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In this article, we consider the proximal point method with Bregman distance applied to linear
programming problems, and study the dual sequence obtained from the optimal multipliers of the
linear constraints of each subproblem. We establish the convergence of this dual sequence, as well as
convergence rate results for the primal sequence, for a suitable family of Bregman distances. These
results are obtained by studying first the limiting behavior of a certain perturbed dual path and then
the behavior of the dual and primal paths.

1. Introduction

The proximal point algorithm with Bregman distances for solving the linearly constrained
problem

min{f (x) : Ax = b, x ≥ 0}, (1)

where f : R
n → R is a differentiable convex function, A is an m × n real matrix, b is a real

m-vector and the variable x is a real n-vector, generates a sequence {xk} according to the
iteration

xk+1 ≡ arg min{f (x) + λkDϕ(x, xk) : Ax = b}, (2)

where x0 > 0 is arbitrary, {λk} is a sequence of positive scalars satisfying
∑∞

k=0 λ−1
k = +∞

and Dϕ is a Bregman distance determined by a convex barrier ϕ for the non-negative orthant
R

n+ (see (7) for the definition of Dϕ). The optimality condition for (2) determines the dual
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sequence {sk} defined as

sk ≡ λk

(∇ϕ(xk) − ∇ϕ(xk+1)
)
. (3)

This method is a generalization of the classical proximal point method studied in Rockafellar
[1], which has the form of (2) for ϕ(x) = ‖x‖2 (note that this ϕ is not a barrier for the non-
negative orthant). Particular cases, corresponding to a special form of ϕ, were introduced in
Eriksson [2], Eggermont [3] and Tseng and Bertsekas [4]. General Bregman distances were
studied in several papers, for example, Censor and Zenios [5], Chen and Teboulle [6], Iusem
[7] and Kiwiel [8]. Similar methods, using ϕ-divergences instead of Bregman distances in (2),
appear in Iusem and Teboulle [9], Jensen and Polyak [10], Iusem and Teboulle [11], Powell
[12] and Polyak and Teboulle [13] (see Iusem, Svaiter and Teboulle [14] for a definition of
ϕ-divergence). These papers contain a complete study of the primal sequence {xk}. However,
the convergence of the whole sequence {sk} was lacking, even for linear programming. Our
aim in this article is to prove the convergence of this sequence for linear programming with
Bregman distance Dϕ , where ϕ satisfies an appropriate condition, which holds, for example
in the following cases:

(1) ϕ(x) = ∑n
j=1 xα

j − x
β

j , with α ≥ 1 and β ∈ (0, 1),
(2) ϕ(x) = − ∑n

j=1 log xj ,
(3) ϕ(x) = ∑n

j=1 x−α
j , with α > 0.

Some authors, instead of studying the sequence {sk}, have considered an averaged dual
sequence {s̄k} constructed from {sk}. Partial results regarding the behavior of {s̄k} have been
obtained in a few papers, see Tseng and Bertsekas [4], Powell [12], Jensen and Polyak [10]
and Polyak and Teboulle [13]. Most of these results are described in a somewhat different
framework, for example, with ϕ-divergences instead of Bregman distances in (2). It is worth-
while to mention that, up to additive and/or multiplicative constants, the only ϕ-divergence
which is also a Bregman distance corresponds to the case of the entropic barrier, given by
ϕ(x) = ∑n

j=1 φ(xj ) with φ(t) = t log t − t + 1. The convergence of the whole averaged dual
sequence {s̄k} for the proximal point method with Bregman distances has been obtained in
Iusem and Monteiro [15]. In this article, it was showed that {s̄k}, under appropriate conditions
including the examples above, converges to the centroid of the dual optimal set of problem
(1). The case of the shifted logarithmic barrier was considered in Jensen and Polyak [10],
where it is proved that some cluster point of {s̄k} is a dual optimal solution. This result was
improved upon in Polyak and Teboulle [13], where it is proved that all cluster points of {s̄k}
are dual optimal solutions. In this article, it is also proved that dual functional values converge
linearly. The convergence of the whole sequence {s̄k} appeared for the first time in Powell [12],
but only for linear programming with the shifted logarithmic barrier. None of these articles
present results on the convergence of the whole sequence {sk}. For linear programming with a
certain non-degeneracy assumption, which implies uniqueness of the dual solution, and with
ϕ-divergences instead of Bregman distances, it has been proved in Iusem and Teboulle [11]
that the sequence {sk} converges to the dual solution. A new class of barriers, called second
order ϕ-divergences, was introduced in Auslender, Teboulle and Ben-Tiba [16]. They proved
quadratic convergence of the dual sequence generated by the proximal point method with
these barriers applied to linear programming. Quadratic convergence of the sequence of dual
functional values with a related class of barriers was established in Polyak [17].

In this article, we first study the limiting behavior of the path x(μ) consisting of the optimal
solutions of the following family of problems parametrized by a parameter μ > 0:

min
{
cTx + μDϕ(x, x1) : Ax = b

}
.
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We also study the limiting behavior of an associated dual path s(μ) defined in (9) below.
More specifically, our main goal is to obtain a characterization of the limiting behavior of
the derivatives of these paths. Our analysis in this part uses several ideas from Adler and
Monteiro [18]. Using these results, we then establish convergence of the sequence {sk} as well
as convergence rate results for {xk} and {s̄k}. We show that both sequences {xk} and {s̄k} have
sublinear convergence rates if 0 < lim supk→+∞ λk and also give examples of sequences {λk}
such that limk→∞ λk = 0 for which the corresponding sequences {xk} and {s̄k} both converge
either linearly or superlinearly.

At this point, it is important to emphasize that, though our convergence analysis of the
dual sequence is limited to the case of linear programming, by no means we advocate the use
of the proximal point method for solving linear programs, be it with the classical quadratic
regularization or with Bregman functions. The method is intended rather for the non-linear
problem (1), and if we restrict our analysis to the case of a linear f , it is just because our
analytical tools do not allow us to go further. We expect that the results of this article will be
the first step towards a convergence analysis of the dual sequence in the non-linear case.

This said, it is worthwhile to make some comments on the proximal method with Bregman
barriers viz-a-viz the same method with the classical quadratic regularization, and also interior
point methods for convex programming.

The use of barriers (which force the generated sequence to remain in the interior of their
domains) in the proximal method, instead of the classical regularization given by ϕ(x) = ‖x‖2,
has the following purpose. The proximal method, in principle, is just a regularization device,
which replaces a possibly ill-conditioned problem by a sequence of better conditioned sub-
problems of the same nature. Thus, if the original problem has positivity constraints, so do
the subproblems. If we replace the quadratic function given earlier by a function defined only
in a certain region, and such that its gradient diverges in the boundary of this region, then
it will serve not only as a regularization device but also as a penalization one, forcing the
generated sequence to remain in the interior of the region. In such a situation, constraints
demanding that the solution must belong to this region can be omitted from the subproblems.
Thus, a constrained problem is solved through a sequence of unconstrained subproblems, or,
as in the case of interest here, a problem with inequality constraints reduces to a sequence of
subproblems whose constraints are just linear equalities. This procedure opens the possibility
of solving the subproblems with faster methods (e.g. Newton’s type of methods). In our case,
with linear constraints, the elimination of the positivity constraints from the subproblems erad-
icates also the combinatorial component of the problem, with all the complications resulting
from the need to identify the optimal face of the feasible polyhedral region. Another advantage
of the use of barriers appears in a very important application of the proximal method: when
it is applied to the dual of a constrained convex optimization problem, the proximal point
method gives rise to primal-dual methods, called augmented Lagrangian algorithms, whose
subproblems are always unconstrained, but with objective functions, which, with the classical
quadratic regularization, are differentiable but never twice differentiable. The subproblems of
the augmented Lagrangian methods resulting from proximal method with Bregman barriers
have objective functions which are as smooth as the original constraints, and which can be
minimized with Newton’s method.

If we compare now the proximal method with Bregman barriers for linearly constrained
convex optimization with the so called interior point algorithms, we observe that both share
the same feature discussed earlier: unconstrained subproblems (after dealing in an appropriate
way with the linear system Ax = b) which can be solved with fast second-order methods. The
difference lies in the fact that the specific logarithmic barrier, typical of interior point methods,
has a property, namely self-concordance, which allows estimates of the number of iterations
needed to achieve a given accuracy, ensuring that the running time of the algorithm is bounded
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by a polynomial function of an adequate measure of the size of the problem. This feature is not
shared by most Bregman barriers considered here, which in general are not self-concordant.
Nevertheless, the proximal point method with Bregman functions, and the resulting smooth
augmented Lagrangians, have proved to be efficient tools in several specific instances, thus
justifying the study of its convergence properties, as has been done in many articles mentioned
earlier.

The organization of our article is as follows: in subsection 1.1 we list some basic notation
and terminology used in our presentation. In section 2, we review some known concepts,
introduce the assumptions that will be used in our presentation and state some basic results.
In section 3, we study the limiting behavior of a perturbed dual path, and use the derived
results to analyze the limiting behavior of the derivatives of the paths x(μ) and s(μ). The
convergence of {sk} is obtained in section 4 as well as convergence rate results for {xk} and
{s̄k}. In section 5 we make some remarks. We conclude this article with an Appendix which
contains the proofs of some technical results.

1.1 Notation

We will use the following notation throughout this article. R
n denotes the n-dimensional

Euclidean space. The Euclidean norm is denoted by ‖ · ‖. Define R
n+ ≡ {x ∈ R

n : xj ≥
0 , j = 1, . . . , n} and R

n++ ≡ {x ∈ R
n : xj > 0 , j = 1, . . . , n}. The i-th component of a vec-

tor x ∈ R
n is denoted by xi for every i = 1, . . . , n. Given an index set J ⊆ {1, . . . , n}, R

J

will denote the set of vectors indexed by J and a vector x ∈ R
J is often denoted by xJ .

For J ⊆ {1, . . . , n} and a vector x ∈ R
n, we also denote the subvector [xi]i∈J by xJ . Given

x, y ∈ R
n, their Hadamard product, denoted by xy, is defined as xy = (x1y1, . . . , xnyn) ∈ R

n

and for λ ∈ R the vector [xλ
i ]i∈J will be denoted by (xJ )λ. The set of all m × n matrices with

real entries is denoted by R
m×n. If x is a lower case letter that denotes a vector x ∈ R

n, then
the capital letter will denote the diagonal matrix with the components of the vector on the
diagonal, that is, X = diag(x1, . . . , xn). For a matrix A, we let AT denote its transpose, 
A

denote the subspace generated by the columns of A and Null A denote the subspace orthogonal
to the rows of A. Given A ∈ R

m×n and J ⊆ {1, . . . , n}, we denote by AJ the submatrix of A

consisting of all columns of A indexed by indices in J .

2. Preliminaries

In this section, we define the notion of the primal and dual central path for an LP problem
in standard form with respect to a given Bregman barrier and recall some results about the
limiting behavior of these paths. We also describe the class of Bregman functions considered
in this article and state its basic properties.

We consider the linear programming problem

min
{
cTx : Ax = b, x ≥ 0

}
, (4)

where c ∈ R
n, A ∈ R

m×n has full row rank and b ∈ R
m. We make two assumptions on problem

(4), whose solution set will be denoted as X∗:

(A1) X∗ �= ∅.
(A2) F0 ≡ {x ∈ R

n++ : Ax = b} �= ∅.
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Associated with problem (4), we have the dual problem

min{x̃Ts : s ∈ c + Im AT, s ≥ 0}, (5)

where x̃ ∈ R
n is any point such that Ax̃ = b. Under condition (A1), the optimal set of the dual

problem (5), which we denote by S∗, is a non-empty polyhedral set, namely

S∗ = {s ∈ R
n
+ : s ∈ c + Im AT, x̄Ts = 0},

where x̄ is an arbitrary element of X∗. Moreover, it is known that S∗ is bounded when, in
addition, (A2) holds.

We consider separable barrier functions ϕ for the non-negative orthant R
n+, that is,

ϕ(x) ≡
n∑

j=1

ϕj (xj ), (6)

satisfying certain assumptions described below. The first assumption we make on ϕ is the
following:
(H1) The function ϕ : R

n → R ∪ {+∞} is closed, strictly convex, twice continuously
differentiable in R

n++, and such that

(i) limt→0 ϕj (t) = +∞ or limt→0 ϕj (t) = 0 for each j ∈ {1, . . . , n};
(ii) limt→0 ϕ′

j (t) = −∞ for each j ∈ {1, . . . , n}.
We mention that assumption H1(i) is not really restrictive, because the algorithms we are

interested in are invariant through addition of a constant to ϕ, and therefore, without loss
of generality, we can add an appropriate constant to ϕ so that limt→0 ϕj (t) = 0, whenever
limt→0 ϕj (t) < +∞, for each j ∈ {1, . . . , n}.

Our second assumption on ϕ is:
(H2) There exist γ ∈ (0, 1) such that

rj ≡ lim
t→0

− ϕ′
j (t)

ϕ′′
j (t)γ

∈ (0, ∞), ∀j ∈ {1, . . . , n}.

From now on, we consider barrier functions ϕ satisfying assumptions H1 and H2. We present
several examples next, with the corresponding values of γ and rj . In item (ii) we have used a
special definition of ϕj for values of t far from 0, so that dom(ϕj ) contains the whole half line
(0, +∞), and therefore ϕ can be used to generate a Dϕ whose zone is R++, but we emphasize
that both γ and rj depend only on the behavior of ϕ near 0.

Example 2.1 For each j ∈ {1, . . . , n}, let:

(i) ϕj (t) = tα − tβ , with α ≥ 1 and β ∈ (0, 1). Then γ = (1 − β)/(2 − β) ∈ (0, 1/2) and

rj =
(

β

(1 − β)1−β

)1/(2−β)

;

(ii)

ϕj (t) =
⎧⎨
⎩

−(1 − (1 − t)α)1/α, if t ∈ (0, 1);
(t − 1)α

2
, if t ≥ 1,

with α ≥ 2. Then γ = (α − 1)/(2α − 1) ∈ (0, 1/2) and rj = (α − 1)(1−α)/(2α−1);
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(iii) ϕj (t) = − log t . Then γ = 1/2 and rj = 1;
(iv) ϕj (t) = (t − 1) log t . Then γ = 1/2 and rj = 1;
(v) ϕj (t) = t−α with α > 0. Then, γ = (α + 1)/(α + 2) ∈ (1/2, 1) and rj = [α

(α + 1)−(α+1)]1/(α+2).

Finally, we make a last hypothesis on ϕ. It will be used only in subsection 3.2, whereas
hypotheses H1, H2 are used throughout the article.
(H3) There exists ν �= 0 such that limt→0 ϕ′

j (t) + ν t ϕ′′
j (t) ∈ R for all j ∈ {1, . . . , n}.

We next present some examples of functions ϕ satisfying hypotheses H1, H2 and H3, with
the corresponding values of ν.

Example 2.2 For each j ∈ {1, . . . , n} we take:

(i) ϕj (t) as in Example 2.1 (i). Then, ν = 1/(1 − β);
(ii) ϕj (t) as in Example 2.1 (iii). Then, ν = 1;

(iii) ϕj (t) as in Example 2.1 (v). Then, ν = 1/(1 + α).

We remark that ϕ as defined in Examples 2.1 (ii) and 2.1 (iv) does not satisfy H3.
The Bregman distance associated with ϕ is the function Dϕ : R

n × R
n++ → R ∪ {+∞}

defined as

Dϕ(x, y) ≡ ϕ(x) − ϕ(y) − ∇ϕ(y)T(x − y), ∀(x, y) ∈ R
n × R

n
++. (7)

Observe that Dϕ(x, y) = +∞ for every x /∈ R
n+ and y ∈ R

n++. Now, let x1 = (x1
1 , . . . , x

1
n) ∈

F0 be given and consider the ‘barrier’ function Dϕ(·, x1). The primal central path {x(μ) :
μ > 0} and the dual central path {s(μ) : μ > 0} for problem (4) with respect to the barrier
Dϕ(·, x1) are defined as

x(μ) ≡ arg min{cTx + μDϕ(x, x1) : Ax = b}, ∀μ > 0, (8)

and

s(μ) ≡ −μ(∇ϕ(x(μ)) − ∇ϕ(x1)), ∀μ > 0. (9)

It is well-known that, for every μ > 0, problem (8) has a unique optimal solution which
is strictly positive, see Proposition 2 of Iusem, Svaiter and Cruz Neto [19]. This clearly
implies that both x(μ) and s(μ) are well defined for every μ > 0. The curves x(μ) and s(μ)

are differentiable in (0, ∞) as an elementary consequence of the implicit function theorem.
Moreover, the optimality conditions for (8) imply that

s(μ) ∈ c + Im AT, ∀μ > 0. (10)

The optimal partition (B, N) for (4) is defined as

B ≡ {j : x∗
j > 0 for some x∗ ∈ X∗} and N ≡ {1, . . . , n}\B.

The following result characterizes the limiting behavior of the primal and dual central paths
(8) and (9).

PROPOSITION 2.3 The following statements hold:

(i) limμ→0 x(μ) = x∗, where x∗ = arg minx∈X∗
∑

j∈B Dϕj
(xj , x

1
j );
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(ii) limμ→0 s(μ) = s∗, where s∗ is the unique optimal solution of the problem

min{σN(sN) : s ∈ c + Im AT, sB = 0}, (11)

and σN is the strictly convex function defined as

σN(sN) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ 2

(1 − 2γ )(1 − γ )

∑
j∈N

r
1/γ

j s
2−1/γ

j , if γ ∈ (0, 1) \ {1/2};

−
∑
j∈N

r2
j log sj , if γ = 1/2.

(12)

Proof The statement related to the primal central path was proved in Theorem 1 of Iusem,
Svaiter and Cruz Neto [19]. The statement related to the dual central path follows from Propo-
sition 7 in Iusem and Monteiro [15] and the fact that items (i) and (ii) of Corollary A3 in the
Appendix imply that

σN(sN) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim
μ→0

1

μ1/γ−2

∑
j∈N

ϕ∗
j

(
δj − sj

μ

)
, if γ ∈ (0, 1) \ {1/2};

lim
μ→0

∑
j∈N

(
ϕ∗

j

(
δj − sj

μ

)
− ϕ∗

j

(
δj − 1

μ

))
, if γ = 1/2,

for any δ ∈ dom ϕ∗, where ϕ∗
j denotes the conjugate function of ϕj . �

We conclude this subsection by giving a result about the limiting behavior of the second
derivative of ϕ along the primal central path. For every μ > 0, define

gB(μ) ≡ ∇2ϕB(xB(μ))e, h(μ) ≡ μ−1/γ
[∇2ϕ(x(μ))

]−1
e, (13)

where e denotes the vector of all ones of appropriate dimension.

COROLLARY 2.4 The following statements hold:

(i) limμ→0 hj (μ) = +∞ for all j ∈ B and limμ→0 hN(μ) = h∗
N > 0, where h∗

N ≡
(rN(s∗

N)−1)1/γ ;
(ii) limμ→0 gB(μ) = g∗

B > 0, where g∗
B ≡ ∇2ϕB(x∗

B)e.

Proof From Proposition 2.3 and (9), we have that s∗ = limμ→0 −μ∇ϕ(x(μ)). This, together
with (13), the fact that s∗

B = 0 and hypothesis H2, implies (i). Statement (ii) follows from the
twice continuous differentiability of ϕ in R

n++ and the fact that x∗
B > 0. �

3. Limiting behavior of the derivatives of the paths

Our aim is to prove the convergence of the dual proximal sequence (3). We are also interested
in obtaining convergence rate results for the primal proximal sequence (2). Instead of starting
by analyzing the behavior of these sequences, we first study the behavior of the derivatives
of the dual and primal paths. The motivation is that the primal (respectively, average dual)
proximal sequence is contained in the primal (respectively, dual) path corresponding, see
Proposition 4.2.
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3.1 Limiting behavior of the primal central path

In this section, we study the limiting behavior of the primal central path x(μ) as μ goes to 0.
As an intermediate step, we also study the limiting behavior of a certain perturbed dual path.

The perturbed dual path sE(μ) is defined as

sE(μ) ≡ s(μ) − μṡ(μ), ∀μ > 0. (14)

Differentiating (9) and using (14), we easily see that

sE(μ) = μ2∇2ϕ(x(μ))ẋ(μ), ∀μ > 0. (15)

In view of (13), observing that ∇2ϕ(x(μ)) is a diagonal matrix, (15) is equivalent to

h(μ)sE(μ) = μ2−1/γ ẋ(μ), ∀μ > 0. (16)

LEMMA 3.1 limμ→0 sE(μ) = s̄E , where s̄E is the unique optimal solution of the problem

min

{
1

2

∥∥(h∗
N)1/2sN

∥∥2 : s ∈ c + Im AT, sB = 0

}
. (17)

Proof We will first show that {sE(μ) : μ ∈ (0, 1]} is bounded and that limμ→0 sE
B (μ) = 0. In

view of (10), we have that ṡ(μ) ∈ Im AT for all μ > 0. This fact together, with (10) and (14),
implies that sE(μ) ∈ c + Im AT for all μ > 0. Fix some s̃ ∈ S∗ and note that s̃ ∈ c + Im AT

and s̄B = 0. It then follows that

sE(μ) − s̃ ∈ Im AT, ∀μ > 0. (18)

On the other hand, by (16) and the fact that ẋ(μ) ∈ Null(A), we conclude that h(μ)sE(μ) ∈
Null(A) for all μ > 0. This fact, together with (18), implies that (sE(μ) − s̃)T h(μ)sE(μ) = 0,
and hence

‖h(μ)1/2sE(μ)‖2 = sE(μ)Th(μ)sE(μ) = s̃Th(μ)sE(μ)

� ‖h(μ)1/2s̃‖ ‖h(μ)1/2sE(μ)‖,

which in turn yields

‖h(μ)1/2sE(μ)‖ � ‖h(μ)1/2s̃‖ = ‖hN(μ)1/2s̃N‖,

where the last equality is due to the fact that s̃B = 0. By Corollary 2.4, we know that hB(μ)

and hN(μ) converges to +∞ and some strictly positive vector, respectively, as μ tends to 0.
This observation, together with the previous inequality, implies that {sE(μ) : μ ∈ (0, 1]} is
bounded and limμ→0 sE

B (μ) = 0.
We will now show that any accumulation point s̄ of {sE(μ) : μ ∈ (0, 1]} satisfies the opti-

mality conditions for (17), from which the result follows. Clearly, s̄ is feasible for (17).
Moreover, by (16) and the fact that Aẋ(μ) = 0, we conclude that AN(hN(μ)sE

N(μ)) ∈ Im AB

for all μ > 0. This equation, together with Corollary 2.4, implies that AN(h∗
N s̄N) ∈ Im AB .

We have thus proved that s̄ satisfies the optimality condition for (17). �
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THEOREM 3.2 The following statements hold:

(i) limμ→0 sE(μ) = s∗;
(ii) limμ→0 μṡ(μ) = 0.

Proof To prove (i), it suffices to show that s∗ satisfies the optimality conditions for (17). Since
s∗ is the optimal solution of (11), it is feasible for (17) and satisfies AN(∇σN(s∗

N)) ∈ Im AB .
Using (12), we easily see that for any γ ∈ (0, 1):

∇σN(s∗
N) = −γ

1 − γ
(rN(s∗

N)−1)1/γ s∗
N = −γ

1 − γ
h∗

Ns∗
N.

These two observations imply that AN(h∗
Ns∗

N) ∈ Im AB , and hence that s∗ satisfies the
optimality condition for (17).

Statement (ii) follows by noting that statement (i), relation (14) and Proposition 2.3(ii)
imply that

lim
μ→0

μṡ(μ) = lim
μ→0

[
s(μ) − sE(μ)

] = s∗ − s∗ = 0.

�

We now turn our attention to the analysis of the limiting behavior of the derivative of the
primal central path. We start by stating the following technical result, which is essentially one
of the many ways of stating Hoffman’s lemma for system of linear equations [see ref. 20].

LEMMA 3.3 Let a subspace E ⊆ R
n and an index set J ⊂ {1, . . . , n} be given and define J̄ ≡

{1, . . . , n} \ J . Then, there exists a constant M = M(E, J ) ≥ 0 with the following property:
for each u = (uJ , uJ̄ ) ∈ E, there exists ũJ such that (ũJ , uJ̄ )T ∈ E and ‖ũJ ‖ � M‖uJ̄ ‖.

THEOREM 3.4 limμ→0 μ2−1/γ ẋ(μ) = d∞, where d∞ is the unique optimal solution of the
problem

min

{
1

2

∥∥(g∗
B)1/2d

∥∥2 : d ∈ Null A, dN = h∗
Ns∗

N

}
. (19)

Proof To simplify notation, let d(μ) ≡ μ2−1/γ ẋ(μ) for all μ > 0. We will first show that the
set {d(μ) : μ ∈ (0, 1]} is bounded. By (16), Corollary 2.4 and Theorem 3.2, we have

lim
μ→0

dN(μ) = lim
μ→0

μ2−1/γ ẋN (μ) = lim
μ→0

hN(μ)sE
N(μ) = h∗

Ns∗
N > 0. (20)

Clearly, Ad(μ) = ABdB(μ) + ANdN(μ) = 0 for all μ > 0. Applying Lemma 3.3 with E =
Null(A) and J = B, we conclude that there exists M ≥ 0 and a function pB : R++ → R

B

such that for every μ > 0:

ABpB(μ) + ANdN(μ) = 0, ‖pB(μ)‖ � M‖dN(μ)‖.
This fact, together with (20), implies that the set {pB(μ) : μ ∈ (0, 1]} is bounded and that
pB(μ) − dB(μ) ∈ Null(AB) for all μ > 0. On the other hand, by (15), (18) and the fact that
s̄B = 0, we conclude that gB(μ)dB(μ) ∈ Im(AT

B) for all μ > 0. The two last conclusions
imply that (pB(μ) − dB(μ))TgB(μ)dB(μ) = 0 for all μ > 0. An argument similar to the one
used in the proof of Lemma 3.1 then shows that ‖gB(μ)1/2dB(μ)‖ � ‖gB(μ)1/2pB(μ)‖ for all
μ > 0. This inequality, together with Corollary 2.4(ii) and the fact that {pB(μ) : μ ∈ (0, 1]} is
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bounded, implies that {dB(μ) : μ ∈ (0, 1]} is also bounded. We have thus shown that {d(μ) :
μ ∈ (0, 1]} is bounded.

Now, let d̄ be an accumulation point of {d(μ) : μ ∈ (0, 1]}. Clearly, (20) and the fact
that Ad(μ) = 0 for all μ > 0 imply that d̄ is feasible for (19). Moreover, the fact that
gB(μ)dB(μ) ∈ Im(AT

B) implies that g∗
Bd̄B ∈ Im(AT

B). We have thus shown that d̄ satisfy the
optimality condition for (19), and hence that d̄ = d∞. As this holds for any accumulation point
d̄ of {d(μ) : μ ∈ (0, 1]}, the result follows. �

COROLLARY 3.5 The following limit holds:

lim
μ→0

x(μ) − x∗

μ1/γ−1
= d∞

1/γ − 1
�= 0, lim

μ→0

cT(x(μ) − x∗)
μ1/γ−1

= ‖(h∗
N)1/2s∗

N‖2

1/γ − 1
> 0. (21)

Proof We will only prove that the second limit holds, as the first one one can be proved in
a similar way. Using the fact that c − s∗ ∈ Im AT, x(μ) − x∗ ∈ Null(A), x∗

N = 0 and s∗
B = 0,

we easily see that cT(x(μ) − x∗) = (s∗
N)TxN(μ) for all μ > 0. Using this identity together

with L’Hospital’s rule of calculus and relation (20), we obtain

lim
μ→0

cT(x(μ) − x∗)
μ1/γ−1

= lim
μ→0

(s∗
N)TxN(μ)

μ1/γ−1
= lim

μ→0

(s∗
N)TẋN (μ)

(1/γ − 1)μ1/γ−2

= ‖(h∗
N)1/2s∗

N‖2

1/γ − 1
.

�

3.2 Limiting behavior of the derivative of the dual path

In this section, we are interested in the behavior of ṡ(μ) as μ goes to 0. We mention that in
this section we do need H3.

Letting ν be as in assumption H3, define

v(μ) ≡ (∇ϕ(x(μ)) − ∇ϕ(x1)
) + ν∇2ϕ(x(μ))x(μ), ∀μ > 0. (22)

LEMMA 3.6 The following statements hold:

(i) if Assumption H3 holds then v∗ ≡ limμ→0 v(μ) exists and is finite;
(ii) h(μ)(ṡ(μ) + v(μ)) = μ−1/γ [νx(μ) − μẋ(μ)] for all μ > 0;

(iii) AN [hN(μ)(ṡN (μ) + vN(μ))] ∈ Im AB for all μ > 0.

Proof The fact that limμ→0 vN(μ) exists and is finite is an immediate consequence of
Assumption H3, while the existence and finiteness of limμ→0 vB(μ) is obvious. Now,
differentiating (9) and using (22), we obtain for all μ > 0 that

ṡ(μ) = −(∇ϕ(x(μ)) − ∇ϕ(x1)) − μ∇2ϕ(x(μ))ẋ(μ)

= −v(μ) + ∇2ϕ(x(μ))[νx(μ) − μẋ(μ)]. (23)

Statement (ii) now follows by rearranging this expression and using (13). Using the fact
that Ax(μ) = b, Aẋ(μ) = 0 and b ∈ Im AB , we easily see that AN(νxN(μ) − μẋN(μ)) ∈
Im AB for all μ > 0. Statement (iii) now follows from this conclusion, in view of
statement (ii). �
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THEOREM 3.7 Suppose that Assumption H3 holds. Then, ṡ∞ ≡ limμ→0 ṡ(μ) exists and ṡ∞
is characterized as follows: ṡ∞

B = −(∇ϕB(x∗
B) − ∇ϕB(x1

B)) and ṡ∞
N is the unique optimal

solution of the problem

min

{
1

2

∥∥(h∗
N)1/2(pN + v∗

N)
∥∥2 : (ṡB

∞pN) ∈ Im AT

}
. (24)

Proof By Theorem 3.4 and the fact that γ ∈ (0, 1), we have that limμ→0 μẋ(μ) = 0.
Hence, by (23) and the fact that limμ→0 xB(μ) = x∗

B > 0, we conclude that limμ→0 ṡB(μ) =
−(∇ϕB(x∗

B) − ∇ϕB(x1
B)). We will now show that the set {ṡN (μ) : μ ∈ (0, 1]} is bounded.

Indeed, it follows from (10) that ṡ(μ) = (ṡB(μ), ṡN (μ))T ∈ Im AT for all μ > 0. Applying
Lemma 3.3 with E = Im AT and J = N , we conclude that there exist a constant M1 ≥ 0 and
a function pN : R++ → R

N such that for every μ > 0:

(ṡB(μ), pN(μ))T ∈ Im AT , ‖pN(μ)‖ � M1‖ṡB(μ)‖.

This implies that (0, pN(μ) − ṡN (μ))T ∈ Im AT for all μ > 0 and that the set {pN(μ) : μ ∈
(0, 1]} is bounded in view of the fact that limμ→0 ṡB(μ) exists and is finite. The first conclusion,
together with Lemma 3.6(iii), implies that (pN(μ) − ṡN (μ))ThN(μ)(ṡN (μ) + vN(μ)) = 0 for
all μ > 0. Hence, we have

‖hN(μ)1/2(ṡN (μ) + vN(μ))‖2 = (ṡN (μ) + vN(μ))ThN(μ)(ṡN (μ) + vN(μ))

= (pN(μ) + vN(μ))ThN(μ)(ṡN (μ) + vN(μ))

� ‖hN(μ)1/2(pN(μ) + vN(μ))‖
× ‖hN(μ)1/2(ṡN (μ) + vN(μ))‖,

which in turn implies

‖hN(μ)1/2(ṡN (μ) + vN(μ))‖ � ‖hN(μ)1/2(pN(μ) + vN(μ))‖, ∀μ > 0.

This inequality, together with Lemma 3.6(i), Corollary 2.4(i) and the fact that {pN(μ) : μ ∈
(0, 1]} is bounded, immediately implies that {ṡN (μ) : μ ∈ (0, 1]} is bounded. Now, with the
aid of (i) and (iii) of Lemma 3.6, Corollary 2.4(i) and the fact that ṡ(μ) ∈ Im AT and ṡ∞

B =
limμ→0 ṡ(μ), we easily see that any accumulation point of ṡN (μ) is feasible for (24) and
satisfies its corresponding optimality condition. Hence, it follows that limμ→0 ṡN (μ) exists
and is characterized as in the statement of the theorem. �

COROLLARY 3.8 Under Assumption H3, we have limμ→0 (s(μ) − s∗)/μ = ṡ∞.

Proof The corollary follows immediately from Theorem 3.7 and the L’Hospital’s rule from
calculus. �

4. The proximal sequence

In this section, we define the primal and dual proximal sequences generated by the proximal
point method with Bregman distances, and the associated averaged sequence, in order to prove
our main result.
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The proximal point method with the Bregman distance Dϕ for solving problem (4) generates
a sequence {xk} ⊂ F0 defined as x0 ∈ F0 and

xk+1 = arg min{cTx + λkDϕ(x, xk) : Ax = b}, (25)

where the sequence {λk} ⊆ R
n++ satisfies

∞∑
k=0

λ−1
k = +∞. (26)

The following result on the convergence of {xk}, as defined in (25), is known.

PROPOSITION 4.1 The sequence {xk} generated by (25)converges to a solution of problem (4).

Proof See, for example Theorem 3 of Iusem, Svaiter and Cruz Neto [19]. �

The optimality condition for xk+1 to be an optimal solution of (25) is that sk ∈ c + Im AT,
where

sk ≡ λk

(∇ϕ(xk) − ∇ϕ(xk+1)
)
. (27)

Note that in principle sk may fail to be non-negative, and hence dual feasible.
In this section, we are interested in describing the convergence properties of the dual

sequence {sk}. Instead of dealing directly with the sequence {sk}, we first study the behavior
of the averaged sequence {s̄k} defined as

s̄k = μk

k∑
i=1

λi
−1si, where μk =

(
k∑

i=1

λ−1
i

)−1

. (28)

Observe that {μk} converges to 0 in view of (26). The following result describes how the
sequences {xk} and {s̄k} relate to the primal and dual central paths, respectively, for problem
(4) with respect to the barrier Dϕ(·, x1).

PROPOSITION 4.2 Let x(μ) and s(μ) denote the primal and dual central paths, respectively,
for problem (4) with respect to the barrier Dϕ(·, x1). Then, for every k ≥ 1, xk+1 = x(μk)

and s̄k = s(μk). As a consequence, limk→∞ s̄k = s∗.

Proof The statement related to the primal sequence was proved in Theorem 3 of Iusem,
Svaiter and Cruz Neto [19] and then one related to the dual sequence follows from the
final remarks in Iusem and Monteiro [15]. The last conclusion follows immediately from
Proposition 2.3 (ii). �

In view of the fact that {s̄k} converges to s∗, it is natural to conjecture that {sk} does too.
The next result, which is one of the main results of this article, shows that this is indeed the
case.

THEOREM 4.3 limk→+∞ sk = s∗.
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Proof Using (28) and Proposition 4.2, it is easy to verify that

sk − s̄k = sk − s(μk) = λk

μk−1
(s(μk) − s(μk−1)), ∀k ≥ 2.

Hence, by the mean value theorem, for each k ≥ 2 and i = 1, . . . , n, there exists ξk
i ∈

(μk, μk−1) such that

∣∣sk
i − s̄k

i

∣∣ =
∣∣∣∣ λk

μk−1
(μk − μk−1) ṡi(ξ

k−1
i )

∣∣∣∣ = ∣∣μk ṡi(ξ
k
i )

∣∣ �
∣∣ξk

i ṡi (ξ
k
i )

∣∣ , (29)

where the second equality follows from the definition of μk in (28). As limk→+∞ μk = 0 and
0 < ξk

i � μk−1 for all i = 1, . . . , n, it follows from Theorem 3.2(ii) that limk→+∞ ξk
i ṡi (ξ

k
i ) =

0. Using this fact in (29), we conclude that limk→∞ sk − s̄k = 0, which in turn implies the
theorem in view of Proposition 4.2. �

We will now see how the results of section 3 can be used to obtain convergence rate results
with respect to the primal and dual (averaged) sequences.

THEOREM 4.4 Define τ ≡ lim supk→∞ μk+1/μk ∈ [0, 1]. Then, the following holds for the
primal proximal sequence {xk} given by (25):

lim sup
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = τ 1/γ−1, lim sup

k→∞
cT(xk+1 − x∗)
cT(xk − x∗)

= τ 1/γ−1. (30)

If, in addition, Assumption H3 holds and the limit ṡ∞ of Theorem 3.7 is non-zero, then the
following holds for the proximal dual average sequence {s̄k} given by (28):

lim sup
k→∞

‖s̄k+1 − s∗‖
‖s̄k − s∗‖ = τ. (31)

Proof The three limits in (30) and (31) can be easily derived using Corollaries 3.5 and
3.8, together with the fact that xk+1 = x(μk) and s̄k = s(μk) for all k ≥ 1, in view of
Proposition 4.2. �

Using the definition of μk in (28), we easily see that μk+1/μk = (1 + μk/λk+1)
−1. Thus, if

the condition lim supk→∞ λk > 0 holds, then we have τ ≡ lim supk→∞ μk+1/μk = 1, and by
Theorem 4.4, we conclude that the two sequences {xk} and {s̄k} both converge Q-sublinearly.
Faster convergence can only be achieved if the condition limk→∞ λk = 0 is imposed. For
example, if for some β ∈ (0, 1), we have λk = βk for all k, then τ = β, implying that {xk} and
{s̄k} both converge Q-linearly. On the other hand, if λk = 1/k! for all k, then τ = 0, implying
that {xk} and {s̄k} both converge Q-superlinearly.

5. Final remarks

We finish the article by giving some results for the case where the barrier function (6) satisfies,
instead of H2, the following assumption:
(H2′) For every α ∈ (0, 1) and j = 1, . . . , n, we have:

lim
t→0

− ϕ′
j (t)

ϕ′′
j (t)α

= 0.

This case is indeed relevant because it includes the entropic Bregman distance (known to
statisticians as the Kullback–Leibler information divergence), corresponding to the barrier in
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Example 5.2(i) below. This is the prototypical example of a Bregman distance, and the only one
considered, either explicitly or implicitly, in early references, like Eriksson [2], Eggermont [3]
and Tseng and Bertsekas [4]. Precisely, in this reference, a linear convergence was established
for the primal sequence generated by the proximal method with this Bregman distance applied
to linear programming, assuming λ̄ ≡ lim supk→∞ λk > 0. This result was extended in Iusem
and Teboulle [11] to a large class of ϕ-divergences, including the Kullback–Leibler one,
which incidentally, is the only barrier which gives rise both to a Bregman distance and to a
ϕ-divergence, up to additive and/or multiplicative constants.

In these references, the linear convergence rate is established not for the sequence
{∥∥xk − x∗∥∥}, but for the sequence of functional values {cT(xk − x∗)} and for the distance
from xk to the primal solution set, but the result can be extended without trouble to the pri-
mal sequence itself. In contrast, we have seen in the previous section that with λ̄ > 0 the
convergence rate of {∥∥xk − x∗∥∥} is sublinear for all separable Bregman distances satisfying
conditions H1 and H2. Thus, these conditions allow the convergence analysis of the dual aver-
age sequence, but it also has the negative side effect of worsening the convergence rate, from
linear to sublinear. We conjecture indeed that with λ̄ > 0 the convergence rate is linear for all
separable Bregman distance determined by a barrier satisfying H1 and H2′.

We also mention that the case of λ̄ > 0 is the most important one. In view of the definition
of the method (2), it is natural that by taking sequences {λk} which go to zero fast enough
one can get convergence rates as high as desired (e.g. the examples at the end of the previous
section), but such rates are somewhat deceiving, because when λk goes to zero, for large
k the regularization term λkDϕ(x, xk) in (2) becomes numerically negligible, and the k-th
subproblem becomes equivalent to solving the original problem, which, if it can be solved in
a straightforward way, makes the whole proximal method somewhat superfluous. One could
assume that λ̄ is always strictly positive in actual implementations of the method.

We establish now a result for the case where the barrier ϕ satisfies conditions H1 and H2′.
In fact, using only H1, we can obtain the following result.

PROPOSITION 5.1 Assume that H1 holds,ϕ1 = · · · = ϕn ≡ ϕ̄ and that ξ ≡ limt→0 t ϕ̄′′(t) exists
and belongs to (0, +∞). Then, ϕ satisfies H2′. If, in addition, limt→0 ϕ̄(t) = 0, then for every
δj ∈ dom(ϕ̄∗) ⊂ R

n, where j ∈ {1, . . . , n}, s = (s1, . . . , sn) ∈ R
n++ and J ⊂ {1, . . . , n}, we

have:

σJ (sJ ) := lim
μ→0

⎛
⎝∑

j∈J

ϕ̄∗
(

δj − sj

μ

)⎞
⎠

μ

= max
{
e−sj /ξ : j ∈ J

}
,

where ϕ̄∗ is the adjoint of ϕ̄.

Proof See the proof in the Appendix. �

We next present two examples of functions ϕ satisfying the hypotheses of Proposition 5.1,
with the corresponding values of ξ .

Example 5.2 If we take:

(i) ϕ1(t) = t log t then ξ = 1;
(ii) ϕ1(t) = (t2 + t) log t then ξ = 1.
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The next result gives a characterization of the limit point of the dual central path, namely a
specific solution of the problem

min
{
σN(sN) : s ∈ c + Im AT, sB = 0

}
, (32)

called the centroid sc of the dual solution set S∗, see for example, Cominetti and San Martín
[21] and Iusem and Monteiro [15].

PROPOSITION 5.3 Suppose that the assumptions of Proposition 5.1 hold. Then limμ→0 s(μ) =
sc, where sc is the centroid of S∗.

Proof The statement follows from Proposition 8 of Iusem and Monteiro [15] and Proposi-
tion 5.1. �

Note that, as σN is not strictly convex in S∗, problem (32) may have multiple solutions.
Therefore, our technique does not work in this case, because we cannot characterize the limit
point of the path s(μ) as a solution of problem (32). Even if this were possible, we cannot
characterize the limit point of the perturbed dual path sE(μ) as solution of the related problem
(17), because in this case r1 = +∞.
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Appendix A

In this appendix, we give the proofs of some technical results, namely Corollary A3, used in
Proposition 2.3 and Proposition 5.1.

We consider functions ϕ : R → R ∪ {+∞} satisfying the following assumptions
(h1) The function ϕ is closed, strictly convex, twice continuously differentiable in R++, and
such that

(i) limt→0 ϕ(t) = 0 or limt→0 ϕ(t) = +∞;
(ii) limt→0 ϕ′(t) = −∞.

LEMMA A1 If ϕ satisfies h1, then limu→−∞ ϕ∗(u) = − limt→0 ϕ(t), where ϕ∗ denotes the
conjugate function of ϕ.

Proof As limt→0 ϕ′(t) = −∞, for all u ∈ R there exists s̄ > 0 such that ϕ′(s̄) < u, so that

−s̄u � −ϕ′(s̄)s̄ = ϕ′(s̄)(0 − s̄) � ϕ(0) − ϕ(s̄) = lim
t→0

ϕ(t) − ϕ(s̄), (A1)

using the fact that ϕ is closed and convex. By (A1),

− lim
t→0

ϕ(t) � s̄u − ϕ(s̄) � sup
s∈R

{su − ϕ(s)} = ϕ∗(u). (A2)

It follows from (A2) that

− lim
t→0

ϕ(t) � lim
u→−∞ ϕ∗(u). (A3)

Let t̄ = limt→+∞ ϕ′(t), and take any u < min{0, t̄}. As ϕ′ is continuous and increasing, there
exists a unique su > 0 such that ϕ′(su) = u, in which case

ϕ∗(u) = suu − ϕ(su) � −ϕ(su). (A4)

Note that limu→−∞ su = 0, because limt→0 ϕ′(t) = −∞. Taking limits in (A4) as u → −∞,
we obtain

lim
u→−∞ ϕ∗(u) � − lim

u→−∞ ϕ(su) = − lim
t→0

ϕ(t). (A5)

The result follows from (A3) and (A5). �
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We remark that it is possible to prove that lim inf t→0(−ϕ′(t)/ϕ′′(t)γ ) = 0 for all γ ≥ 1,
but we do not need this result here.

Our second assumption on ϕ is:
(h2) There exist γ ∈ (0, 1) such that

r ≡ lim
t→0

− ϕ′(t)
ϕ′′(t)γ

∈ (0, +∞).

LEMMA A2 If ϕ satisfies h1 and h2 then

(i) limt→0 ϕ(t) = 0 when γ ∈ (0, 1/2) and limt→0 ϕ(t) = +∞ when γ ∈ [1/2, 1);
(ii) If γ ∈ (0, 1) \ {1/2} then, for all δ ∈ dom(ϕ∗) and all s > 0,

lim
μ→0

ϕ∗(δ − s/μ)

μ1/γ−2
= γ 2r1/γ

(1 − 2γ )(1 − γ )
s2−1/γ ; (A6)

(iii) If γ = 1/2 then, for all δ ∈ dom(ϕ∗) and all s > 0,

lim
μ→0

[ϕ∗(δ − s/μ) − ϕ∗(δ − 1/μ)] = −r2 log s. (A7)

Proof We start by proving (i). Let λ ≡ γ /(1 − γ ) > 0, η ≡ (1 − 2γ )/(1 − γ ). We claim
first that

lim
t→0

−ϕ′(t)
t−λ

= (
λr1/γ

)λ
. (A8)

We proceed to prove the claim. We compute first limt→0(−ϕ′(t))−1/λ/t .As both the numerator
and the denominator converge to 0 as t → 0, using h1 (ii), (h2) and that λ > 0, we may apply
L’Hospital’s rule:

lim
t→0+

(−ϕ′(t))−1/λ

t
= lim

t→0

λ−1(−ϕ′(t))−1/λ−1ϕ′′(t)
1

= λ−1 lim
t→0

(−ϕ′(t))−1/γ ϕ′′(t) (A9)

= λ−1 lim
t→0

(−ϕ′(t)
ϕ′′(t)γ

)−1/γ

= λ−1r−1/γ .

By (A9), limt→0(−ϕ′(t)/t−λ) = (λr1/γ )λ, establishing the claim.
Let ν = (λr1/γ )λ. By (A8), there exists t̄ such that, for all t ∈ (0, t̄), ν/2 � −ϕ′(t)/t−λ �

2ν, that is,
ν

2
t−λ � −ϕ′(t) � 2νt−λ. (A10)

Take t , u ∈ (0, t̄). We consider first the case λ �= 1, that is, γ �= 1/2. Integrating (A10) between
t and u and observing that 1 − λ = η, we obtain

ν

2η
(uη − tη) � ϕ(t) − ϕ(u) � 2ν

η
(uη − tη) . (A11)

Now, we consider separately the cases γ ∈ (0, 1/2) and γ ∈ (1/2, 1), that is η > 0 and
η < 0, respectively. For γ ∈ (0, 1/2), we obtain from (A11), for all t ∈ (0, t̄), ϕ(t) � ϕ(u) +
(2ν/η)(uη − tη), which implies, for any u ∈ (0, t̄), limt→0 ϕ(t) � ϕ(u) + (2ν/η)uη <

+∞, because η > 0. Hence, by h1(i), limt→0 ϕ(t) = 0. For γ ∈ (1/2, 1), we obtain
from (A11) ϕ(t) ≥ ϕ(u) + ν/(2|η|)(tη − uη), which implies limt→0 ϕ(t) = +∞, because
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limt→0 tη = +∞, as η < 0. Finally, we consider the case of λ = 1, that is, γ = 1/2.
In this case, integrating (A10), we obtain ϕ(t) ≥ ϕ(u) + (ν/2)( log u − log t), and thus
limt→0 ϕ(t) = +∞.
(ii) Note that for s > 0, we have

lim
μ→0

ϕ∗(δ − s/μ) = lim
u→−∞ ϕ∗(u) = − lim

t→0
ϕ(t), (A12)

using Lemma A1. Now, for γ ∈ (0, 1/2), it holds that limt→0 ϕ(t) = 0, by (i). Thus, in view
of (A12), the numerator of the left hand side of (A6) converges to 0 as t → 0. Also the
denominator converges to 0 as t → 0, because γ ∈ (0, 1/2). In contrast, for γ ∈ (1/2, 1), we
have, by (ii) and (A12), that the numerator in the left hand side of (A6) converges to −∞ as
t → 0, while the denominator converges to +∞. In both cases, we can apply L’Hospital’s
rule for the computation of the limit in the left hand side of (A6), obtaining

lim
μ→0

ϕ∗(δ − s/μ)

μ1/γ−2
= lim

μ→0

sμ−2(ϕ∗)′(δ − s/μ)

(1/γ − 2)μ1/γ−3

= −γ s

2γ − 1
lim
μ→0

(ϕ∗)′(δ − s/μ)

μ1/γ−1
. (A13)

Let now t = (ϕ∗)′(δ − s/μ) = (ϕ′)−1(δ − s/μ), so that ϕ′(t) = δ − s/μ, that is, μ = s/(δ −
ϕ′(t)). When μ → 0, δ − ϕ′(t) → +∞, and therefore ϕ′(t) → −∞, which implies that
t → 0. Replacing the variable μ by t , we obtain from (A13)

lim
μ→0

ϕ∗(δ − s/μ)

μ1/γ−2
= −γ s

2γ − 1
lim
t→0

t

(s(δ − ϕ′(t))−1)1/γ−1

= −γ s2−1/γ

2γ − 1
lim
t→0

t

(δ − ϕ′(t))1−1/γ
. (A14)

Note that, as γ < 1, both the numerator and the denominator inside the limit in the rightmost
expression of (A14) converge to 0 as t → 0, so that we can apply again L’Hospital’s rule,
obtaining

lim
μ→0

ϕ∗(δ − s/μ)

μ1/γ−2
= γ s2−1/γ

2γ − 1
lim
t→0

1

(1 − 1/γ )
(
δ − ϕ′(t)

)−1/γ
ϕ′′(t)

= γ 2s2−1/γ

(2γ − 1)(γ − 1)
lim
t→0

(
δ − ϕ′(t)

)1/γ

ϕ′′(t)

= γ 2s2−1/γ

(2γ − 1)(γ − 1)
lim
t→0

(
δ − ϕ′(t)
ϕ′′(t)γ

)1/γ

= γ 2s2−1/γ

(2γ − 1)(γ − 1)
lim
t→0

(−ϕ′(t)
ϕ′′(t)γ

)1/γ

= γ 2r1/γ

(1 − 2γ )(1 − γ )
s2−1/γ , (A15)

using h2. Hence, (A15) establishes (A6).
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(iii) Note that γ = 1/2 implies λ = 1, with the notation of (i). Fix s > 0 and ε ∈ (0, 1). By
(A8), there exists t̄ > 0 such that, for t ∈ (0, t̄),

(1 − ε)r2 � −tϕ′(t) � (1 + ε)r2.

Thus,
−(1 + ε)r2

t
� ϕ′(t) � −(1 − ε)r2

t
. (A16)

As ϕ′ is increasing and (ϕ∗)′ = (ϕ′)−1, we obtain from (A16)

(ϕ∗)′
(−(1 + ε)r2

t

)
� t � (ϕ∗)′

(−(1 − ε)r2

t

)
. (A17)

Taking first u = −(1 + ε)r2/t and then u = −(1 − ε)r2/t , it follows from (A17) that

−(1 − ε)r2

u
� (ϕ∗)′(u) � −(1 + ε)r2

u
, (A18)

for all u � −2r2 t̄−1, in which case t ∈ (0, t̄) for both choices of u. Take now v � w �
−2r2 t̄−1. Integrating (A18) between v and w,

−(1 − ε)r2(log(−w) − log(−v)) � ϕ∗(w) − ϕ∗(v) � −(1 + ε)r2(log(−w) − log(−v)).

(A19)
Now, let ρ(s, μ) ≡ ϕ∗(δ − s/μ) − ϕ∗(δ − 1/μ), σ(s) ≡ −r2 log s. Note that for s = 1 we
have ρ(1, μ) = 0 for all μ > 0, so that

lim
μ→0

ρ(1, μ) = 0 = σ(1). (A20)

For s ∈ (0, 1), takev = δ − 1/μ,w = δ − s/μ, μ̄ = s/(2r2 t̄−1 + |δ|). Then for allμ ∈ (0, μ̄)

it holds that v � w � −2r2 t̄−1. With these values of v and w, (A19) becomes

−(1 − ε)r2 log

(
s − δμ

1 − δμ

)
� ρ(s, μ) � −(1 + ε)r2 log

(
s − δμ

1 − δμ

)
, (A21)

for all μ ∈ (0, μ̄). Taking limits in (A21) as μ → 0,

(1 − ε)σ (s) � lim infμ→0ρ(s, μ) � lim supμ→0ρ(s, μ) � (1 + ε)σ (s). (A22)

As (A22) holds for all ε ∈ (0, 1), we take limits as ε → 0 in (A22) and obtain

lim
μ→0

ρ(s, μ) = σ(s) ∀s ∈ (0, 1). (A23)

For s > 1, we take v = δ − s/μ, w = δ − 1/μ, μ̂ = (2r2 t̄−1 + |δ|)−1 and we have again
v � w � −2r2 t̄−1 so that (A19) holds, but now ϕ∗(w) − ϕ∗(v) = −ρ(s, μ), in which case
the inequalities in (A22) reverse, and after taking limits as μ → 0, we obtain

(1 − ε)σ (s) ≥ lim supμ→0ρ(s, μ) ≥ lim infμ→0ρ(s, μ) ≥ (1 + ε)σ (s). (A24)

Then, taking limits in (A24) as ε → 0, we conclude that

lim
μ→0

ρ(s, μ) = σ(s) ∀s > 1. (A25)

By (A20), (A23) and (A25), limμ→0 ρ(s, μ) = σ(s) for all s > 0, which is precisely (A7). �
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COROLLARY A3 Take ϕ : R
n → R ∪ {+∞} of the form ϕ(x) = ∑n

j=1 ϕj (xj ), with ϕj : R →
R ∪ {+∞}. Assume that the ϕj ’s satisfy the general hypotheses h1 and h2 with the same
constant γ for the corespondent rj ’s . Then:

(i) If γ ∈ (0, 1) \ {1/2} then, for all δ ∈ dom(ϕ∗) ⊂ R
n and all s ∈ R

n++,

lim
μ→0

ϕ∗(δ − s/μ)

μ1/γ−2
= γ 2

(1 − 2γ )(1 − γ )

n∑
j=1

r
1/γ

j s
2−1/γ

j . (A26)

(ii) If γ = 1/2 then, for all δ ∈ dom(ϕ∗) ⊂ R
n and all s ∈ R

n++,

lim
μ→0

(
ϕ∗(δ − s/μ) − ϕ∗(δ − 1/μ)

) = −
n∑

j=1

r2
j log sj . (A27)

Proof By separability of ϕ, we obtain that ϕ∗ = ∑n
j=1 ϕ∗

j , and thus (i) and (ii) follow
immediately from items (ii) and (iii) of Lemma A2. �

The results of Lemma A2(ii) also hold when r = 0 or r = +∞, but they become rather
irrelevant, because only when 0 < r < +∞ the right hand side of (A6) is a strictly convex
functions of s (otherwise it is identically 0 or +∞). We observe that the condition 0 < r <

+∞ implies γ ∈ (0, 1), because for γ = 1, either r vanishes or it does not exist, while for
γ = 0 it holds that r = limt→0(−ϕ′(t)) = +∞. We remark, however, that it may happen that
r = 0 or r = +∞ even when γ ∈ (0, 1).

We now turn our attention towards proving Proposition 5.1. First, we need to establish the
following technical result.

LEMMA A4 If ξ ≡ limt→0 tϕ′′(t) exists and belongs to (0, +∞), then ϕ satisfies

lim
t→0

− ϕ′(t)
ϕ′′(t)α

= 0, ∀α > 0.

If, in addition, limt→0 ϕ(t) = 0, then, for all δ ∈ dom(ϕ∗) and all s > 0,

lim
μ→0

[
ϕ∗(δ − s/μ)μ

] = e−s/ξ(ϕ). (A28)

Proof As limt→0 tϕ′′(t) = ξ , there exists t̄ < 1, such that, for all t ∈ (0, t̄),

ξ

2t
� ϕ′′(t) � 2ξ

t
. (A29)

Take t ∈ (0, t̄). Integrating (A29) between t and t̄ ,

(ξ/2) log(t̄/t) � ϕ′(t̄) − ϕ′(t) � 2ξ log(t̄/t). (A30)

From (A29) and (A30) it follows that, for t ∈ (0, t̄) and α > 0,

(2ξ)−αtα(−ϕ′(t̄) + (ξ/2) log t̄ − (ξ/2) log t) � −ϕ′(t)
ϕ′′(t)α

� (ξ/2)−αtα
(−ϕ′(t̄) + 2ξ log t̄ − 2ξ log t

)
. (A31)

Taking limits in (A31) as t → 0, and remembering that, for all α > 0,

lim
t→0

tα log t = lim
t→0

α−1 tα log tα = α−1 lim
u→0

u log u = 0,

we obtain limt→0(−ϕ′(t)/(ϕ′′(t))α) = 0 for all α > 0.
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We proceed to prove (A28). Let

ψ(μ) = log
(
ϕ∗(δ − s/μ)μ

) = μ log ϕ∗(δ − s/μ). (A32)

Then

lim
μ→0

ψ(μ) = lim
μ→0

log ϕ∗(δ − s/μ)

μ−1
. (A33)

From Lemma A1 and the assumption that limt→0 ϕ(t) = 0, it follows that

lim
μ→0

ϕ∗(δ − s/μ) = lim
u→−∞ ϕ∗(u) = lim

t→0
ϕ(t) = 0,

so that limμ→0 log ϕ∗(δ − s/μ) = −∞. As limμ→0 μ−1 = +∞, we can apply L’Hospital’s
rule to compute the limit in (A33), obtaining

lim
μ→0

ψ(μ) = lim
μ→0

(s/μ2)ϕ∗(δ − s/μ)−1(ϕ∗)′(δ − s/μ)

−μ−2

= −s lim
μ→0

(
(ϕ∗)′(δ − s/μ)

ϕ∗(δ − s/μ)

)
= −s lim

t→0

t

(ϕ∗)(ϕ′(t))
, (A34)

with the change of variables t = (ϕ∗)′(δ − s/μ), already used in (ii) and (iii). Note that the
(sufficient) optimality condition of maxs∈R{sϕ′(t) − ϕ(s)} is ϕ′(t) = ϕ′(s), satisfied only by
s = t , because ϕ′ is strictly increasing. Thus, ϕ∗(ϕ′(t)) = tϕ′(t) − ϕ(t), and we obtain from
(A34)

lim
μ→0

ψ(μ) = −s lim
t→0

t

tϕ′(t) − ϕ(t)
. (A35)

Multiplying throughout (A30) by t , and taking limits as t → 0, we obtain that limt→0 tϕ′(t)
= 0, and thus both the numerator and the denominator in the right hand side of (A35) converge
to 0 as t → 0, allowing us to apply L’Hospital’s rule to (A35), which gives

lim
μ→0

ψ(t) = −s lim
t→0

1

tϕ′′(t)
= −s

ξ
. (A36)

By (A36) and (A32), we obtain limμ→0 ϕ∗(δ − s/μ)μ = e−s/ξ , establishing (A28). �

We end the appendix with the proof of Proposition 5.1.

Proof of Proposition 5.1 First note that, we cannot apply directly LemmaA4 because powers
do not distribute with sums. Let I = arg min{sj : 1 � j � n} and L = arg max{δi : i ∈ I },
and fix some � ∈ L. We claim that for μ close enough to 0, δ� − s�/μ ≥ δj − sj /μ for all
j ∈ {1, . . . , n}. This is certainly true for j ∈ I , by definition of L, because all the sj ’s with
j ∈ I have the same value. For j /∈ I , we have s� < sj , and so the results holds if δ� =
δj . Otherwise, it suffices to take μ � (sj − s�)/|δj − δ�|. As (ϕ̄∗)′ = (ϕ̄′)−1, we have that
Im[(ϕ̄∗)′] = dom(ϕ̄′) = R++. Thus, (ϕ̄∗)′(u) > 0 for all u, that is, ϕ̄∗ is increasing. It follows
that

ϕ̄∗(δ� − s�/μ) ≥ ϕ̄∗(δj − sj /μ), (A37)

for all j ∈ {1, . . . , n} and small enough μ. Then⎛
⎝ n∑

j=1

ϕ̄∗(δj − sj /μ)

⎞
⎠

μ

= (
ϕ̄∗(δ� − s�/μ)

)μ

⎛
⎝ m∑

j=1

ϕ̄∗(δj − sj /μ)

ϕ̄∗(δ� − s�/μ)

⎞
⎠

μ

. (A38)

The first factor in the rightmost expression of (A38) converges to exp(−s�/ξ) by Lemma A4.
We look now at the summation in the second factor, which we will denote by S(μ). All terms



360 J. X. Cruz Neto et al.

are positive, the �-th one is 1, and all the others belong to (0, 1) by (A37). Thus 1 � S(μ) � n,
and therefore limμ→0 S(μ)μ = 1. It follows that

lim
μ→0

⎛
⎝ n∑

j=1

ϕ̄∗(δj − sj /μ)

⎞
⎠

μ

= e−s�/ξ = max
{
e−sj /ξ : j ∈ {1, . . . , n}},

because s� = min{s1, . . . , sn} by definition of I . �


