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AN ACCELERATED HPE-TYPE ALGORITHM FOR A CLASS OF
COMPOSITE CONVEX-CONCAVE SADDLE-POINT PROBLEMS∗
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Abstract. This paper proposes a new algorithm for solving a class of composite convex-concave
saddle-point problems. The new algorithm is a special instance of the hybrid proximal extragradient
framework in which a Nesterov accelerated variant is used to approximately solve the prox subprob-
lems. One of the advantages of the new method is that it works for any constant choice of proximal
stepsize. Moreover, a suitable choice of the latter stepsize yields a method with the best known
(accelerated inner) iteration complexity for the aforementioned class of saddle-point problems. In
contrast to the smoothing technique of [Y. Nesterov, Math. Program., 103 (2005), pp. 127–152],
our accelerated method does not assume that a feasible set is bounded due to its proximal point
nature. Experiment results on three problem sets show that the new method outperforms Nesterov’s
smoothing technique of [Y. Nesterov, Math. Program., 103 (2005), pp. 127–152].
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1. Introduction. A broad class of optimization, saddle-point (SP), equilibrium,
and variational inequality problems can be posed as the monotone inclusion problem;
namely, find z such that

(1.1) 0 ∈ T (z),
where T is a maximal monotone point-to-set operator. The proximal point method,
proposed by Rockafellar [16], is a classical iterative scheme for solving the monotone
inclusion problem which generates a sequence {zk} according to

‖zk − (λkT + I)−1(zk−1)‖ ≤ ek,
∞∑
k=1

ek <∞.

This method has been used as a generic framework for the design and analysis of
several implementable algorithms.

New inexact versions of the proximal point method, which uses instead relative
error criteria, were proposed by Solodov and Svaiter [18, 19, 20, 21]. In this paper,
we will use one of these variants, namely, the hybrid proximal extragradient (HPE)
framework studied in [18], to develop and analyze a new algorithm, and we now briefly
discuss this framework. The exact proximal point iteration from z with stepsize λ > 0
is given by z+ = (λT + I)−1(z), which is equivalent to

(1.2) r ∈ T (z+), λr + z+ − z = 0.
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30 YUNLONG HE AND RENATO D. C. MONTEIRO

In each step of the HPE, the above proximal system is solved inexactly with (z, λ) =
(zk−1, λk) to obtain zk = z+ as follows. For a given constant σ ∈ [0, 1), a triple
(z̃, r̃, ε) = (z̃k, r̃k, εk) satisfying the HPE error criteria

(1.3) r̃ ∈ T ε(z̃), ‖λr̃ + z̃ − z‖2 + 2λε ≤ σ2‖z̃ − z‖2
is found, where T ε denotes the ε-enlargement [3] of T . (It has the property that
T ε(z) ⊃ T (z) for each z.) Note that this construction relaxes both the inclusion
and the equation in (1.2). Finally, instead of choosing z̃ as the next iterate z+, the
HPE framework computes the next iterate z+ by means of the extragradient step
z+ = z − λr̃.

Iteration complexity results for the HPE framework were established in [11], and
these results depend on the distance of the initial iterate to the solution set instead
of the diameter of the feasible set. Applications of the HPE framework to the itera-
tion complexity analysis of several zero-order (resp., first-order) methods for solving
monotone variational inequalities and monotone inclusions (resp., SP problems) are
discussed in [11] and in the subsequent papers [10, 12]. More specifically, by viewing
Korpelevich’s method [9] as well as Tseng’s modified forward-backward splitting (MF-
BS) method [22] as special cases of the HPE framework, the authors have established
in [10, 11] the pointwise and ergodic iteration complexities of these methods applied
to monotone variational inequalities, monotone inclusions consisting of the sum of a
Lipschitz continuous monotone map and a maximal monotone operator with an easily
computable resolvent, and convex-concave SP problems.

A framework of block-decomposition (BD) prox-type algorithms is introduced in
[12] for solving the monotone inclusion problem consisting of the sum of a continuous
monotone map and a point-to-set maximal monotone operator with a separable two-
block structure. The above BD framework is a special case of the HPE framework
which approximately solves the proximal subproblem corresponding to the two-block
inclusion by (possibly approximately) solving two smaller proximal single-block sub-
problems. When the stepsize is sufficiently small, the latter two subproblems can
be approximately solved by performing a (single) step similar to the one performed
by the gradient method in the case of composite convex optimization or by Kor-
pelevich’s and/or Tseng’s MF-BS method in the more general context of variational
inequality and maximal monotone inclusions. More recently, the authors have studied
in [8] an accelerated BD prox-type algorithm for solving the SP (and, more generally,
Nash equilibrium) problem where the above two proximal subproblems (which in this
case are composite convex optimization) are solved by an accelerated variant of Nes-
terov’s optimal method. The accelerated BD method is generally able to take a much
larger stepsize than those for the aforementioned BD methods and, as a consequence,
performs a significantly lower number of outer iterations. Moreover, computational
results have shown that the accelerated BD method can substantially outperform
the aforementioned methods on many relevant classes of SP and Nash equilibrium
instances.

Given proper closed convex (possibly nonsmooth) functions g1 and g2 defined in
finite dimensional inner product spaces, this paper considers the class of composite
convex-concave SP problem

(1.4) min
x∈X

max
y∈Y

Ψ(x, y) := f(x) + 〈Ax, y〉+ g1(x) − g2(y),

or, equivalently, the problem

(1.5) min
x∈X

f(x) + g1(x) + g∗2(Ax),
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ACCELERATED HPE FOR SADDLE-POINT PROBLEMS 31

where X := dom g1, Y := dom g2, A is a linear operator, and f is a differentiable
convex function whose gradient is Lf -Lipschitz continuous on X . It is assumed that
g1 and g2 are simple functions in the sense that subproblems of the form

min
x∈X

1

2
‖x− x̃‖2 + λg1(x) and min

y∈Y
1

2
‖y − ỹ‖2 + λg2(y)(1.6)

are easy to solve for any x̃, ỹ, and λ > 0.
Since (1.4) is well known to be equivalent to the monotone inclusion problem (1.1)

with T given by

(1.7) T (x, y) = ∂(Ψ(·, y)−Ψ(x, ·))(x, y),
where Ψ is defined in problem (1.4), any instance of the HPE method, including those
already discussed above, can be used to solve it. In particular, by taking a sufficiently
small stepsize λ, Korpelevich’s (resp., Tseng’s) method is able to approximately solve
the current proximal subproblem (i.e., a triple satisfying (1.3)) by solving at most
four (resp., two) subproblems of the form (1.6).

This paper presents an accelerated instance of the HPE framework which arbitrar-
ily chooses the stepsize λ and solves (1.3) with T given by (1.7) by using a Nesterov
accelerated variant for smooth composite SP problems. Both the outer (i.e., HPE)
iteration complexity and the inner (i.e., accelerated variant) iteration complexity are
derived for the method in terms of a general stepsize λ. As in Tseng’s and Korpele-
vich’s methods, just a few (namely, three) subproblems of the form (1.6) are solved
within an inner iteration. Hence, choosing λ so as to minimize the overall number of
inner iterations is the best strategy toward minimizing the overall complexity of the
accelerated HPE method. An explicit formula in terms of ‖A‖, Lf , the distance d0
of the initial iterate to the set of saddle-points of (1.4), and the specified tolerances
is then derived for such a stepsize. Clearly, since d0 is not known a priori, the above
stepsize cannot be computed, but an alternative stepsize λ depending only on ‖A‖
and Lf is provided which is optimal for the most common SP problems of the form
(1.4). Moreover, when the feasible set X×Y is bounded, the expression for the above
optimal stepsize with d0 replaced by the diameter of X × Y yields another stepsize
which implies (if an appropriate choice of inner product in the (x, y)-space is made)
an overall complexity for the accelerated HPE method that is similar to that of Nes-
terov’s smoothing technique (see [14]) for finding an ε-saddle-point of (1.4) (see (5.9)
below). It is worth emphasizing that, in contrast to Nesterov’s smoothing technique of
[14], our accelerated method for solving (1.4) does not assume that X×Y is bounded
due to its proximal point nature.

Our paper is organized as follows. Section 2 contains three subsections which
provide the necessary background material for our presentation. More specifically,
subsection 2.1 presents the notation and basic definitions used in the paper. Sub-
section 2.2 reviews a Nesterov accelerated variant for solving composite convex opti-
mization problems. Subsection 2.3 discusses the HPE framework for the monotone
inclusion problem. Section 3 reviews the definition of the SP problem, its connection
to the composite convex-concave min-max problem, and the notion of an approximate
saddle-point. Moreover, this section specializes the HPE framework to the context of
the SP problem and states its convergence properties. Section 4 presents a scheme
for finding a solution of (1.3) with T given by (1.4) and (1.7) (and without loss of
generality (w.l.o.g.) λ = 1) based on the Nesterov’s accelerated variant of subsection
2.2 applied to an associated composite convex-concave min-max problem. Section 5
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32 YUNLONG HE AND RENATO D. C. MONTEIRO

presents a special instance of the HPE framework based on the accelerated scheme
of section 4 for solving the composite convex-concave min-max problem (1.4) and de-
rives its ergodic outer and overall inner iteration complexities for finding approximate
saddle-points. It also discusses optimal ways of choosing the stepsize so as to min-
imize the overall ergodic inner iteration complexity of the accelerated HPE method
for solving (1.4). Finally, numerical results are presented in section 6 showing that
the new method outperforms Nesterov’s smooth approximation scheme [14] on three
classes of composite convex-concave min-max problems of the form (1.4).

1.1. Previous most related works. In the context of variational inequalities,
Nemirovski [13] has established the ergodic iteration complexity of an extension of
Korpelevich’s method [9], namely, the Mirror-prox algorithm, under the assumption
that the feasible set of the problem is bounded.

Nesterov’s smoothing scheme [14] solves problem (1.4) under the assumption that
X and Y are compact convex sets and g1 is the indicator function of X . It consists of
first approximating the objective function of (1.4) by a convex differentiable function
with Lipschitz continuous gradient and then applying an accelerated gradient-type
method (see, e.g., [14, 2, 23]) to the resulting approximation problem. It is shown
that, if the approximation is properly chosen, the above scheme obtains an ε solution
of (1.4) in at most

O
(
‖A‖
ε
DXDY +

√
Lf
ε
DX

)
iterations, where DX and DY are the diameters of X and Y . The latter bound is also
known to be optimal (see, for example, the discussion in paragraph (1) of subsection
1.1 of [5]).

Chambolle and Pock [4] have developed and established the convergence rate for
a primal-dual method for solving problem (1.4) in the context of f(x) being simple
and g1 being the indicator function of the feasible set X . Extensions of Chambolle
and Pock’s algorithm are also studied in [6, 7, 24]. A more recent paper [5] considers
problem (1.4) with g1 being the indicator function of the feasible set X and proposed
an accelerated primal-dual algorithm that achieved an optimal convergence rate for
both cases that the feasible set of the problem is bounded or unbounded.

2. Preliminaries. This section contains three subsections. The first presents
the notation and basic definitions that will be used in the paper. The second sub-
section reviews a variant of Nesterov’s accelerated method for the composite convex
optimization problem. The third subsection describes the HPE framework for the
monotone inclusion problem.

2.1. Notation and basic definitions. We denote the sets of real numbers by
	. For a matrixW ∈ 	m×n, we denote its Frobenius norm by ‖W‖. Let Sn represent
the linear space of n × n real symmetric matrices. For a matrix W ∈ Sn, we denote
its largest eigenvalue by θmax(W ). Let 
z� denote the smallest integer not less than
z ∈ 	. The nth unit simplex Δn ⊆ 	n is defined as

(2.1) Δn =

{
z ∈ 	n :

n∑
i=1

zi = 1, zi ≥ 0, i = 1, . . . , n

}
.

Throughout this paper, we let Z denote a finite dimensional inner product space
with associated inner product denoted by 〈·, ·〉 and the induced norm denoted by ‖ ·‖.

D
ow

nl
oa

de
d 

02
/1

3/
16

 to
 1

43
.2

15
.3

3.
35

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ACCELERATED HPE FOR SADDLE-POINT PROBLEMS 33

For a given set Ω ⊂ Z, the diameter DΩ of Ω is defined as

(2.2) DΩ := sup{‖z − z′‖ : z, z′ ∈ Ω},
and the indicator function IΩ : Z → (−∞,∞] of Ω is defined as

IΩ(z) =
{
0, z ∈ Ω,

∞, z /∈ Ω.

Also, if Ω is a nonempty closed convex set, the orthogonal projection PΩ : Z → Z
onto Ω is defined as

PΩ(z) = argminz′∈Ω‖z′ − z‖ ∀z ∈ Z.
A relation T ⊆ Z × Z can be identified with a point-to-set operator T : Z ⇒ Z

in which

T (z) := {r ∈ Z : (z, r) ∈ T } ∀z ∈ Z.
Note that the relation T is then the same as the graph of the point-to-set operator T
defined as

Gr(T ) := {(z, r) ∈ Z × Z : r ∈ T (z)}.
An operator T : Z ⇒ Z is monotone if

〈r − r̃, z − z̃〉 ≥ 0 ∀(z, r), (z̃, r̃) ∈ Gr(T ).
Moreover, T is maximal monotone if it is monotone and maximal in the family of
monotone operators with respect to the partial order of inclusion; i.e., S : Z ⇒ Z
is monotone and Gr(S) ⊃ Gr(T ) implies that S = T . Given a scalar ε, the ε-
enlargement of a point-to-set operator T : Z ⇒ Z is the point-to-set operator T ε :
Z ⇒ Z defined as

(2.3) T ε(z) = {r ∈ Z | 〈z − z̃, r − r̃〉 ≥ −ε ∀z̃ ∈ Z, ∀r̃ ∈ T (z̃)} ∀z ∈ Z.
The effective domain of a function f : Z → [−∞,∞] is defined as dom f := {z ∈

Z : f(z) < ∞}. A function f : Z → [−∞,∞] is said to be proper if dom f �= ∅ and
f(z) > −∞ for every z. Moreover, if f is differentiable at point z̃ such that f(z̃) ∈ 	,
its first-order (affine) approximation at z̃ is defined as

lf (z; z̃) : = f(z̃) + 〈∇f(z̃), z − z̃〉 ∀z ∈ Z.(2.4)

If f is in addition convex, the following inequality holds for all z ∈ Z:
(2.5) lf(z; z̃) ≤ f(z).
The conjugate f∗ of f is the function f∗ : Z → [−∞,∞] defined as

f∗(r) = sup
z∈Z
〈r, z〉 − f(z) ∀r ∈ Z.

Let a proper function f : Z → (−∞,+∞] be given. Given a scalar ε ≥ 0, the
ε-subdifferential of f is the operator ∂εf : Z ⇒ Z defined as

(2.6) ∂εf(z) = {r | f(z̃) ≥ f(z) + 〈z̃ − z, r〉 − ε ∀z̃ ∈ Z} ∀z ∈ Z.
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34 YUNLONG HE AND RENATO D. C. MONTEIRO

When ε = 0, the operator ∂εf is simply denoted by ∂f and is referred to as the
subdifferential of f . The operator ∂f is trivially monotone and is maximal monotone
whenever f is closed convex [15].

The following result lists some useful properties about the ε-subdifferential of a
proper convex function.

Proposition 2.1. Let a proper function f : Z → (−∞,+∞] be given. Then
(a) if r ∈ ∂f(z) and f(z̃) ∈ 	, then r ∈ ∂εf(z̃), where ε := f(z̃) − [f(z) +
〈z̃ − z, r〉] ≥ 0; and

(b) if f is a closed convex function, then r ∈ ∂f(z) is equivalent to z ∈ ∂f∗(r).
The domain of a point-to-point map F is denoted by DomF . For a constant

L ≥ 0, a map F : DomF ⊆ Z → Z is said to be L-Lipschitz continuous on Ω ⊆ DomF
if

‖F (z)− F (z̃)‖ ≤ L‖z − z̃‖ ∀z, z̃ ∈ Ω;

moreover, if in addition Ω = DomF , we will simply say that F is L-Lipschitz contin-
uous.

In this paper, a strongly convex function with modulus β > 0 is referred to as a
β-strongly convex function. Moreover, the terminology “0-strongly convex function”
is used to refer to a convex function. This terminology has the benefit of allowing us
to treat both the convex and the strongly convex cases simultaneously.

The following result gives a characterization of a β-strongly convex function where
β > 0 in terms of its conjugate.

Proposition 2.2. For a scalar β > 0 and a proper closed convex function
f : Z → [−∞,∞], the following two properties are equivalent:

(a) f is a β-strongly convex function;
(b) f∗ is differentiable everywhere and ∇f∗ is 1/β-Lipschitz continuous.
Proof. This proposition is equivalent to Proposition 12.60 of [17] in view of the

well-known fact that f = f∗∗.

2.2. Accelerated method for composite convex optimization. This sub-
section reviews a variant of Nesterov’s accelerated first-order method [14, 23] for
solving the composite convex optimization problem.

Let X denote a finite dimensional inner product space with associated inner prod-
uct and norm denoted by 〈·, ·〉X and ‖·‖X , respectively. Consider the composite convex
optimization problem

(2.7) min p(u) := ψ(u) + g(u),

where the functions ψ, g : X → [−∞,∞] satisfy the following conditions:
(A.1) g is a proper closed μ-strongly convex function for some μ ≥ 0;
(A.2) ψ is differentiable (hence finite) and convex on a closed convex set Ω ⊇ X :=

dom g;
(A.3) the gradient of the function ψ is L-Lipschitz continuous on Ω.
We now explicitly state a variant of Nesterov’s accelerated method for solving

problem (2.7), which is due to Tseng (see Algorithm 3 in [23]).

[Algorithm 1] A variant of Nesterov’s accelerated algorithm:
(0) Let u0 ∈ X be given, and set Γ0 = 0, ũ0 = w0 = PΩ(u0), j = 1;
(1) let Γj > Γj−1 be such that

(2.8) Γj(Γj−1μ+ 1) = L(Γj − Γj−1)
2,
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and compute (uj , wj , ũj) ∈ Ω×X ×X as

uj :=
Γj−1

Γj
ũj−1 +

Γj − Γj−1

Γj
wj−1,(2.9)

wj := argmin

j∑
i=1

Γi − Γi−1

Γj
lψ(u;ui) + g(u) +

1

2Γj
‖u− u0‖2X ,(2.10)

ũj :=
Γj−1

Γj
ũj−1 +

Γj − Γj−1

Γj
wj ;(2.11)

(2) set j ← j + 1, and go to step 1.

end

We now make a few remarks about the relationship between the above method
and Algorithm 3 of [23]. First, the latter method considers the case in which g is
convex, while Algorithm 1 handles the more general case in which g is a strongly
convex function with modulus μ. The remarks that follow all refer to the special case
of Algorithm 1 above with μ = 0. Second, Algorithm 3 of [23] computes wj as in
(2.10) but with the quadratic term ‖u−u0‖2X /2 replaced by a general strongly convex
function h(u). Third, Algorithm 3 of [23] assumes that X is closed and computes
ũ0 and w0 as ũ0 = w0 := argmin{h(u) : u ∈ X}. Clearly, in view of the latter two
remarks, Algorithm 1 with the assumption that μ = 0 and X is closed is a special
case of Algorithm 3 of [23] in which the sequences {θj} and {ϑj} used by it are given
by θj = ϑj = [1/(LΓj+1)]

1/2.

We now state the main technical result from which the convergence rate of the
above Nesterov accelerated variant immediately follows. Although its proof is similar
to that of Corollary 3(a) of [23], we provide its proof in the appendix for the sake of
completeness.

Proposition 2.3. The sequences {Γj}, {ũj}, and {uj} generated by Algorithm
1 satisfy the following inequalities for any j ≥ 1:

(2.12) Γj ≥ 1

L
max

{
j2

4
,

(
1 +

√
μ

4L

)2(j−1)
}

and

(2.13) Γjp(ũj) ≤
j∑
i=1

(Γi − Γi−1)[lψ(u;ui) + g(u)] +
1

2
‖u− u0‖2X ∀u ∈ X.

As a consequence, the sequence {lψ,j} of affine functions defined as

(2.14) lψ,j(u) :=

j∑
i=1

Γi − Γi−1

Γj
lψ(u;ui) ∀u ∈ X

satisfies

(2.15) lψ,j ≤ ψ, p(ũj) ≤ lψ,j(u) + g(u) +
1

2Γj
‖u− u0‖2X ∀u ∈ X.
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2.3. HPE framework for the monotone inclusion problem. Let T : Z ⇒
Z be a maximal monotone operator. The monotone inclusion problem for T consists
of finding z ∈ Z such that

(2.16) 0 ∈ T (z).
We also assume throughout this subsection that this problem has a solution, that is,
that T−1(0) �= ∅.

We next review the HPE framework introduced in [18] for solving the above
problem and state the iteration complexity results obtained for it in [11].

[HPE] Hybrid proximal extragradient framework:
(0) Let z0 ∈ Z and 0 ≤ σ < 1 be given, and set k = 1;
(1) choose λk > 0, and find z̃k, r̃k ∈ Z, σk ∈ [0, σ], and εk ≥ 0 such that

(2.17) r̃k ∈ T εk(z̃k), ‖λk r̃k + z̃k − zk−1‖2 + 2λkεk ≤ σ2
k‖z̃k − zk−1‖2 ;

(2) set zk = zk−1 − λk r̃k, set k← k + 1, and go to step 1.
end

We now make several remarks about the HPE framework. First, the HPE frame-
work does not specify how to choose λk and how to find z̃k, r̃k, and εk as in (2.17).
The particular choice of λk and the algorithm used to compute z̃k, r̃k, and εk will
depend on the particular implementation of the method and the properties of the
operator T . Second, if z̃ := (λkT + I)−1zk−1 is the exact proximal point iterate or,
equivalently,

r̃ ∈ T (z̃),(2.18)

λk r̃ + z̃ − zk−1 = 0(2.19)

for some r̃ ∈ Z, then (z̃k, r̃k) = (z̃, r̃) and εk = 0 satisfies (2.17). Therefore, the error
criterion (2.17) relaxes the inclusion (2.18) to r̃ ∈ T ε(z̃) and relaxes (2.19) by allowing
a small error relative to ‖z̃k − zk−1‖.

We define a sequence of ergodic means {z̃ak} associated with {z̃k} as

(2.20) z̃ak :=
1

Λk

k∑
i=1

λiz̃i, where Λk :=

k∑
i=1

λi,

and define the sequences of ergodic residuals {r̃ak} and {εak} as

(2.21) r̃ak :=
1

Λk

k∑
i=1

λir̃i, εak :=
1

Λk

k∑
i=1

λi(εi + 〈z̃i − z̃ak , r̃i − r̃ak〉).

The following result describes the pointwise and ergodic convergence rate proper-
ties of the HPE framework. Its proof can be found in Theorem 4.4, Lemma 4.5, and
Theorem 4.7 of [11].

Theorem 2.4. Let d0 denote the distance of z0 to T−1(0). Then, for every
k ∈ N, the following statements hold:

(a) (Pointwise convergence rate) r̃k ∈ T εk(z̃k), and there exists an index i ≤ k
such that

‖r̃i‖ ≤ d0

√√√√1 + σ

1− σ

(
1∑k

j=1 λ
2
j

)
, εi ≤ σ2d20λi

2(1− σ2)
∑k

j=1 λ
2
j

.
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(b) (Ergodic convergence rate) εak ≥ 0, r̃ak ∈ T ε
a
k(z̃ak), and

‖r̃ak‖ ≤
2d0
Λk

, εak ≤
2d20
Λk

(
1 +

σ√
(1− σ2)

)
.

3. HPE framework for saddle-point problem. The section reviews the def-
inition of the saddle-point (SP) problem, its connection to the composite convex-
concave min-max problem, and the notion of an approximate saddle-point. Moreover,
this section specializes the HPE framework to the context of the SP problem and
states its convergence properties.

Throughout this paper, we let X be the finite dimensional inner product space as
described in subsection 2.2 and Y denote a finite dimensional inner product space with
associated inner product denoted by 〈·, ·〉Y and associated norm denoted by ‖ · ‖Y .
We endow the product space X × Y with the canonical inner product defined as

(3.1) 〈(x, y), (x′, y′)〉 = 〈x, x′〉X + 〈y, y′〉Y ∀(x, y), (x′, y′) ∈ X × Y.
The associated norm, denoted by ‖ · ‖ for brevity, is then given by

‖(x, y)‖ =
√
‖x‖2X + ‖y‖2Y ∀(x, y) ∈ X × Y.

We will now review the SP problem and some of its basic properties. Given two
nonempty convex sets X ⊆ X and Y ⊆ Y, we consider throughout this section a
function Ψ : X × Y → [−∞,+∞] satisfying the following condition.

(B.1) Ψ(x, y) is finite-valued on X × Y and

(3.2) Ψ(x, y) =

{
∞, x /∈ X,
−∞, x ∈ X, y /∈ Y.

The SP problem determined by the triple (Ψ;X,Y ), denoted by SP (Ψ;X,Y ),
consists of finding a pair (x, y) ∈ X × Y such that

(3.3) Ψ(x, y′) ≤ Ψ(x, y) ≤ Ψ(x′, y) ∀(x′, y′) ∈ X × Y.
Clearly, (x, y) is a saddle-point of SP (Ψ;X,Y ) if and only if (x, y) ∈ X × Y and

(3.4) (0, 0) ∈ T (x, y) := ∂[Ψ(·, y)−Ψ(x, ·)](x, y).
Define the primal and dual functions p : X → (−∞,+∞] and d : Y → [−∞,+∞),
respectively, as

(3.5) p(x̃) = sup
ỹ∈Y

Ψ(x̃, ỹ), d(ỹ) = inf
x̃∈X

Ψ(x̃, ỹ) ∀(x̃, ỹ) ∈ X × Y,

and consider the pair of optimization problems associated with SP (Ψ;X,Y ):

(3.6) p∗ := inf
x̃∈X

p(x̃) = inf
x̃∈X

sup
ỹ∈Y

Ψ(x̃, ỹ)

and

(3.7) d∗ := sup
ỹ∈Y

d(ỹ) = sup
ỹ∈Y

inf
x̃∈X

Ψ(x̃, ỹ).
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38 YUNLONG HE AND RENATO D. C. MONTEIRO

Then, the weak duality inequality says that

(3.8) p(x̃) ≥ d(ỹ) ∀(x̃, ỹ) ∈ X × Y.

Moreover, it is well known that (x, y) is a saddle-point if and only if (x, y) ∈ X × Y
and p(x) = d(y). In view of (3.8), the latter condition is equivalent to x ∈ X and
y ∈ Y being optimal solutions of (3.6) and (3.7), respectively, and the optimal duality
gap p∗ − d∗ being equal to zero.

We now give a definition of an approximate saddle-point.

Definition 3.1. Given (ρ, ε) ∈ 	+ × 	+, z = (x, y) ∈ X × Y , r ∈ X × Y, and
ε̃ ∈ 	+, the triple (z, r, ε̃) is called a (ρ, ε)-saddle-point of Ψ if ‖r‖ ≤ ρ, ε̃ ≤ ε, and

(3.9) r ∈ ∂ε̃[Ψ(·, y)−Ψ(x, ·)](x, y).

Moreover, the pair (z, ε̃) is a called an ε-saddle-point if (z, 0, ε̃) is a (0, ε)-saddle-
point.

Before describing a special case of the HPE framework for solving the SP problem,
we introduce two more assumptions.

(B.2) Ψ(·, y) and −Ψ(x, ·) are proper closed convex functions for every (x, y) ∈
X × Y ;

(B.3) the inclusion (3.4) has a solution, i.e., T−1(0) �= ∅.
A function Ψ : X ×Y → [−∞,+∞] satisfying conditions (B.1) and (B.2) for some

nonempty convex sets X and Y is called a closed convex-concave function on X × Y .
It is well known that its associated map T defined in (3.4) is maximal monotone (see,
for example, Theorem 6.3.2 in [1]).

We are ready to state a special case of the HPE framework for solving the mono-
tone inclusion problem (3.4), and hence the SP problem SP (Ψ;X,Y ).

[SP-HPE] Hybrid proximal extragradient framework for solving SP (Ψ;X,Y ):

(0) Let (x0, y0) ∈ X × Y, λ > 0, and 0 ≤ σ < 1 be given, and set k = 1;
(1) find (x̃k, ỹk) ∈ X × Y, r̃k = (r̃xk , r̃

y
k) ∈ X × Y, and εk ≥ 0 such that

(r̃xk , r̃
y
k) ∈ ∂εk [Ψ(·, ỹk)−Ψ(x̃k, ·)](x̃k, ỹk),(3.10)

‖λr̃xk + x̃k − xk−1‖2X + ‖λr̃yk + ỹk − yk−1‖2Y + 2λεk(3.11)

≤ σ2
(‖x̃k − xk−1‖2X + ‖ỹk − yk−1‖2Y

)
;

(2) set xk = xk−1 − λr̃xk , yk = yk−1 − λr̃yk , and k← k + 1, and go to step 1.
end

We now make several remarks about the SP-HPE framework. First, due to
Lemma 3.2 below, the SP-HPE framework is a special case of the HPE framework
in which λk := λ. In fact, the SP-HPE framework could be stated in terms of a se-
quence of variable stepsizes {λk}, but we assume for simplicity that λk = λ. Second,
similar to the HPE framework, the SP-HPE framework does not specify how to find
(x̃k, ỹk), r̃k, and εk satisfying the HPE error condition in (3.10) and (3.11). Section
5 describes a special instance of the SP-HPE framework in which (x̃k, ỹk), r̃k, and εk
are obtained by a variant of Nesterov’s accelerated method. Third, using the fact that
the inclusion in (3.10) is stronger than the inclusion in (2.17), we derive in Theorem
3.4 a finer version of Theorem 2.4 with λk = λ specialized to the context of the SP
problem (3.3).

D
ow

nl
oa

de
d 

02
/1

3/
16

 to
 1

43
.2

15
.3

3.
35

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ACCELERATED HPE FOR SADDLE-POINT PROBLEMS 39

Before stating the pointwise and ergodic convergence rate results for the SP-HPE
framework, we give two preliminary technical results.

Lemma 3.2. For each (x, y) ∈ X × Y and ε ≥ 0, we have

∂ε(Ψ(·, y)−Ψ(x, ·))(x, y) ⊆ T ε(x, y),

where T is defined in (3.4).
Proof. Let r ∈ ∂ε(Ψ(·, y)−Ψ(x, ·))(x, y) be given. This clearly implies that

Ψ(x̃, y)−Ψ(x, ỹ) ≥ 〈(x̃− x, ỹ − y), r〉 − ε ∀(x̃, ỹ) ∈ X × Y.

On the other hand, it follows from the definition of T in (3.4) that any r̃ ∈ T (x̃, ỹ)
satisfies

Ψ(x, ỹ)−Ψ(x̃, y) ≥ 〈(x − x̃, y − ỹ), r̃〉.

Summing up the above two inequalities, we then conclude that

〈(x − x̃, y − ỹ), r − r̃〉 ≥ −ε ∀(x̃, ỹ) ∈ X × Y, ∀r̃ ∈ T (x̃, ỹ),

and hence that r ∈ T ε(x, y) in view of the the definition of T ε(·) in (2.3).

Lemma 3.3. Let X ⊆ 	n and Y ⊆ 	m be given convex sets, and let Γ : X×Y → 	
be a function such that, for each pair (x, y) ∈ X × Y , the function Γ(·, y) − Γ(x, ·) :
X × Y → 	 is convex. Suppose that, for i = 1, . . . , k, (xi, yi) ∈ X × Y and (vi, wi) ∈
	n ×	m satisfies

(vi, wi) ∈ ∂εi
(
Γ(·, yi)− Γ(xi, ·)

)
(xi, yi).

Let α1, . . . , αk ≥ 0 be such that
∑k

i=1 αi = 1, and define

(xa, ya) =

k∑
i=1

αi(xi, yi), (va, wa) =

k∑
i=1

αi(vi, wi),

εa :=

k∑
i=1

αi[εi + 〈xi − xa, vi〉+ 〈yi − ya, wi〉].

Then, εa ≥ 0 and

(3.12) (va, wa) ∈ ∂εa
(
Γ(·, ya)− Γ(xa, ·)

)
(xa, ya).

The proof of Lemma 3.3 can be found in Proposition 5.1 of [10].

The following result describes the pointwise and ergodic convergence rate prop-
erties of the SP-HPE framework.

Theorem 3.4. Consider the sequences {(x̃k, ỹk)}, {r̃k} = {(r̃xk , r̃yk)}, and {εk}
generated by the SP-HPE framework, and define, for every k ∈ N,

(3.13) (x̃ak, ỹ
a
k) :=

1

k

k∑
i=1

(x̃i, ỹi), r̃ak :=
1

k

k∑
i=1

(r̃xi , r̃
y
i ),
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and

εak :=
1

k

k∑
i=1

[εi + 〈(x̃i − x̃ak, ỹi − ỹak), (r̃xi , r̃yi )−r̃ak〉].(3.14)

Let d0 denote the distance of (x0, y0) to the solution set of SP (Ψ;X,Y ). Then, for
every k ∈ N, the following statements hold:

(a) (Pointwise convergence rate) the triple ((x̃k, ỹk), r̃k, εk) is an (‖r̃k‖, εk)-saddle-
point of Ψ, or, equivalently, (3.10) holds, and there exists an index i ≤ k such
that

(3.15) ‖r̃i‖ ≤ d0
λ

√
1 + σ

k(1 − σ) , εi ≤ σ2d20
2kλ(1− σ2)

.

(b) (Ergodic convergence rate) εak ≥ 0, the triple ((x̃ak, ỹ
a
k), r̃

a
k , ε

a
k) is an (‖r̃ak‖, εak)-

saddle-point of Ψ, or, equivalently,

(3.16) r̃ak ∈ ∂εak(Ψ(·, ỹak)−Ψ(x̃ak, ·))(x̃ak , ỹak),
and

(3.17) ‖r̃ak‖ ≤
2d0
λk

, εak ≤
2d20
λk

(
1 +

σ√
(1− σ2)

)
.

Proof. The first claim in (a) is obvious. Since, by (3.10) and Lemma 3.2, we have
r̃k ∈ T εk(x̃k, ỹk), where T is defined in (3.4), we conclude that the SP-HPE framework
is a special instance of the HPE framework applied to (3.4), where Z := X × Y is
endowed with the inner product defined in (3.1). The second claim in (a) then follows
Theorem 2.4(a). Moreover, inclusion (3.16) follows from (3.10) and Lemma 3.3, and
the bounds in (3.17) follow from Theorem 2.4(b) with λk = λ.

4. Solving the HPE error condition. This section presents a scheme, to-
gether with its iteration-complexity analysis, for finding a solution of the HPE error
condition (3.10)–(3.11) with Ψ given by (1.4) (and w.l.o.g. λ = 1). The scheme is
based on the Nesterov accelerated variant of subsection 2.2 applied to an associated
composite convex-concave min-max problem.

This section considers the following problem corresponding to the special case of
step 1 of the SP-HPE framework in which λ = 1.

(P1) Given convex sets X ⊂ X and Y ⊂ Y, a closed convex-concave function
Ψ on X × Y , a pair (u0, v0) ∈ X × Y, and a scalar σ ∈ (0, 1], the problem is to
find (ũ, ṽ) ∈ X × Y, (r̃u, r̃v) ∈ X × Y and ε̃ ≥ 0 such that

(r̃u, r̃v) ∈ ∂ε̃ [Ψ(·, ṽ)−Ψ(ũ, ·)] (ũ, ṽ),(4.1)

‖r̃u + ũ− u0‖2X + ‖r̃v + ṽ − v0‖2Y + 2ε̃ ≤ σ2
(‖ũ− u0‖2X + ‖ṽ − v0‖2Y

)
.(4.2)

This section presents a scheme based on the Nesterov accelerated variant of sub-
section 2.2 for solving problem (P1) where Ψ has the bilinear structure

(4.3) Ψ(u, v) = f(u) + 〈Au, v〉+ g1(u)− g2(v) ∀(u, v) ∈ X × Y
and the following conditions hold.
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(C.1) A : X → Y is a linear operator.
(C.2) g1 : X → [−∞,∞] and g2 : Y → [−∞,∞] are proper closed convex functions

such that dom g1 = X and dom g2 = Y .
(C.3) f is convex on a closed convex set Ω ⊇ X .
(C.4) f is differentiable on Ω, and ∇f is Lf -Lipschitz continuous on Ω.
We now make two remarks about problem (P1). First, finding the solution of the

exact version of problem (P1), i.e., the one in which σ = 0, is equivalent to finding
the unique saddle-point of

(4.4) min
u∈X

max
v∈Y

Ψ(u, v) +
1

2
‖u− u0‖2 − 1

2
‖v − v0‖2

where Ψ is given by (4.3). More specifically, if (ũ, ṽ) is the exact saddle-point of
the above problem, then (ũ, ṽ) and the quantities (r̃u, r̃v) := (u0 − ũ, v0 − ṽ) and
ε̃ := 0 satisfy (4.1) and (4.2) with σ = 0. Second, although the above SP problem has
essentially the same structure as the one we are interested in solving, namely, (1.4),
its primal function (see (3.5)) has the key property that it is the composite sum of
the easy convex nonsmooth function g1 and a smooth convex function with Lipschitz
continuous gradient. Hence, approximate solutions of (4.4) can be obtained by using
a Nesterov accelerated variant for composite convex optimization problems (e.g., the
one in subsection 2.2).

In view of the two observations above, it is reasonable to expect that approximate
solutions of (4.4) yield solutions of problem (P1) (with σ > 0). Rather than tackling
the latter issue in an abstract setting, we instead propose a scheme based on the
Nesterov accelerated variant of subsection 2.2 applied to (4.4) to obtain a solution of
problem (P1) and derive its corresponding iteration complexity.

We next discuss how the composite convex-concave min-max problem (4.4) can
be viewed as a composite convex optimization problem (2.7) satisfying conditions
(A.1)–(A.3). Clearly, (4.4) is a special case of (2.7) in which

ψ(u) := f(u) + φ̃(u), g(u) := g1(u) +
1

2
‖u− u0‖2X ,(4.5)

and

φ̃(u) := max
v

{
φ(u, v) := 〈Au, v〉 − g2(v) − 1

2
‖v − v0‖2Y

}
.(4.6)

It is apparent that the above function g satisfies condition (A.1) with μ = 1. The
following result implies that the above ψ satisfies conditions (A.2) and (A.3). Its proof
for the case in which Y is compact is well known (see, for example, [14]). Since we are
not assuming the latter condition, we include for the sake of completeness a simple
proof of the more general version given below. Its statement uses the following notion
of the induced norm of a linear operator A : X → Y defined as

‖A‖ := max
x
{‖Ax‖Y : ‖x‖X ≤ 1}.

Proposition 4.1. The following statements hold:
(a) For every u ∈ X , the maximization problem in (4.6) has a unique optimal

solution v(u), i.e.,

(4.7) v(u) := argmax
v
〈Au, v〉 − g2(v)− 1

2
‖v − v0‖2Y ;
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(b) φ̃ is convex, differentiable everywhere on X , ∇φ̃ is ‖A‖2-Lipschitz continuous
on X , and

(4.8) ∇φ̃(u) = A∗v(u) ∀u ∈ X ;

(c) for every u, ũ ∈ X ,

(4.9) lφ̃(u; ũ) = φ(u, v(ũ)).

Proof. (a) This statement follows immediately from the fact that the negative
of the objective function of the max problem in (4.7) is proper, closed, and strongly
convex.

(b) Letting g̃2(v) := g2(v) + ‖v− v0‖2/2 and using the definition of φ̃ in (4.6), we
easily see that

(4.10) φ̃(u) = g̃∗2(Au) ∀u ∈ X .

Moreover, noting that g̃2 is proper, closed, and strongly convex with modulus one,
we conclude from Proposition 2.2 with f = g̃2 that g̃∗2 is differentiable everywhere on
Y and ∇g̃∗2 is 1-Lipschitz continuous. The above two observations then easily imply
that φ̃ is convex, differentiable everywhere on X , and ∇φ̃ is ‖A‖2-Lipschitz continuous
on X . Moreover, the optimality condition for (4.7) implies that Au ∈ ∂g̃2(v(u)) and
hence that v(u) = ∇g̃∗2(Au) in view of Proposition 2.1(c). Now, (4.8) follows by
differentiating (4.10) and using the latter conclusion.

(c) Using (4.8) and the definitions of lφ̃(·, ·), φ(·, ·), and v(u) in (2.4), (4.6), and
(4.7), respectively, we easily see that

lφ̃(u; ũ) = φ̃(ũ) + 〈∇φ̃(ũ), u− ũ〉 = φ(ũ, v(ũ)) + 〈A∗v(ũ), u− ũ〉 = φ(u, v(ũ)).

In view of the above result, we conclude that the function ψ defined in (4.5)
satisfies conditions (A.2) and (A.3) of subsection 2.2 with L = Lf + ‖A‖2. We can
then use Algorithm 1 to approximately solve (4.4) and hence (P1), as will be shown
later in this section.

We now state our accelerated scheme for solving problem (P1). It is essentially
Algorithm 1 applied to (2.7) with Ψ and g given by (4.5) and (4.6), respectively,
parameter μ set to 1, and endowed with two important refinements as follows. The
first, due to Nesterov (see (4.2) of [14] or Corollary 3(c) of [23]), computes a dual
iterate ṽj as in (4.11), which, together with the primal iterate ũj , provides the first
candidate pair (ũ, ṽ) = (ũj, ṽj) for (P1). The second (see step 2 below) gives a recipe
for computing the second candidate pair (r̃u, r̃v) ∈ X × Y and scalar ε̃ ≥ 0, which,
together with the above pair (ũ, ṽ), yield a candidate solution for (P1).
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[Algorithm 2] Accelerated method for problem (P1):

Input: f , Lf , A, g1, and g2 as in conditions (C.1)–(C.4), (u0, v0) ∈ X × Y, and
σ ∈ (0, 1].

(0) set L = Lf + ‖A‖2, Γ0 = 0, ũ0 = w0 = PΩ(u0), ṽ0 = 0, and j = 1;
(1) compute Γj , uj, and v(uj) as in (2.8) with μ = 1, (2.9), and (4.7), respec-

tively, (ṽj , wj) ∈ Y ×X as

ṽj :=
Γj−1

Γj
ṽj−1 +

Γj − Γj−1

Γj
v(uj),(4.11)

wj := argminu lf,j(u) + 〈A∗ṽj , u〉+ g1(u) +
cj
2
‖u− u0‖2X ,(4.12)

and ũj as in (2.11), where

(4.13) cj := 1 +
1

Γj
, lf,j(u) :=

j∑
i=1

Γi − Γi−1

Γj
lf (u;ui);

(2) set

ε̃j =
1

2Γj
‖ũj − u0‖2X , r̃uj := cj(u0 − wj), r̃vj := v0 − v(ũj);(4.14)

(3) if ‖r̃uj + ũj−u0‖2X +‖r̃vj + ṽj −v0‖2Y +2ε̃j ≤ σ2‖ũj−u0‖2X +σ2‖ṽj−v0‖2Y ,
then terminate; otherwise, set j ← j + 1, and go to step 1.

Output: Output (ũ, ṽ) = (ũj , ṽj), (r̃
u, r̃v) = (r̃uj , r̃

v
j ), and ε̃ = ε̃j .

The following simple result shows that step 1 of Algorithm 2 corresponds to an
iteration of Algorithm 1 applied to (2.10) with ψ and g defined according to (4.5) and
(4.6).

Lemma 4.2. Let ψ and g be defined according to (4.5) and (4.6). Then, the
following statements hold for every j ≥ 1:

(a) The function lψ,j(u)− (lf,j(u)+ 〈A∗ṽj , u〉) is constant where lψ,j and lf,j are
defined in (2.14) and (4.13);

(b) (4.12) is equivalent to (2.10).
Proof. (a) Relation (4.11) and the fact that Γ0 = 0 imply that

(4.15) ṽj =

j∑
i=1

Γi − Γi−1

Γj
v(ui).

Using the first identity in (4.5) and Proposition 4.1(b), we have that ∇ψ(u) = ∇f(u)+
A∗v(u), which together with definition (2.4) then implies that

lψ(u;ui) = lf (u;ui) + [φ̃(ui) + 〈A∗v(ui), u− ui〉] ∀i ≥ 1.

Statement (a) now follows from the previous identity and relations (2.14), (4.13), and
(4.15).

(b) This statement immediately follows from (a), the definition of g in (4.5), and
the definition of cj in (4.13).

Before establishing the iteration-complexity of Algorithm 2 for solving problem
(P1), we first make the following two remarks. First, ignoring steps 2 and 3 of
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Algorithm 2, which are essentially computing (r̃u, r̃v) = (r̃uj , r̃
v
j ) and ε̃ = ε̃j satisfying

(4.1) and checking whether these entities together with the primal-dual iterate (ũj , ṽj)
satisfy (4.2), Lemma 4.2 immediately implies that Algorithm 2 is nothing more than
Algorithm 1 applied to problem (2.7) with ψ and g given by (4.5). Second, there
is no reason for us to have specifically chosen the accelerated gradient variant of
subsection 2.2, namely, Algorithm 1, as a basis for developing Algorithm 2. In fact, any
accelerated gradient variant for solving the composite convex optimization problem
(2.7) satisfying properties (2.12) and (2.13) could have been used in place of Algorithm
1.

We now proceed to establish the iteration-complexity of Algorithm 2. The fol-
lowing technical result follows as a consequence of the first observation above and
Proposition 2.3.

Lemma 4.3. Consider the sequences {(ũj , ṽj)} generated by Algorithm 2, and
define

ε̃′j :=
1

2Γj
‖ũj − u0‖2X + lf,j(ũj)− f(ũj),(4.16)

Ψj(u, v) := lf,j(u) + 〈Au, v〉+ g1(u)− g2(v),(4.17)

qj(u, v) :=
cj
2
‖u− u0‖2X +

1

2
‖v − v0‖2Y ,(4.18)

where cj and lf,j are defined in (4.13). Then,

0 ∈ ∂ε̃′j [Ψj(·, ṽj)−Ψj(ũj , ·) + qj(·, ·)] (ũj , ṽj).(4.19)

Proof. Consider the functions ψ, g, and φ defined in (4.5) and (4.6). It follows
from (4.5), (4.6), and Proposition 2.3 that

f(ũj) + φ(ũj , v) + g1(ũj) +
1

2
‖ũj − u0‖2X ≤ (ψ + g)(ũj)

≤ lψ,j(u) + g1(u) +
cj
2
‖u− u0‖2X ∀(u, v) ∈ X × Y,

where lψ,j(·) is defined in (2.14). Using the definitions of ψ and φ̃ in (4.5) and (4.6),
relation (2.4), the definitions of lψ,j(u) and lf,j(u) in (2.14) and (4.13), the identities
(4.9) and (4.15), and the fact that φ(u, ·) is concave for any u ∈ X , we conclude that

lψ,j(u) =

j∑
i=1

Γi − Γi−1

Γj

(
lf (u;ui) + lφ̃(u;ui)

)
= lf,j(u) +

j∑
i=1

Γi − Γi−1

Γj
φ (u, v(ui))

≤ lf,j(u) + φ

(
u,

j∑
i=1

Γi − Γi−1

Γj
v(ui)

)
= lf,j(u) + φ(u, ṽj) ∀u ∈ X .

Combining the above two relations and using the definition of φ, Ψj, and ε̃
′
j in (4.6),

(4.17), and (4.16), respectively, we then conclude that

Ψj(ũj , v)−1

2
‖v − v0‖2Y +

cj
2
‖ũj − u0‖2X − ε̃′j

= lf,j(ũj) + φ(ũj , v) + g1(ũj) +
cj
2
‖ũj − u0‖2X − ε̃′j

≤ lf,j(u) + φ(u, ṽj) + g1(u) +
cj
2
‖u− u0‖2X

= Ψj(u, ṽj)− 1

2
‖ṽj − v0‖2Y +

cj
2
‖u− u0‖2X ∀(u, v) ∈ X × Y.(4.20)
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Now, using the definition of the ε-differential in (2.6) and the definition of qj(·, ·) in
(4.18), the above inequality can be easily seen to be equivalent to (4.19).

The following result quantifies the quality of the entities (ũj , ṽj), ε̃j, and (r̃uj , r̃
v
j )

generated at the jth iteration of Algorithm 2 as a candidate solution for problem
(P1).

Lemma 4.4. Consider the sequences {(ũj, ṽj)}, {ε̃j}, and {(r̃uj , r̃vj )} generated by
Algorithm 2. Then, for every j ≥ 1,

(r̃uj , r̃
v
j ) ∈ ∂ε̃j [Ψ(·, ṽj)−Ψ(ũj, ·)] (ũj , ṽj),(4.21)

‖r̃uj + ũj − u0‖2X + ‖r̃vj + ṽj − v0‖2Y + 2ε̃j ≤
(

3

Γj
+

4

Γ2
j

)
‖ũj − u0‖2X ,(4.22)

where Ψ(·) is as defined in (4.3).

Proof. Equations (4.7) and (4.12) and the definitions of Ψj and qj in (4.17) and
(4.18) imply that

(wj , v(ũj)) = arg min
(u,v)

Ψj(u, ṽj)−Ψj(ũj, v) + qj(u, v).

In view of the optimality condition of the above minimization problem, the definitions
of r̃uj and r̃vj in (4.14), and the definition of qj(·, ·) in (4.18), we then conclude that

(r̃uj , r̃
v
j ) = −∇qj(wj , v(ũj)) ∈ ∂[Ψj(·, ṽj)−Ψj(ũj , ·)](wj , v(ũj)).

Hence, by Proposition 2.1(a) we have

(4.23) (r̃uj , r̃
v
j ) = −∇qj(wj , v(ũj)) ∈ ∂δj [Ψj(·, ṽj)−Ψj(ũj , ·)](ũj , ṽj),

where

δj := − [Ψj(wj , ṽj)−Ψj(ũj, v(ũj))]− 〈−∇qj(wj , v(ũj)), (ũj, ṽj)− (wj , v(ũj))〉 ≥ 0.

On the other hand, in view of Lemma 4.3, inclusion (4.19) holds, or, equivalently,
inequality (4.20) holds. The latter inequality with (u, v) = (wj , v(ũj)), together with
the definitions of ε̃j and ε̃′j in (4.14) and (4.16), then implies that

ε̃j ≥ ε̃′j ≥ −Ψj(wj , ṽj) + Ψj(ũj, v(ũj)) + qj(ũj , ṽj)− qj(wj , v(ũj))
= δj +

cj
2
‖ũj − wj‖2X +

1

2
‖ṽj − v(ũj)‖2Y ,(4.24)

where the last equality comes from the definition of δj and the fact that the second-
order Taylor expansion of the quadratic function qj at an arbitrary point agrees with
qj itself. In view of (4.23) and (4.24), we then conclude that

(r̃uj , r̃
v
j ) ∈ ∂ε̃′j [Ψj(·, ṽj)−Ψj(ũj , ·)](ũj , ṽj).

Using the definition of the ε-subdifferential in (2.6), the definitions of ε̃j, ε̃
′
j, Ψ, and Ψj

in (4.14), (4.16), (4.3), and (4.17), respectively, and the fact that Ψj(·, ṽj) is majorized
by Ψ(·, ṽj), it is now easy to see that the above inclusion implies (4.21).
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Moreover, inequality (4.24), the definitions of r̃uj , r̃
v
j , and ε̃j in (4.14), and the

fact that cj = 1 + 1/Γj imply that

‖r̃uj + ũj − u0‖2X + ‖r̃vj + ṽj − v0‖2Y + 2ε̃j

=‖(u0 − ũj)/Γj + cj(ũj − wj)‖2X + ‖ṽj − v(ũj)‖2X + 2ε̃j

≤ 2

Γ2
j

‖ũj − u0‖2X + 2c2j‖ũj − wj‖2X + ‖ṽj − v(ũj)‖2X + 2ε̃j

≤ 2

Γ2
j

‖ũj − u0‖2X + (4cj + 2)ε̃j =

(
3

Γj
+

4

Γ2
j

)
‖ũj − u0‖2X .

As an immediate consequence of Lemma 4.4, we can now derive the iteration-
complexity for Algorithm 2 to solve problem (P1).

Proposition 4.5. Algorithm 2 terminates with an output that solves problem
(P1) in at most

(4.25) O
(
1 + min

{√
L

σ
, (1 +

√
L) log+

(√
L

σ

)})

iterations where L := Lf + ‖A‖2.
Proof. The inclusion (4.21) and the termination criterion in step 3 of Algorithm

2 show that the output of Algorithm 2 solves problem (P1). To complete the proof
of the proposition, it suffices to show that Algorithm 2 finishes in at most

(4.26) j0 :=

⌈
min

{
4

√
L

σ
, 1 + (1 + 2

√
L) log+

(
2
√
L

σ

)}⌉

iterations since such j0 has the order of (4.25). In view of Lemma 4.4, the latter
conclusion will follow if we show that(

3

Γj0
+

4

Γ2
j0

)
≤ σ2,

which in turn easily follows from the inequality Γj0 ≥ 4/σ2 in view of the assumption
that σ ≤ 1. To show the latter inequality, observe that (4.26) and the inequality
log(1 + t) ≥ t/(t+ 1) with t = 1/(2

√
L) imply that either

j20
4L
≥ 4

σ2
or

1

L

(
1 +

1

2
√
L

)2(j0−1)

≥ 4

σ2
.

Hence, in view of the conclusion (2.12) of Proposition 2.3 with μ = 1, we then conclude
that Γj0 ≥ 4/σ2.

In our analysis, we are interested in values of σ such that max{σ−1, (1− σ)−1} =
O(1). Under this assumption, among the two bounds in (4.26), the first dominates
(resp., is of the same order as) the second for relatively large (resp, small) values of
L, and hence it is the one we use to derive the overall iteration-complexity of the
accelerated instance of the SP-HPE framework discussed in the next section.
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5. Accelerated SP-HPE method for problem (1.4). This section presents
a special instance of the SP-HPE framework introduced in section 3, which we refer to
as the Acc-SP-HPE method, for solving the class of composite convex-concave min-
max problem (1.4), or, equivalently, the SP problem SP (Ψ;X,Y ) with Ψ as defined
in (4.3). Each (outer) iteration of the Acc-SP-HPE method, which is essentially a
special iteration of the SP-HPE framework, invokes Algorithm 2 to obtain a solution
of the inexact prox subproblem (3.10)–(3.11). This section contains two subsections.
A complexity bound on the total number of Algorithm 2 iterations (called the inner
iterations) performed by the Acc-SP-HPE method to find a (ρ, ε)-saddle-point is de-
rived in subsection 5.1. Moreover, an inner-iteration complexity for the Acc-SP-HPE
method to find an ε-saddle-point for the case where the feasible set X×Y is bounded
is derived in subsection 5.2 .

We assume in this section that the solution set of the composite convex-concave
min-max problem (1.4) is nonempty and assumptions (C.1)–(C.4) are satisfied.

5.1. The accelerated SP-HPE method and its complexity analysis. This
subsection describes the accelerated SP-HPE method and its corresponding complex-
ity results for the case where the feasible set X × Y is possibly unbounded.

Recall that in section 4 we have motivated the introduction of problem (P1) as
a special case of the inexact prox subproblem (3.10)–(3.11) in which λ = 1. The
following result shows, in fact, that problem (P1) is as general as subproblem (3.10)–
(3.11) for any value of λ > 0.

Proposition 5.1. Let λ > 0 and a closed convex-concave function Ψ be given,
and consider the kth iteration of the SP-HPE framework. If (ũ, ṽ) ∈ X ×Y, (r̃u, r̃v) ∈
X × Y, and ε̃ ≥ 0 solve problem (P1) with input Ψ = λΨ, (u0, v0) = (xk−1, yk−1),
and σ > 0, then

(x̃k, ỹk) := (ũ, ṽ), (r̃xk , r̃
y
k) :=

1

λ
(r̃u, r̃v), εk :=

1

λ
ε̃

satisfy conditions (3.10) and (3.11) of step 1 of the SP-HPE framework.

Proof. The conclusion follows immediately from the identity

λ∂ε [Ψ(·, ṽ)−Ψ(ũ, ·)] (ũ, ṽ) = ∂λε [λΨ(·, ṽ)− λΨ(ũ, ·)] (ũ, ṽ),

which holds for every ε ≥ 0, λ > 0, and (ũ, ṽ) ∈ X × Y.
In view of the above result, we can use Algorithm 2 to solve the inexact prox

subproblem (3.10)–(3.11). This is the key idea behind the following special case of
the SP-HPE framework, referred to as the Acc-SP-HPE method, for solving the SP
problem (1.4).
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[Acc-SP-HPE] Accelerated SP-HPE method for solving problem (1.4):
(0) Let (x0, y0) ∈ X × Y, λ > 0, and 0 < σ < 1 be given, and set k = 1;
(1) invoke Algorithm 2 with input

f = λf, A = λA, g1 = λg1, g2 = λg2, (u0, v0) = (xk−1, yk−1), Lf = λLf ,

and set

(x̃k, ỹk) := (ũ, ṽ), r̃k = (r̃xk , r̃
y
k) :=

1

λ
(r̃u, r̃v), εk :=

1

λ
ε̃,

where (ũ, ṽ), (r̃u, r̃v), and ε̃ are the output generated by Algorithm 2;
(2) set xk = xk−1 − λr̃xk , yk = yk−1 − λr̃yk , set k ← k + 1, and go to step 1.

end

Proposition 5.2. The Acc-SP-HPE method is a special case of the SP-HPE
framework for solving the composite convex-concave min-max problem (1.4).

Proof. In view of Proposition 5.1, the sequences {(x̃k, ỹk)}, {(r̃xk , r̃yk)}, and {εk}
generated by the Acc-SP-HPE method satisfy the conditions (3.10) and (3.11) of step
1 of the SP-HPE framework. Therefore, the Acc-SP-HPE method is clearly a special
case of the SP-HPE framework.

It follows as a consequence of Proposition 5.2 that the pointwise and ergodic
(outer) convergence rate bounds for the Acc-SP-HPE method are as described in
statements (a) and (b) of Theorem 3.4, respectively. In particular, the following
result follows as a consequence of the ergodic convergence rate derived in Theorem
3.4(b).

Theorem 5.3. Assume that max{σ−1, (1− σ)−1} = O(1), and let d0 denote the
distance of the initial iterate (x0, y0) of the Acc-SP-HPE method with respect to the
(convex) set of saddle-points of (1.4). Consider the sequences {(x̃k, ỹk)}, {(r̃xk , r̃yk)},
and {εk} generated by the Acc-SP-HPE method and the ergodic sequences {(x̃ak, ỹak)},
{r̃ak}, and {εak} defined in Theorem 3.4. Then, the following statements hold:

(a) for every pair of positive scalars (ρ, ε), there exists

k0 = O
(
max

{
1,
d0
λρ
,
d20
λε

})
such that for every k ≥ k0, the triple ((x̃ak, ỹ

a
k), r̃

a
k , ε

a
k) is a (ρ, ε)-saddle-point

of (1.4);
(b) each iteration of the Acc-SP-HPE method performs at most

O
(⌈√

λLf + λ2‖A‖2
⌉)

inner iterations (and hence resolvent evaluations of ∂g1 and ∂g2).
As a consequence, the Acc-SP-HPE method finds a (ρ, ε)-saddle-point of (1.4) by
performing no more than

(5.1) O
(⌈√

(λLf + λ2‖A‖2)
⌉
max

{
1,
d0
λρ
,
d20
λε

})
inner iterations (and hence resolvent evaluations of ∂g1 and ∂g2).

Proof. Since by Proposition 5.2 the Acc-SP-HPE method is a special instance of
the SP-HPE framework, (a) follows immediately from Theorem 3.4(b). Statement (b)
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follows immediately from Proposition 4.5 with Lf = λLf and A = λA, and the fact
that each iteration of Algorithm 2 performs one resolvent evaluation of ∂g1 and two
resolvent evaluations of ∂g2. The last assertion of the theorem follows immediately
from (a) and (b).

We now make some remarks about possible values of λ which minimize the com-
plexity bound (5.1) (up to an additive and multiplicative O(1) constant). Noting that
(5.1) is equivalent to

O
(
max

{
1

λ
,

√
Lf
λ
, ‖A‖

}
max

{
λ,
d0
ρ
,
d20
ε

})
and assuming that A �= 0, it is straightforward to see that the following claims hold
depending on whether the condition

(5.2) λ1 := max

{
Lf
‖A‖2 ,

1

‖A‖
}
≤ max

{
d0
ρ
,
d20
ε

}
=: λ2

holds (case (1)) or not (case (2)):
(1) if (5.2) holds, then any λ ∈ [λ1, λ2] minimizes (5.1) with minimum value

equal to

O
(
‖A‖max

{
d0
ρ
,
d20
ε

})
;

(2) otherwise, if λ1 > λ2, then λ = λ2 minimizes (5.1) with minimum value equal
to

O
(
1 +

√
Lf max

{√
d0
ρ
,
d0√
ε

})
.

Ideally, one should choose λ according to the above discussion in order to minimize
the total number of resolvent evaluations of ∂g1 and ∂g2. But, since d0 is usually not
known a priori, we cannot compute λ2 and as a result choose λ = λ2 as proposed
in case (2) above. Note, however, that we can always choose λ = λ1 since the latter
is easily computable. Clearly, this choice is optimal when case (1) holds and, even
though not optimal when case (2) holds, we believe it might be a good practical choice
in both cases due to the fact that case (2) is quite unlikely.

5.2. Specialized complexity bounds for bounded feasible sets. This sub-
section considers the special case of problem (1.4) where the feasible set X × Y is
bounded and derives a complexity bound on the number of inner iterations performed
by the Acc-SP-HPE method to find an ε-saddle-point of (1.4).

Corollary 5.4. Suppose that the assumptions of Theorem 5.3 hold, (x0, y0) ∈
X × Y , and the diameter D of the set X × Y defined in (2.2) is finite. Then, for
any ε > 0, the Acc-SP-HPE method finds an ε-saddle-point of (1.4) by performing no
more than

(5.3) O
(
max

{
1,
d0D

λε

})
outer iterations and no more than
(5.4)

O
(⌈√

(λLf + λ2‖A‖2)
⌉
max

{
1,
d0D

λε

})
≤ O

(⌈√
(λLf + λ2‖A‖2)

⌉
max

{
1,
D2

λε

})D
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inner iterations (and hence resolvent evaluations of ∂g1 and ∂g2).
Proof. Under the assumption that D is finite, it is straightforward to see from

Definition 3.1 and the definition of the subdifferential that an (ε/2D, ε/2)-saddle-point
is always an ε-saddle-point. The first bound in (5.4) now follows immediately from
the fact that d0 ≤ D in view of the assumption that (x0, y0) ∈ X × Y , and from the
bound (5.1) in Theorem 5.3 with (ρ, ε) = (ε/(2D), ε/2). Clearly, d0 ≤ D also implies
the second bound in (5.4).

We now make a few comments about choosing λ so as to minimize the right-hand
side of (5.4) (up to an additive and multiplicative O(1) constant). Similar to the
discussion in the previous subsection, if

(5.5) λ̂1 := max

{
Lf
‖A‖2 ,

1

‖A‖
}
≤ D2

ε
=: λ̂2

holds, then any λ ∈ [λ̂1, λ̂2] minimizes the right-hand side of (5.4) with minimum

value equal to O(1 + D2‖A‖/ε). Otherwise, if λ̂1 > λ̂2, then λ = λ̂2 minimizes the
right-hand side of (5.4) with minimum value equal to O(1+D

√
Lf/ε). Observe that

regardless of which case holds, the right-hand side of (5.4) assumes its minimum value

(5.6) O
(
1 +D2 ‖A‖

ε
+D

√
Lf
ε

)

when λ = min{λ̂1, λ̂2}.
Clearly, letting DX and DY denote the diameter of X and Y , we have D =

(D2
X + D2

Y )
1/2. Hence, we have DX ≤ D and DXDY ≤ D2/2, and it is clearly

possible that DX << D and/or DXDY << D2/2. The rest of this subsection shows
that the Acc-SP-HPE method applied to problem (1.4) with X and Y endowed with
suitable scaled inner products has a resolvent complexity similar to (5.6) but with D2

in the first term replaced by DXDY and D in the second term replaced by DX .
To achieve the above goal, we endow X and Y with new inner products

(5.7) 〈·, ·〉X ,θ := θ〈·, ·〉, 〈·, ·〉Y,θ := θ−1〈·, ·〉,
respectively, where θ > 0 is a constant. The associated norms then become

‖ · ‖X ,θ := θ1/2‖ · ‖X , ‖ · ‖Y,θ := θ−1/2‖ · ‖Y ,
and problem (1.4) becomes

(5.8) min
x∈X

max
y∈Y

Ψ(x, y) = f(x) + 〈Aθx, y〉Y,θ + g1(x)− g2(y),

where Aθ := θA. Moreover, ‖Aθ‖θ = ‖A‖ where ‖C‖θ := maxx{‖Cx‖Y,θ : ‖x‖X ,θ ≤
1} and the gradient of f with respect to 〈·, ·〉X ,θ is Lf,θ-Lipschitz continuous on Ω
where Lf,θ = θ−1Lf . Also, the diameter of the feasible set X × Y with the product
space X × Y endowed with the Cartesian inner product 〈·, ·〉X ,θ + 〈·, ·〉Y,θ is

D2
θ := θD2

X + θ−1D2
Y .

Using the above observations, and assuming that A �= 0 and min{DX , DY } > 0,
we immediately see that the Acc-SP-HPE method applied to problem (1.4) where θ
and λ are chosen as

θ =
DY

DX
, λ = min

{
max

{
LfDX

‖A‖2DY
,

1

‖A‖
}
,
2DXDY

ε

}
,
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and X and Y are endowed with the inner products (5.7), computes an ε-saddle-point
of (1.4) by performing no more than

(5.9) O
(
1 +
‖A‖
ε
DXDY +

√
Lf
ε
DX

)
resolvent evaluations of ∂g1 and ∂g2.

We end this subsection with some concluding remarks. First, the above com-
plexity is the same as that obtained for the Nesterov smoothing method (see (4.4) in
[14]). Second, when λ is sufficiently large, i.e., λ = Θ(d0D/ε), it follows from Corol-
lary 5.4 that the Acc-SP-HPE method performs only one outer iteration and hence
basically consists of iterations of Algorithm 2 applied to the perturbed problem (4.4)
with (u0, v0) = (x0, y0). Thus, in the latter case, the Acc-SP-HPE method has some
similarity to the Nesterov smoothing method, although it is worth observing that
they are based on slightly different perturbation problems. Third, the Acc-SP-HPE
method with a wide range of values of λ is shown to have the same complexity of
Nesterov’s smoothing method for a large class of relevant instances of problem (1.4).

Finally, from a practical point of view, we believe that the convergence guarantee
of the Acc-SP-HPE method for any stepsize λ allows for more suitable choices of
stepsize (e.g., λ = Θ(max{LfDX/(‖A‖2DY ), ‖A‖−1})) other than those given by
λ = Θ(DXDY /ε), which depends on the tolerance ε.

6. Numerical experiments. This section presents computational results show-
ing the numerical performance of the Acc-SP-HPE method on a collection of convex
optimization problems that are either in the form of, or can be easily reformulated
as, (1.4). All the computational results were obtained using MATLAB R2013b on a
quad-core 3.20GHz Linux machine with 16GB memory.

The Acc-SP-HPE method is compared with three other methods, namely, (i)
Nesterov’s smooth approximation scheme [14] (referred to as Nest-app), where the
smooth approximation is solved by the Nesterov’s accelerated variant introduced in
Subsection 2.2; (ii) the accelerated primal-dual method (referred to as APD) proposed
in [5]; and (iii) the primal-dual splitting method (referred to as PD splitting) proposed
in [7]. For the sake of a fair comparison, we have implemented Nest-app and APD
with X and Y endowed with the Euclidean (or Frobenius) norm ‖ · ‖2 and based on
the distance generating function for ‖ · ‖22/2.

The following three subsections report computational results on the following
classes of convex optimization problems: (a) zero-sum matrix game; (b) quadratic
game; and (c) vector-matrix saddle-point. For all problem classes, all methods are
terminated whenever an ε-saddle-point (either ε = 10−3 or ε = 10−4) is obtained.
Note that for a given pair (x, y), this termination criterion requires computing p(x)
and d(y) and checking whether p(x)−d(y) ≤ ε. For the second and the third problem
classes, computation of the dual function is not a simple operation since it involves
solving a quadratic programming problem over the unit simplex. Hence, the use of
this criterion is not the best strategy from the computational point of view. Note
that had we used the more general termination criterion of Definition 3.1, i.e., that
of (ρ, ε)-saddle-point, for terminating our method, we would have avoided evaluating
d(y). Since the use of the latter termination criterion is not common despite its
computational appeal and the fact that the theories developed for the other methods
are based on the first termination criterion, we have opted for the first criterion but
adopted the convention of excluding the effort to evaluate the dual functions from the
reported CPU times.
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We now discuss how we select the parameters for the four methods used in our
benchmark. Acc-SP-HPE sets λ = max

{
Lf/‖A‖2, 1/‖A‖

}
and σ = 0.99. Our im-

plementation of Nest-app sets the smoothness parameter μ = ε/2D2
Y (see equation

(4.8) of [14]). For APD, we have used the code implemented by the authors of [5]
with parameters set for solving problems with bounded feasible sets, i.e., according
to equation (2.19) of [5]. Our implementation of PD splitting is based on Algorithm
3.1 of [7] with parameters τ = σ, where σ > 0 is such that 1/σ − σ‖A‖2 = Lf/2 and
ρn = 0.5 for all n ∈ N (see Theorem 3.1 of [7]).

6.1. Zero-sum matrix game. This subsection compares Acc-SP-HPE with
Nest-app, APD, and PD splitting on a collection of instances of the zero-sum matrix
game problem

(6.1) min
x∈Δm

max
y∈Δn

Ψ(x, y) = 〈Ax, y〉,

where A ∈ 	n×m.
In the numerical experiment, the matrix A in problem (6.1) is generated such

that each entry is nonzero with probability p and each nonzero entry is generated
independently and uniformly in the interval [−1, 1]. The methods are terminated
whenever the duality gap at the iterate (x̃k, ỹk) is less than a given tolerance ε, i.e.,

(6.2) max
i

(Ax̃k)i −min
i
(A�ỹk)i ≤ ε.

Table 1 reports the CPU time and the number of (inner) iterations for each
method (Acc-SP-HPE). Table 1 shows that the methods Acc-SP-HPE, APD, and
PD splitting have roughly similar performance and that they all perform better than
Nest-app on the zero-sum game problem.

Table 1

Computational results for the methods Acc-SP-HPE, Nest-app, and APD on two-player zero-
sum games with different sizes and sparsities. All methods are terminated using a duality gap
criterion with tolerance ε = 10−3. CPU time in seconds and number of (inner) iterations are
reported for each method.

Problem size Acc-SP-HPE Nest-app APD PD splitting
m n p time #inner #outer time #iter. time #iter. time #iter.

1000 100 0.01 0.39 358 303 1.34 1720 1.01 3620 0.28 345
1000 100 0.1 0.17 280 275 1.76 3765 0.75 490 0.16 430
1000 1000 0.01 0.42 65 63 4.94 985 1.70 550 0.54 125
1000 1000 0.1 0.86 132 129 12.33 2445 0.69 150 0.73 170
1000 10000 0.01 4.31 62 62 60.42 1150 3.73 90 3.44 75
1000 10000 0.1 10.04 145 144 159.53 3035 5.04 150 9.44 205

10000 100 0.01 2.05 269 262 14.75 2465 1.80 545 1.66 325
10000 100 0.1 5.70 758 749 57.67 9620 2.64 795 4.64 925
10000 1000 0.01 4.21 62 58 62.79 1220 3.15 95 3.60 80
10000 1000 0.1 10.71 157 152 237.68 4570 3.95 135 9.96 215

6.2. Quadratic game problem. This subsection compares Acc-SP-HPE with
Nest-app and APD for solving a collection of instances of the quadratic game problem

min
x∈Δm

max
y∈Δn

1

2
‖Bx‖2 + y�Ax,(6.3)

where A ∈ 	n×m and B ∈ 	m×m. In our numerical experiments, the matrices A and
B were randomly generated such that each component is nonzero with probability p
and each nonzero component is generated independently and uniformly in the interval
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Table 2

Computational results for the methods Acc-SP-HPE, Nest-app, and APD on two-player
quadratic games with different sizes and sparsities. All methods are terminated using a duality
gap criterion with tolerance ε = 10−4. CPU time in seconds and number of (inner) iterations are
reported for each method.

Problem size Lip. const. Acc-SP-HPE Nest-app APD PD splitting
m n p ‖B‖2 ‖A‖ time #inner #outer time #iter. time #iter. time #iter.

200 200 0.1 27.60 5.51 0.05 218 18 1.60 3785 0.30 1140 0.17 470
200 200 0.2 52.20 7.24 0.07 306 16 2.49 5485 0.34 1375 0.22 770
200 200 0.5 129.03 11.23 0.08 351 11 2.94 6320 0.28 980 0.67 1310
200 500 0.1 27.28 6.94 0.13 289 29 3.22 4990 0.44 1360 0.35 525
200 500 0.2 56.20 9.47 0.13 354 24 3.29 5420 0.50 1610 0.39 860
200 500 0.5 127.53 14.82 0.27 693 33 5.07 8340 0.56 1640 3.74 2455
200 1000 0.1 27.47 8.38 0.35 442 52 5.63 5075 0.83 1675 0.57 715
200 1000 0.2 54.01 11.71 0.35 441 41 7.55 6105 0.63 1150 0.86 990
200 1000 0.5 127.62 18.52 0.42 574 34 11.29 9570 1.21 2410 3.19 1610
500 200 0.1 69.12 6.79 0.15 311 11 2.53 3525 0.52 1115 0.52 900
500 200 0.2 133.35 9.51 0.17 318 8 3.52 4620 0.44 810 1.09 1205
500 200 0.5 322.97 14.82 0.32 508 8 5.42 6635 0.69 1475 6.11 2740
500 500 0.1 68.41 8.22 0.42 304 14 5.74 3710 0.78 1025 1.08 925
500 500 0.2 129.32 11.56 0.38 362 12 7.64 5070 0.80 1010 2.11 1295
500 500 0.5 326.28 18.07 0.59 551 11 11.08 7450 1.13 1435 13.13 3000
500 1000 0.1 67.86 10.00 0.73 308 18 17.18 4375 1.42 1095 2.47 800
500 1000 0.2 133.68 13.93 1.07 391 16 17.56 5945 1.55 1155 4.78 1400
500 1000 0.5 328.57 21.88 1.40 564 14 31.18 8030 1.99 1435 24.81 2885

1000 200 0.1 132.84 8.47 0.44 286 6 6.27 3315 0.69 450 1.62 1010
1000 200 0.2 267.33 11.76 0.71 467 7 7.93 4240 1.41 1010 8.74 1960
1000 200 0.5 653.78 18.37 0.90 616 6 0.44 5730 1.62 1080 30.52 4160
1000 500 0.1 134.86 9.89 0.83 277 7 11.63 3445 1.17 550 3.09 1055
1000 500 0.2 266.78 13.90 1.11 397 7 14.16 4280 1.37 650 9.55 1720
1000 500 0.5 663.44 21.75 1.52 506 6 20.74 6235 2.04 900 40.10 3750
1000 1000 0.1 135.68 11.64 1.82 341 11 21.29 3600 1.95 640 6.92 1185
1000 1000 0.2 264.52 16.45 2.20 409 9 30.14 5050 2.75 895 17.51 1845
1000 1000 0.5 669.49 25.82 3.99 740 10 43.30 7375 4.99 1605 101.97 5130

[−1, 1]. Table 2 reports the CPU time and the number of (inner) iterations for each
method. It shows that the method Acc-SP-HPE is slightly better than APD and that
they both perform better than Nest-app and PD splitting on this class of problem.

6.3. Vector-matrix saddle-point problem. This subsection compares Acc-
SP-HPE with Nest-app and APD for solving a collection of instances of the minimiza-
tion problem

min
x∈Δm

1

2
‖Cx− b‖2 + θmax(A(x)),(6.4)

where C ∈ 	m×m, b ∈ 	m, A1, . . . , Am ∈ Sn, and A(x) =
∑m

i=1 xiAi ∈ Sn×n. It is
easy to verify that the above problem is equivalent to the vector-matrix SP problem

min
x∈Δm

max
y∈Ω

Ψ(x, y) =
1

2
‖Cx− b‖2 + 〈A(x), y〉,(6.5)

where Ω = {y ∈ Sn : tr(y) = 1, y � 0}. Hence, we can apply the above methods to
the SP problem (6.5). In our numerical experiments, the matrices A1, . . . , Am and C
were randomly generated such that each component is nonzero with probability 0.1
and each nonzero component is generated independently and uniformly in the interval
[−1, 1] and A1, . . . , Am are then symmetrized. Table 3 reports the CPU time and the
number of eigendecompositions (resolvent evaluation of ∂IΩ) for each method. It
shows that the method Acc-SP-HPE performs better than Nest-app and significantly
better than APD and PD splitting on this class of problem.
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Table 3

Computational results for the methods Acc-SP-HPE, Nest-app, and APD on vector-matrix
saddle-point problems (6.5) with different sizes. All methods are terminated using a duality gap
criterion with tolerance ε = 10−3. CPU time in seconds and number of eigendecompositions are
reported for each method.

Problem size Lip. const. Acc-SP-HPE Nest-app APD PD splitting
m n ‖C‖2 ‖A‖ time #eigen. #outer time #eigen. time #eigen. time #eigen.
50 50 62.73 2.74 0.79 447 7 1.78 795 4.39 3830 4.16 3230
50 100 66.13 4.97 3.50 706 21 16.32 2100 17.54 5170 20.62 3785
50 200 58.53 8.81 37.71 1826 121 107.42 4090 158.72 12855 105.84 5730

100 50 122.22 2.80 1.08 494 4 2.31 805 5.83 4315 13.63 6710
100 100 131.84 4.99 10.80 958 13 17.49 1690 29.03 6045 72.17 8595
100 200 124.93 8.88 46.40 1442 42 104.22 2795 134.48 7930 244.05 8415
200 50 259.87 3.17 1.91 678 3 4.77 870 9.27 4350 73.89 14405
200 100 253.96 5.29 19.24 1542 12 23.81 1470 105.36 14915 376.25 26095
200 200 257.27 9.21 110.11 2186 31 140.78 2310 372.69 14650 1207.7 23765

7. Concluding remarks. In this section we make some final remarks about the
theoretical and computational results described in this work.

We have shown in section 5 that the Acc-SP-HPE method has the same complex-
ity as the Nesterov smoothing technique of [14]. The experiment results of section
6 involving the three problem sets have shown that the new method Acc-SP-HPE
outperforms Nesterov’s smoothing technique of [14] and the PD splitting method for
problems in which the ratio Lf/‖A‖ is significantly large. They also show that the
performance of our method on the first two problem classes (resp., third problem class)
is comparable to (resp., substantially better than) that of the accelerated primal-dual
method of [5].

Both Nesterov’s smoothing technique and the APD method can be implemented
using the entropy distance-generating function and with X and Y endowed with the
L1-norm. In the future, we plan to design a variant of Acc-SP-HPE that can take
advantage of the entropy distance-generating function and compare it with the corre-
sponding variants of Nesterov’s method and the APD method.

Appendix. Proof of Proposition 2.3. To prove Proposition 2.3, we first prove
an intermediate result in Lemma A.1.

Lemma A.1. Define

(A.1) Π0 := min
u∈Ω

1

2
‖u− u0‖2X

and, for j ≥ 1,

Πj : = min
u∈Ω

{
j∑
i=1

(Γi − Γi−1)[lψ(u;ui) + g(u)] +
1

2
‖u− u0‖2X

}
.(A.2)

Then, for every j ≥ 0,

(A.3) Πj+1 −Πj ≥ Γj+1p(ũj+1)− Γjp(ũj).

Proof. Since Γ0 = 0 and g(u) is strongly convex with modulus μ, the function in
the minimization problem (A.2) is strongly convex with modulus Γjμ+1. Therefore,
we have

Πj +
Γjµ+ 1

2
‖wj −wj+1‖2X ≤

j∑

i=1

(Γi − Γi−1)[lψ(wj+1;ui) + g(wj+1)] +
1

2
‖wj+1 − u0‖2X

= Πj+1 − (Γj+1 − Γj)[lψ(wj+1;uj+1) + g(wj+1)].(A.4)
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Now, using the definition of ũj in (2.11), the definitions (2.4) and (2.7), the convexity
of the function lψ(·;uj+1) + g(·), and relation (2.5), we have

Γj+1[lψ(ũj+1;uj+1) + g(ũj+1)]

≤ (Γj+1 − Γj)[lψ(wj+1;uj+1) + g(wj+1)] + Γj [lψ(ũj ;uj+1) + g(ũj)]

≤ (Γj+1 − Γj)[lψ(wj+1;uj+1) + g(wj+1)] + Γjp(ũj).(A.5)

Using the relation (2.8) and the definitions of uj and ũj in (2.9) and (2.11), we have

‖ũj+1 − uj+1‖2 =
(Γj+1 − Γj)

2

Γ2
j+1

‖wj+1 − wj‖2 =
Γjμ+ 1

Γj+1L
‖wj+1 − wj‖2.

Therefore, the equality above and the inequalities (A.4) and (A.5) imply that

Πj+1 −Πj ≥ Γj+1[lψ(ũj+1;uj+1) + g(ũj+1)] +
Γj+1L

2
‖ũj+1 − uj+1‖2 − Γjp(ũj).

Since ψ is L-Lipschitz continuous on Ω, we have

lψ(ũj+1;uj+1) +
L

2
‖ũj+1 − uj+1‖2 ≥ ψ(ũj+1),

which, together with the above inequality and the definition (2.7), implies (A.3).
Proof of Proposition 2.3. It follows from (A.3) that the sequence {Πj − Γjp(ũj)}

is nondecreasing, which, together with the definitions of Π0 and Πj in (A.1) and (A.2)
and the fact that Γ0 = 0, implies that

Πj − Γjp(ũj) ≥ Π0 − Γ0p(ũ0) = min
u∈Ω

1

2
‖u− u0‖2X ≥ 0.

Inequality (2.13) then follows from the facts that the function in the minimization
problem (A.2) is strongly convex with modulus Γjμ + 1 and that wj is its solution.
Moreover, the bounds in (2.12) can be obtained from relation (2.8) by induction.
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