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Abstract. In this paper, we consider the monotone inclusion problem consisting of the sum of a
continuous monotone map and a point-to-set maximal monotone operator with a separable two-block
structure and introduce a framework of block-decomposition prox-type algorithms for solving it which
allows for each one of the single-block proximal subproblems to be solved in an approximate sense.
Moreover, by showing that any method in this framework is also a special instance of the hybrid
proximal extragradient (HPE) method introduced by Solodov and Svaiter, we derive corresponding
convergence rate results. We also describe some instances of the framework based on specific and
inexpensive schemes for solving the single-block proximal subproblems. Finally, we consider some
applications of our methodology to establish for the first time (i) the iteration-complexity of an
algorithm for finding a zero of the sum of two arbitrary maximal monotone operators and, as a
consequence, the ergodic iteration-complexity of the Douglas–Rachford splitting method and (ii) the
ergodic iteration-complexity of the classical alternating direction method of multipliers for a class of
linearly constrained convex programming problems with proper closed convex objective functions.
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1. Introduction. A broad class of optimization, saddle point, equilibrium, and
variational inequality (VI) problems can be posed as the monotone inclusion problem,
namely, finding x such that 0 ∈ T (x), where T is a maximal monotone point-to-set
operator. The proximal point method, proposed by Rockafellar [23], is a classical iter-
ative scheme for solving the monotone inclusion problem which generates a sequence
{zk} according to

‖zk − (λkT + I)−1(zk−1)‖ ≤ ek,

∞∑
k=1

ek <∞.

This method has been used as a generic framework for the design and analysis of
several implementable algorithms. Observe that {ek} is a (summable) sequence of
errors bounds.

New, inexact versions of the proximal point method, which uses instead relative
error criteria, were proposed by Solodov and Svaiter [25, 26, 27, 28]. In this work we
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use one of these variants, namely, the hybrid proximal extragradient (HPE) method
[25], to develop and analyze block-decomposition (BD) algorithms, and we now briefly
discuss this method. The exact proximal point iteration from z with stepsize λ > 0
is given by z+ = (λT + I)−1(z), which is equivalent to

(1) v ∈ T (z+), λv + z+ − z = 0.

In each step of the HPE method, the above proximal system is solved inexactly with
(z, λ) = (zk−1, λk) to obtain zk = z+ as follows. For a given constant σ ∈ [0, 1], a
triple (z̃, ṽ, ε) = (z̃k, ṽk, εk) is found such that

(2) ṽ ∈ T ε(z̃), ‖λṽ + z̃ − z‖2 + 2λε ≤ σ2‖z̃ − z‖2,
where T ε denotes the ε-enlargement [1] of T . (It has the property that T ε(z) ⊃ T (z)
for each z.) Note that this construction relaxes both the inclusion and the equation in
(1). Finally, instead of choosing z̃ as the next iterate z+, the HPE method computes
the next iterate z+ by means of the following extragradient step:

z+ = z − λṽ.

Iteration-complexity results for the HPE method were established in [15], and these
results depend on the distance of the initial iterate to the solution set instead of the
diameter of the feasible set.

By viewing Korpelevich’s method as well as Tseng’s modified forward-backward
splitting (MF-BS) method [30] as special cases of the HPE method, the authors have
established in [15, 16] the pointwise and ergodic iteration-complexities of these meth-
ods applied to monotone variational inequalities problems, the monotone inclusion
problems for the sum of a Lipschitz continuous monotone map with a maximal mono-
tone operator whose resolvent is assumed to be easily computable, convex-concave
saddle-point problems, or a large class of linearly constrained convex programming
problems, including, for example, cone programming and problems whose objective
functions converge to infinity as the boundaries of their domain are approached. In
the context of variational inequality problems, we should mention that prior to [15, 16]
Nemirovski [17] established the ergodic iteration-complexity of Korpelevich’s method
under the assumption that the feasible set of the problem is bounded, and Nesterov
[18] established the ergodic iteration-complexity of a new dual extrapolation algorithm
whose termination depends on the guess of a ball centered at the initial iterate.

In this paper, we continue along the same line of investigation as in our pre-
vious papers [15, 16], which is to use the HPE method as a general framework to
derive iteration-complexity results for specific algorithms for solving various types of
structured monotone inclusion problems. More specifically, we consider the monotone
inclusion problem consisting of the sum of a continuous monotone map and a point-
to-set maximal monotone operator with a separable two-block structure, namely,

(3) 0 ∈ T (x, y) :=

{(
Fx(x, y) + a
Fy(x, y) + b

)
: a ∈ A(x), b ∈ B(y)

}
.

We introduce a general block-decomposition HPE (BD-HPE) framework in the con-
text of this inclusion problem, which allows for each one of the single-block proximal
subproblems to be solved in an approximate sense. More specifically, given a pair
((x, y), λ) = ((xk−1, yk−1), λk), an instance of the BD-HPE framework computes an
approximate solution ((x̃, ỹ), (ṽx, ṽy), ε) of (1) (in the sense of (2)) with T given by (3)
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by first computing an approximate solution (x̃, ṽx, εx) of (1) with T = Fx(·, y)+A(·),
then computing an approximate solution (ỹ, ṽy, εy) of (1) with T = Fy(x̃, ·) + B(·),
and finally setting ε = εx + εy. Moreover, by showing that any method in this
framework is also a special instance of the HPE method, we derive convergence rate
results for the BD-HPE framework based on those developed in [15] for the HPE
method.

Subsequently, we describe some ways of implementing the BD-HPE framework
based on specific and inexpensive schemes for solving the single-block proximal sub-
problems. We also consider some applications of our methodology introduced here to
establish for the first time (i) the iteration-complexity of an algorithm for finding a
zero of the sum of two arbitrary maximal monotone operators and, as a consequence,
the ergodic iteration-complexity of the Douglas–Rachford splitting method and (ii) the
ergodic iteration-complexity of the classical alternating direction method of multipli-
ers (ADMM) for a class of linearly constrained convex programming problems with
proper closed convex objective functions.

The ADMM was first introduced in [10, 11]. Recently, there has been some grow-
ing interest in the ADMM for solving large scale linear cone programming problems
(see, for example, [5, 4, 21, 12, 14]). However, to the best of our knowledge, no
iteration-complexity analysis for the ADMM has yet been established. Development
and analysis of splitting and BD methods is by now a well-developed area, although
algorithms which allow a relative error tolerance in the solution of the proximal sub-
problems have been studied in just a few papers. In particular, Ouorou [20] discusses
an ε-proximal decomposition using the ε-subdifferential and a relative error criterion
on ε. Projection splitting methods for the sum of arbitrary maximal monotone op-
erators using a particular case of the HPE error tolerance for solving the proximal
subproblems were presented in [7, 8]. The use of the HPE method for studying BD
methods was first presented in [24]. We observe, however, that none of these works
deal with the derivation of iteration-complexity bounds. More recently, Chambolle
and Pock [6] have developed and established iteration-complexity bounds for a BD
method, which solves the proximal subproblems exactly, in the context of saddle-point
problems with a bilinear coupling.

This paper is organized as follows. Section 2 contains two subsections. Subsec-
tion 2.1 reviews some basic definitions and facts on convex functions and the definition
and some basic properties of the ε-enlargement of a point-to-set maximal monotone
operator. Subsection 2.2 reviews the HPE method and the global convergence rate
results obtained for it in [15]. Section 3 introduces the BD-HPE framework for solving
a special type of monotone inclusion problem mentioned above and shows that any
instance of the framework can be viewed as a special case of the HPE method. As
a consequence, global convergence rate results for the BD-HPE framework are also
obtained in this section using the general theory outlined in subsection 2.2. Section 4
describes specific schemes for solving the single-block proximal subproblems based
on a small number (one or two) of resolvent evaluations. Section 5 describes some
instances of the BD-HPE framework which not only are interesting in their own right
but also illustrate the use of the different schemes for solving the single-block prox-
imal subproblems. It contains three subsections as follows. Subsection 5.1 discusses
a specific instance of the BD-HPE framework where both single-block proximal sub-
problems are solved exactly. Subsection 5.2 gives another instance of the BD-HPE
framework in which both single-block proximal subproblems are approximately solved
by means of a Tseng-type scheme. Subsection 5.3 studies a BD method for a large
class of linearly constrained convex optimization problems, which includes cone pro-
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grams and problems whose objective functions converge to infinity as the relative
boundaries of their domain are approached. Section 6 considers the monotone inclu-
sion problem consisting of the sum of two maximal monotone operators and shows
how it can be transformed to an equivalent monotone inclusion problem with a two-
block structure of the aforementioned type, which can then be solved by any instance
of the BD-HPE framework. Section 7 considers the ADMM for solving a class of lin-
early constrained convex programming problems with proper closed convex objective
functions and shows that it can be interpreted as a specific instance of the BD-HPE
framework applied to a two-block monotone inclusion problem.

1.1. Notation. We denote the set of real numbers by R and nonnegative num-
bers by R+. For a real symmetric matrix E, we denote its largest eigenvalue by
θmax(E). The domain of definition of a one-to-one function F is denoted by DomF .
The effective domain of a function f : Rn → [−∞,∞] is defined as dom f := {x ∈
R

n : f(x) <∞}.
2. Technical background. This section contains two subsections. In the first

one, we review some basic definitions and facts about convex functions and ε-enlarge-
ment of monotone multivalued maps. This subsection also reviews the weak trans-
portation formula for the ε-subdifferentials of closed convex functions and the ε-
enlargements of maximal monotone operators. The second subsection reviews the
HPE method and the global convergence rate results obtained for it in [15].

2.1. The ε-subdifferential and ε-enlargement of monotone operators.
Let Z denote a finite dimensional inner product space with inner product and associ-
ated norm denoted by 〈·, ·〉 and ‖ · ‖. A point-to-set operator T : Z ⇒ Z is a relation
T ⊂ Z× Z and

T (z) = {v ∈ Z | (z, v) ∈ T }.
Alternatively, one can consider T as a multivalued function of Z into the family
℘(Z) = 2(Z) of subsets of Z. Regardless of the approach, it is usual to identify T with
its graph defined as

Gr(T ) = {(z, v) ∈ Z× Z | v ∈ T (z)}.
The domain of T , denoted by DomT , is defined as

DomT := {z ∈ Z : T (z) �= ∅}.
An operator T : Z ⇒ Z is affine if its graph is an affine manifold. Clearly, if T is
affine, then the following implication holds:

(4)
αi ≥ 0, i = 1, . . . , k,
α1 + · · ·+ αk = 1

vi ∈ T (zi), 1, . . . , k,

⎫⎬
⎭ =⇒

k∑
i=1

αivi ∈ T

(
k∑

i=1

αizi

)
.

Moreover, T : Z ⇒ Z is monotone if

〈v − ṽ, z − z̃〉 ≥ 0 ∀(z, v), (z̃, ṽ) ∈ Gr(T ),

and T is maximal monotone if it is monotone and maximal in the family of monotone
operators with respect to the partial order of inclusion; i.e., S : Z ⇒ Z monotone and
Gr(S) ⊃ Gr(T ) implies that S = T .
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In [1], Burachik, Iusem, and Svaiter introduced the ε-enlargement of maximal
monotone operators. In [15] this concept was extended to a generic point-to-set op-
erator in Z as follows. Given T : Z ⇒ Z and a scalar ε, define T ε : Z ⇒ Z as

(5) T ε(z) = {v ∈ Z | 〈z − z̃, v − ṽ〉 ≥ −ε ∀z̃ ∈ Z, ∀ṽ ∈ T (z̃)} ∀z ∈ Z.

We now state a few useful properties of the operator T ε that will be needed in
our presentation.

Proposition 2.1. Let T, T ′ : Z ⇒ Z. Then,
(a) if ε1 ≤ ε2, then T ε1(z) ⊂ T ε2(z) for every z ∈ Z;
(b) T ε(z) + (T ′)ε

′
(z) ⊂ (T + T ′)ε+ε′ (z) for every z ∈ Z and ε, ε′ ∈ R;

(c) T is monotone if and only if T ⊂ T 0;
(d) T is maximal monotone if and only if T = T 0.
Observe that items (a) and (d) of the above proposition imply that, if T : Z ⇒ Z

is maximal monotone, then

T (z) ⊂ T ε(z) ∀z ∈ Z, ε ≥ 0,

so that T ε(z) is indeed an enlargement of T (z).
Note that, due to the definition of T ε, the verification of the inclusion v ∈ T ε(z)

requires checking an infinite number of inequalities. This verification is feasible only
for specially structured instances of operators T . However, it is possible to compute
points in the graph of T ε using the following weak transportation formula [2]. This
formula will be used in the complexity analysis of the ergodic mean.

Theorem 2.2 (see [2, Theorem 2.3]). Suppose that T : Z ⇒ Z is maximal
monotone. Let zi, vi ∈ Z and εi, αi ∈ R+ for i = 1, . . . , k be such that

vi ∈ T εi(zi), i = 1, . . . , k,
k∑

i=1

αi = 1,

and define

za :=

k∑
i=1

αizi, va :=

k∑
i=1

αivi,

εa :=
k∑

i=1

αi[εi + 〈zi − za, vi − va〉] =
k∑

i=1

αi[εi + 〈zi − za, vi〉].

Then, the following statements hold:
(a) εa ≥ 0 and va ∈ T εa(za);
(b) if, in addition, T = ∂f for some proper lower semicontinuous convex function

f and vi ∈ ∂εif(zi) for i = 1, . . . , k, then va ∈ ∂εaf(z
a).

Finally, we refer the reader to [3, 29] for further discussion on the ε-enlargement
of a maximal monotone operator.

For a scalar ε ≥ 0, the ε-subdifferential of a function f : Z → [−∞,+∞] is the
operator ∂εf : Z ⇒ Z defined as

(6) ∂εf(z) = {v | f(z̃) ≥ f(z) + 〈z̃ − z, v〉 − ε ∀z̃ ∈ Z} ∀z ∈ Z.

When ε = 0, the operator ∂εf is simply denoted by ∂f and is referred to as the
subdifferential of f . The operator ∂f is trivially monotone if f is proper. If f is a
proper lower semicontinuous convex function, then ∂f is maximal monotone [22].
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The conjugate f∗ of f is the function f∗ : Z→ [−∞,∞] defined as

f∗(v) = sup
z∈Z

〈v, z〉 − f(z) ∀v ∈ Z.

The following result lists some useful properties about the ε-subdifferential of a
proper convex function.

Proposition 2.3. Let f : Z→ (−∞,∞] be a proper convex function. Then
(a) ∂εf(z) ⊂ (∂f)ε(z) for any ε ≥ 0 and z ∈ Z;
(b) ∂εf(z) = {v |f(z) + f∗(v) ≤ 〈z, v〉+ ε} for any ε ≥ 0 and z ∈ Z;
(c) if v ∈ ∂f(z) and f(z̃) < ∞, then v ∈ ∂εf(z̃), where ε := f(z̃) − [f(z) +
〈z̃ − z, v〉].

For the following definitions, assume that Z ⊂ Z is a nonempty closed convex set.
The indicator function of Z is the function δZ : Z→ [0,∞] defined as

δZ(z) =

{
0, z ∈ Z,

∞ otherwise,

and the normal cone operator of Z is the point-to-set map NZ : Z ⇒ Z given by

(7) NZ(z) =

{
∅, z /∈ Z,

{v ∈ Z, | 〈z̃ − z, v〉 ≤ 0 ∀z̃ ∈ Z}, z ∈ Z.

Clearly, the normal cone operator NZ of Z can be expressed in terms of δZ as NZ =
∂δZ . The orthogonal projection PZ : Z→ Z onto Z is defined as

PZ(z) = argminz′∈Z ‖z′ − z‖ ∀z ∈ Z.

It is well known that PZ is the resolvent of the normal cone operator; that is, PZ =
(λNZ + I)−1 for every λ > 0.

2.2. The hybrid proximal extragradient method. This subsection reviews
the HPE method and corresponding global convergence rate results obtained in [15].

Let T : Z ⇒ Z be a maximal monotone operator. The monotone inclusion
problem for T consists of finding z ∈ Z such that

0 ∈ T (z) .

We also assume throughout this section that this problem has a solution, that is,
T−1(0) �= ∅.

We next review the HPE method introduced in [25] for solving the above problem
and state the iteration-complexity results obtained for it in [15].

Hybrid proximal extragradient method.
(0) Let z0 ∈ Z and 0 ≤ σ ≤ 1 be given, and set k = 1.
(1) Choose λk > 0, and find z̃k, ṽk ∈ Z, σk ∈ [0, σ], and εk ≥ 0 such that

(8) ṽk ∈ T εk(z̃k), ‖λkṽk + z̃k − zk−1‖2 + 2λkεk ≤ σ2
k‖z̃k − zk−1‖2 .

(2) Define zk = zk−1 − λkṽk, set k ← k + 1, and go to step (1).
end
We now make several remarks about the HPE method. First, the HPE method

does not specify how to choose λk and how to find z̃k, ṽk, and εk as in (8). The
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particular choice of λk and the algorithm used to compute z̃k, ṽk, and εk will depend
on the particular implementation of the method and the properties of the operator T .
Second, if z̃ := (λkT + I)−1zk−1 is the exact proximal point iterate or, equivalently,

ṽ ∈ T (z̃),(9)

λk ṽ + z̃ − zk−1 = 0(10)

for some ṽ ∈ Z, then (z̃k, ṽk) = (z̃, ṽ) and εk = 0 satisfies (8). Therefore, the error
criterion (8) relaxes the inclusion (9) to ṽ ∈ T ε(z̃) and relaxes (10) by allowing a small
error relative to ‖z̃k − zk−1‖.

We now state a few results about the convergence behavior of the HPE method.
The proof of the following result can be found in Lemma 4.2 of [15]. It provides a
computable estimate of how much the square of the distance of an arbitrary solution
to an iterate of the HPE method decreases from one iteration to the next.

Proposition 2.4. For any z∗ ∈ T−1(0), the sequence {‖z∗− zk‖} is nonincreas-
ing and

‖z∗ − z0‖2 ≥ ‖z∗ − zk‖2 +
k∑

i=1

[‖z̃i − zi−1‖2 −
(‖λiṽi + z̃i − zi−1‖2 + 2λiεi

)]
(11)

≥ ‖z∗ − zk‖2 + (1 − σ2)

k∑
i=1

‖z̃i − zi−1‖2 .(12)

The proof of the following result, which establishes the convergence rate of the
residual (ṽk, εk) of zk, can be found in Theorem 4.4 of [15].

Theorem 2.5. Assume that σ < 1, and let d0 be the distance of z0 to T−1(0).
Then, for every k ∈ N, ṽk ∈ T εk(z̃k) and there exists an index i ≤ k such that

(13) ‖ṽi‖ ≤ d0

√√√√1 + σ

1− σ

(
1∑k

j=1 λ
2
j

)
, εi ≤ σ2d20λi

2(1− σ2)
∑k

j=1 λ
2
j

.

Theorem 2.5 estimates the quality of the best among the iterates z̃1, . . . , z̃k. We
will refer to these estimates as the pointwise complexity bounds for the HPE method.

We will now describe alternative estimates for the HPE method which we re-
fer to as the ergodic complexity bounds. The next result describes the convergence
properties of an ergodic sequence associated with {z̃k}.

Theorem 2.6. For every k ∈ N, define

(14) z̃ak :=
1

Λk

k∑
i=1

λiz̃i, ṽak :=
1

Λk

k∑
i=1

λiṽi, εak :=
1

Λk

k∑
i=1

λi(εi+〈z̃i − z̃ak , ṽi〉),

where Λk :=
∑k

i=1 λi. Then, for every k ∈ N,

(15) ṽak =
1

Λk
(z0 − zk) ∈ T εak(z̃ak), ‖ṽak‖ ≤

2d0
Λk

,

and

(16) 0 ≤ εak ≤
1

2Λk

[
2〈z̃ak − z0, zk − z0〉 − ‖zk − z0‖2

] ≤ 2d20
Λk

(1 + ρk),
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where d0 is the distance of z0 to T−1(0), and

(17) ρk :=
1

d0
‖z̃ak − zak‖ ≤

1

d0
max

i=1,...,k
‖z̃i − zi‖, where zak :=

1

Λk

k∑
i=1

λizi.

Moreover, the sequence {ρk} is bounded under either one of the following situations:
(a) if σ < 1, then

(18) ρk ≤ σ
√
τk√

(1− σ2)
, where τk = max

i=1,...,k

λi

Λk
≤ 1;

(b) DomT is bounded, in which case

ρk ≤ D

d0
+ 1,

where D := sup{‖y − y′‖ : y, y′ ∈ DomT } is the diameter of DomT .
Proof. The bounds (15) and (16) and statement (a) follow immediately from

Proposition 4.6 and the proof of Theorem 4.7 of [15]. Let z∗ be the closest point to
z0 lying in T−1(0). Relation (17), the triangle inequality for norms, Proposition 2.4,
and the definition of D imply that

ρk ≤ 1

d0
max

i=1,...,k
(‖z̃i − z∗‖+ ‖z∗ − zi‖) ≤ 1

d0
(D + ‖z∗ − z0‖) = D

d0
+ 1.

Note that the rate of convergence (16) in Theorem 2.6 is useful only if we know
how to bound ρk, which is the case when σ < 1 or DomT is bounded. When σ = 1
and DomT is unbounded, we do not know how to bound ρk in the general setting
of the HPE method. However, we will show that ρk can still be bounded in special
cases of the HPE method when σ = 1. Our interest in this extreme case is due to the
fact that the ADMM (see section 7) can be viewed as a special implementation of the
HPE method with σ = 1.

3. The BD-HPE framework. In this section, we introduce the BD-HPE frame-
work for solving a special type of monotone inclusion problem consisting of the sum
of a continuous monotone map and a point-to-set maximal monotone operator with
a separable block-structure. Recall from section 1 that the acronym BD-HPE stands
for “block decomposition hybrid proximal extragradient.” As suggested by its name
and formally proved in this section, the BD-HPE framework is a special case of the
HPE method. Using this fact and the results of subsection 2.2, global convergence
rate bounds are then established for the BD-HPE framework.

Throughout this paper, we let X and Y denote finite dimensional inner product
spaces with associated inner products both denoted by 〈·, ·〉 and associated norms
both denoted by ‖ · ‖. We endow the product space X × Y with the canonical inner
product defined as

〈(x, y), (x′, y′)〉 = 〈x, x′〉+ 〈y, y′〉 ∀(x, y), (x′, y′) ∈ X× Y.

The associated norm, also denoted by ‖ · ‖, is then given as

‖(x, y)‖ =
√
‖x‖2 + ‖y‖2 ∀(x, y) ∈ X× Y.
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Our problem of interest in this section is the monotone inclusion problem of
finding (x, y) such that

(19) (0, 0) ∈ [F + (A⊗B)](x, y)

or, equivalently,

(20) 0 ∈ Fx(x, y) +A(x), 0 ∈ Fy(x, y) +B(y),

where F (x, y) = (Fx(x, y), Fy(x, y)) ∈ X×Y and the following conditions are assumed:
A.1. A : X ⇒ X and B : Y ⇒ Y are maximal monotone operators;
A.2. F : DomF ⊂ X × Y → X × Y is a continuous map such that DomF ⊃

cl(DomA)× Y;
A.3. F is monotone on DomA×DomB;
A.4. there exists Lxy > 0 such that

(21) ‖Fx(x, y
′)− Fx(x, y)‖ ≤ Lxy‖y′ − y‖ ∀x ∈ DomA, ∀y, y′ ∈ Y.

We now make a few remarks about the above assumptions. First, it can be easily
seen that A.1 implies that the operator A⊗B : X× Y ⇒ X× Y defined as

(A⊗B)(x, y) = A(x) ×B(y) ∀(x, y) ∈ X× Y

is maximal monotone. Moreover, in view of the proof of Proposition A.1 of [16], it
follows that F +(A⊗B) is maximal monotone. Second, without loss of generality, we
have assumed in A.2 that F is defined in cl(domA) × Y instead of a set of the form
cl(domA)× Ω for some closed convex set Ω ⊃ domB (e.g., Ω = cl(domB)). Indeed,
if F were defined on the latter set only, then it would be possible to extend it to the
whole set cl(domA) × Y by considering the extension (x, y) ∈ X × Y → F (x, PΩ(y)),
which can be easily seen to satisfy A.2–A.4. Note that evaluation of this extension
requires computation of a projection onto Ω. Third, assumption A.4 is needed in
order to estimate how much an iterate found by the BD scheme below violates the
proximal point equation for (19).

The exact proximal point iteration for this problem is as follows: given (xk−1, yk−1)
∈ X× Y, let (xk, yk) be the solution of the proximal inclusion subproblem

0 ∈ λ[Fx(x, y) +A(x)] + x− xk−1,(22)

0 ∈ λ[Fy(x, y) + B(y)] + y − yk−1.(23)

In this section, we are interested in BD methods for solving (19), where the kth
iteration consists of finding an approximate solution x̃k of the subproblem

(24) 0 ∈ λ[Fx(x, yk−1) +A(x)] + x− xk−1,

then computing an approximate solution ỹk of

(25) 0 ∈ λ[Fy(x̃k, y) + B(y)] + y − yk−1,

and finally using the pair (x̃k, ỹk) to obtain the next iterate (xk, yk). Note that
if (24) and (25) are solved exactly, then the pair (x̃k, ỹk) will satisfy the proximal
point equation (22)–(23) with residual (rx, ry) := (Fx(x̃k, ỹk)− Fx(x̃k, yk−1), 0), that
is, the inclusion in (22)–(23) with its left-hand side replaced by (rx, ry). Moreover,
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assumption A.4 provides a way to control this residual. Note also that A.2 ensures that
the method outlined above is well defined. Indeed, we can show that x̃k ∈ cl(domA)
but cannot guarantee that yk−1 ∈ cl(domB), which explains the need to assume that
DomF ⊃ cl(domA)× Y.

To formalize the method outlined in the previous paragraph, we now state the
BD-HPE framework.

BD-HPE framework.
(0) Let (x0, y0) ∈ X× Y, σ, σx ∈ [0, 1], and σ̃x, σy ∈ [0, 1) be given, and set

k = 1.
(1) Choose λk > 0 such that

(26) σk :=

{
θmax

([
σ2
x λkσ̃xLxy

λkσ̃xLxy σ2
y + λ2

kL
2
xy

])}1/2

≤ σ.

(2) Compute x̃k, ãk ∈ X and εxk ≥ 0 such that

ãk ∈ Aεxk (x̃k), ‖λk[Fx(x̃k, yk−1) + ãk](27)

+ x̃k − xk−1‖2 + 2λkε
x
k ≤ σ2

x‖x̃k − xk−1‖2;
‖λk[Fx(x̃k, yk−1) + ãk] + x̃k − xk−1‖2 ≤ σ̃2

x‖x̃k − xk−1‖2.(28)

(3) Compute ỹk, b̃k ∈ Y and εyk ≥ 0 such that

b̃k ∈ Bεyk(ỹk), ‖λk[Fy(x̃k, ỹk) + b̃k] + ỹk − yk−1‖2(29)

+ 2λkε
y
k ≤ σ2

y‖ỹk − yk−1‖2.

(4) Set

(30) (xk, yk) = (xk−1, yk−1)− λk[F (x̃k, ỹk) + (ãk, b̃k)],

k ← k + 1, and go to step (1).
end
We now make a few remarks about the BD-HPE framework. First, instead of

using constants σx, σ̃x, and σy in (27), (28), and (29), respectively, we could use
variable factors σk,x ≤ σx, σ̃k,x ≤ σ̃x, and σk,y ≤ σy, respectively, just like in the
HPE method. However, for the sake of simplicity, we will deal only with the case
where these factors are constant. Second, even though we have assumed in step (0)
that σy < 1, we observe that this condition is implied by (26) and the fact that σ ≤ 1.
Third, (27) implies that (28) holds for any σ̃x ∈ [σx, 1). Hence, when σx < 1, we
can simply choose σ̃x to be equal to σx as long as (26) holds with σ̃x = σx. Fourth,
if σx < 1, then the assumption that σy < 1 implies that there always exists λk > 0
satisfying (26). Fifth, if σx = 1, then the assumption that σ ≤ 1 implies that there
exists λk > 0 satisfying (26) if and only if σ̃x = 0, in which case we must have
σ = 1. Sixth, there are relevant instances of the BD-HPE framework in which (27)
and (28) hold with σx = 1 and σ̃x = 0, and (26) holds with σ = 1, or, equivalently,
σ2
y +λ2

kL
2
xy ≤ 1. Finally, assumption (26) does not necessarily imply that σx < 1 (see

the latter remark).
The following result shows that, under inequality (26), any instance of the BD-

HPE framework is also an instance of the HPE method of section 2.2 applied to the
monotone inclusion (19).
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Proposition 3.1. Consider the sequences {(xk, yk)}, {(x̃k, ỹk)}, {(ãk, b̃k)},
{λk}, and {(εxk, εyk)} generated by the BD-HPE framework. Then, for every k ∈ N,

(31) F (x̃k, ỹk) + (ãk, b̃k) ∈ [F + (A⊗B)ε
x
k+εyk ](x̃k, ỹk) ⊂ (F +A⊗B)ε

x
k+εyk(x̃k, ỹk)

and ∥∥∥λk[F (x̃k, ỹk) + (ãk, b̃k)] + (x̃k, ỹk)− (xk−1, yk−1)
∥∥∥2

+ 2λk(ε
x
k + εyk) ≤ σ2

k‖(x̃k, ỹk)− (xk−1, yk−1)‖2.

As a consequence, any instance of the BD-HPE framework is a special case of the HPE
method for the inclusion problem (19) with ṽk = F (x̃k, ỹk)+ (ãk, b̃k) and εk = εxk + εyk
for every k ∈ N.

Proof. Using the inclusions in (27) and (29), definition (5), and the definition of
εk, we have for every (a, b) ∈ (A⊗B)(x, y) that

〈(x̃k, ỹk)− (x, y), (ãk, b̃k)− (a, b)〉 = 〈x̃k − x, ãk − a〉+ 〈ỹk − y, b̃k − b〉 ≥ −(εxk + εyk),

which shows that (ãk, b̃k) ∈ (A ⊗ B)ε
x
k+εyk(x̃k, ỹk) and hence that (31) holds, in view

of statements (b) and (c) of Proposition 2.1. Let

(32) rxk := λk(Fx(x̃k, yk−1)+ãk)+x̃k−xk−1, ryk := λk(Fy(x̃k, ỹk)+b̃k)+ỹk−yk−1.

Then,

λk[F (x̃k, ỹk) + (ãk, b̃k)] + (x̃k, ỹk)− (xk−1, yk−1)

= (rxk + λk(Fx(x̃k, ỹk)− Fx(x̃k, yk−1)), r
y
k),

which, together with (21), (26), and (32) and the inequalities in (27), (28), and (29),
imply∥∥∥λk[F (x̃k, ỹk) + (ãk, b̃k)] + (x̃k, ỹk)− (xk−1, yk−1)

∥∥∥2 + 2λk(ε
x
k + εyk)

≤ ‖rxk + λk(Fx(x̃k, ỹk)− Fx(x̃k, yk−1))‖2 + ‖ryk‖2 + 2λk(ε
x
k + εyk)

≤ (‖rxk‖+ λk‖Fx(x̃k, ỹk)− Fx(x̃k, yk−1)‖)2 + ‖ryk‖2 + 2λk(ε
x
k + εyk)

≤ (‖rxk‖+ λkLxy‖ỹk − yk−1‖)2 + ‖ryk‖2 + 2λk(ε
x
k + εyk)

≤ λ2
kL

2
xy‖ỹk − yk−1‖2 + 2λkLxy‖rxk‖‖ỹk − yk−1‖+ (‖rxk‖2 + 2λkε

x
k)

+ (‖ryk‖2 + 2λkε
y
k)

≤ λ2
kL

2
xy‖ỹk − yk−1‖2 + 2λkσ̃xLxy‖x̃k − xk−1‖‖ỹk − yk−1‖

+ σ2
x‖x̃k − xk−1‖2 + σ2

y‖ỹk − yk−1‖2
≤ σ2

k

(‖x̃k − xk−1‖2 + ‖ỹk − yk−1‖2
)
= σ2

k‖(x̃k, ỹk)− (xk−1, yk−1)‖2.

We now state two iteration-complexity results for the BD-HPE framework which
are direct consequences of Proposition 3.1 and Theorems 2.5 and 2.6. The first (point-
wise) one is about the behavior of the sequence {(x̃k, ỹk)}, and the second (ergodic)
one is in regards to an ergodic sequence associated with {(x̃k, ỹk)}.

Theorem 3.2. Assume that σ < 1, consider the sequences {(x̃k, ỹk)}, {(ãk,
b̃k)}, {λk}, and {(εxk, εyk)} generated by the BD-HPE framework, and let d0 denote
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the distance of the initial point (x0, y0) ∈ X×Y to the solution set of (19). Then, for
every k ∈ N,

(ãk, b̃k) ∈ Aεxk (x̃k)×Bεyk(ỹk),

and there exists i ≤ k such that

∥∥∥F (x̃i, ỹi) + (ãi, b̃i)
∥∥∥ ≤ d0

√√√√1 + σ

1− σ

(
1∑k

j=1 λ
2
j

)
, εxi + εyi ≤

σ2d20λi

2(1− σ2)
∑k

j=1 λ
2
j

.

Proof. This result follows immediately from Proposition 3.1 and Theorem
2.5.

Theorem 3.3. Consider the sequences {(x̃k, ỹk)}, {(ãk, b̃k)}, and {(εxk, εyk)} gen-
erated by the BD-HPE framework, and define for every k ∈ N

(33)

(x̃a
k, ỹ

a
k) =

1

Λk

k∑
i=1

λi(x̃i, ỹi), (ãak, b̃
a
k) =

1

Λk

k∑
i=1

λi(ãi, b̃i), F̃ a
k :=

1

Λk

k∑
i=1

λiF (x̃i, ỹi),

and

εak,F :=
1

Λk

k∑
i=1

λi 〈(x̃i, ỹi)− (x̃a
k, ỹ

a
k) , F (x̃i, ỹi)〉 ≥ 0,(34)

εak,A :=
1

Λk

k∑
i=1

λi (ε
x
i + 〈x̃i − x̃a

k , ãi〉) ≥ 0,(35)

εak,B :=
1

Λk

k∑
i=1

λi(ε
y
i + 〈ỹi − ỹak , b̃i〉) ≥ 0,(36)

where Λk :=
∑k

i=1 λi. Let d0 denote the distance of the initial point (x0, y0) ∈ X× Y

to the solution set of (19). Then, for every k ∈ N,

(37) F̃ a
k ∈ F εak,F (x̃a

k, ỹ
a
k), (ãak, b̃

a
k) ∈ Aεak,A(x̃a

k)×Bεak,B (ỹak),

and

(38)
∥∥∥F̃ a

k + (ãak, b̃
a
k)
∥∥∥ ≤ 2d0

Λk
, εak,F + εak,A + εak,B ≤

2d20
Λk

(1 + ηk),

where

ηk :=
2

1− σxy

(
1 +

1

(1− σy)2

)1/2√
σ̃2
x + σ2

y + λ2
kL

2
xy(39)

≤ 2
√
2σ

1− σxy

(
1 +

1

(1 − σy)2

)1/2

and σxy := max{σ̃x, σy}. Moreover, if F is affine, then F̃ a
k = F (x̃a

k, ỹ
a
k). Also, if A

(resp., B) is affine and εxk = 0 (resp., εyk = 0) for every k ∈ N, then ãak ∈ A(x̃a
k)

(resp., b̃ak ∈ B(ỹak)).
Proof. First, note that (37) follows immediately from the definitions in (33),

(34), (35), and (36), the inclusions in (27) and (29), and Theorem 2.2. In view of
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Proposition 3.1, any instance of the BD-HPE framework is a special case of the HPE
method with ṽk = F (x̃k, ỹk) + (ãk, b̃k) and εk = εxk + εyk for every k ∈ N. Since, in
this case, the quantities z̃ak , ṽ

a
k , and εak defined in Theorem 2.6 are equal to (x̃a

k, ỹ
a
k),

F a
k + (ãak, b̃

a
k), and εax,F + εax,F + εax,F , respectively, it follows from the conclusions of

this theorem that the first inequality in (38) holds and

(40) εax,F + εax,F + εax,F ≤
2d20
Λk

(1 + ρk),

where

(41) ρk :=
1

d0
max

i=1,...,k
‖(x̃i, ỹi)− (xi, yi)‖.

Noting the definition of ηk in (39), we now claim that ρk ≤ ηk, which, together with
(40), clearly implies the second inequality in (38). Indeed, let (x∗, y∗) be a solution
of (19) such that ‖(x0, y0)− (x∗, y∗)‖ = d0. Due to Proposition 2.4, we know that

‖(xk, yk)− (xk−1, yk−1)‖ ≤ ‖(xk, yk)− (x∗, y∗)‖+ ‖(xk−1, yk−1)− (x∗, y∗)‖
≤ ‖(x0, y0)− (x∗, y∗)‖+ ‖(x0, y0)− (x∗, y∗)‖ = 2d0.(42)

It follows from (29) and (30) that

‖ỹk − yk−1‖ ≤ ‖ỹk − yk‖+ ‖yk − yk−1‖ ≤ σy‖ỹk − yk−1‖+ ‖yk − yk−1‖
and hence that

(43) ‖ỹk − yk−1‖ ≤ ‖yk − yk−1‖
1− σy

, ‖ỹk − yk‖ ≤ σy‖ỹk − yk−1‖ ≤ σy ‖yk − yk−1‖
1− σy

.

Also, it follows from (21), (28), and (30) that

‖x̃k − xk‖ − λkLxy‖ỹk − yk−1‖ ≤ ‖x̃k − xk + λk[Fx(x̃k, yk−1)− Fx(x̃k, ỹk)]‖
≤ σ̃x‖x̃k − xk−1‖ ≤ σ̃x(‖x̃k − xk‖+ ‖xk − xk−1‖)

and hence that

(44) ‖x̃k − xk‖ ≤ σ̃x ‖xk − xk−1‖+ λkLxy‖ỹk − yk−1‖
1− σ̃x

.

Adding the second inequality in (43) to inequality (44) and using (42), the first in-
equality in (43), and the definition of σx,y in the statement of the theorem, we conclude
that

‖(x̃k, ỹk)− (xk, yk)‖
≤ ‖x̃k − xk‖+ ‖ỹk − yk‖
≤ 1

1− σxy
(σ̃x ‖xk − xk−1‖+ σy ‖yk − yk−1‖+ λkLxy‖ỹk − yk−1‖)

≤ 1

1− σxy

√
σ̃2
x + σ2

y + λ2
kL

2
xy

√
‖xk − xk−1‖2 + ‖yk − yk−1‖2 + ‖ỹk − yk−1‖2

≤ 1

1− σxy

√
σ̃2
x + σ2

y + λ2
kL

2
xy

√
4d20 + (1− σy)−2‖yk − yk−1‖2

≤ 2d0
1− σxy

(
1 +

1

(1 − σy)2

)1/2√
σ̃2
x + σ2

y + λ2
kL

2
xy.
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The last estimate, together with (39) and (41), clearly implies our claim that ρk ≤ ηk.
Finally, note that the second inequality in (39) follows from (26) and the assumption
that σ̃x ≤ σx, and that the last assertion of the theorem follows from implication (4)
about an affine map T .

We observe that, if we had assumed in Theorem 3.3 that σ < 1 (or DomA×DomB
is bounded), then its proof would be much simpler since in this case we could have used
the last part of Theorem 2.6 to establish boundedness of {ρk}. However, as observed
earlier, our interest in the case where σ = 1 is due to the fact that the ADMM (see
section 7) can be viewed as an instance of the HPE method with σ = 1. To handle
the case σ = 1, the proof of Theorem 3.3 uses inequality (16), which depends on the
quantity ρk. As shown in this proof, all that is required for showing boundedness of
{ρk} is the assumption that σ ≤ 1 and max{σ̃x, σy} < 1.

Theorem 3.2 (resp., Theorem 3.3) requires condition (26) to hold for some σ < 1
(resp., σ ≤ 1), which in turn implies that σy < 1. We have seen that any of these
assumptions implies that the BD-HPE framework is a special case of the HPE method
(see Proposition 3.1). We conjecture whether iteration-complexity bounds can be
established for the BD-HPE framework, or some subclass of it, under some weaker
assumption, i.e., one which allows either condition (26) to hold for some σ > 1 or σy

to be equal to 1.

4. Approximate solutions of the proximal subproblems. In this section,
we describe some specific procedures for finding approximate solutions (x̃k, ãk, ε

x
k)

and (ỹk, b̃k, ε
y
k) of (24) and (25) according to steps (2) and (3), respectively, of the

BD-HPE framework. We should emphasize that such solutions can be found by other
procedures which are not discussed below.

The problem of finding approximate solutions as above can be cast in the following
general form. Throughout this section, we assume that

B.1. C : X ⇒ X is a maximal monotone operator;
B.2. G : DomG ⊂ X→ X is a continuous map which is monotone on cl(DomC) ⊂

DomG.
Given x ∈ X and λ > 0 together with tolerances σ, σ̃ ≥ 0, our goal is to describe
specific procedures for computing a triple (x̃, c̃, ε) ∈ X× X× R+ such that

c̃ ∈ Cε(x̃), ‖λ(G(x̃) + c̃) + x̃− x‖2 + 2λε ≤ σ2‖x̃− x‖2,(45)

‖λ(G(x̃) + c̃) + x̃− x‖ ≤ σ̃‖x̃− x‖.(46)

We note that conditions B.1 and B.2 imply that G + C is a maximal monotone
operator (see the proof of Proposition A.1 of [16]). This implies that, for any λ > 0,
the resolvent of G + C, namely, the map [I + λ(G + C)]−1, is a single-valued map
defined over the whole X. The following simple result shows that when the resolvent
of G+ C is computable, (45) and (46) can be solved exactly.

Proposition 4.1. For any x ∈ X and λ > 0, the triple (x̃, c̃, ε) defined as

(47) x̃ := [λ(G+ C) + I]−1(x), c̃ :=
1

λ
(x− x̃)−G(x̃), ε = 0

satisfies (45) and (46) for any σ ≥ 0 and σ̃ ≥ 0.
Proof. Using the three identities in (47), we easily see that c̃ ∈ C(x̃) and

‖λ(G(x̃) + c̃) + x̃− x‖2 + 2λε = 0 ≤ σ2‖x̃− x‖2.
Now we deal with the case in which C is the sum of a differentiable convex function

with Lipschitz continuous gradient and a maximal monotone operator T for which the



COMPLEXITY OF BLOCK-DECOMPOSITION ALGORITHMS 489

resolvent of G + T is easy to compute. Note that this case describes a meaningful
situation in which it is possible to compute a triple (x̃, c̃, ε) for which the smallest
provable σ satisfying (45) is positive while the smallest σ̃ satisfying (46) is zero.

Proposition 4.2. Assume that C = ∂f + T , where T : X ⇒ X is maximal
monotone and f : X → (−∞,∞] is a proper closed convex function such that f
is differentiable on cl(domT ) ⊂ int(dom f) and ∇f is L-Lipschitz continuous on
cl(DomT ). Then, for any x ∈ DomT and λ > 0, the triple (x̃, c̃, ε) defined as

(48) x̃ = [I + λ(G + T )]−1(x− λ∇f(x)), c̃ =
1

λ
(x− x̃)−G(x̃), ε =

L

2
‖x̃− x‖2

satisfies (45) and (46) for any σ ≥ √λL and σ̃ ≥ 0. Moreover, c̃ ∈ (∂εf + T )(x̃).
Proof. First observe that the last two identities in (48) imply that

‖λ(G(x̃) + c̃) + x̃− x‖2 + 2λε = 2λε ≤ 2λ

(
L

2
‖x̃− x‖2

)
= λL‖x̃− x‖2

and hence that (x̃, c̃, ε) satisfies (45) and (46) for any σ ≥ √λL and σ̃ ≥ 0. It remains
to show that c̃ ∈ Cε(x̃). Using the definition of x̃, we have

1

λ
(x− x̃)−∇f(x) ∈ (G+ T )(x̃),

and hence, c̃ ∈ ∇f(x) + T (x̃), due to the definition of c̃. We now claim that ∇f(x) ∈
∂εf(x̃), from which we conclude that

c̃ ∈ (∂εf + T )(x̃) ⊂ [(∂f)ε + T ](x̃) ⊂ (∂f + T )ε(x̃) = Cε(x̃),

where the second and third inclusions follow from Proposition 2.3(a) and Proposi-
tion 2.1, and the equality follows from the definition of C. To prove the claim, note
that Proposition 2.3(c) with v = ∇f(x) implies that ∇f(x) ∈ ∂ε′f(x̃), where

ε′ := f(x̃)− f(x)− 〈∇f(x), x̃− x〉 ≤ L

2
‖x̃− x‖2 =: ε,

where the inequality is due to the fact that ∇f is L-Lipschitz continuous on cl(Dom
T ) ⊃ DomT � x̃, x, and cl(Dom T ) is convex.

In contrast to Proposition 4.2, the next result shows how one can obtain an
approximate solution (x̃, c̃, ε) of (45) for which ε = 0. A special case of it (in which
Ω = R

n) forms the basis of Tseng’s MF-BS algorithm (see [30]).
Proposition 4.3. Assume that G : X→ X is L-Lipschitz continuous on a closed

convex set Ω such that DomC ⊂ Ω ⊂ DomG. Then, for any x ∈ X and λ > 0, the
triple (x̃, c̃, ε) defined as

(49) x̃ = (I + λC)−1(x − λG(PΩ(x))), c̃ =
1

λ
(x− x̃)−G(PΩ(x)), ε = 0

satisfies (45) and (46) for any σ, σ̃ ≥ λL.
Proof. First note that the first two identities in (49) imply that x̃ ∈ DomC ⊂ Ω

and c̃ ∈ C(x̃) and hence that c̃ ∈ Cε(x̃) in view of the definition of ε and Proposi-
tion 2.1(c). Also, relation (49), the inclusion x̃ ∈ Ω, and the assumption that G is
L-Lipschitz continuous on Ω imply that

‖λ(G(x̃) + c̃) + x̃− x‖2 + 2λε = ‖λ(G(x̃) + c̃) + x̃− x‖2 = λ2‖G(x̃)−G(PΩ(x))‖2
= λ2‖G(PΩ(x̃))−G(PΩ(x))‖2 ≤ λ2L2‖PΩ(x̃)− PΩ(x)‖2 ≤ (λL)2‖x̃− x‖2,
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where the last inequality follows from the fact that PΩ is a nonexpansive map. We
have thus shown that (x̃, c̃, ε) satisfies (45) and (46) for any σ, σ̃ ≥ λL.

Note that the above formula for x̃ is in terms of the resolvent (I + λC)−1 of C,
which must be easily computable so that x̃ can be obtained. Observe also that for the
case where C = NX for some closed convex set X ⊂ X, we have (I + λNX)−1 = PX

and the above expression for x̃ reduces to x̃ = PX(x− λG(PΩ(x))).
The next result describes a way of computing an approximate solution (x̃, c̃, ε)

of (45) which forms the basis of Korpelevič’s method (see [13]) for solving monotone
variational inequalities and its generalized version (see, for example, [19, 16]) for solv-
ing monotone hemivariational inequalities. In contrast to Proposition 4.3, it assumes
that C is a subdifferential, and it needs to evaluate two resolvents of G in order to
compute (x̃, c̃, ε).

Proposition 4.4. Assume that C = ∂g, where g : X → (−∞,∞] is a closed
proper convex function and G is L-Lipschitz continuous on dom g. Then, for any
x ∈ dom g and λ > 0, the triple (x̃, c̃, ε) defined as

(50)
x̃ = (I + λ∂g)−1(x− λG(x)), c̃ =

1

λ
[x− x+]−G(x̃),

ε := g(x̃)− [g(x+) + 〈x̃ − x+, c̃ 〉],
where

(51) x+ := (I + ∂g)−1(x− λG(x̃)),

satisfies (45) and (46) for any σ, σ̃ ≥ λL.
Proof. First observe that ε is well defined since x̃, x+ ∈ dom g, in view of their

definitions in (50) and (51), respectively. We first prove that c̃ ∈ Cε(x̃). Indeed, the
definitions of c̃ and x+ in (50) and (51), respectively, imply that c̃ ∈ ∂g(x+). Hence,
it follows from Proposition 2.3(c) and the definition of ε in (50) that c̃ ∈ ∂εg(x̃), and
hence that c̃ ∈ (∂g)ε(x̃) = Cε(x̃), in view of Proposition 2.3(a).

To show that the inequality in (45) holds for any σ ≥ λL, define

(52) p =
1

λ
[x− λG(x) − x̃] .

Using the definitions of x̃ and p in (50) and (52), respectively, we conclude that
p ∈ ∂g(x̃). This fact and the last identity in (50) then imply that

ε = g(x̃)− g(x+)− 〈c̃, x̃− x+〉 = −[g(x+)− g(x̃)− 〈p, x+ − x̃〉] + 〈p− c̃, x̃− x+〉
≤ 〈p− c̃, x̃− x+〉.

This together with the second identity in (50) then imply that

‖λ(G(x̃) + c̃) + x̃− x‖2 + 2λε

= ‖x̃− x+‖2 + 2λε ≤ ‖x̃− x+‖2 + 2λ〈p− c̃, x̃− x+〉
= ‖λ(p− c̃) + x̃− x+‖2 − λ2‖p− c̃‖2 ≤ ‖λ(p− c̃) + x̃− x+‖2
= ‖λ(G(x) −G(x̃))‖2 ≤ (λL‖x− x̃‖)2,

where the last equality follows from (52) and the second identity in (50), and the
last inequality is due to the assumption that G is L-Lipschitz continuous on dom g ⊃
{x, x̃}. We have thus shown that (45) and (46) hold for any σ, σ̃ ≥ λL.



COMPLEXITY OF BLOCK-DECOMPOSITION ALGORITHMS 491

5. Specific examples of BD-HPE methods. The goal of this section is to
illustrate how the different procedures discussed in section 4 for constructing triples
(x̃k, ãk, ε

x
k) and (ỹk, b̃k, ε

y
k) satisfying (27), (28), and (29), respectively, can be used

to obtain specific instances of the BD-HPE framework presented in section 3. This
section is divided into three subsections. In the first one, we discuss a specific in-
stance of the BD-HPE framework in which (24) and (25) are both solved exactly (see
Proposition 4.1). In the second subsection, we give another instance of the BD-HPE
framework in which these two proximal subproblems are approximately solved by
means of Tseng’s scheme presented in Proposition 4.3. In the third subsection we
study a BD method for a large class of linearly constrained convex optimization prob-
lems, which includes cone programs whose objective functions converge to infinity as
the relative boundaries of their domain are approached.

5.1. Exact BD-HPE method. In this subsection, we consider a special case
of the general BD-HPE framework where the subproblems (24) and (25) are solved
exactly and specialize the iteration-complexity bounds of Theorems 3.2 and 3.3 to the
current setting.

In this subsection, we assume that we know how to solve the proximal subproblems
(24) and (25) exactly. More precisely, we consider the following special case of the
BD-HPE framework.

Exact BD-HPE method.
(0) Let (x0, ỹ0) ∈ X× Y and σ ∈ (0, 1] be given, and set λ = σ/Lxy and

k = 1.
(1) Compute (x̃k, ỹk) ∈ X× Y as

x̃k = [I + λ(Fx(·, ỹk−1) +A)]−1(xk−1),

ỹk = [I + λ(Fy(x̃k, ·) +B)]−1(ỹk−1).
(53)

(2) Set xk = x̃k −λ[Fx(x̃k, ỹk)−Fx(x̃k, ỹk−1)] and k ← k+1, and go to
step (1).

end
The following result shows that the above algorithm is indeed a special case of

the BD-HPE framework in which subproblems (24) and (25) are solved exactly (see
Proposition 4.1).

Lemma 5.1. Consider the sequences {(xk, yk)} and {(x̃k, ỹk)} generated by the
exact BD-HPE method, and for each k ∈ N, define εxk = εyk = 0, λk = λ,

(54)
ãk =

1

λ
(xk−1 − x̃k)− Fx(x̃k, ỹk−1),

b̃k =
1

λ
(ỹk−1 − ỹk)− Fy(x̃k, ỹk), yk−1 = ỹk−1.

Then, for every k ∈ N, (26), (27), (28), (29), and (30) hold with σx = σ̃x = σy = 0.
As a consequence, the exact BD-HPE method is a special instance of the BD-HPE
framework in which σx = σ̃x = σy = 0.

Proof. The definition of {λk} clearly implies that (26) holds with σx = σ̃x = σy =
0. Using the definitions of εxk, ε

y
k, and λk and relations (53) and (54), and applying

Proposition 4.1 twice to the pairs (G,C) = (F (·, ỹk−1), A) and (G,C) = (F (x̃k, ·), B),
we conclude that (27), (28), and (29) hold with σx = σ̃x = σy = 0. Moreover,
(30) follows from (54) and the update rule of xk in step (2) of the exact BD-HPE
method.
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The following result, which is an immediate consequence of the previous result
and Theorem 3.3, establishes the iteration-complexity of the exact BD-HPE method.

Theorem 5.2. Consider the sequences {xk} and {(x̃k, ỹk)} generated by the exact
BD-HPE method, and define the sequence {(ãk, b̃k)} according to (54). Moreover, for
each k ∈ N, define

(x̃a
k, ỹ

a
k) =

1

k

k∑
i=1

(x̃i, ỹi), (ãak, b̃
a
k) =

1

k

k∑
i=1

(ãi, b̃i), F̃ a
k :=

1

k

k∑
i=1

F (x̃i, ỹi),

and

εak,F :=
1

k

k∑
i=1

〈(x̃i, ỹi)− (x̃a
k, ỹ

a
k) , F (x̃i, ỹi)〉 ≥ 0,

εak,A :=
1

k

k∑
i=1

(〈x̃i − x̃a
k , ãi〉) ≥ 0, εak,B :=

1

k

k∑
i=1

(〈
ỹi − ỹak , b̃i

〉)
≥ 0.

Let d0 denote the distance of the initial point (x0, ỹ0) ∈ X × Y to the solution set of
(19). Then, for every k ∈ N, the following statements hold:

(a) (ãk, b̃k) ∈ A(x̃k)×B(ỹk), and if σ < 1, there exists i ≤ k such that

∥∥∥F (x̃i, ỹi) + (ãi, b̃i)
∥∥∥ ≤ Lxyd0

σ
√
k

√
1 + σ

1− σ
;

(b) we have

F̃ a
k ∈ F εak,F (x̃a

k, ỹ
a
k), (ãak, b̃

a
k) ∈ Aεak,A(x̃a

k)×Bεak,B (ỹak),

and

∥∥∥F̃ a
k + (ãak, b̃

a
k)
∥∥∥ ≤ 2Lxyd0

kσ
, εak,F + εak,A + εak,B ≤

2Lxyd
2
0

kσ

(
1 + 2

√
2σ
)
.

Also, if F is affine, then F̃ a
k = F (x̃a

k, ỹ
a
k). In addition, if A (resp., B) is affine, then

ãak ∈ A(x̃a
k) (resp., b̃

a
k ∈ B(ỹak)).

Proof. This result follows immediately from Lemma 5.1 and Theorems 3.2 and 3.3
by specializing the latter two results to the case where σx = σ̃x = σy = 0, λk = λ :=
σ/Lxy, and εxk = εyk = 0 for every k ∈ N.

5.2. An inexact BD-HPE method based on Tseng’s procedure. In this
subsection, we describe an inexact BD-HPE method based on Tseng’s procedure de-
scribed in Proposition 4.3.

We start by describing the general assumptions of this subsection. In addition to
conditions A.1–A.4 of subsection 3, we also impose the following condition:

A.5. There exist scalars Lxx, Lyy ≥ 0 and a closed convex set Ωx such that
DomA ⊂ Ωx, Ωx × Y ⊂ DomF , and

– Fx(·, y) is Lxx-Lipschitz continuous on Ωx for every y ∈ Y;
– Fy(x, ·) is Lyy-Lipschitz continuous on Y for every x ∈ Ωx.
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Tseng-based inexact BD-HPE method.

(0) Let (x0, y0) ∈ X× Y, σ ∈ (0, 1], and λ ∈ (0, σ/L̃] be given, where

(55) L̃ :=

{
θmax

([
L2
xx LxxLxy

LxxLxy L2
yy + L2

xy

])}1/2

,

and set k = 1.
(1) Set x′

k−1 := PΩx(xk−1), and compute (x̃k, ỹk) ∈ X× Y as

x̃k = [I + λA]−1(xk−1 − λFx(x
′
k−1, yk−1)),

ỹk = [I + λB]−1(yk−1 − λFy(x̃k, yk−1)).
(56)

(2) Compute (xk, yk) as

xk := x̃k − λ[Fx(x̃k, ỹk)− Fx(x
′
k, yk−1)],

yk := ỹk − λ[Fy(x̃k, ỹk)− Fy(x̃k, yk−1)],
(57)

set k ← k + 1, and go to step (1).
end
It is easy to see that (55) and the assumption that Lxy > 0 imply that

(58) ξ :=
1

L̃
max{Lxx, Lyy} < 1.

Proposition 5.3. The Tseng-based inexact BD-HPE method is a special instance
of the BD-HPE framework, where σx = σ̃x = λLxx and σy = λLyy, and for every
k ∈ N,

λk = λ, εxk = εyk = 0,

and

(59) ãk =
1

λ
(xk−1 − x̃k)− Fx(x

′
k−1, yk−1), b̃k =

1

λ
(yk−1 − ỹk)− Fy(x̃k, yk−1).

Proof. Applying Proposition 4.3 to the quintuple (G,C,Ω, x, σ) = (Fx(·, yk−1),
A,Ωx, xk−1, λLxx), and also to the quintuple (G,C,Ω, x, σ) = (Fy(x̃k, ·), B,Y, yk−1,

λLyy), and noting (57) and the definition of ãk and b̃k, we conclude that (30) holds

and that (x̃k, ãk) and (ỹk, b̃k) satisfy (27), (28), and (29), respectively, with σx = σ̃x =
λLxx, σy = λLyy, and εxk = εyk = 0. It remains to show that λk = λ satisfies (26) and
that max{σ̃x, σy} < 1. Indeed, using the fact that σ̃x = λLxx and σy = λLyy, the

definition of L̃ in (55), the assumption that λ ≤ σ/L̃ and σ ≤ 1, and (58), we easily
see that (26) holds and that

max{σ̃x, σy} = λmax{Lxx, Lyy} ≤ σ

L̃
max{Lxx, Lyy} = σξ ≤ ξ < 1.

The following convergence rate result now follows as an immediate consequence
of Proposition 5.3 and Theorems 3.2 and 3.3.

Theorem 5.4. Consider the sequences {(xk, yk)}, {(x̃k, ỹk)} generated by the
Tseng-based inexact BD-HPE method with λ = σ/L̃, where L̃ is given by (55). Define
the sequence {(ãk, b̃k)} according to (59) and the sequences {(x̃a

k, ỹ
a
k)}, {(ãak, b̃ak)},
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{F̃ a
k }, {εak,F }, {εak,A}, and {εak,B} as in Theorem 5.2. Let d0 denote the distance of

the initial point (x0, y0) ∈ X × Y to the solution set of (19). Then, for every k ∈ N,
the following statements hold:

(a) (ãk, b̃k) ∈ A(x̃k)×B(ỹk), and if σ < 1, there exists i ≤ k such that

∥∥∥F (x̃i, ỹi) + (ãi, b̃i)
∥∥∥ ≤ L̃d0

σ
√
k

√
1 + σ

1− σ
;

(b) we have

F̃ a
k ∈ F εak,F (x̃a

k, ỹ
a
k), (ãak, b̃

a
k) ∈ Aεak,A(x̃a

k)×Bεak,B (ỹak),

and

∥∥∥F̃ a
k + (ãak, b̃

a
k)
∥∥∥ ≤ 2L̃d0

kσ
, εak ≤

2L̃d20
kσ

(1 + η),

where

η :=
2
√
2σ

1− ξσ

(
1 +

1

(1− ξσ)2

)1/2

and ξ is defined in (58).
Also, if F is affine, then F̃ a

k = F (x̃a
k, ỹ

a
k). In addition, if A (resp., B) is affine, then

ãak ∈ A(x̃a
k) (resp., b̃

a
k ∈ B(ỹak)).

Proof. This result follows immediately from Proposition 5.3 and Theorems 3.2
and 3.3 by specializing the latter two results to the case where σx = σ̃x = λLxx,
σy = λLyy, λk = λ := σ/L̃, and εxk = εyk = 0 for every k ∈ N, and using the fact that
max{σ̃x, σy} ≤ σξ (see the proof of Proposition 5.3).

We observe that it is possible to transform the bounds in terms of L̃ in the above
result to bounds in terms of the quantities Lxx, Lyy, and Lxy by using the estimate

L̃ ≤
√
L2
xx + L2

xy + L2
yy ≤

√
2 L̃,

which follows immediately from the definition of L̃ in (55).

5.3. An inexact BD method for convex optimization. In this subsection,
we are interested in developing a specific instance of the BD-HPE framework for
solving a class of linearly constrained convex optimization problems.

In this subsection, we consider the following optimization problem:

(60) min{f(y) + h(y) : Cy = d},

where the following assumptions are made:
O.1. C : Y→ X is a nonzero linear map and d ∈ X;
O.2. f, h : Y→ (−∞,∞] are proper closed convex functions;
O.3. dom(h) ⊂ dom(f), and there exists a point ŷ ∈ ri(domh) ∩ ri(dom f) such that

Cŷ = d;
O.4. the solution set of (60) is nonempty;
O.5. f is differentiable on cl(domh), and ∇f is L-Lipschitz continuous on cl(domh).
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We now make some observations. First, under the above assumptions, y∗ is an
optimal solution if and only if it satisfies the condition

(61) 0 ∈ ∂f(y) + ∂h(y) +NM(y),

where M := {y ∈ Y : Cy = d}. Second, the above assumptions also guarantee that
∂f + ∂g +NM is maximal monotone.

Clearly, y∗ is an optimal solution if and only if there exists x∗ ∈ X such that the
pair (y, x) = (y∗, x∗) satisfies

(62) Cy − d = 0, ∇f(y) + ∂h(y)− C∗x � 0,

or, equivalently to the inclusion problem (19) with x and y swapped, where

F (x, y) :=

(
Cy − d
−C∗x

)
∀(x, y) ∈ X× Y, A(·) = 0, B(·) = ∂f(·) + ∂h(·).

We now state the algorithm that we are interested in studying in this subsection.

An inexact BD method for (60).
(0) Let (x0, ỹ0) ∈ X× Y and 0 < σ ≤ 1 be given, let λ > 0 be such that

(63) λL + λ2‖C‖2 = σ2,

and set k = 1.
(1) Compute

x̃k = xk−1 − λ(Cỹk−1 − d),

ỹk = (I + λ∂h)−1[ỹk−1 − λ(∇f(ỹk−1)− C∗x̃k)].
(64)

(2) Set xk = x̃k + λC(ỹk−1 − ỹk) and k ← k + 1, and go to step (1).
end
Define

(65) ξ̄ := (λL)1/2 < 1,

where the inequality is due to (63) and the assumption that C �= 0 (see O.1).
Proposition 5.5. The above inexact BD method for (60) is a special instance

of the BD-HPE framework, where σx = σ̃x = 0, σy = (λL)1/2, and, for every k ∈ N,

(66) λk = λ, εxk = 0, εyk =
L

2
‖ỹk − ỹk−1‖2,

and

(67) ãk = 0, b̃k =
1

λ
(ỹk−1 − ỹk) + C∗x̃k ∈ [∂εykf + ∂h](ỹk), yk−1 = ỹk−1.

Proof. Applying Proposition 4.1 with G ≡ Cỹk−1 − d, C ≡ 0, and x = xk−1

and noting the definition of ãk, we conclude that (x̃k, ãk) satisfies (27) and (28) with
σx = 0 and σ̃x = 0, respectively. Applying Proposition 4.2 with T = ∂h, G ≡ −C∗x̃k,
and x = ỹk−1 and noting the definition of b̃k, we conclude that (ỹk, b̃k, ε

y
k) satisfies

(29) with σy = (λL)1/2 and that the inclusion in (67) holds. Moreover, (67) and the
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update rule for xk in step (2) of the algorithm imply that (30) holds. Also, by (65),
we have

(68) max{σ̃x, σy} = (λL)1/2 = ξ̄ < 1.

In addition, using (63) and the fact that σx = σ̃x = 0, σ2
y = λL, and Lxy = ‖C‖, we

easily see that λ satisfies (26).
We are now ready to state the convergence rate result for the inexact BD method

for (60).
Theorem 5.6. Consider the sequences {xk} and {(x̃k, ỹk)} generated by the

inexact BD method for (60), and the sequences {b̃k} and {εyk} defined as in (67) and
(66). Moreover, for each k ∈ N, define

(x̃a
k, ỹ

a
k) =

1

k

k∑
i=1

(x̃i, ỹi), b̃ak =
1

k

k∑
i=1

b̃i,

and

εak,B :=
1

k

k∑
i=1

(
εyk +

〈
ỹi − ỹak , b̃i

〉)
≥ 0.

Let d0 denote the distance of the initial point (x0, ỹ0) ∈ X × Y to the solution set of
(62). Then, for every k ∈ N, the following statements hold:

(a) b̃k ∈ (∂εykf + ∂h)(ỹk), and if σ < 1, there exists i ≤ k such that

∥∥∥(Cỹi − d,−C∗x̃i + b̃i)
∥∥∥ ≤ d0

λ
√
k

√
1 + σ

1− σ
, εyi ≤

σ2d20
(1− σ2)λk

;

(b) we have

(69) b̃ak ∈ ∂εak,B
(f + h)(ỹak),

and ∥∥∥(Cỹak − d,−C∗x̃a
k + b̃ak)

∥∥∥ ≤ 2d0
kλ

, εak,B ≤
2d20
kλ

(1 + η̄),

where

η̄ :=
2
√
2σ

1− ξ̄

(
1 +

1

(1− ξ̄)2

)1/2

and ξ̄ is defined in (65).
Proof. This result follows immediately from Proposition 5.5 and Theorems 3.2

and 3.3 by specializing the latter two results to the case where λk = λ := σλ̄, σx =
σ̃x = 0, σy = (λL)1/2, and εxk and εyk are given by (37), and using the fact that, by
(68), max{σ̃x, σy} = ξ̄. Observe also that (69) follows Theorem 2.2(b) and the fact

that b̃k ∈ ∂εyk(f + h)(ỹk), in view of statement (a).
Note that it is possible to replace λ in the above estimates using its explicit

formula:

1

λ
=

L+
√
L2 + 4σ2‖C‖2
2σ2

≤ L

σ2
+
‖C‖
σ

.
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We can interpret the above theorem in terms of the optimality condition (62) as
follows. Defining ṽi = b̃i − C∗x̃i and εi = εyi , it follows from its statement (a) that

ṽi ∈ ∂εi(f + h)(ỹi)−C∗x̃i, ‖Cỹi− d‖ = O(1/k1/2), ‖ṽi‖ = O(1/k1/2), εi = O(1/k),

while, defining ṽak = b̃ak − C∗x̃a
k and εak = εak,B, its statement (b) implies that

ṽak ∈ ∂εa
k
(f + h)(ỹak)− C∗x̃a

k, ‖Cỹak − d‖ = O(1/k), ‖ṽak‖ = O(1/k), εak = O(1/k).

Finally, we have shown in this section that the inexact BD method for solving (60)
presented in this subsection is a special case of the BD-HPE framework in which the
first equation (resp., second inclusion) in (62) is identified with the first (resp., second)
inclusion in (20). Clearly, it is also possible to derive a variant of the BD method
presented in this subsection which is also a special case of the BD-HPE framework
but with the second inclusion (resp., first equation) in (62) identified with the first
(resp., second) inclusion in (20). Note that for the latter variant, if the procedure of
Proposition 4.2 is used for approximately solving the second inclusion in (62), then
we have σx = (λL)1/2, σ̃x = 0, and σy = 0, which allows us to choose a larger λ than
the one in (63), namely, λ > 0 such that max{λL, λ2‖C‖2} = σ2. Note also that
the latter variant provides a meaningful instance of the BD-HPE framework where
σ̃x < σx.

6. Sum of two maximal monotone operators. In this section, we consider
the monotone inclusion problem consisting of the sum of two maximal monotone
operators and show how it can be transformed into a problem of form (19), which can
then be solved by any instance of the BD-HPE framework.

Consider the problem

(70) 0 ∈ (A+B)(x),

where A,B : X ⇒ X are maximal monotone. We assume that the resolvents of A and
B are easily computable. Note that (70) is equivalent to the existence of b ∈ X such
that

−b ∈ A(x), b ∈ B(x),

or, equivalently,

0 ∈ b+A(x), 0 ∈ −x+B−1(b).

Hence, the inclusion problem (70) is equivalent to the monotone inclusion problem

(71) 0 ∈ [F + (A⊗B−1)](x, b),

where

(72) F (x, b) = (b,−x).
Hence, we can apply any instance of the BD-HPE framework, and, in particular, the
exact BD-HPE method of subsection 5.1, to the inclusion problem (71) in order to
compute an approximate solution of (70). In the following two subsections, we will
discuss these approaches in detail, stating a general BD-HPE framework for (71) in
subsection 6.1 and an exact BD-HPE method for (71) in subsection 6.2.
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6.1. BD-HPE framework for (70). We start by stating a general BD-HPE
framework for solving (70).

Inexact BD-HPE framework for (70).
(0) Let (x0, b0) ∈ X× X, σ̃x, σy ∈ [0, 1), and σ, σx ∈ [0, 1] be given, and set

k = 1.
(1) Choose λk > 0 such that (26) holds with Lxy = 1.
(2) Compute x̃k, ãk ∈ X and εxk ≥ 0 such that

ãk ∈ Aεxk (x̃k),(73)

‖λk[bk−1 + ãk] + x̃k − xk−1‖2 + 2λkε
x
k ≤ σ2

x‖x̃k − xk−1‖2,
‖λk[bk−1 + ãk] + x̃k − xk−1‖ ≤ σ̃x‖x̃k − xk−1‖.(74)

(3) Compute ỹk, b̃k ∈ X and εyk ≥ 0 such that

ỹk ∈ (B−1)ε
y
k(b̃k),

‖λk[−x̃k + ỹk] + b̃k − bk−1‖2 + 2λkε
y
k ≤ σ2

y‖b̃k − bk−1‖2.
(75)

(4) Set

(xk, bk) = (xk−1, bk−1)− λk[(b̃k,−x̃k) + (ãk, ỹk)](76)

= (xk−1, bk−1)− λk(b̃k + ãk, ỹk − x̃k),

k ← k + 1, and go to step (1).
end
Clearly, the above framework is nothing else but the BD-HPE framework of sec-

tion 3 for the monotone inclusion problem (71). Note that it is stated in terms of
B−1. It is possible to state a version of it which replaces condition (75) based on B−1

by a sufficient condition based on B as described by the following result.
Proposition 6.1. If x̃k, ỹk, bk−1, b̃k ∈ X, λk > 0, and εyk ≥ 0 satisfy

(77) b̃k ∈ (B)ε
y
k (ỹk), ‖λ−1

k [b̃k−bk−1]+ ỹk− x̃k‖2+2λ−1
k εyk ≤

(
σy

1 + σy

)2

‖ỹk− x̃k‖2,

then (75) holds.
Proof. Since (B−1)ε = (Bε)−1, the inclusion in (77) implies that ỹk ∈ (B−1)ε

y
k .

Using the inequality in (77) and the triangle inequality for norms, we have

‖ỹk − x̃k‖ ≤‖λ−1
k [b̃k − bk−1]‖+ ‖λ−1

k [b̃k − bk−1] + ỹk − x̃k‖
≤ ‖λ−1

k [b̃k − bk−1]‖ + σy

1 + σy
‖ỹk − x̃k‖.

Hence, ‖ỹk − x̃k‖ ≤ (1 + σy)‖λ−1
k [b̃k − bk−1]‖, which combined with the inequality in

(77) yields

‖λ−1
k [b̃k − bk−1] + ỹk − x̃k‖2 + 2λ−1

k εyk ≤ σ2
y‖λ−1

k [b̃k − bk−1]‖2.
To end the proof, multiply the above inequality by λ2

k.

Note that the pair (ỹ, b̃) = (ỹk, b̃k) in the above result is an approximate solution
of the proximal point equation λ−1

k [b̃− bk−1] + (ỹ− x̃k) = 0 and ỹ ∈ B(b̃) in the sense
described in the paragraph after the statement of the HPE method in section 2.2.
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The specialization of Theorems 3.2 and 3.3 for the above method is as follows.
Theorem 6.2. Consider the sequences {λk}, {(εxk, εyk)}, {(x̃k, b̃k)}, and {(ãk, ỹk)}

generated by the BD-HPE method for (70). Moreover, for every k ∈ N, define

(x̃a
k, ỹ

a
k , ã

a
k, b̃

a
k) =

1

Λk

k∑
i=1

λi(x̃i, ỹi, ãi, b̃i),

εak,A =
1

Λk

k∑
i=1

λi (ε
x
i + 〈x̃i − x̃a

k, ãi〉) , εak,B =
1

Λk

k∑
i=1

λi

(
εyi + 〈b̃i − b̃ak, ỹi〉

)
.

Let d0 denote the distance of the initial point (x0, b0) ∈ X × X to the solution set of
(71), i.e.,

d0 := min
{(‖x− x0‖2 + ‖b− b0‖2

)1/2
: −b ∈ A(x), b ∈ B(x)

}
.

Then, for every k ∈ N, the following statements hold:
(a) (ãk, b̃k) ∈ Aεxk (x̃k)×Bεyk(ỹk), and, if σ < 1, then there exists i ≤ k such that

∥∥∥(b̃i + ãi,−x̃i + ỹi)
∥∥∥ ≤ d0

√√√√1 + σ

1− σ

(
1∑k

j=1 λ
2
j

)
,

εxi + εyi ≤
σ2d20λi

2(1− σ2)
∑k

j=1 λ
2
j

;

(b) (ãak, b̃
a
k) ∈ Aεak,A(x̃a

k)×Bεak,B (ỹak), and∥∥∥(b̃ak + ãak,−x̃a
k + ỹak)

∥∥∥ ≤ 2d0
Λk

, εak,A + εak,B ≤
2d20
Λk

(1 + ηk) ,

where ηk is defined in (39) with Lxy = 1.
Proof. This result follows as an immediate consequence of Theorems 3.2 and 3.3

applied to (71)–(72) and noting that in this case F is affine and Lxy = 1.

6.2. Exact BD-HPE method for (70). In this subsection, we state an exact
BD-HPE method for (70) and corresponding convergence rate results.

Exact BD-HPE method for (70).

(0) Let x0, b̃0 ∈ X, and λ ∈ (0, 1] be given, and set k = 1.
(1) Compute x̃k, b̃k ∈ X as

x̃k = (I + λA)−1(xk−1 − λb̃k−1), b̃k = (I + λB−1)−1(b̃k−1 + λx̃k).

(2) Set xk = x̃k − λ(b̃k − b̃k−1), and go to step (1).
end
The method above is nothing else but the exact BD-HPE method of subsection 5.1

applied to (71)–(72) with variable b replacing variable y and vice-versa.
The following well-known result describes how the resolvent of B−1 used in

step (1) can be computed using the resolvent of B.
Lemma 6.3. Let b, u ∈ X be given. Then,

b = (I + λB−1)−1(u)⇔ b = u− λ(I + λ−1B)−1(λ−1u).
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In view of the above result, b̃k may be computed as

b̃k = b̃k−1 + λx̃k − λ(I + λ−1B)−1(λ−1b̃k−1 + x̃k).

The following iteration-complexity bounds for solving the inclusion problem (70)
can now be stated as an immediate consequence of Theorem 5.2.

Theorem 6.4. Consider the sequences {xk} and {(x̃k, b̃k)} generated by the
BD-HPE method for (70), and define the sequence {(ãk, ỹk)} as

(78) ãk =
1

λ
(xk−1 − x̃k)− b̃k−1, ỹk =

1

λ
(b̃k−1 − b̃k) + x̃k.

Moreover, for every k ∈ N, define

(x̃a
k, ỹ

a
k , ã

a
k, b̃

a
k) =

1

k

k∑
i=1

(x̃i, ỹi, ãi, b̃i),

εak,A =
1

k

k∑
i=1

〈x̃i − x̃a
k, ãi〉, εak,B =

1

k

k∑
i=1

〈b̃i − b̃ak, ỹi〉.

Let d0 denote the distance of the initial point (x0, b̃0) ∈ X × X to the solution set of
(71), i.e.,

d0 := min

{(
‖x− x0‖2 + ‖b− b̃0‖2

)1/2
: −b ∈ A(x), b ∈ B(x)

}
.

Then, for every k ∈ N, the following statements hold:
(a) (ãk, b̃k) ∈ A(x̃k)×B(ỹk), and if λ < 1, there exists i ≤ k such that

∥∥∥(b̃i + ãi,−x̃i + ỹi)
∥∥∥ ≤ d0

λ
√
k

√
1 + λ

1− λ
;

(b) (ãak, b̃
a
k) ∈ Aεak,A(x̃a

k)×Bεak,B (ỹak), and∥∥∥(b̃ak + ãak,−x̃a
k + ỹak)

∥∥∥ ≤ 2d0
kλ

, εak,A + εak,B ≤
2d20
kλ

(
1 + 2

√
2λ
)
.

Proof. This result follows as an immediate consequence of Theorem 5.2 applied to
(71)–(72) and noting that in this case F is affine and Lxy = 1, and hence λ = σ.

We end this section by discussing the special case of the exact BD-HPE method
for (70) in which λ = 1. It can be easily shown that this algorithm is equivalent to the
Douglas–Rachford splitting method (see, for example, [9]). Hence, Theorem 6.4(b)
for λ = 1 gives an ergodic complexity estimation of the Douglas–Rachford method.
However, as far as we know, the exact BD-HPE method for (70) with λ < 1 is new.

7. Convergence of the alternating direction method of multipliers. In
this section, we consider the ADMM for solving a large class of linearly constrained
convex programming problems with proper closed convex objective functions and show
that it can be interpreted as a specific instance of the BD-HPE framework applied to
a two-block monotone inclusion problem.

We assume in this section that X, Y, and S are inner product spaces whose inner
products and associated norms are denoted by 〈·, ·〉 and ‖ · ‖. Consider the problem

(79) min{f(y) + g(s) : Cy +Ds = c},
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where c ∈ X, C : Y → X, and D : S → X are linear operators and f : Y → (−∞,∞]
and g : S → (−∞,∞] are proper closed convex functions. Throughout this section,
we also assume that the resolvent of ∂f and ∂g can be computed exactly.

The Lagrangian function L : (Y× S)× X→ (−∞,∞] for problem (79) is defined
as

(80) L(y, s;x) = f(y) + g(s)− 〈x,Cy +Ds− c〉.
We make the following assumptions throughout this section:

C.1. there exists a saddle point of L, i.e., a point (y∗, s∗;x∗) such that L(y∗, s∗;x∗)
is finite and

(81) min
(y,s)∈Y×S

L(y, s;x∗) = L(y∗, s∗;x∗) = max
x∈X

L(y∗, s∗;x);

C.2. ri(dom g∗) ∩ rangeD∗ �= ∅;
C.3. C is injective.
For a scalar ρ ≥ 0, the ρ-augmented Lagrangian function Lρ : (Y × S) × X →

(−∞,∞] associated with (79) is defined as

Lρ(y, s;x) := f(y) + g(s) + 〈x, c− Cy −Ds〉+ ρ

2
‖Cy +Ds− c‖2.

We next state the ADMM applied to problem (79).

Alternating direction method of multipliers.
(0) Let ρ > 0 and (x0, ỹ0) ∈ X× Y be given, and set k = 1.
(1) Compute s̃k ∈ S as

s̃k = argmins{Lρ(ỹk−1, s;xk−1)}(82)

= argmins

{
g(s)− 〈D∗xk−1, s〉+ ρ

2
‖Cỹk−1 +Ds− c‖2

}
and ỹk ∈ Y as

ỹk = argminy{Lρ(y, s̃k;xk−1)}(83)

= argminy

{
f(y)− 〈C∗xk−1, y〉+ ρ

2
‖Cy +Ds̃k − c‖2

}
.

(2) Set xk = xk−1−ρ(Cỹk +Ds̃k− c) and k ← k+1, and go to step (1).
end
Our goal in the remaining part of this section is to show that the ADMM is a

special case of the exact BD-HPE method of subsection 5.1 for a specific monotone
inclusion problem of the form (19). As a by-product, we also derive convergence rate
results for the ADMM.

We start by giving a preliminary technical result about the ADMM.
Proposition 7.1. Let (xk−1, ỹk−1) ∈ X × Y be given. Then, the following

statements hold:
(a) s̃k ∈ S is an optimal solution of (82) if and only if the point

(84) x̃k := xk−1 − ρ(Cỹk−1 +Ds̃k − c)

satisfies

(85) s̃k ∈ ∂g∗(D∗x̃k);
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(b) if (s̃k, ỹk, xk) are computed according to the k-iteration of the ADMM, then

0 ∈ ∂(g∗ ◦D∗)(x̃k) + Cỹk−1 − c+
1

ρ
(x̃k − xk−1),(86)

0 ∈ ∂f(ỹk)− C∗x̃k + ρC∗C(ỹk − ỹk−1),(87)

xk = x̃k − ρC(ỹk − ỹk−1).(88)

Proof. By (84) and the optimality conditions of (82), we have that s̃k is an
optimal solution of (82) if and only if

D∗x̃k = D∗[xk−1 − ρ(Cỹk−1 +Ds̃k − c)] ∈ ∂g(s̃k),

which in turn is equivalent to (85). On the other hand, (85) implies that Ds̃k ∈
D∂g∗(D∗x̃k) ⊂ ∂(g∗ ◦D∗)(x̃k). Combining the latter inclusion with (84), we obtain
(86). Moreover, (83) implies that

0 ∈ ∂f(ỹk)− C∗xk−1 + ρC∗(Cỹk +Ds̃k − c).

Combining the above equation with (84), we obtain (87). Finally, (88) follows imme-
diately from (84) and the update rule for xk in step (3) of the ADMM.

Proposition 7.2. Given (xk−1, ỹk−1) ∈ X× Y, define

x̂k := (ρ∂(g∗ ◦D∗)+ I)−1[xk−1 +ρ(c−Cỹk−1)], ŵk :=
1

ρ
(xk−1− x̂k)+ c−Cỹk−1.

Then, the following statements hold:
(a) s̃k ∈ S is an optimal solution of (82) if and only if s̃k ∈ D−1(ŵk)∩∂g∗(D∗x̂k);
(b) if condition C.2 holds, then D−1(ŵk) ∩ ∂g∗(D∗x̂k) �= ∅, and hence the set of

optimal solutions of (82) is nonempty;
(c) if condition C.3 holds, then the set of optimal solutions of (83) is nonempty.
Proof. First, observe that (x̃, w̃) = (x̂k, ŵk) is the unique solution of

(89) 0 = ρ (Cỹk−1 − c+ w̃) + x̃− xk−1, w̃ ∈ (g∗ ◦D∗)(x̃).

(a) Assume first that s̃k is an optimal solution of (82). By Proposition 7.1, we
conclude that x̃k given by (84) satisfies (85). Then

Ds̃k ∈ D∂g∗(D∗x̃k) ⊂ ∂(g∗ ◦D∗)(x̃k),

which, together with (84), implies that (x̃, w̃) = (x̃k, Ds̃k) satisfies (89). Hence,
in view of the observation made at the beginning of this proof, we conclude that
x̃k = x̂k and Ds̃k = ŵk. These identities and inclusion (85) then imply that s̃k ∈
D−1(ŵk) ∩ ∂g∗(D∗x̂k).

Conversely, assume that s̃k ∈ D−1(ŵk)∩∂g∗(D∗x̂k). Then, ŵk = Ds̃k, and hence
(x̂k, Ds̃k) = (x̂k, ŵk) satisfies (89). In particular,

x̂k = xk−1 − ρ (Cỹk−1 − c+Ds̃k) = x̃k,

where the latter equality is due to (84). Since x̃k = x̂k and, by assumption, s̃k ∈
∂g∗(D∗x̂k), we conclude that (85) holds and hence that s̃k is an optimal solution of
(82).

(b) Using the fact that (x̂k, ŵk) satisfies (89), we conclude that

ŵk ∈ ∂(g∗ ◦D∗)(x̂k) = D(∂g∗(D∗x̂k)),
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where the latter equality is due to assumption C.2. The latter inclusion clearly implies
that D−1(ŵk) ∩ ∂g∗(D∗x̂k) �= ∅.

(c) This statement follows from the fact that, under assumption C.3, the objective
function of (83) is strongly convex.

We will now derive the aforementioned monotone inclusion problem of the form
(19). Let X × Y := dom f × (D∗)−1(dom g∗) and Ψ : X × Y → R be defined as

Ψ(y, x) = min
s

L(y, s;x) = f(y) + 〈x, c− Cy〉+
(
min
s

g(s)− 〈D∗x, s〉
)

= f(y) + 〈x, c− Cy〉 − g∗(D∗x).

It is easy to see that the pair (y∗, x∗) as in assumption C.1 satisfies

max
x∈X

min
(y,s)∈Y×S

L(y, s;x) = max
x∈X

min
y∈Y

Ψ(y, x) = Ψ(y∗, x∗) = min
y∈Y

max
x∈X

Ψ(y, x)

= min
(y,s)∈Y×S

max
x∈X

L(y, s;x) ∈ R.

The latter condition is in turn equivalent to (y∗, x∗) being a solution of the inclusion
problem

(90) 0 ∈ ∂f(y)− C∗x, 0 ∈ ∂(g∗ ◦D∗)(x) + Cy − c.

Under the assumption that C∗C is nonsingular, the latter inclusion problem is clearly
equivalent to

(91) 0 ∈ (ρC∗C)−1(∂f(y)− C∗x), 0 ∈ ρ [∂(g∗ ◦D∗)(x) + Cy − c]

and hence to inclusion problem (19) with

(92)

F (x, y) =

[
ρ(Cy − c)

−(ρC∗C)−1C∗x

]
, A(x) = ρ∂(g∗ ◦D∗)(x), B(y) = (ρC∗C)−1∂f(y).

If U is an inner product space with inner product also denoted by 〈·, ·〉, then
a symmetric positive definite operator M : U → U defines another inner product,
denoted by 〈·, ·〉M , as follows:

〈u, u′〉M = 〈u,Mu′〉 ∀u, u′ ∈ U.

We will denote the norm associated with the above inner product by ‖·‖M . Moreover,
when M = τI for some τ > 0, where I denotes the identity operator, we denote the
norm ‖ · ‖M simply by ‖ · ‖τ .

Proposition 7.3. Assume that C∗C is nonsingular and ri(dom g∗)∩Range(D∗)
is nonempty, and consider the inner products 〈·, ·〉ρ−1 in X and 〈·, ·〉C̃ρ

in Y, where

C̃ρ := ρC∗C. Then, the following statements hold:
(a) the map F defined in (92) is monotone with respect to the inner product
〈·, ·〉ρ−1 + 〈·, ·〉C̃ρ

in X × Y, and the operators A and B defined in (92) are

maximal monotone with respect to 〈·, ·〉ρ−1 and 〈·, ·〉C̃ρ
, respectively;

(b) F satisfies (21) with Lxy = 1;
(c) the sequence {(xk, ỹk)} generated by the ADMM and the sequence {x̃k} defined

in (84) correspond to the same sequence {(xk, x̃k, ỹk)} generated by the exact
BD-HPE method applied to the inclusion problem (19) with (F,A,B) given
by (92) and with σ = 1 (or, equivalently, λ = 1).
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Proof. Monotonicity of F in the rescaled space X × Y holds trivially. Maximal
monotonicity of A (resp., B) in X (resp., Y) endowed with the norm ‖ · ‖ρ−1 (resp.,
‖ · ‖C̃ρ

) follows from the fact that this operator is the subdifferential of g∗ ◦D∗ (resp.,

f) in the rescaled space. For (b), observe that

‖Fx(x, y)− Fx(x, y
′)‖2ρ−1 = ‖ρC(y − y′)‖2ρ−1 = ρ‖C(y − y′)‖2

= 〈y − y′, (ρC∗C)(y − y′)〉 = ‖y − y′‖2
C̃ρ

.

Statement (c) follows immediately from Proposition 7.1 by noting that relations (86)–
(88) reduce to the recursive formulas for obtaining (xk, x̃k, ỹk) in the exact BD-HPE
method applied to the inclusion problem (19) with (F,A,B) given by (92) and with
λ = 1.

As a consequence of the previous proposition, we obtain the following convergence
rate result.

Theorem 7.4. Consider the sequence {(xk, ỹk)} generated by the ADMM and
the sequence {x̃k} defined according to (84). Consider also the sequence {(ãk, b̃k)}
defined as

(93) ãk = xk−1 − x̃k − ρ(Cỹk−1 − c), b̃k = ỹk−1 − ỹk + C̃−1
ρ C∗x̃k,

where C̃ρ := ρC∗C. Moreover, define the sequences {(x̃a
k, ỹ

a
k)}, {(ãak, b̃ak)}, and {(εak,x,

εak,y)} as

(94) (x̃a
k, ỹ

a
k) =

1

k

k∑
i=1

(x̃i, ỹi), (ãak, b̃
a
k) =

1

k

k∑
i=1

(ãi, b̃i),

and

(95) εak,x =
1

k

k∑
i=1

〈
x̃i − x̃a

k,
1

ρ
ãi

〉
, εak,y =

1

k

k∑
i=1

〈
ỹi − ỹak , C̃ρb̃i

〉
.

Then, for every k ∈ N,

(96)
1

ρ
ãak ∈ ∂εa

k,x
(g∗ ◦D∗)(x̃a

k), C̃ρb̃
a
k ∈ ∂εa

k,y
f(ỹak),

and (
ρ

∥∥∥∥Cỹak − c+
1

ρ
ãak

∥∥∥∥
2

+
1

ρ

∥∥∥−C∗x̃a
k + C̃ρb̃

a
k

∥∥∥2
(C∗C)−1

)1/2

≤ 2d0
k

,

εak,x + εak,y ≤
2(1 + 2

√
2)d20

k
,

(97)

where d0 is the distance of the initial point (x0, ỹ0) ∈ X×Y to the solution set of (90)
with respect to the inner product 〈·, ·〉ρ−1 + 〈·, ·〉C̃ρ

in X×Y; namely, d0 is the infimum
of √

1

ρ
‖x0 − x∗‖2 + ρ‖ỹ0 − y∗‖2C∗C

over the set of all solutions (x∗, y∗) of (90).
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Proof. By Proposition 7.3(c), we know that {(xk, x̃k, ỹk)} is the sequence gener-
ated by applying the exact BD-HPE method to (91) with σ = 1 and Lxy = 1, and
hence λ = 1. Hence, it follows from Lemma 5.1 and Theorem 5.2, relations (92), (93),
and the definition of F and the fact that F is affine that the last inequality in (97)
holds,

(98) ãk ∈ ρ∂(g∗ ◦B∗)(x̃k), b̃k ∈ C̃−1
ρ ∂f(ỹk),

and (
‖ρ(Cỹak − c) + ãk‖2ρ−1 + ‖b̃ak − C̃−1

ρ C∗x̃a
k‖2C̃ρ

)1/2
≤ 2d0

k
.

Now, using the definition of C̃ρ and the norm induced by this operator, we easily see
that the latter inequality is equivalent to the first inequality in (97). Moreover, (96)
follows from (95) and (98) and Theorem 2.2(b).

We now translate the above result stated more in the context of the inclusion
problem (90) and the exact BD-HPE method to the context of the original optimiza-
tion problem (79) and the ADMM, respectively.

Theorem 7.5. Consider the sequence {(xk, ỹk, s̃k)} generated by the ADMM and
the sequences {x̃k} and {b̃k} defined according to (84) and (93). Moreover, consider
the sequences {(x̃a

k, ỹ
a
k)}, {b̃ak}, {(εak,x, εak,y)} defined in (94) and (95), and define for

every k ∈ N

(99) s̃ak :=
1

k

k∑
i=1

s̃i, rxk := Cỹak +Ds̃ak − c, ryk := ρC∗Cb̃ak − C∗x̃a
k.

Then

(100) 0 ∈ ∂gεa
k,x

(s̃ak)−D∗x̃a
k, ryk ∈ ∂εa

k,y
f(ỹak)− C∗x̃a

k,

and

(101)

(
ρ‖rxk‖2 +

1

ρ
‖ryk‖2(C∗C)−1

)1/2

≤ 2d0
k

, εak,x + εak,y ≤
2(1 + 2

√
2)d20

k
,

where d0 is defined as in Theorem 7.4.
Proof. First note that (84) and the definition of ãk in (93) imply that

(102) ãk = ρDs̃k,

which together with (95) implies that

εak,x =
1

k

k∑
i=1

〈
x̃i − x̃a

k,
1

ρ
ãi

〉
=

1

k

k∑
i=1

〈x̃i − x̃a
k, Ds̃i〉 = 1

k

k∑
i=1

〈D∗x̃i −D∗x̃a
k, s̃i〉 .

This identity, (85), and Theorem 2.2(b) then imply that

s̃ak ∈ ∂εa
k,x

g∗(D∗x̃a
k),

from which the first inclusion in (100) follows. The second inclusion in (100) follows
from the definition of C̃ρ in Theorem 7.4, the second inclusion in (96), and the defini-
tion of ryk in (99). In addition, the estimates in (101) follow from (97), the definition

of C̃ρ, (99), (102), and the definition of ãak in (94).
We should emphasize that the analysis of this section requires both subproblems

(82) and (83) to be solved exactly. We conjectured whether this assumption can be
relaxed so as to allow the subproblems (or one of them) to be solved approximately.
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8. Concluding remarks. In this paper, we have presented a general framework,
namely, the BD-HPE framework, of BD methods and obtained broad convergence rate
results for it. As a consequence, we have derived for the first time convergence rate
results for the classical ADMM by showing that it can be viewed as a special instance of
the BD-HPE framework. We have also proposed new BD algorithms and derived their
respective convergence rate results. These include a new splitting method for finding
a zero of the sum of two maximal monotone operators and a new BD method based
on Tseng’s MF-BS procedure. The analysis of the latter makes use of an important
feature of the BD-HPE framework, i.e., that it allows the one-block subproblems to
be solved only approximately.

We also note that Nemirovski [17] and Nesterov [18] previously established O(1/k)
ergodic iteration-complexity bounds similar to those derived in this paper for spe-
cific algorithms to solve VIs and saddle-point problems. Hence, the various ergodic
iteration-complexity bounds obtained in this paper extend their complexity bounds to
a broader class of algorithms and problems other than VIs. Moreover, Monteiro and
Svaiter [15, 16] have previously established pointwise complexity bounds for hemi-
variational inequalities and saddle-point problems similar to the ones derived in this
paper.

Finally, we make some remarks about a recent work of Chambolle and Pock [6] in
light of the development in this paper. They studied the monotone inclusion problem

0 ∈ K∗y + ∂g(x), 0 ∈ −Kx+ ∂f∗(y),

where K is a linear map and f , g are proper closed convex functions, and analyzed
the convergence rate of an algorithm based on the exact evaluation of the resolvents
of ∂g and ∂f∗ (or ∂f). Their analysis, in contrast to ours, is heavily based on the
fact that the above monotone inclusion problem is the optimality condition associated
with the saddle-point problem

min
x

max
y
〈Kx, y〉+ g(x)− f∗(y).

It can be shown, by means of a rescaling procedure, that their method and assump-
tions coincide with the exact BD-HPE method for the above inclusion problem (see
section 5.1) with the assumption that σ < 1. It should be noted, however, that, in
contrast to our analysis, theirs does not deal with the extreme case of σ = 1, which,
as mentioned earlier, is crucial to the analysis of the ADMM.

Acknowledgment. The authors would like to thank the two anonymous referees
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