λk)‖.

Corollary 1 Assume that, for some positive constant c1, relation (3.17) holds for every
k ≥ 0. Then, the sequence {λk} generated by the inexact steepest descent method (3.9)
satisfies

αk + c1
2

‖p′
k‖2 ≤ ‖∇ p(λk)‖2 ≤ 2L2

p‖λ0 − λ∗‖2
c1
∑k

i=0 αi
exp

(
k∑

i=0

2αi e2i
c1

)
(3.20)

for every λ∗ ∈ Λ∗.
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Proof Clearly by definition of ek , we have ‖∇ p(λk)‖ ≥ (1−ek)‖p′
k‖, which together

with (3.17), imply that ‖∇ p(λk)‖2 ≥ (αk +c1)‖p′
k‖2/2.Moreover, using (1.5), (3.18),

and the fact that ∇ p(λ∗) = 0, we conclude that

‖∇ p(λk)‖2 ≤ 2L p(p(λk) − p∗) ≤ 2L2
p‖λ0 − λ∗‖2

c1
∑k

i=0 αi
exp

(
k∑

i=0

2αi e2i
c1

)
.

Our claim clearly follows from the above two observations. ��

4 The augmented Lagrangian methods

In this section, we present the augmented Lagrangian methods applied to (1.1) and
discuss their computational complexity. Specifically, in Sect. 4.1,we describe a version
of the augmented Lagrangian method and discuss its computational complexity. A
variant of thismethod, forwhich a perturbation term is added into the objective function
of (1.1), is discussed and analyzed in Sect. 4.2.

4.1 The inexact augmented Lagrangian (I-AL) method

In this subsection, we present the I-AL method applied to problem (1.1) and discuss
its convergence behavior. We start by stating this algorithm as follows.

The I-AL method:

Input: Initial points λ0 ∈ �m and x−1 ∈ X , penalty parameter ρ ∈ �++, outer
tolerances (εp, εd) ∈ IR++ × IR++, iteration limit N̄ ∈ N ∪ {+∞}, and inner
tolerances η0, . . . , ηN̄ satisfying

0 < ηk ≤ ρε2p

128
, ∀ k = 0, . . . , N̄ . (4.1)

(0) Set k = 0;
(1) Using xk−1 as starting point, apply Nesterov’s optimal method to find an ηk-

approximate solution of problem (1.2), i.e., a point xk ∈ X such that

Lρ(xk, λk) − dρ(λk) ≤ ηk; (4.2)

(2) If ‖A(xk)‖ ≤ 3εp/4, then call subroutine Postprocessing with input (x, λ̃) =
(xk, λk), report success, and terminate the algorithm;

(3) Otherwise, if ‖A(xk)‖ > 3εp/4, set λk+1 = λk + ρA(xk) and increment k by 1;
4) If k = N̄ , report failure, and terminate the algorithm; otherwise, go to step 1.

end

We now describe subroutine Postprocessing.

Postprocessing(x, λ̃):
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Set

ζ = ζ(ρ) := min

{
ρε2p

128
,

ε2d

8Mρ

}
, (4.3)

where

Mρ := L f + ρ‖A‖2, (4.4)

(P.1) Using x ∈ X as starting point, apply Nesterov’s optimal method to find an
approximate solution x̃ of problem (1.2) such that Lρ(x̃, λ̃) − dρ(λ̃) ≤ ζ ;

(P.2) Output a pair (x̃+, λ̃+) given by

x̃+ := ΠX (x̃ − ∇Lρ(x̃, λ̃)/Mρ) (4.5)

λ̃+ := λ̃ + ρA(x̃+). (4.6)

end

We will say that an outer iteration of the I-AL method occurs whenever k is incre-
mented by 1 in Step 3. We will refer to an iteration of Nesterov’s optimal method to
compute xk in step 1 or x̃ inside subroutine Postprocessing as an inner iteration of the
I-AL method.

We now make a few comments about the I-AL method. First, note that the I-AL
method is a generic algorithm in the sense that the parameters ρ and {ηk} have not
been specified. Concrete choices of these parameters will be discussed within the
context of the convergence results which will be presented in the remaining part of
this subsection. Second, in view of Proposition 2, an outer iteration of the I-ALmethod
can be viewed as an iteration of a version of the steepest ascent method with inexact
gradientwith respect to problem (2.8). Third, Step 4 ensures that themethod terminates
in at most N̄ outer iterations possibly reporting failure. Fourth, in order to check (4.2),
it is necessary to generate the lower bounds on dρ(λk) by using Nesterov’s method
(see, e.g., Theorem 2 of [17] or Theorem 10 of [5]). Finally, at the beginning of Step
2, the pair (xk, λk) satisfies the primal termination condition (2.5), but not necessarily
the dual termination criterion (2.6). By calling subroutine Postprocessing, the next
result guarantees that the output pair (x̃+, λ̃+) of this subroutine satisfies both (2.5)
and (2.6).

Proposition 4 Let ρ > 0, (εp, εd) ∈ IR++ × IR++, and λ̃ ∈ �m be given and assume
that there exists an x ∈ X satisfying

‖A(x)‖ ≤ 3εp

4
and Lρ(x, λ̃) − dρ(λ̃) ≤ ρε2p

128
.

If x̃ ∈ X is a point satisfying Lρ(x̃, λ̃)−dρ(λ̃) ≤ ζ , where ζ is given by (4.3), then the
pair (x̃+, λ̃+) defined by (4.5) and (4.6) is an (εp, εd)-primal-dual solution of (1.1).
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Proof Clearly, by Lemma 2(b) with φ(·) = Lρ(·, λ̃) and Lφ = Mρ , we have

‖∇Lρ(x̃, λ̃)]1/Mρ

X ‖ ≤
{
2Mρ

[
Lρ(x̃, λ̃) − dρ(λ̃)

]} 1
2 ≤ √2Mρ ζ ≤ εd

2
,

where the second and last inequalities follow from the assumption that Lρ(x̃, λ̃) −
dρ(λ̃) ≤ ζ and relation (4.3), respectively. The above inequality together with (2.7),
(4.6), and Proposition 3(b) with φ(·) = Lρ(·, λ̃), Lφ = Mρ , and τ = 1/Mρ then
imply that

∇ f (x̃+) + (A0)
∗λ̃+ = ∇ f (x̃+) + (A0)

∗(λ̃ + ρA(x̃+))

= ∇Lρ(x̃+, λ̃) ∈ −NX (x̃+) + B(εd),

where x̃+ is defined in (4.5). Moreover, it follows from Lemma 2(a) with φ(·) =
Lρ(·, λ̃), Lφ = Mρ , and τ = 1/Mρ that Lρ(x̃+, λ̃) ≤ Lρ(x̃, λ̃). This observation, the
assumption that Lρ(x̃, λ̃) − dρ(λ̃) ≤ ζ and (4.3) then imply that

Lρ(x̃+, λ̃) − dρ(λ̃) ≤ Lρ(x̃, λ̃) − dρ(λ̃) ≤ ζ ≤ ρε2p

128
.

Using this conclusion, the assumption that Lρ(x, λ̃) − dρ(λ̃) ≤ ρε2p/128 and Propo-
sition 2, we then obtain

max{‖A(x̃+) − u∗
λ‖, ‖A(x) − u∗

λ‖} ≤ εp

8
,

which together with the assumption that ‖A(x)‖ ≤ 3εp/4 imply

‖A(x̃+)‖ ≤ ‖A(x̃+) − u∗
λ‖ + ‖A(x) − u∗

λ‖ + ‖A(x)‖ ≤ εp

8
+ εp

8
+ 3εp

4
= εp.

(4.7)

We have thus shown that (x̃+, λ̃+) is an (εp, εd)-primal-dual solution of (1.1). ��

The following result follows as an immediate consequence of Proposition 4.

Corollary 2 If the I-AL method successfully terminates (i.e., at Step 2), then the output
pair of subroutine Postprocessing is an (εp, εd)-primal-dual solution of (1.1).

Proof The result follows from Proposition 4, (4.1), and the fact that at Step 4, condi-
tions (4.2) and ‖A(xk)‖ ≤ 3εp/4 hold. ��

Our next result below describes conditions on the parameters ρ and {ηk} which
guarantee the successful termination of the I-AL method.
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Theorem 4 Let ρ ∈ IR++ and (εp, εd) ∈ IR++ × IR++ be given. Assume that the
iteration limit N̄ of the I-AL method satisfies

N̄ ≥ N :=
⌈
16D2

Λ

ρ2ε2p

⌉
, (4.8)

where DΛ := minλ∗∈Λ∗ ‖λ0 − λ∗‖, and the sequence {ηk}N̄−1
k=0 ⊆ IR++ satisfies

N̄−1∑
k=0

ηk ≤ ρε2p

128
. (4.9)

Then, the I-AL method successfully terminates in at most N outer iterations.

Proof Since N̄ ≥ N by assumption, the I-AL method does not terminate with failure
within the first N outer iterations. Assume for contradiction that the I-AL method
does not successfully terminate within the first N outer iterations. This implies that
‖A(xk)‖ > 3εp/4 for all 0 ≤ k ≤ N − 1. Letting δk := ‖A(xk) − u∗

λk
‖ and

ek := δk/‖A(xk)‖ for all k ≥ 0, we conclude from the previous observation, (4.2),
Proposition 2, and assumptions (4.8) and (4.9) that

N−1∑
k=0

e2k =
N−1∑
k=0

δ2k

‖A(xk)‖2 ≤ 16

9ε2p

N−1∑
k=0

‖A(xk) − u∗
λk

‖2

≤ 32

9ρε2p

N−1∑
k=0

ηk ≤ 32

9ρε2p

N̄−1∑
k=0

ηk ≤ 1

36
. (4.10)

Noting that (4.10) implies ek ≤ 1/6, and hence that condition (3.17) holdswithαk = 1
and c1 = 7/18, it follows from (4.10) and Corollary 1 with p(·) = −dρ(·), L p =
1/ρ, p′

k = A(xk), c1 = 7/18, and αk = 1 that

‖A(xk)‖2 ≤ 4D2
Λ

c1(1 + c1) ρ2(k + 1)
exp

⎛
⎝ 2

c1

k∑
j=0

e2j

⎞
⎠

≤ 1296D2
Λ

175ρ2(k + 1)
exp

(
1

7

)
≤ 9D2

Λ

ρ2(k + 1)
, (4.11)

for every 0 ≤ k ≤ N − 1. The above inequality with k = N − 1 together with (4.8)
then imply that

‖A(xN−1)‖2 ≤ 9D2
Λ

ρ2N
≤ 9ε2p

16
,

which clearly contradicts the fact ‖A(xN−1)‖ > 3εp/4. ��
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Wenowmake a fewobservations aboutTheorem4. First,we observe that Theorem4
holds regardless of the method used to find the approximate solution xk in step 1 or x̃
in subroutine Postprocessing. Second, although the number of outer iterations of the
I-AL method does not depend on εd , the number of inner iterations will depend on it,
since the number of inner iteration inside subroutine Postprocessing clearly depends
on εd in view of (4.3). Third, observe that Eq. (4.8) implies that the larger ρ is, the
smaller the bound N on the number of outer iterations will be. On the other hand,
since the Lipschitz constant of the objective function of subproblem (1.2) is given by
Mρ (see (4.4)), increasing ρ will increase Mρ , and as a consequence, will increase the
iteration-complexity bound of Nesterov’s optimal method for finding an approximate
solution of (1.2).

The following result provides a bound on the total number of inner iterations, i.e.,
the iterations performed by Nesterov’s optimal method, in the I-AL algorithm.

Proposition 5 Let (εp, εd) ∈ IR++ × IR++, ρ > 0, N̄ ∈ N ∪ {+∞}, and {ηk}N̄−1
k=0 ⊆

IR++ be given such that conditions (4.8) and (4.9) are satisfied. Then, the I-AL
method applied to (1.1) successfully terminates in N outer iterations, and computes
an (εp, εd)-primal-dual solution of (1.1) in at most Ip + Id inner iterations, where
N is defined in Theorem 4,

Ip :=
⌊√

2DX M
1
2
ρ

N−1∑
k=0

η
− 1

2
k + N

⌋
, Id :=

⎡
⎢⎢⎢
4DX max

⎧⎨
⎩
4M

1
2
ρ

ρ
1
2 εp

,
Mρ

εd

⎫⎬
⎭

⎤
⎥⎥⎥

(4.12)

and

DX := max
x1,x2∈X

‖x1 − x2‖. (4.13)

Proof Clearly, in view of Theorem 1 and Theorem 4, the number of inner iterations
performed at step 1 of the I-AL method is bounded by

N−1∑
k=0

⌈
DX

√
2Mρ

ηk

⌉
≤ √

2DX M
1
2
ρ

N−1∑
k=0

η
− 1

2
k + N ,

and hence by Ip. Moreover, by Theorem 1, the number of inner iterations performed
at step 2 (inside subroutine PostProcessing) is bounded by �DX

√
2Mρ/ζ �. Using the

definition of ζ in (4.3), it follows that the number of inner iterations performed at step
2 is bounded by Id . The claim then easily follows by combining the previous two
observations. ��

We now present a few consequences of the results obtained in Proposition 5. The
first one stated below bounds the total number of inner iterations of the I-AL method
by assuming that N̄ is finite and η0, . . . , ηN̄−1 is uniform. In addition, instead of
assuming the exact knowledge of DΛ, it assumes that an upper bound t ≥ DΛ is
given. The motivation for choosing η0, . . . , ηN̄−1 uniformly is that the minimum of
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the summation term in the definition of Ip in (4.12) subject to a condition like (4.9)
occurs exactly when η0, . . . , ηN−1 is uniformly chosen. It should be noted, however,
that it is possible to choose non-uniform ηk’s in order to guarantee the convergence of
the I-AL method.

Theorem 5 Let (εp, εd) ∈ �++ × �++ be given. If, for some t ≥ DΛ, the I-AL
is applied to problem (1.1) with input

ρ = ρ(t) := 4 t
3
4 ε

1
4
d

‖A‖ 1
4 εp

+ L f

‖A‖2 , N̄ = N̄ (t) :=
⌈

16t2

ρ(t)2ε2p

⌉
, (4.14)

ηk = η(t) := ρ(t)ε2p
128N̄ (t)

, ∀ k ≥ 0, (4.15)

then the method successfully terminates in

⎡
⎢⎢⎢
min

⎧⎨
⎩

D2
Λ‖A‖ 1

2

t
3
2 ε

1
2
d

,
16D2

Λ‖A‖4
L2

f ε
2
p

⎫⎬
⎭

⎤
⎥⎥⎥

≤
⎡
⎢⎢⎢
min

⎧⎨
⎩

D
1
2
Λ‖A‖ 1

2

ε
1
2
d

,
16D2

Λ‖A‖4
L2

f ε
2
p

⎫⎬
⎭

⎤
⎥⎥⎥

(4.16)

outer iterations and computes an (εp, εd)-primal-dual solution in at most O(Ipd(t))
inner iterations, where

Ipd(t) :=
⎡
⎢⎢⎢

DX

⎛
⎝‖A‖ 7

4 t
3
4

εpε
3
4
d

+ ‖A‖
εp

+ L f

εd

⎞
⎠+

(
t‖A‖
εd

) 1
2

⎤
⎥⎥⎥

, (4.17)

and DX and DΛ are defined in Theorem 4 and Proposition 5, respectively.

Proof Using (4.14) and the assumption that t ≥ DΛ, we obtain

N̄ (t) ≥
⌈
16D2

Λ

ρ2ε2p

⌉
= N . (4.18)

Also note that (4.14) and (4.15) imply that
∑N̄−1

k=0 ηk = N̄η(t) = N̄ (t)η(t) =
ρε2p/128. We have thus shown that conditions (4.8) and (4.9) hold. It then follows
from Proposition 5 that the total number of outer iterations is bounded by N , where
N is defined by (4.8). Bound (4.16) now follows by combining the definition of N in
(4.8) with the fact

ρ = ρ(t) ≥ max

⎧⎨
⎩

4t
3
4 ε

1
4
d

‖A‖ 1
4 εp

,
L f

‖A‖2

⎫⎬
⎭ ≥ max

⎧⎨
⎩

4D
3
4
Λε

1
4
d

‖A‖ 1
4 εp

,
L f

‖A‖2

⎫⎬
⎭ . (4.19)

It also follows from Proposition 5 that the total number of inner iterations is bounded
by Ip + Id , where Ip and Id are given by (4.12). Noting that by (4.14), (4.15), and

the convexity of q
3
2 for q ∈ IR,
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we have

N̄ (t)−1∑
k=0

η
− 1

2
k = 8

√
2

ρ(t)
1
2 εp

N̄ (t)
3
2 ≤ 8

√
2

ρ(t)
1
2 εp

(
16t2

ρ(t)2ε2p
+ 1

) 3
2

≤ 16

ρ(t)
1
2 εp

(
64t3

ρ(t)3ε3p
+ 1

)
,

we then conclude from (4.12), (4.14), and (4.18) that

Ip ≤ √
2DX M

1
2
ρ

N̄ (t)−1∑
k=0

η
− 1

2
k + N̄ (t)

≤ 16
√
2DX M

1
2
ρ

ρ(t)
1
2 εp

(
64t3

ρ(t)3ε3p
+ 1

)
+ 16t2

ρ(t)2ε2p
+ 1. (4.20)

Now, by using the first relation in (4.14), we have that ρ(t) ≥ L f /‖A‖2, and hence
that

Mρ = L f + ρ(t)‖A‖2 ≤ 2ρ(t)‖A‖2. (4.21)

This conclusion together with (4.19) and (4.20) then imply that

Ip ≤ 32DX‖A‖
εp

(
64t3

ρ(t)3ε3p
+ 1

)
+ 16t2

ρ(t)2ε2p
+ 1

≤ 32DX‖A‖
εp

⎛
⎝‖A‖ 3

4 t
3
4

ε
3
4
d

+ 1

⎞
⎠+ ‖A‖ 1

2 t
1
2

ε
1
2
d

+ 1. (4.22)

Moreover, it easily follows from (4.12), (4.21) and (4.14) that

Id ≤ 4DX

⎛
⎝ 4M

1
2
ρ

ρ(t)
1
2 εp

+ Mρ

εd

⎞
⎠+ 1 ≤ 4DX

(
4
√
2‖A‖
εp

+ 2ρ(t)‖A‖2
εd

)
+ 1

= 16
√
2DX‖A‖
εp

+ 8DX

⎛
⎝4t

3
4 ‖A‖ 7

4

εpε
3
4
d

+ L f

εd

⎞
⎠+ 1. (4.23)

Combining (4.22) and (4.23), we easily see that the I-ALmethod computes an (εp, εd)-
primal-dual solution of (1.1) in at most O(Ipd(t)) inner iterations, where Ipd(t) is
defined by (4.17). ��

Observe that the choice of ρ, N̄ , and {ηk} given by (4.14) and (4.15) requires
t ≥ DΛ so as to guarantee conditions (4.8) and (4.9), and hence that the conclusions
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of Theorem 4 hold. We now develop a guess-and-check procedure that attempts to
find such a constant t while at the same time checks for potentially early termination
of the procedure.

I-AL guess-and-check procedure:

Input: Initial points λ0 ∈ �m and x−1 ∈ X , and tolerances (εp, εd) ∈ IR++×IR++.
(0) Set t0 = min{(β0/β1)

4
3 , (β0/β2)

2} and j = 0, where

β0 := 1 + 32DX‖A‖
εp

, β1 := 32DX‖A‖ 7
4

εpε
3
4
d

, β2 := ‖A‖ 1
2

ε
1
2
d

; (4.24)

(1) Run the I-AL method with the above input and with ρ = ρ(t j ), N̄ = N̄ (t j ) given
by (4.14) and ηk = η(t j ), k = 0, . . . , N̄ (t j ), where η(t j ) is given by (4.15);

(2) If the I-AL method successfully terminates, stop; Otherwise, if the I-AL method
reports failure, set t j+1 = 2t j , j = j + 1, and go to step 1.

end

Before establishing the complexity bound for the above I-AL guess-and-check
procedure, we first state the following technical result.

Proposition 6 For some positive integer L, let positive scalars p1, p2, . . . , pL be
given. Then, there exists a constant C = C(p1, . . . , pL) such that for any nonnegative
scalars β0, β1, . . . , βL , ν, and t̄ , we have

K∑
k=0

⌈
β0 +

L∑
l=1

(
βl t pl

k

)⌉
max

{
1,

⌈
log

ν

tk

⌉}

≤ C

⌈
β0 +

L∑
l=1

(
βl t̄ pl

)⌉
max

{
1,
⌈
log

ν

t̄

⌉}
, (4.25)

where

K := max

{
0,

⌈
log

(
t̄

t0

)⌉}
,

t0 := min
1≤l≤L

(
max(β0, 1)

βl

)1/pl

, tk = t02
k, ∀k = 1, . . . , K . (4.26)

In particular, if ν = t̄ , then (4.25) implies that

K∑
k=0

⌈
β0 +

L∑
l=1

(
βl t pl

k

)⌉ ≤ C

⌈
β0 +

L∑
l=1

(
βl t̄ pl

)⌉
. (4.27)

Proof The inequality (4.27) is shown in Lemma 13 of [11], while the more general
result in (4.25) is shown in Proposition 5.4.1 of [9]. ��
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We are now ready to state the iteration-complexity of the above I-AL guess-and-
check procedure.

Theorem 6 Let (εp, εd) ∈ IR++× IR++ be given. The I-AL guess-and-check procedure
finds an (εp, εd)-primal-dual solution of (1.1) in at mostO(Ipd(DΛ)) inner iterations,
where Ipd(t) is defined by (4.17).

Proof Suppose that the I-AL guess-and-check procedure terminateswhen the iteration
count j is equal to J . Letting

J̄ := max{0, �log(DΛ/t0)�} (4.28)

and noting that t J̄ = t02 J̄ ≥ DΛ, we conclude from Theorem 5 that J ≤ J̄ . Let
Ip, j , j = 1, . . . , J , denote the number of inner iterations performed at step 1) of
the I-AL method during loop j of the I-AL guess-and-check procedure, and let Id,J

denote the number of inner iterations performed by subroutine Postprocessing during
loop J of the I-AL guess-and-check procedure. Then, the overall number of inner
iterations performed by the I-AL guess-and-check procedure is bounded by

J∑
j=0

Ip, j + Id,J ≤
J̄∑

j=0

Ip, j + Id,J . (4.29)

Since the total number of outer iterations at the j th loop is bounded by N (t j ), it follows
from Theorem 1 that

Ip, j ≤
N̄ (t j )−1∑

k=0

⌈
DX

√
2Mρ

ηk

⌉
≤ √

2DX M
1
2
ρ

N̄ (t j )−1∑
k=0

η
− 1

2
k + N̄ (t j ).

Hence, similar to the proof of (4.20), (4.21) and (4.22), we can show that for j =
0, . . . , J , we have

Ip, j ≤ 32DX

⎡
⎣ t

3
4
j ‖A‖ 7

4

εpε
3
4
d

+ ‖A‖
εp

⎤
⎦+ t

1
2
j ‖A‖ 1

2

ε
1
2
d

+ 1 ≤
⌈
β0 + β1t

3
4
j + β2t

1
2
j

⌉
,

where β0, β1, and β2 are given by (4.24). Noting that t j = t02 j for every j and the
definition of t0 in step 0) of the I-AL guess-and-check procedure, it follows from
the previous inequality and relation (4.27) with L = 2, p1 = 3/4, p2 = 1/2, t̄ =
DΛ, J = J̄ , and β0, β1, and β2 as above that

J̄∑
j=0

Ip, j = O(1)

⌈
β0 + β1D

3
4
Λ + β2D

1
2
Λ

⌉
. (4.30)

Now, using (4.28), it is easy to see that tJ ≤ t J̄ ≤ max{t0, 2DΛ} and hence that
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t
3
4
J ≤ max

{
t
3
4
0 , (2DΛ)

3
4

}
≤ max

{
β0

β1
, (2DΛ)

3
4

}
≤ β0

β1
+ (2DΛ)

3
4 , (4.31)

where the second inequality is due to the definition of t0 in Step 0 of the I-AL guess-
and-check procedure. Using this inequality, the definition of β0 and β1 in (4.24), and
an argument similar to the proof of (4.23), we have

Id,J ≤ 16
√
2DX‖A‖
εp

+ 8DX

⎡
⎣4t

3
4
J ‖A‖ 7

4

εpε
3
4
d

+ L f

εd

⎤
⎦+ 1

≤ β0 + β1t
3
4
J + 8DX L f

εd
≤ 2β0 + β1(2DΛ)

3
4 + 8DX L f

εd
. (4.32)

Now, using (4.30) and (4.32), it is easy to see that the right-high-side of (4.29) is
bounded by O(Ipd(DΛ)), where Ipd(·) is defined in (4.17). ��

It is interesting to compare the iteration-complexity bound obtained in Theorem 6
with the corresponding one obtained for the quadratic penalty method in [11] to com-
pute an (εp, εd)-primal-dual solution of (1.1), namely,

O
(

DX

(‖A‖2DΛ

εpεd
+ ‖A‖

εp
+ L f

εd

)
+ 1

)
.

Clearly, the latter one is worse than O( Ipd(DΛ)) by a factor of O((‖A‖DΛ/εd)
1
4 ).

Finally, we make some observations about the possibility of exploiting the warm-
start strategy for solving the augmented Lagrangian subproblems (1.2). Even though
we already stated the I-AL method with the warm-start strategy included, i.e., the one
in which the approximate solution of the previous subproblem is used as a starting
point for the solution of next subproblem, the proofs of the results stated in this
subsection make no use of this feature. The difficulty in exploiting this feature here is
due to the fact that the objective functions of the augmented Lagrangian subproblems
are convex, but not necessarily strongly convex. But in next subsection, by adding
a small strongly convex perturbation to the objective function of problem (1.1), we
will be able to guarantee that the objective functions of the corresponding augmented
Lagrangian subproblems will be strongly convex, and thereby exploit the warm start
strategy for solving the augmented Lagrangian subproblems, and consequently, the
original problem (1.1).

4.2 The I-AL method applied to a perturbation problem

In this subsection, we will exploit the possibility of solving problem (1.1) by applying
a slightly modified version of the I-AL algorithm to a perturbed problem obtained by
adding a small strongly convex perturbation to f in (1.1), i.e.,

f ∗
γ := min

{
fγ (x) := f (x) + γ

2
‖x − x0‖2 : A(x) = 0, x ∈ X

}
. (4.33)
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Here x0 is a fixed point in X and γ > 0 is a prespecified perturbation parameter. The
following result, whose proof can be found in Lemma 15 of [11], shows that if γ is
sufficiently small, then an approximate solution of (4.33) will also be an approximate
solution of (1.1).

Lemma 6 Let f ∗ and f ∗
γ be the optimal values defined in (1.1) and (4.33), respec-

tively, and DX be defined in Proposition 5. Then,

0 ≤ f ∗
γ − f ∗ ≤ γ D2

X/2. (4.34)

Our goal in this section is to derive an iteration-complexity bound for obtaining an
(εp, εd)-primal-dual solution of (1.1) by applying the I-ALmethod directly to problem
(4.33) for a conveniently chosen perturbation parameter γ > 0.

The augmented dual function associated with (4.33) is given by

dρ,γ (λ) := min
x∈X

{
Lρ,γ (x, λ) := fγ (x) + λTA(x) + ρ

2
‖A(x)‖2

}
, (4.35)

or alternatively, by

dρ,γ (λ) = min
u

{
vρ,γ (u, λ) := vγ (u) + 〈λ, u〉 + ρ

2
‖u‖2

}
, (4.36)

where vγ (·) is the value function associated with the perturbed problem (4.33) (see
definition (2.2)). We denote the optimal solution of (4.36) by u∗

λ,γ . It can be easily
seen that the function Lρ,γ (·, λ) has Mρ,γ -Lipschitz continuous gradient where

Mρ,γ := L f + ρ‖A‖2 + γ, (4.37)

and that it is strongly convex with modulus γ with respect to ‖ · ‖.
We now describe a modification of the I-AL method.

The Modified I-AL method: This method is the same as I-AL method applied to
the perturbed problem (4.33) (and hencewith Mρ,Lρ , and dρ replaced by Mρ,γ ,Lρ,γ ,
and dρ,γ ) except that instead of Nesterov’s method, its variant described in Theorem 2
is used to compute the approximate solutions xk in step 1 and x̃ in subroutine Post-
processing, and the tolerance ζ in (4.3) is replaced by

ζ̃ = ζ̃ (ρ, γ ) := min

{
ρε2p

128
,

ε2d

32Mρ,γ

}
. (4.38)

The next results is a corresponding version of Proposition 4, which guarantees that the
output pair (x̃+, λ̃+) of subroutine Postprocessing is an (εp, εd)-primal-dual solution
of (1.1).

Proposition 7 Let ρ > 0, (εp, εd) ∈ IR++ × IR++, and λ̃ ∈ �m be given, and define

γ := εd

2DX
. (4.39)
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Assume that there exists an x ∈ X satisfying

‖A(x)‖ ≤ 3εp

4
and Lρ,γ (x, λ̃) − dρ,γ (λ̃) ≤ ρε2p

128
.

If x̃ ∈ X is a point satisfying Lρ,γ (x̃, λ̃) − dρ,γ (λ̃) ≤ ζ̃ , where ζ̃ is given by (4.38),
then the pair (x̃+, λ̃+) defined by (4.5) and (4.6) with Lρ replaced by Lρ,γ is an
(εp, εd)-primal-dual solution of (1.1).

Proof As in the proof of Proposition 4 with ζ replaced by ζ̃ , we can show that

∇ fγ (x̃+) + (A0)
∗λ̃+ ∈ −NX (x̃+) + B

(εd

2

)
,

where x̃+ is defined in (4.5) with Lρ replaced by Lρ,γ . Noting that ∇ fγ (x̃+) =
∇ f (x̃+) + γ (x̃+ − x0) and that (4.13) and (4.39) imply that γ ‖x̃+ − x0‖ ≤ γ DX =
εd/2, we then conclude that

∇ f (x̃+) + (A0)
∗λ̃+ ∈ −NX (x̃+) + B(εd).

Moreover, similar to the proof of Proposition 4, we can show that ‖A(x̃+)‖ ≤ εp.
Thus, (x̃+, λ+

k ) is an (εp, εd)-primal-dual solution for (1.1). ��
The following result follows as an immediate consequence Proposition 4.

Corollary 3 If the modified I-AL method successfully terminates (i.e., at Step 2), then
the output pair of subroutine Postprocessing is an (εp, εd)-primal-dual solution of
(1.1).

Proof The result follows from Proposition 7, (4.1), and the fact that at Step 4, condi-
tions (4.2) and ‖A(xk)‖ ≤ 3εp/4 hold. ��

Our goal in the remaining part of this subsection is to establish a bound on the total
number of inner iterations performed by the modified I-AL method. Before proving
this result, we first present two technical lemmas. The first one stated below establishes
an important technical result that allows us to take the advantage of the “warm-start”
strategy described in the end of Sect. 4.1.

Lemma 7 Let (xk, λk) ∈ X × �m be given and let λk+1 = λk + ρA(xk). If
Lρ,γ (xk, λk) − dρ,γ (λk) ≤ ηk , then

γ

2
‖xk − x∗

k+1‖2 ≤ Lρ,γ (xk, λk+1) − dρ,γ (λk+1) ≤
(√

ηk +
√

ρ

2
‖A(xk)‖

)2
,

(4.40)

where x∗
k+1 is the unique solution of minx∈X Lρ,γ (x, λk+1).
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Proof The first inequality in (4.40) follows immediately from the strong convexity of
Lρ,γ (·, λk+1). Hence, it suffices to show the second inequality in (4.40). Clearly, by
definition (4.35) and the fact that λk+1 = λk + ρA(xk), we have

Lρ,γ (xk, λk+1) − Lρ,γ (xk, λk) = ρ‖A(xk)‖2.

The above observation together with the assumption Lρ,γ (xk, λk) − dρ,γ (λk) ≤ ηk

then imply that

Lρ,γ (xk, λk+1) − dρ,γ (λk+1) = [Lρ,γ (xk, λk+1) − Lρ,γ (xk, λk)
]

+ [Lρ,γ (xk, λk) − dρ,γ (λk+1)
]

= ρ‖A(xk)‖2 + [Lρ,γ (xk, λk) − dρ,γ (λk)
]

+ [dρ,γ (λk) − dρ,γ (λk+1)
]

≤ ρ‖A(xk)‖2 + ηk + [dρ,γ (λk) − dρ,γ (λk+1)].
(4.41)

Moreover, in view of Proposition 1 applied to the perturbed problem (4.33), the func-
tion dρ,γ (·) is concave and has 1/ρ-Lipschitz-continuous gradient and ∇dρ,γ (λ) =
u∗

λ,γ . It then follows from (1.5) that applied to f (·) = −dρ,γ (·) that

− dρ,γ (λk+1) + dρ,γ (λk) ≤ 〈−u∗
λk ,γ

, λk+1 − λk〉 + 1

2ρ
‖λk+1 − λk‖2

= −ρ〈u∗
λk ,γ ,A(xk)〉 + ρ

2
‖A(xk)‖2 (4.42)

where the last equality follows from the fact that λk+1 − λk = ρA(xk). Combining
(4.41) and (4.42), we obtain

Lρ,γ (xk, λk+1) − dρ,γ (λk+1) ≤ ηk + ρ〈A(xk) − u∗
λk ,γ

,A(xk)〉 + ρ

2
‖A(xk)‖2

≤ ηk + ρ‖A(xk) − u∗
λk ,γ

‖‖A(xk)‖ + ρ

2
‖A(xk)‖2

≤ ηk +√2ρ ηk ‖A(xk)‖ + ρ

2
‖A(xk)‖2 =

(√
ηk +

√
ρ

2
‖A(xk)‖

)2
,

where the last inequality follows from Proposition 2 with Lρ = Lρ,γ , dρ = dρ,γ , and
u∗

λk
= u∗

λk ,γ
. ��

The following technical result states a bound on the number of inner iterations
performed by the modified I-AL method applied to (4.33) when a constant sequence
{ηk} is applied.
Lemma 8 Let ρ > 0, (εp, εd) ∈ �++ × �++ and N̄ ∈ N be given, and let γ be
given by (4.39). Consider the modified I-AL method applied to the perturbed problem
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(4.33) with penalty parameter ρ, iteration limit N̄ and inner tolerances η0, . . . , ηN̄
given by

ηk = ηγ := ρε2p

128N̄
, k = 0, . . . , N̄ − 1. (4.43)

Then the following statements hold:

(a) the total number of inner iterations performed by the above method is bounded
by

⌈√
8Mρ,γ

γ

⌉{
2max

(
1,

⌈
log

64γ N̄ D2
X

ρε2p

⌉)
+ min(N̄ , Nγ )

⌈
2 log

(
1 + 24N̄

1
2 Dγ

Λ

ρεp

)⌉

+ max

(
1,

⌈
log

16γ Mρ,γ D2
X

ε2d

⌉)}
, (4.44)

where

Nγ :=
⌈
16[Dγ

Λ]2
ρ2ε2p

⌉
; (4.45)

(b) if N̄ ≥ Nγ , then the above method successfully terminates in Nγ outer iterations
with an (εp, εd)-primal-dual solution of (1.1).

Proof Statement (b) immediately follows from the assumption N̄ ≥ Nγ and Theorem
4applied to theperturbedproblem (4.33).Wenowshowpart (a).Note that byStatement
(b), the number of outer iterations of the above method is bounded by min{N̄ , Nγ }.
Assume that the method terminates at the K -th outer iteration for some

0 ≤ K ≤ min{N̄ , Nγ } − 1. (4.46)

Clearly, ‖A(xk)‖ > 3εp/4 for all 0 ≤ k ≤ K − 1. Hence, by using an argument
similar to the one preceding (4.11), we can show that

‖A(xk)‖2 ≤ 9[Dγ
Λ]2

ρ2(k + 1)
, k = 1, . . . , K − 1. (4.47)

For k = 0, . . . , K , let x∗
k := argminx∈XLρ,γ (x, λk), and lk denote the number of

inner iterations performed at step 1 of the modified I-AL method. By Theorem 2 with
φ(·) = Lρ,γ (·, λ0), Lφ = Mρ,γ , μ = γ and ε = ηγ (4.13) and (4.43), we have

l0 ≤
⌈√

8Mρ,γ

γ

⌉
max

{
1,

⌈
log

γ ‖x−1 − x∗
0‖2

2ηγ

⌉}

≤
⌈√

8Mρ,γ

γ

⌉
max

{
1,

⌈
log

γ D2
X

2ηγ

⌉}
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=
⌈√

8Mρ,γ

γ

⌉
max

{
1,

⌈
log

64γ N̄ D2
X

ρε2p

⌉}
. (4.48)

It also follows from Theorem 2 that

lk ≤
⌈√

8Mρ,γ

γ

⌉
max

{
1,

⌈
log

γ ‖xk−1 − x∗
k ‖2

2ηγ

⌉}
, ∀ k = 1, . . . , K .

Now by using (4.40) and (4.47), we have

γ ‖xk−1 − x∗
k ‖2

2
≤
(√

ηγ +
√

ρ

2
‖A(xk−1)‖

)2
≤
(

√
ηγ + 3Dγ

Λ√
2ρk

)2
.

We then conclude from the previous two observations and (4.43) that,∀ k = 1, . . . , K ,

lk ≤
⌈√

8Mρ,γ

γ

⌉
max

{
1,

⌈
2 log

(
1 + 3Dγ

Λ√
2ρkηγ

)⌉}

=
⌈√

8Mρ,γ

γ

⌉⌈
2 log

(
1 + 3Dγ

Λ√
2ρkηγ

)⌉

≤
⌈√

8Mρ,γ

γ

⌉⌈
2 log

(
1+ 3Dγ

Λ√
2ρηγ

)⌉
=
⌈√

8Mρ,γ

γ

⌉⌈
2 log

(
1+ 24N̄

1
2 Dγ

Λ

ρεp

)⌉
.

The above conclusion together with (4.44) and (4.48) then clearly imply that the total
number of inner iterations performed at step 1) of themodified I-ALmethod is bounded
by

l0 +
K∑

k=1

lk ≤ l0 + K

⌈√
8Mρ,γ

γ

⌉⌈
2 log

(
1 + 24N̄

1
2 Dγ

Λ

ρεp

)⌉

≤
⌈√

8Mρ,γ

γ

⌉{
2max

(
1,

⌈
log

64γ N̄ D2
X

ρε2p

⌉)

+ K

⌈
log

(
1 + 24N̄

1
2 Dγ

Λ

ρεp

)⌉}
. (4.49)

Moreover, let l̃K denote the number of inner iterations performed by subroutine Post-
Processing. By using Theorem 2 with φ(·) = Lρ,γ (·, λK ), Lφ = Mρ,γ , μ = γ and
ε = ζ̃ and (4.38), we have
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l̃K ≤
⌈√

8Mρ,γ

γ

⌉
max

{
1,

⌈
log

γ D2
X

2ζ̃

⌉}

≤
⌈√

8Mρ,γ

γ

⌉[
max

{
1,

⌈
log

64γ D2
X

ρε2p

⌉}
+ max

{
1,

⌈
log

16γ Mρ,γ D2
X

ε2d

⌉}]
.

(4.50)

Combining inequalities (4.46), (4.49) and (4.50), we can easily see that the total
number of inner iterations performed by the modified I-AL method is bounded by
(4.44). ��

We now state the corresponding version of Theorem 5 with respect to the modified
I-AL method.

Theorem 7 Let (εp, εd) ∈ �++ × �++ be given, and let γ be given by (4.39). For
some t > 0, consider the modified I-AL method applied to the perturbed problem
(4.33) with input

ρ = ργ (t) := 4t

εp(log T (t))
1
2

+ L f + γ

‖A‖2 , (4.51)

N̄ = N̄γ (t) :=
⌈

16t2

ργ (t)2ε2p

⌉
, ηk = ηγ (t) := ργ (t)ε2p

128N̄γ (t)
, ∀ k ≥ 0, (4.52)

where

T (t) := S1t
1
2 + S2 + S3, (4.53)

S1 :=
√

DX‖A‖2
εpεd

, S2 :=
√

DX L f

εd
+ 1 and S3 :=

√
DX‖A‖

εp
+ 3. (4.54)

Then the following statements hold:

(a) the total number of inner iterations performed by the above method is bounded
by

O
{(

S1t
1
2 + S2 [log T (t)] 14

)
[log T (t)] 34 max

(
1, log

Dγ
Λ log T (t)

t

)}
; (4.55)

(b) if t ≥ Dγ
Λ, where Dγ

Λ := minλγ ∈Λ∗
γ
‖λ0−λ∗‖ and Λ∗

γ denotes the set of Lagrange
multipliers associated with (4.33), then the above method successfully terminates
in O(log T (t)) outer iterations with an (εp, εd)-primal-dual solution of (1.1).

Proof We first show part (a). It immediately follows from Lemma 8a that the total
number of inner iterations performed by the modified I-AL method is bounded by
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(4.44) with N̄ = N̄γ (t) and ρ = ργ (t). Note that by (4.51), (4.52), and the fact that,
by (4.53) and (4.54), log T (t) ≥ 2, we have

N̄γ (t) ≤ 16t2

ργ (t)2ε2p
+ 1 ≤ log T (t) + 1 ≤ 2 log T (t). (4.56)

Also, using definitions (4.37) and (4.51), we have that

γ ≤ Mρ,γ = L f + γ + ρ‖A‖2 ≤ 2ρ‖A‖2. (4.57)

This observation together with (4.39) and (4.51) then imply that

⌈√
8Mρ,γ

γ

⌉
≤
⎡
⎢⎢⎢
4

√
ρ‖A‖2

γ

⎤
⎥⎥⎥

=
⎡
⎢⎢⎢
4

(
4t‖A‖2

γ εp(log T (t))
1
2

+ L f

γ
+ 1

) 1
2
⎤
⎥⎥⎥

≤ 4

(
4DX t‖A‖2

εpεd(log T (t))
1
2

+ DX L f

εd
+ 1

) 1
2

+ 1

≤ 8

√
DX t‖A‖2

εpεd
(log T (t))−

1
4 + 4

√
DX L f

εd
+ 5. (4.58)

Observe that, by (4.56), (4.57), (4.53), and (4.54),

log
64γ D2

X N̄γ (t)

ργ (t)ε2p
≤ log

128γ D2
X log T (t)

ργ (t)ε2p
≤ log

256‖A‖2D2
X log T (t)

ε2p

= 8 + 4 log

(‖A‖DX

εp

) 1
2 + log log T (t) = O (log T (t)) ,

(4.59)

and that, by (4.52), the fact that log x ≤ x , and (4.56),

min(N̄γ (t), Nγ )

⌈
2 log

(
1 + 24Dγ

Λ [N̄γ (t)] 12
ργ (t)εp

)⌉

≤ N̄γ (t)

⌈
2 log

(
1 + 6Dγ

Λ

t

[
log N̄γ (t)

] 1
2 [N̄γ (t)] 12

)⌉

≤ N̄γ (t)

⌈
2 log

(
1 + 6Dγ

Λ

t
N̄γ (t)

)⌉

≤ N̄γ (t)

⌈
2 log

(
1 + 12Dγ

Λ

t
log T (t)

)⌉

= O
{
log T (t)max

(
1, log

Dγ
Λ log T (t)

t

)}
. (4.60)
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It also follows from (4.57), (4.39), (4.51), (4.52), (4.53) and (4.54) that

log
16γ Mρ,γ D2

X

ε2d
≤ log

16M2
ρ,γ D2

X

ε2d
≤ log

(
8ρ‖A‖2DX

εd

)2

≤ 2 log

[
8‖A‖2DX

εd

(
4t

εp(log T (t))
1
2

+ L f + γ

‖A‖2
)]

= 2 log

[
8‖A‖2DX

εd

(
4t

εp(log T (t))
1
2

+ L f

‖A‖2 + εd

2DX‖A‖2
)]

≤ 2 log

[
8DX

(
4t‖A‖2
εpεd

+ L f

εd

)
+ 4

]
= O(log T (t)). (4.61)

Now substituting bounds (4.58), (4.59), (4.60), and (4.61) into bound (4.44), we
obtain bound (4.55). Statement (b) follows immediately from Lemma 8b and the fact
that, by (4.52), the assumption t ≥ Dγ

Λ and (4.56),

Nγ =
⌈
16[Dγ

Λ]2
ργ (t)2ε2p

⌉
≤
⌈

16t2

ργ (t)2ε2p

⌉
= N̄γ (t) ≤ 2 log T (t). (4.62)

��
Observe that the choice ofρ, N̄ , and {ηk}givenby (4.51) and (4.52) requires t ≥ DΛ

to guarantee the successful termination of the modified I-ALmethod.We now develop
a guess-and-check procedure that attempts to find such a constant t while at the same
time checks for potentially early termination of the procedure.

The modified I-AL guess-and-check procedure:

Input: Initial points λ0 ∈ �m and x−1 ∈ X , and tolerances (εp, εd) ∈ IR++×IR++.
(0) Let scalar t̂ and function ψ : �+ → � be defined as

t̂ :=
⎡
⎣S

2
2 + S2

√
S2
2 + 4(S2 + S3)

2S1

⎤
⎦
2

, (4.63)

ψ(t) := S1t
1
2 − S2

[
log(S1t

1
2 + S2 + S3)

] 1
4
,

where S1,S2 and S3 are given by (4.54). Find a point t0 ∈ [0, t̂] such that
0 ≤ ψ(t0) ≤ 1.

(1) Run the modified I-AL method with the above input and with ρ = ργ (t j ), N̄ =
N̄γ (t j ), ηk = ηγ (t j ) for k ≥ 0, where γ is given by (4.39), and ργ (·), N̄γ (·) and
ηγ (·) are defined in (4.51) and (4.52).

(2) If the modified I-AL method successfully terminates, stop; otherwise, set t j+1 =
2t j , j = j + 1, and go to step 1.
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end

We now discuss the issue about the existence of t0 satisfying 0 ≤ ψ(t0) ≤ 1.

Lemma 9 Let ψ(t) and t̂ be defined in (4.63). Then, the following statements hold:

(a) ψ(t) is continuous and non-decreasing for t ≥ 0;
(b) ψ(0) ≤ 0 and ψ(t̂) ≥ 0;
(c) there exists t0 ∈ [0, t̂] such that 0 ≤ ψ(t0) ≤ 1. Moreover, we have

S1t
1
2
0 ≤ S2 [log T (t0)] 14 + 1, (4.64)

S1t
1
2 ≥ S2[log T (t)] 14 , ∀ t ≥ t0, (4.65)

log T (t0) = O (log T (0)) , (4.66)

where T (·),S1 and S2 are defined in (4.53) and (4.54).

Proof Statement (a) immediately following from the fact that, by (4.63),

ψ ′(t) = S1

{
1 − S2

4(S1t
1
2 + S2 + S3)

[
log(S1t

1
2 + S2 + S3)

]− 3
4

}
1

2
√

t

≥ S1(1 − 1/4)
1

2
√

t
= 3S1

8
√

t
≥ 0, ∀ t > 0,

where in the first inequality we use the fact that log(S1t
1
2 + S2 + S3) ≥ 2 in view of

(4.54). It can be easily seen from (4.63) that ψ(0) ≤ 0. Noting that, by the definition
of t̂ in (4.63),

S2
1 t̂ − S2

2 (S1 t̂
1
2 + S2 + S3) = S2

1 t̂ − S1S2
2 t̂

1
2 − S2

2 (S2 + S3) = 0,

we conclude from (4.63) and the fact that log τ ≤ τ ≤ τ 2 for τ ≥ 1 that

ψ(t̂) = S1 t̂
1
2 − S2

[
log(S1 t̂

1
2 + S2 + S3)

] 1
4 ≥ S1 t̂

1
2 − S2(S1 t̂

1
2 + S2 + S3)

1
2 = 0.

We have thus shown that (b) holds. We now show that part (c) holds. The existence of
t0 ∈ [0, t̂] satisfying 0 ≤ ψ(t0) ≤ 1 follows immediately from Lemma 9. Inequality
(4.64) follows from (4.53), (4.63) and the fact ψ(t0) ≤ 1. Moreover, we conclude
from (4.53), (4.63), the assumption ψ(t0) ≥ 0 and Lemma 9(a) that

S1t
1
2 − S2

[
log T (t)

] 1
4 = S1t

1
2 − S2

[
log(S1t

1
2 + S2 + S3)

] 1
4 = ψ(t) ≥ ψ(t0) ≥ 0

for any t ≥ t0, and hence that (4.65) holds. Also note that by (4.53), (4.63) and the
fact that t0 ≤ t̂ , we have
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log T (t0) = log(S1t
1
2
0 + S2 + S3) ≤ log(S1 t̂

1
2 + S2 + S3)

= O (log(S2 + S3))

= O (log T (0)) .

��
Clearly, the existence of the required t0 follows from Lemma 9.c). Moreover, t0 can

be computed as follows. If ψ(t̂) ≤ 1, we can take t0 = t̂ . Otherwise, a binary search
procedure starting with the interval [0, t̂], which must contain the desired scalar t0,
determines such a scalar in log t̂ iterations.

We are now ready to establish the iteration-complexity of the above modified I-AL
guess-and-check procedure for obtaining an (εp, εd)-primal-dual solution of (1.1).

Theorem 8 Let (εp, εd) ∈ IR++ × IR++ be given. The modified I-AL guess-and-check
procedure described above finds an (εp, εd) -primal-dual solution of (1.1) in at most

O
{
S1[Dγ

Λ] 12 [log T (Dγ
Λ)] 34 log log T (Dγ

Λ) + S2 log T (0) log log T (0)
}

, (4.67)

inner iterations, where S1,S2, T (·), and Dγ
Λ are defined in Theorem 7.

Proof Consider parameter t0 computed in step 0 of the modified I-AL guess-and-
check procedure. Assume first that t0 ≥ Dγ

Λ. Using this assumption, Theorem 7,
relations (4.64) and (4.66), and the fact that, by (4.53) and (4.54), T (t) ≥ 4 for
every t ≥ 0, we conclude that the modified I-AL guess-and-check procedure will
successfully terminate after the first loop and that the total number of inner iterations
is bounded by

O
{(

S1t
1
2
0 + S2 [log T (t0)] 14

)
[log T (t0)] 34 max

(
1, log

Dγ
Λ log T (t0)

t0

)}

= O
{(

S1t
1
2
0 + S2 [log T (t0)] 14

)
[log T (t0)] 34 log log T (t0)

}

= O {S2 log T (t0) log log T (t0)} = O {S2 log T (0) log log T (0)} ,

which is clearly bounded by (4.67). Now assume that t0 < Dγ
Λ. Suppose that the

modified I-AL guess-and-check procedure terminates when the iteration count j is
equal to J . Let

J̄ := max{0, �log(Dγ
Λ/t0)�} (4.68)

and note that

2Dγ
Λ ≥ t J̄ := t02

J̄ ≥ Dγ
Λ. (4.69)

Theorem 7b and the second inequality in (4.69) then imply that J ≤ J̄ . Also observe
that, by relation (4.25) with L = 1, p1 = 1/2, t̄ = Dγ

Λ, K = J̄ , ν = Dγ
Λ log T (t J̄ ),

β0 = 0 and β1 = 1/
√

t0, we have
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J̄∑
j=0

t
1
2
j max

(
1, log

Dγ
Λ log T (2Dγ

Λ)

t j

)

≤ √
t0

J̄∑
j=0

⌈
1√
t0

t
1
2
j

⌉
max

(
1,

⌈
log

Dγ
Λ log T (2Dγ

Λ)

t j

⌉)

= O
{

√
t0

⌈
1√
t0

[Dγ
Λ] 12
⌉
max

(
1,

⌈
log

Dγ
Λ log T (2Dγ

Λ)

Dγ
Λ

⌉)}

= O
{(

[Dγ
Λ] 12 + √

t0
)
max

(
1,
⌈
log log T (2Dγ

Λ)
⌉)}

= O
(
[Dγ

Λ] 12 log log T (Dγ
Λ)
)

, (4.70)

where the last identity follows from the facts that t0 ≤ Dγ
Λ and log T (Dγ

Λ) ≥ 2. Using
the facts that J ≤ J̄ and the function T given by (4.53) is non-decreasing, Theorem
7(a), relations (4.65) and (4.70), and the simple observation that by (4.69), we have
t0 ≤ t j ≤ 2Dγ

Λ for every j = 1, . . . , J̄ , we conclude that the total number of inner
iterations performed by the modified I-AL guess-and-check procedure is bounded by

O

⎧⎨
⎩

J̄∑
j=0

[(
S1t

1
2
j + S2 [log T (t j )] 14

)
[log T (t j )] 34 max

(
1, log

Dγ
Λ log T (t j )

t j

)]⎫⎬
⎭

= O

⎧⎨
⎩

J̄∑
j=0

[
S1t

1
2
j [log T (t j )] 34 max

(
1, log

Dγ
Λ log T (t j )

t j

)]⎫⎬
⎭

= O

⎧⎨
⎩[log T (2Dγ

Λ)] 34S1

J̄∑
j=0

[
t
1
2
j max

(
1, log

Dγ
Λ log T (2Dγ

Λ)

t j

)]⎫⎬
⎭

= O
{
[log T (Dγ

Λ)] 34S1[Dγ
Λ] 12 log log T (Dγ

Λ)
}

,

which is clearly bounded by (4.67). ��
It is interesting to compare the iteration-complexity bound obtained in Theorem 8

with the corresponding one obtained for the quadratic penalty method in [11] to com-

pute an (εp, εd)-primal-dual solution of (1.1), namely, O
(
T (‖λ∗

γ ‖) log T (‖λ∗
γ ‖)
)
,

where λ∗
γ is the minimum-norm Lagrange multiplier for the perturbed problem (4.33).

Clearly, if the initial multiplier λ0 = 0, then ‖λ∗
γ ‖ = Dγ

λ and the latter complexity
bound reduces to O

(
T (Dγ

Λ) log T (Dγ
Λ)
)
. Note that for the situation where

S2 log T (0) log log T (0) = O
{
S1[Dγ

Λ] 12 [log T (Dγ
Λ)] 34 log log T (Dγ

Λ)
}

, (4.71)

bound (4.67) is majorized by O
(
T (Dγ

Λ)[log T (Dγ
Λ)] 34 log log T (Dγ

Λ)
)
. Clearly,

inequality (4.71) holds if L f = 0. Hence, when λ0 = 0 and (4.71) holds, the

123



Augmented Lagrangian methods 545

first complexity bound is worse than the latter one in Theorem 8 by a factor of

(log T (Dγ
Λ))

1
4 / log log T (Dγ

Λ). It should be mentioned that if a good warm-start λ0
for problem (4.33) is known, i.e., the ratio Dγ

Λ/‖λ∗
γ ‖ is small, then the complexity

bound in Theorem 8 is substantially smaller than the above one.
Note that we cannot compare the iteration-complexity of Theorem 6 with that

obtained in Theorem 8 since the first one is expressed in terms of DΛ and the latter in
terms of Dγ

Λ. However, if Dγ
Λ = O(DΛ) and (4.71) holds, then it can be easily seen

that

S1[Dγ
Λ] 12 [log T (Dγ

Λ)] 34 log log T (Dγ
Λ)

Ipd(DΛ)
≤ ε

1
4
d [log T (DΛ)] 34 log log T (DΛ)

S1(‖A‖DX DΛ)
1
4

.

(4.72)

Hence, the second complexity is better than the first one whenever Dγ
Λ = O(DΛ) and

S1 is sufficiently large.

5 Concluding Remarks

In this paper, we establish the complexity of an I-AL method to solve a special
class of convex programming problems. We also present a variant of this method
with possibly better complexity, obtained by applying the original I-AL method to a
perturbed problem. We demonstrate that both of these complexities compare favor-
ably with the corresponding ones obtained in [11] for the quadratic penalty methods.
More specifically, to compute a pair of (εp, εd)-solution of problem (1.1), the total
number of iterations (in terms of the iterations of Nesterov’s optimal method) per-

formed by the I-AL method can be bounded by O(1/(εpε
3
4
d )), while the one by

the quadratic penalty approach is bounded by O
(
1/(εpεd)

)
. Moreover, the com-

plexity of the modified I-AL method applied to the perturbed problem is given by

O
{√

1/(εpεd)
[
log
(
1/(εpεd)

)] 3
4 log log

(
1/(εpεd)

) }
, while the one of the quadratic

penalty method is given by O
{√

1/(εpεd) log
(
1/(εpεd)

)}
.

It should be noted, however, that while it is possible to derive a complexity bound
depending on DΛ instead of Dγ

Λ for the quadratic penalty method applied to the
perturbed problem (see Corollary 20 of [11]), to obtain this type of complexity for the
modified I-AL method seems to be more difficult and will be an interesting topic for
future research. Observe that some other approaches, such as Nesterov’s smoothing
technique [17] and the extra-gradient methods (see [12,13]) can also be applied to
problem (1.1). We refer to [11] for some discussions on the comparison between the
penalty-based approaches and these alternative methods.

In this paper, we present guess-and-check procedures to deal with the case when
the size of the Lagrange multiplier λ∗ (or λ∗

γ ) is unknown. However, our methods still
require the input of the Lipschitz constant L f in order to set up the stepsizes in Nes-
terov’s method, the penalty parameter ρ in the I-AL method, and the accuracy ζ in the
post-processing procedure. While the value of L f is known for some important cases,
e.g., when f is linear or quadratic, the following modifications can be incorporated
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into our algorithmic scheme to cope with unknown L f . First, we can use line search
procedures in Nesterov’s optimal method [18] or apply some recently developed uni-
formly optimal methods, e.g., those based on level methods [10], to solve subproblem
(1.2). Second, we can use an arbitrary ρ > 0 and a summable sequence {ηk}, e.g.,
ηk = ξρε2p/[128(1 + ξ)(k + 1)1+ξ ] for some ξ > 0 in the I-AL method. Such a
selection of {ηk} will result in a slightly worse complexity (see Theorem 5.2.2 of [9]).
Third, we can employ a guess-and-check procedure on ζ in the post-processing phase
by using the results in Proposition 3 to check if ζ is small enough.

Observe that in this paper, we have used the classical augmented Lagrangian func-
tion (see (2.7)) mainly for its simplicity, for example, we know how to approximate its
gradients (see Proposition 2). Recently, there have been some interesting theoretical
developments that lead to new augmented Lagrangian functions with improved exact-
ness properties [20]. It will be interesting to see if our complexity analysis can be gen-
eralized to the I-AL methods employed with these enhanced augmented Lagrangian
functions.
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