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Abstract. This paper studies the asymptotic behavior of the central path (X(ν), S(ν), y(ν)) as ν ↓ 0 for a
class of degenerate semidefinite programming (SDP) problems, namely those that do not have strictly com-
plementary primal-dual optimal solutions and whose “degenerate diagonal blocks” XT (ν) and ST (ν) of the
central path are assumed to satisfy max{‖XT (ν)‖, ‖ST (ν)‖} = O(

√
ν). We establish the convergence of

the central path towards a primal-dual optimal solution, which is characterized as being the unique optimal
solution of a certain log-barrier problem. A characterization of the class of SDP problems which satisfy our
assumptions are also provided. It is shown that the re-parametrization t > 0 → (X(t4), S(t4), y(t4)) of the
central path is analytic at t = 0. The limiting behavior of the derivative of the central path is also investigated
and it is shown that the order of convergence of the central path towards its limit point is O(

√
ν). Finally,

we apply our results to the convex quadratically constrained convex programming (CQCCP) problem and
characterize the class of CQCCP problems which can be formulated as SDPs satisfying the assumptions of
this paper. In particular, we show that CQCCP problems with either a strictly convex objective function or at
least one strictly convex constraint function lie in this class.

Key words. Limiting behavior – Central path – Semidefinite programming – Convex quadratic programming
– Convex quadratically constrained programming.

1. Introduction

In this paper we will study the asymptotic behavior of the central path (X(ν), S(ν), y(ν))
for a class of degenerate semidefinite programming (SDP) problems, namely those that
do not have strictly complementary primal-dual optimal solutions and whose “degen-
erate diagonal blocks” XT (ν) and ST (ν) of the central path are assumed to satisfy
max{‖XT (ν)‖, ‖ST (ν)‖} = O(

√
ν). In reality, we will only assume that these blocks
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satisfy the (apparently weaker) condition that ‖XT (ν)‖ ‖ST (ν)‖ = O(ν), which we
will show to be equivalent to the previous one.

Properties of the central path have been extensively studied on several papers due to
the important role it plays in the development of interior-point algorithms for cone pro-
gramming, nonlinear programming and complementarity problems. Early works deal-
ing with the well-definedness, differentiability and limiting behavior of weighted central
paths in the context of the linear programming and the monotone complementarity prob-
lem include [1–3, 8–11, 17, 23–25, 27, 28, 31, 33, 35–39].

Kojima et al. [16] showed that the central path associated with a monotone linear
complementarity problem converges to a solution. In [18], Kojima et al. claim that sim-
ilar arguments as the ones used in [16] can also be used to show that the central path
of a monotone linear semidefinite complementarity problem (which is equivalent to
SDP) converges to a solution of the problem. More generally, Drummond and Peter-
zil [8] established convergence of the central path for analytic convex nonlinear SDP
problems. An alternative proof based on a deep result from algebraic geometry (see for
example Lemma 3.1 of Milnor [26]) of the convergence of the central path for an SDP
problem was given by Halická et al. [14]. Characterization of the limit point of the cen-
tral path has been obtained by de Klerk et al. [6] and Luo et al. [21] for SDP problems
possessing strictly complementary primal-dual optimal solutions. Using an approach
based on the implicit function theorem described in Stoer and Wechs [36, 37], Halická
[12] showed that the central path of an SDP problem possessing a strictly complemen-
tary primal-dual optimal solution can be extended analytically as a function of ν > 0
to ν = 0. For more general SDP problems, the above issues regarding the central path
still remain open but some advances have been made on a few papers. These include de
Klerk et al. [5] and Goldfarb and Scheinberg [7] who proved that any cluster point of the
central path must be a maximally complementary optimal solution. Also, Halická et al.
[13] and Sporre and Forsgren [35] provided partial characterizations of the limit point
of the central path as being the analytic center of some convex subset of the optimal
solution set and the unique solution of a perturbed log barrier problem over the optimal
solution set, respectively.

A couple of papers have dealt with the issue of existence and asymptotic behavior
of weighted central paths in the context of SDP. Monteiro and Pang [29] and Monteiro
and Zanjácomo [32] have studied the existence of weighted central paths for SDP. Also,
Preiß and Stoer [34], Lu and Monteiro [19, 20] have studied the asymptotic behavior of
these paths for SDPs possessing strictly complementary primal-dual optimal solutions.
In addition, these papers show that the weighted paths can be analytically extended to
the optimal face under suitable parametrizations.

The organization of our paper is as follows. In Subsection 1.1, we list some ba-
sic notation and terminology used in our presentation. In Section 2, we review the
notion of the central path, introduce the assumptions that will be used in our presenta-
tion and state some basic results about the central path and its underlying structure. In
Section 3, we derive some important estimates on the off-diagonal blocks of the central
path. In Section 4, we establish the convergence of the central path towards a primal-dual
optimal solution, which is characterized as being the unique optimal solution of a certain
log-barrier problem. We also characterize the class of SDP problems which satisfy our
initial assumption on the degenerate diagonal blocks of the central path. In Section 5, we
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look at a different scaled version of the central path and, as a by-product, we conclude
that the re-parametrized central path t > 0 → (X(t4), S(t4), y(t4)) is analytic at t = 0.
We also analyze the limiting behavior of the derivative of the central path and conclude
that the order of convergence of the central path towards its limit point is O(

√
ν). In

Section 6, we apply our results to the convex quadratically constrained convex program-
ming (CQCCP) problem and characterize the class of CQCCP problems which can be
formulated as SDPs satisfying the assumptions of this paper. In particular, we show that
CQCCP problems with either a strictly convex objective function or at least one strictly
convex constraint function lie in this class.

1.1. Notation and terminology

The following notation is used throughout our presentation. If J is a subset of ϒ ,
we sometimes denote its complement with respect to ϒ by J̄ . Rp denotes the p-
dimensional Euclidean space and, for a given subset I of {1, . . . , n}, RI denotes the set
of all real tuples (xi : i ∈ I ) indexed by I . The (i, j)-th entry of a matrix Q ∈ Rp×q is
denoted by Qij and the j -th column is denoted by Qj . The set of all symmetric p × p

matrices is denoted by Sp. The cone of positive semidefinite (resp., definite) p × p

symmetric matrices is denoted by Sp+ (resp., Sp++). For P, Q ∈ Sp,Q � P (or P � Q)
means that Q − P ∈ Sp+ and Q � P (or P ≺ Q) means that Q − P ∈ Sp++. The
trace of a matrix Q ∈ Rp×p is denoted by trQ ≡ ∑p

i=1Qii . Given P and Q in Rp×q ,
the inner product between them is defined as P • Q ≡ trPTQ = ∑p,q

i=1,j=1 PijQij .

The Frobenius norm of the matrix Q is defined as ‖Q‖ ≡ (Q •Q)1/2. The image (or
range) space and the null space of a linear operator P will be denoted by Im(P) and
Null(P) respectively; the dimension of the subspace Im(P), referred to as the rank of
P, will be denoted by rank(P). Given a linear operator F : E → F between two finite
dimensional inner product spaces (E, 〈·, ·〉E) and (F, 〈·, ·〉F ), its adjoint is the unique
operator F∗ : F → E satisfying 〈F(u), v〉F = 〈u,F∗(v)〉E for all u ∈ E and v ∈ F .
Given functions f : � → E and g : � → (0,+∞), where� is an arbitrary set and E is
a normed vector space, and a subset �̃ ⊂ �, we write f (w) = O(g(w)) for all w ∈ �̃
to mean that, for some constant M > 0, ‖f (w)‖ ≤ Mg(w) for all w ∈ �̃. Moreover, if
E = � and f (w) > 0 for all w ∈ �, we write f (w) = �(g(w)) for all w ∈ �̃ to mean
that f (w) = O(g(w)) and g(w) = O(f (w)) for all w ∈ �̃.

Given a matrix X ∈ �n×n and a subset J of {(k, �) : �, k = 1, . . . , n}, we let
XJ ≡ (Xk� : (k, �) ∈ J ) and think of it as a “submatrix” of X. When J = B × N ,
where B and N are two subsets of {1, . . . , n}, we will denote XJ simply by XBN ;
moreover, if J = B × B then XJ is denoted simply by XB with the understanding
that B = B × B. A subset J ⊂ {(k, �) : �, k = 1, . . . , n} is said to be symmetric if
(k, �) ∈ J implies that (�, k) ∈ J . For a symmetric set J of {(k, �) : �, k = 1, . . . , n},
we will denote by SJ the set of all “symmetric matrices” (Xk� : �, k = 1, . . . , n)
satisfying Xk� = X�k for all (k, �) ∈ J , and will often denote an element X of SJ

by XJ to emphasize its indexing by J . Clearly, any element of SJ is a usual matrix
in the case where J is a Cartesian product of two subsets of {1, . . . , n}. SJ can be
thought as a subset of Sn by identifying X ∈ SJ with the matrix Y ∈ Sn such that
YJ = X and YJ̄ = 0. Given a map U : Sn → E and a symmetric subset J of
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{(k, �) : �, k = 1, . . . , n}, we denote by UJ the restriction of U to SJ . Also, given a
map A : Sn → �m, a symmetric subset J of {(k, �) : �, k = 1, . . . , n} and a subset
I of {1, . . . , m}, we denote by AIJ : SJ → �I the map defined for every X ∈ SJ

by AIJ (X) = (ui : i ∈ I ), where u = AJ (X). For given vector spaces E1, . . . ,Eq
and F1, . . . ,Fp and given linear operators Pij : Ej → Fi , for i = 1, . . . , p and
j = 1, . . . , q, the matrix operator of the Pij ’s, denoted by

P =






P11 . . . P1q
...
. . .

...

Pp1 . . . Ppq




 ,

or simply by (Pij )
p,q
1,1 , is the linear operator P : E1 × . . .×Eq → F1 × . . .×Fp, defined

as

P
(
x1, . . . , xq

) =






P11 · · · P1q
...
. . .

...

Pp1 · · · Ppq











x1
...

xq




 =






∑q
j=1 P1j xj
...∑q

j=1 Ppjxj




 .

for every (x1, . . . , xq) ∈ E1 × · · · × Eq . It is easy to verify that the adjoint of above
operator is the matrix operator (P∗

ji)
q,p
1,1 .

2. Preliminaries

In this section, we describe our problem and the assumptions that will be used throughout
the paper. We also describe the central path that will be the subject of our study in this
paper. Some preliminary results about this path are also stated besides previous results.

We consider the semidefinite programming problem

(P ) min {C •X : AX = b, X � 0} ,

and its associated dual SDP

(D) max
{
bT y : A

∗y + S = C, S � 0
}
,

where the data consists of C ∈ Sn, b ∈ �m and a linear operator A : Sn → �m, the
primal variable isX ∈ Sn, and the dual variable consists of (S, y) ∈ Sn×�m. We write
F(P ) and F(D) for the sets of feasible solutions to (P ) and (D) respectively, and cor-
respondingly F0(P ) and F0(D) for the sets of strictly feasible solutions to (P ) and (D)
respectively; here “strictly” means thatX or S is required to be positive definite. We also
write F∗(P ) and F∗(D) for the sets of optimal solutions of (P ) and (D) respectively.

Throughout this paper, we assume that the following two conditions hold without
explicitly mentioning them in the statements of our results.

A1) A : Sn → �m is a surjective linear operator;
A2) F0(P )× F0(D) �= ∅.
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Assumption A1 is not really crucial for our analysis but it is convenient to ensure
that the variables S and y are in one-to-one correspondence. We will see that the dual
central path can always be defined in the S-space. The goal of Assumption A1 is just
to ensure that this path is also well-defined in the y-space. Assumption A2 ensures that
both (P ) and (D) have optimal solutions and that the optimal values of (P ) and (D) are
equal. It is also important to ensure the existence of the central path.

Our interest in this paper is to study the set of solutions of the following system of
nonlinear equations parametrized by the parameter ν > 0:

XS = νI, ν > 0, (1)

A
∗y + S = C, S � 0, (2)

AX = b, X � 0. (3)

When ν = 0, the set of solutions (X, S, y) ∈ Sn+ ×Sn+ ×�m of (1)-(3) is exactly the set
F∗(P )× F∗(D). Moreover, for each ν > 0, it is well-known that system (1)-(3) has a
unique solution in Sn+×Sn+×�m, which we denote by (X(ν), S(ν), y(ν)) (see for exam-
ple Monteiro and Todd [30]). The central path is the path ν > 0 → (X(ν), S(ν), y(ν)),
which is known to be an analytic map (see for example Theorem 3.3 of [4] or Theorem
10.2.3 of [30]).

A point (X∗, S∗, y∗) ∈ F∗(P ) × F∗(D) is said to be a maximally complementary
solution pair if it maximizes rank(X)+ rank(S) over F∗(P )× F∗(D). It is known that
the set of maximally complementary solution pairs coincides with the relative interior
of F∗(P ) × F∗(D). Kojima et al. [18] (see also Halická et al. [14]) have shown that
the central path converges to a point in F∗(P ) × F∗(D) as ν ↓ 0 and Goldfarb and
Scheinberg [7] have shown that its limit point is a maximally complementary solution
pair.

Let (X∗, S∗, y∗) be a maximally complementary solution pair and assume that P
is a nonsingular matrix such that PT X∗P and P−1S∗P−T are both diagonal matrices.
SinceX∗S∗ = 0, and hence the matricesX∗ and S∗ commute, we know that there exists
an orthonormal matrix Q ∈ Rn×n such that QTX∗Q and QT S∗Q are both diagonal.
Hence, the existence of a matrix P as above is guaranteed by simply letting P = Q.
Performing the change of variables X̃ = PT XP and (S̃, ỹ) = (P−1SP−T , y) on prob-
lems (P ) and (D) yield another pair of primal and dual SDPs which has a maximally
complementary solution pair (X̃∗, S̃∗, ỹ∗) such that X̃∗ and S̃∗ are both diagonal. We
observe that the central path in the original space corresponds to the central path in the
scaled space, i.e. the map ν > 0 → (P T X(ν)P, P−1S(ν)P−T , y(ν)) is exactly the
central path in the scaled space. Hence, there is no loss of generality if we introduce the
above scaling and study the central path in the scaled space. To keep the same notation
we have been using so far, we will assume without loss of generality that the original
(P ) and (D) already have a maximally complementary solution pair (X∗, S∗, y∗) such
that

X∗ =



X∗

B 0 0
0 0 0
0 0 0



 , S∗ =



0 0 0
0 0 0
0 0 S∗

N



 , (4)
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where X∗
B ∈ S |B|

++ and S∗
N ∈ S |N |

++. Clearly, |B| + |N | ≤ n. Here the subscripts B
and N are the subsets of {1, . . . , n} consisting of the row (or column) indices of the
rows of X∗ and S∗ containing the rows of X∗

B and S∗
N respectively. We define T ≡

{1, . . . , n} \ (B ∪ N). The triple (B, T ,N) will be referred to as the optimal parti-
tion associated with (P ) and (D). Throughout this paper, we make the following extra
assumption.

A3) T �= ∅ .

In other words, assumptionA3 means that there exists no strictly complementary primal-
dual optimal solution, i.e. a pair (X̄, S̄, ȳ) ∈ F∗(P )× F∗(D) such that X̄+ S̄ � 0. We
observe that the assumption A3 implies thatN �= ∅ andB �= ∅. To see that, suppose for
contradiction that B = ∅. Then, by (4) we have X∗ = 0, and hence b = 0. Clearly, this
implies that F∗(D) = F(D). Since F0(D) �= ∅ by A2, it follows that F∗(D) contains
a positive definite matrix, yielding the contradiction that T = ∅. Hence, we must have
B �= ∅. The proof that N �= ∅ is similar.

Notice that (X, S, y) ∈ F∗(P )× F∗(D) if and only if (X, S, y) ∈ F(P )× F(D),
XS∗ = 0 and X∗S = 0. Hence, using (4) and the fact that (X∗, S∗, y∗) is a maximally
complementary solution pair, it is easy to see that

F∗(P ) = {
X ∈ F(P ) : XB̄ = 0

}
, F∗(D) = {

(S, y) ∈ F(D) : SN̄ = 0
}
. (5)

Given a (X, S, y) ∈ F(P )× F(D), we will consider throughout the paper the decom-
positions of X and S according to the optimal decomposition (4) as follows:

X =



XB XBT XBN
XTB XT XTN
XNB XNT XN



 , S =



SB SBT SBN
STB ST STN
SNB SNT SN



 .

The next result states some basic properties about the order of convergence of the
different blocks of X(ν) and S(ν) as ν ↓ 0.

Lemma 1. Let (B, T ,N) denote the optimal partition associated with (P ) and (D).
Then, for all ν > 0 sufficiently small:

XB(ν) = O(1), SN (ν) = O(1), (6)

XN (ν) = O(ν), SB(ν) = O(ν), (7)

XBN(ν) = O
(√
ν
)
, SBN(ν) = O

(√
ν
)
, (8)

XTB(ν) = O
(
‖XT (ν)‖1/2

)
, ST B(ν) = O

(√
ν‖ST (ν)‖1/2

)
, (9)

XTN(ν) = O
(√
ν‖XT (ν)‖1/2

)
, STN(ν) = O

(
‖ST (ν)‖1/2

)
. (10)

Proof. The proof of (6) and (7) is similar to the one of Lemma 3.2 of Luo et al. [21]
(see also Halická et al. [13]). Using the fact thatX(ν) � 0 and S(ν) � 0, we obtain that
Xii(ν) > 0, Sii(ν) > 0,

√
Xii(ν)Xjj (ν) ≥ |Xij (ν)| and

√
Sii(ν)Sjj (ν) ≥ |Sij (ν)|, (11)

for all i, j ∈ {1, . . . , n}. The estimates in (8), (9) and (10) follow from (6), (7)
and (11). ��
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Note that the estimates on the order of convergence of the off-diagonal blocks (9)
and (10) are functions of ‖XT (ν)‖ and ‖ST (ν)‖. For a general SDP problem, it is an
open and difficult problem to accurately predict the exact order of these blocks based
on the description of the problem. To make the problem more tractable, we will assume
throughout most of the paper that the following estimates hold:

A4) XT (ν) = O(
√
ν), and ST (ν) = O(

√
ν).

Note that A4 is a particular case of the following (apparently) weaker condition.

A4’) ‖XT (ν)‖‖ST (ν)‖ = O(ν).

We will prove in Section 4 that A4 and A4’ are actually equivalent (see Theorem 4).

3. Some technical results

Our main goal in this section is to show that the estimates in (9) and (10) can be improved
when either condition A4 or A4’ is in force. The main results obtained in this section are
stated in Theorem 1 and Corollary 1. In fact, we recommend the reader on a first reading
to skip their highly technical proofs and only read their statements.

Lemma 2. Let (J, J̄ ) be a partition of the index set {1, . . . , n}. If X, S ∈ Sn++ is such
that XS = νI for some ν > 0, then

a)
∥
∥
∥X

−1/2
J XJJ̄ S

1/2
J̄

∥
∥
∥

2 = −SJ J̄ •XJJ̄ =
∥
∥
∥X

1/2
J SJ J̄ S

−1/2
J̄

∥
∥
∥

2 ;
b) SJ /ν � X−1

J .

Proof. The equality XS = νI implies

XJ SJ J̄ +XJJ̄ SJ̄ = 0, (12)

XJ SJ +XJJ̄ SJ̄J = νI. (13)

Multiplying (12) on the left byXJ̄JX
−1
J and taking the trace of both sides of the resulting

expression, we obtain the first equality in a). Multiplying (12) on the right by S−1
J̄ SJ̄J and

taking the trace of both sides of the resulting expression, we obtain the second equality
in a). By (12), we have XJJ̄ = −XJ SJ J̄ S

−1
J̄ . This expression together with (13) then

implies statement b) as follows:

1

ν
SJ = X−1

J − 1

ν
X−1

J XJJ̄ SJ̄J = X−1
J + 1

ν
SJ J̄ S

−1
J̄ ST

J J̄
� X−1

J .

��
Lemma 3. For every J ⊂ {1, . . . , n}, we have lim infν→0 ‖XJ (ν)‖ ‖SJ (ν)‖/ν > 0.
As a consequence,

lim inf
ν→0

‖XJ (ν)‖
ν

> 0, lim inf
ν→0

‖SJ (ν)‖
ν

> 0. (14)
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Proof. By Lemma 2(b), we have

‖SJ (ν)‖
ν

≥ ‖XJ (ν)
−1‖ ≥ ‖I‖

‖XJ (ν)‖
,

which clearly implies that lim infν→0 ‖XJ (ν)‖ ‖SJ (ν)‖/ν ≥ ‖I‖ > 0. Relation (14)
follows from the previous relation and the fact that max{‖XJ (ν)‖, ‖SJ (ν)‖} = O(1).

��
One immediate consequence of the above result is that, when T �= ∅, the central

path ν > 0 → (X(ν), S(ν), y(ν)) can not be extended analytically to an interval of
the form (−ε,+∞), for some ε > 0. Indeed, if this were true then we would have
max{‖XT (ν)‖, ‖ST (ν)‖} = O(ν), and consequently limν→0 ‖XT (ν)‖ ‖ST (ν)‖/ν =
0, which contradicts the first statement of Lemma 3 with J = T . (See also [7] for
another proof of this fact.)

The first statement of Lemma 3 with J = T has a few other interesting implications
in addition to the one observed in the previous paragraph. First, it implies that condition
A4’ is equivalent to the (apparently stronger) condition that ‖XT (ν)‖ ‖ST (ν)‖ = �(ν).
Second, if the estimates XT (ν) = O(νp) and ST (ν) = O(νq) hold for some scalars
p, q > 0, then we must have p + q ≤ 1. Third, if the estimates XT (ν) = O(νp),
ST (ν) = O(νq) hold for some scalars p, q > 0 such that p+q = 1, then condition A4’
is satisfied and we must have ‖XT (ν)‖ = �(νp) and ‖ST (ν)‖ = �(νq). In particular,
we conclude that condition A4 is equivalent to the (apparently stronger) condition that
‖XT (ν)‖ = �(ν1/2) and ‖ST (ν)‖ = �(ν1/2). Since we will prove in Section 4 that
conditions A4 and A4’are actually equivalent (see Theorem 4), it follows that a situation
where XT (ν) = O(νp) and ST (ν) = O(νq) with p, q > 0, p + q = 1 and p �= q can
not happen.

Lemma 4. Let (J, J̄ ) be a partition of the index set {1, . . . , n}. If U,V ∈ Sn+ is such
that V � U2, then

U =
(
UJ UJJ̄
UJ̄J UJ̄

)

=
(

O
(‖VJ ‖1/2

)
O(φ)

O(φ) O
(‖VJ̄ ‖1/2

)
)

, (15)

where φ = φ(V ) ≡ min{‖VJ ‖1/2, ‖VJ̄ ‖1/2}.
Proof. The assumption that V � U2 implies that VJ � (U2)J = UJUJ + UJJ̄U

T

J J̄
,

and hence

n‖VJ ‖ ≥ trVJ ≥ tr
(
UJUJ + UJJ̄U

T

J J̄

)
= ‖UJ ‖2 + ‖UJJ̄ ‖2

≥ max{‖UJ ‖2 , ‖UJJ̄ ‖2}.
Since we can prove the inequality n‖VJ̄ ‖ ≥ max{‖UJ̄ ‖2 , ‖UJJ̄ ‖2} in a similar way,
relation (15) follows. ��
Lemma 5. There holds

max

{ ‖XTB(ν)‖
‖XT (ν)‖1/2 ,

‖XTN(ν)‖
ν1/2 ‖XT (ν)‖1/2 ,

‖STB(ν)‖
ν1/2 ‖ST (ν)‖1/2 ,

‖STN(ν)‖
‖ST (ν)‖1/2

}

= O (h(ν)) .

(16)
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where h : (0, +∞) → [0, +∞) is defined by

h(ν) = |XTN(ν) • STN(ν)+XTB(ν) • STB(ν)|1/2
ν1/2 , ∀ν > 0. (17)

Proof. Lemma 2(a) with J = T and the definition of h(ν) imply that

∥
∥
∥X

−1/2
T (ν)XT T̄ (ν)S

1/2
T̄ (ν)

∥
∥
∥ = |XTN(ν) • STN(ν)+XTB(ν) • STB(ν)|1/2

= h(ν) ν1/2.

Using the fact that ‖A1/2B‖ ≤ ‖A‖1/2‖B‖ for any A,B ∈ Sn+ and the above relation,
we then conclude that

∥
∥
∥XT T̄ (ν)S

1/2
T̄ (ν)

∥
∥
∥ = ‖XT (ν)‖1/2‖X−1/2

T (ν)XT T̄ (ν)S
1/2
T̄ (ν)‖

= O
(
h(ν) ν1/2 ‖XT (ν)‖1/2

)
. (18)

By Lemma 2(b) with J = T̄ , we know that XT̄ (ν)/ν � ST̄ (ν)
−1. Since XB(ν)/ν =

O(ν−1) and XN (ν)/ν = O(1) due to Lemma 1, it follows from Lemma 4 that

ST̄ (ν)
−1/2 =

(
O

(
ν−1/2

)
O(1)

O(1) O(1)

)

. (19)

Noting that

(XTB(ν) XTN(ν)) = XT T̄ (ν) =
(
XT T̄ (ν)S

1/2
T̄ (ν)

)
S

−1/2
T̄ (ν)

and using the estimates (18) and (19), we easily see that

XTB(ν) = O
(
h(ν) ‖XT (ν)‖1/2

)
, XTN(ν) = O

(
h(ν) ν1/2 ‖XT (ν)‖1/2

)

holds. In a similar way, we can prove that

STB(ν) = O
(
h(ν) ν1/2 ‖ST (ν)‖1/2

)
, STN(ν) = O

(
h(ν) ‖ST (ν)‖1/2

)
.

We have thus shown that (16) holds. ��

Theorem 1. If condition A4’ holds, then the limits

lim
ν→0

XTB(ν)

‖XT (ν)‖1/2 , lim
ν→0

XTN(ν)

ν1/2‖XT (ν)‖1/2 ,

lim
ν→0

STB(ν)

ν1/2‖ST (ν)‖1/2 , and lim
ν→0

STN(ν)

‖ST (ν)‖1/2

are all equal to 0.
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Proof. By Lemma 5, it is sufficient to prove that limν→0 h(ν) = 0. Let K ≡ N ∪TN ∪
NT . Applying Hoffman lemma to the linear system AX = b, XK = 0, we conclude
that there exists a set of points {X̄(ν) : ν > 0} such that

AX̄(ν) = b, X̄K(ν) = 0, ∀ν > 0, (20)

XK̄(ν)− X̄K̄(ν) = O(‖XK(ν)‖) = O
(
ν1/2‖XT (ν)‖1/2

)
, (21)

where the last equality in (21) follows from (7), (10) and (14) with J = T . Also, apply-
ing Hoffman lemma to the linear system S ∈ Im (A∗)+ C, SN̄ = 0, we conclude that
there exists a set of points {S̄(ν) : ν > 0} such that

S̄(ν) ∈ Im
(
A

∗) + C, S̄N̄ (ν) = 0, ∀ν > 0, (22)

SN (ν)− S̄N (ν) = O(‖SN̄ (ν)‖) = O
(
‖ST (ν)‖1/2

)
, (23)

where the last equality in (23) follows from (7), (8), (9), (10) and (14) with J = T .
By (20), (22) and the fact that (X(ν), S(ν), y(ν)) satisfies (2) and (3), we conclude that
X(ν)−X̄(ν) ∈ Null(A) and S(ν)− S̄(ν) ∈ Im(A∗), and hence (X(ν)−X̄(ν))•(S(ν)−
S̄(ν)) = 0. This equality together with (20) and (22) then implies that
(
XK̄(ν)− X̄K̄(ν)

) • SK̄(ν)+ 2XTN(ν) • STN(ν)+XN (ν) • (
SN (ν)− S̄N (ν)

) = 0,

and hence

2 |XTN(ν) • STN(ν)| ≤ ‖XK̄(ν)− X̄K̄(ν)‖ ‖SK̄(ν)‖ + ‖XN (ν)‖‖SN (ν)− S̄N (ν)‖.
(24)

By (7), (8), (9) and (14) with J = T , we have

SK̄(ν) = O
(

max
{
ν1/2, ‖ST (ν)‖

})
, and XN (ν) = O(ν). (25)

Substituting the estimates (21), (23) and (25) into the inequality (24) and using condition
A4’, we obtain

|XTN(ν) • STN(ν)| = O
(
ν1/2‖XT (ν)‖1/2 max

{
ν1/2, ‖ST (ν)‖

}
+ ν‖ST (ν)‖1/2

)

= O
(
νmax

{
‖XT (ν)‖1/2, ‖ST (ν)‖1/2

})
.

Since we can similarly prove that |XTB(ν) • STB(ν)| can be bounded by the same term
above, we conclude that

|XTN(ν) • STN(ν)+XTB(ν) • STB(ν)| = O
(
νmax

{
‖XT (ν)‖1/2, ‖ST (ν)‖1/2

})
,

which in view of (17) implies that h(ν) = O(max{‖XT (ν)‖1/4, ‖ST (ν)‖1/4}). This
clearly implies that limν→0 h(ν) = 0. ��
Corollary 1. If condition A4 holds, then the limits

lim
ν→0

XTB(ν)

ν1/4 , lim
ν→0

XTN(ν)

ν3/4 , lim
ν→0

STB(ν)

ν3/4 , and lim
ν→0

STN(ν)

ν1/4

are all equal to 0.

Proof. Since A4 implies A4’, the conclusion of Theorem 1 holds. This fact together with
A4 can be easily seen to imply the corollary. ��
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4. Convergence of the central path

In this section we will study the limiting behavior of the central path ν > 0 →
(X(ν), S(ν), y(ν)) as ν approaches zero. Towards this end, we will introduce a cru-
cial change of variables that will play an important role in this and the next section. We
will also be able to characterize those SDP problems which satisfy condition A4 and
show that the latter is equivalent to condition A4’.

For t > 0, let Pt and Dt denote the block diagonal matrices given by Pt ≡
Diag (IB, t−1IT , t

−2IN) and Dt ≡ Diag (t−2IB, t
−1IT , IN). Consider the following

re-parametrization of the central path given by

(X̃(t), S̃(t)) ≡
(
PtX(t

4)Pt , DtS(t
4)Dt

)
, ∀t > 0. (26)

Then,

X̃(t) =



XB(t4) t−1XBT (t

4) t−2XBN(t
4)

t−1XTB(t
4) t−2XT (t4) t−3XTN(t

4)

t−2XNB(t
4) t−3XNT (t

4) t−4XN (t4)



 (27)

and

S̃(t) =



t−4SB(t4) t−3SBT (t

4) t−2SBN(t
4)

t−3STB(t
4) t−2ST (t4) t−1STN(t

4)

t−2SNB(t
4) t−1SNT (t

4) SN (t4)



 . (28)

In view of the way the above blocks are scaled by different powers of t , it is natural
to introduce the following groups of “blocks”:

J1 =B, J2 =BT ∪ T B, J3 = T ∪ BN ∪NB, J4 = TN ∪NT and J5 = N .

(29)

The following result gives some fundamental properties of the path (X̃(t), S̃(t)) and
its accumulation points as t ↓ 0.

Lemma 6. Suppose condition A4 holds and let (X∗, S∗, y∗) ∈ F∗(P ) × F∗(D) be
given. Then, the following statements hold:

a) for every t > 0, (X̃(t), S̃(t)) is the unique solution in Sn++ × Sn++ of the system
given by

X̃S̃ = I , (30)

D−1
t S̃ D−1

t − S∗ ∈ Im(A∗), (31)

P−1
t X̃P−1

t −X∗ ∈ Null(A); (32)

b) the path t > 0 → (X̃(t), S̃(t)) remains bounded as t approaches 0 and any
accumulation point (X̃∗, S̃∗) of this path as t approaches 0 satisfies (30) and the
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following linear equations

(SP)






AJ1 X̃J1 = b,

X̃J2 = 0,
AJ3 X̃J3 ∈ Im

(
AJ1:2

)
,

X̃J4 = 0,
AJ5 X̃J5 ∈ Im

(
AJ1:4

)
,

(SD)






S̃J1 ∈ Im
(
A

∗
J1

)
,

S̃J2 = 0,

(0, S̃J3 ) ∈ Im
(
A

∗
J1:2

,A∗
J3

)
,

S̃J4 = 0,

(0, S̃J5 ) ∈ (CJ1:4 , CJ5 )+ Im
(
A

∗
J1:4

,A∗
J5

)
,

where J1:2 ≡ J1 ∪ J2 and J1:4 ≡ J1 ∪ J2 ∪ J3 ∪ J4.

Proof. We first prove a). Fix t > 0 and let (X, S) ≡ (X(t4), S(t4)) and (X̃, S̃) ≡
(X̃(t), S̃(t)). Using the definition of the central path and the fact that AX∗ = b and
S∗ ∈ C + Im A

∗, it is easy to see that (X, S) is the unique point satisfying

X −X∗ ∈ Null A, S − S∗ ∈ Im A
∗, XS = t4I. (33)

Note that by (26), we have X̃ = PtXPt and S̃ = DtSDt . Using these relations and the
identity PtDt = I/t2, it is now easy to see that (X, S) satisfies (33) if and only if (X̃, S̃)
satisfies (30)-(32), from which a) follows.

We next prove b). Using Lemma 1 and Corollary 1, it is easy to see that the path
t > 0 → (X̃(t), S̃(t)) remains bounded as t ↓ 0 and that any accumulation point
(X̃∗, S̃∗) of this path as t ↓ 0 satisfies the second and fourth relations of systems (SP)
and (SD). The fact that (X̃∗, S̃∗) satisfies (30) follows immediately from a). It remains
to prove that (X̃∗, S̃∗) satisfies the first, third and fifth relations of (SP) and (SD). We
will prove this fact only for S̃∗ since the proof for X̃∗ is similar. Let {tk} ⊂ �++ be a
sequence converging to 0 such that S̃∗ = limk→+∞ S̃(tk). Since S(t4k ) − S∗ ∈ Im A

∗

for all k and S∗
J1

= 0, it follows that S̃J1(tk) = SJ1(t
4
k )/t

4
k ∈ Im

(
A

∗
J1

)
for all k, and

hence that the first relation of (SD) holds. A similar argument shows that
(
SJ1:2(t

4
k )

t2k
, S̃J3(tk)

)

=
(
SJ1:2(t

4
k )

t2k
,
SJ3(t

4
k )

t2k

)

∈ Im(A∗
J1:2

, A
∗
J3
),

from which the third relation of (SD) follows upon noting that limt→0 SJ1:2(t
4)/t2 = 0,

due to Lemma 1 and Corollary 1. Finally, the fifth relation of (SD) follows from the
relation

(SJ1:4(t
4
k ), S̃J5(tk)) = (SJ1:4(t

4
k ), SJ5(t

4
k )) ∈ (CJ1:4 , CJ5)+ Im(A∗

J1:4
, A

∗
J5
)

and the fact that limt→0 SJ1:4(t
4) = 0. ��

Our aim now will be to show that the path t > 0 → (X̃(t), S̃(t)) converges as t ↓ 0
and to provide a characterization of its limit point. We will first prove the following
technical result.

Lemma 7. Let �X and �S satisfy systems (SP) with b = 0 and (SD) with C = 0,
respectively. Then, �X •�S = 0.
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Proof. We will show that

�XJj •�SJj = 0, j = 1, . . . , 5, (34)

from which the lemma easily follows. We will prove (34) only for j = 3 since the proof
for j = 5 is similar and for j = 1, 2, 4 is trivial. Since�X satisfies the third relation of
(SP), there must exist VJ1:2 such that AJ1:2VJ1:2 + AJ3�XJ3 = 0. Hence, we have

(
VJ1:2 ,�XJ3 , 0J4:5

) ∈ Null A, (35)

where J4:5 ≡ J4 ∪ J5. Since �S satisfies the third relation of (SD), there must exist
�y ∈ �m such that A

∗
J1:2

�y = 0 and A
∗
J3
�y = �SJ3 . Thus, lettingWJ4:5 ≡ A

∗
J4:5

�y,
we have

(
0J1:2 ,�SJ3 ,WJ4:5

) ∈ Im A
∗.

Relation (35), the last relation and the fact that Null A and Im A
∗ are orthogonal sub-

spaces then imply that (34) holds for j = 3. ��
Let

T (P ) ≡
{
X̃ ∈ Sn++ : satisfying (SP)

}
, T (D) ≡

{
S̃ ∈ Sn++ : satisfying (SD)

}
.

The following result shows that the path (X̃(t), S̃(t)) converges as t ↓ 0 and provides
a characterization of its limit point as being an optimal solution of a certain log-barrier
problem over the set T (P )× T (D).

Theorem 2. Suppose condition A4 holds and let
(
X̄, S̄, ȳ

) ∈ F∗(P )×F∗(D) be given.

Then, the path (X̃(t), S̃(t)) converges to (X̃∗, S̃∗), where

X̃∗ ≡ argmax
{

log det(X̃)− S̄ • X̃ : X̃ ∈ T (P )
}
, (36)

S̃∗ ≡ argmax
{

log det(S̃)− X̄ • S̃ : S̃ ∈ T (D)
}
. (37)

In particular, the central path converges.

Proof. We will prove only (36) since the proof of (37) is similar. Since (36) has a unique
solution, it is sufficient to show that any accumulation point X̃∗ of the path X̃(t) as t ↓ 0
satisfies the optimality conditions for (36), that is [(X̃∗)−1 − S̄] • �X = 0 for every
�X ∈ Sn satisfying system (SP) with b = 0. Indeed, using (5), the assumption that
S̄ ∈ F∗(D) and Lemma 6, we see that (X̃∗)−1 and S̄ are both solutions of system (SD),
and hence that (X̃∗)−1 − S̄ is a solution of (SD) with C = 0. Hence, by Lemma 7, it
follows that [(X̃∗)−1 − S̄] • �X = 0 for every �X ∈ Sn satisfying system (SP) with
b = 0. ��

In the rest of this section, we will characterize the class of SDPs satisfying condition
A4 and also show that this condition is equivalent to A4’. We first state the following
very intuitive result.
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Lemma 8. Let a convex set ∅ �= C ⊂ Sn++ be given. If the problem

max {log det(X) : X ∈ C} , (38)

has an optimal solution then C is bounded.

Proof. Let X̃ be an optimal solution of the above problem. This is equivalent to the
condition that

X̃−1 • (X − X̃) � 0, ∀X ∈ cl C. (39)

Let H ∈ Sn be a direction of recession of cl C so that X̃ + τH ∈ cl C ⊂ Sn+ for every
τ > 0. In view of (39), it follows that X̃−1 •H ≤ 0. Letting λ̃ > 0 denote the minimum
eigenvalue of X̃−1 and noting that X̃−1 − λ̃I � 0, we obtain for every τ > 0 that

n ≥ X̃−1 •
(
X̃ + τH

)
=

(
X̃−1 − λ̃I

)
•
(
X̃ + τH

)
+ λ̃I •

(
X̃ + τH

)

≥ λ̃I •
(
X̃ + τH

)
≥ λ̃‖X̃ + τH‖ ≥ λ̃

(
τ‖H‖ − ‖X̃‖

)
.

The last inequality holds for all τ > 0 only if ‖H‖ = 0, or equivalently H = 0. Since
we have shown that cl C does not have any nonzero direction of recession, it follows
from Proposition 2.2.3 of Chapter III of Hiriart-Urruty and Lemaréchal [15] that cl C,
and hence C, is bounded. ��

We will now derive a necessary condition for condition A4 to hold. Later, we will
establish that this condition is also sufficient.

Theorem 3. If condition A4 holds, then the system

AT (�XT ) ∈ Im
(
AJ1:2

)
, �XT ∈ S |T |

+ , (40)

(0, �ST ) ∈ Im
(
A

∗
K, A

∗
T
)
, �ST ∈ S |T |

+ , (41)

where K ≡ J1:2 ∪ BN ∪NB, has (�XT ,�ST ) = (0, 0) as its unique solution.

Proof. We will only prove that �XT = 0 is the unique solution of (40). The proof that
�ST = 0 is the unique solution of (41) is similar. Consider the optimal solution X̃∗ of
(36) and define

C(P ) ≡
{
X ∈ T (P ) : XJ1 = X̃∗

J1
, XJ5 = X̃∗

J5

}
.

Using Theorem 2, it is easy to see that X̃∗ is an optimal solution of (38) with C = C(P ).
Hence, it follows from Lemma 8 that C(P ) is bounded. Moreover, it is easy to verify
that

X̃∗ + λ




0 0 0
0 �XT 0
0 0 0



 ∈ C(P ), ∀λ ≥ 0.

Hence, due to the boundedness of C(P ), we must have �XT = 0. ��
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At a first sight, there seems to be a lack of symmetry between (40) and (41). However,
(40) and (41) are equivalent to the existence of matrices UB ∈ S |B|, UTB ∈ R|T |×|B|,
WTN ∈ R|T |×|N | and WN ∈ S |N | such that




UB UTTB 0
UTB �XT 0

0 0 0



 ∈ Null (A) and




0 0 0
0 �ST WTN

0 WT
TN WN



 ∈ Im
(
A

∗) .

Note that the latter conditions illustrate well the symmetry between (40) and (41).
The following result gives some useful properties about the systems (40) and (41).

Lemma 9. The following statements hold:

i) system (40) has no strictly feasible solution; if, in addition, AJ2 = 0 then�XT =
0 is the only solution of system (40);

ii) system (41) has no strictly feasible solution; if, in addition, AJ4 = 0 then�ST =
0 is the only solution of system (41);

Proof. We will only prove i) since the proof of ii) is similar. Suppose for contradic-
tion that system (40) has a feasible solution �XT ∈ S |T |

++. This means that there exist
�XB ∈ S |B| and �XBT ∈ R|B|×|T | such that

�X =



�XB �XBT 0
�XTBT �XT 0

0 0 0



 ∈ Null A. (42)

Hence A(X∗ + τ�X) = b for every τ ∈ R. Using the fact that X∗
B � 0 and�XT � 0,

we easily see that X∗ + τ�X � 0 for every τ > 0 sufficiently small. Since S∗
J1:4

= 0
and (X∗ + τ�X)J5 = 0, it follows that (X∗ + τ�X)•S∗ = 0 for all τ ∈ R. Therefore,
we conclude thatX∗ + τ�X ∈ F∗(P ) for every τ > 0 sufficiently small. However, this
contradicts the description of F∗(P ) given by (5) since (X∗ + τ�X)T = τ�XT �= 0.

Assume now that AJ2 = 0. If system (40) had a feasible solution 0 �= �XT ∈ S |T |
+ ,

this would enable us to take �XBT = 0 in (42) to obtain the desired contradiction by
using similar arguments to the ones used in the previous paragraph. ��

The next lemma essentially establishes that the converse of Theorem 3 holds.

Lemma 10. The following statements hold:

i) if XT (ν) = O(
√
ν) does not hold, then there exists an accumulation point �̂XT

of
{

�XT (ν) ≡ XT (ν)
‖XT (ν)‖

: ν ∈ (0, 1]

}

, (43)

which is a solution of (40); hence, �̂XT �= 0 and �̂XT /∈ S |T |
++;

ii) if ST (ν) = O(
√
ν) does not hold, then there exists an accumulation point �̂ST

of
{

�ST (ν) ≡ ST (ν)
‖ST (ν)‖

: ν ∈ (0, 1]

}

, (44)

which is a solution of (41); hence, �̂ST �= 0 and �̂ST /∈ S |T |
++.
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Proof. We will prove only i) since the proof of ii) is similar. First note that the assump-
tion means that limk→+∞ νk

1/2/‖XT (νk)‖ = 0 for some sequence of positive numbers
{νk} converging to zero. By passing to a subsequence if necessary, we may assume
that �XT (νk) converges, say to �̂XT . Clearly, 0 �= �̂XT ∈ S |T |

+ . Now, let L =
BN ∪NB ∪J4 ∪J5. Since, by Lemma 1, we haveXL(ν) = O(ν1/2), we conclude that

lim
k→+∞

XL(νk)
‖XT (νk)‖

= lim
k→+∞

XL(νk)
νk1/2

νk
1/2

‖XT (νk)‖
= 0. (45)

Using the fact that b ∈ Im(AB) and AX(ν) = b, we obtain that AT XT (νk) +
ALXL(νk) ∈ Im(AJ1:2). Dividing this expression by ‖XT (νk)‖, letting k → ∞ and
using (45), we conclude that AT �̂XT ∈ Im(AJ1:2). We have thus shown that �̂XT is

a nontrivial solution of (40). By Lemma 9(i), we know that �̂XT /∈ S |T |
++. ��

The following result follows as an immediate consequence of Lemma 10.

Corollary 2. The following statements hold:

i) if �XT = 0 is the only solution of system (40), then XT (ν) = O(
√
ν);

ii) if �ST = 0 is the only solution of system (41), then ST (ν) = O(
√
ν).

The following result gives some sufficient conditions for condition A4, or part of it,
to hold.

Corollary 3. The following statements hold:

i) if |T | = 1, then the condition A4 holds;
ii) if AJ2 = 0, then the condition XT (ν) = O(

√
ν) holds;

iii) if AJ4 = 0, then the condition ST (ν) = O(
√
ν) holds.

Proof. The statement i) follows from Lemma 10, by noting that �XT (ν) = 1 and
�ST (ν) = 1, for all ν > 0. The other ones follow from Lemma 9 and Corollary 2. ��
Lemma 11. Assume that the condition A4’ holds. Then, any accumulation points �̂XT
and �̂ST of (43) and (44), respectively, are in S |T |

++.

Proof. The equality X(ν)S(ν) = ν I implies

XTB(ν)SBT (ν)+XT (ν)ST (ν)+XTN(ν)SNT (ν) = νI.

Dividing the above identity by ν, we obtain

α(ν)

(
XTB(ν)

‖XT (ν)‖1/2

SBT (ν)

‖ST (ν)‖1/2ν1/2 + α(ν)�XT (ν)�ST (ν)
)

+α(ν)
(

XTN(ν)

‖XT (ν)‖1/2ν1/2

SNT (ν)

‖ST (ν)‖1/2

)

= I,

where α(ν) ≡ (‖XT (ν)‖ ‖ST (ν)‖/ν)1/2. By condition A4’ and Lemma 3 with J = T ,
we conclude that α(ν) is bounded above and away from zero as ν ↓ 0. Hence, letting
ν ↓ 0 in the above expression and using Theorem 1, we conclude that

lim
ν→0

α(ν)2�XT (ν)�ST (ν) = I.

The lemma now is easily seen to follow from the last relation and the fact that α(ν) is
bounded above as ν ↓ 0. ��
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We have already shown in Theorem 3 and Corollary 2 that condition A4 is equivalent
to (�XT ,�ST ) = (0, 0) being the only solution of (40) and (41). We record this fact
in the next result, which also establishes that these two conditions are in turn equivalent
to condition A4’.

Theorem 4. The following statements are equivalent:

i) condition A4 holds;
ii) condition A4’ holds;

iii) (�XT ,�ST ) = (0, 0) is the unique solution of system (40)–(41).

Proof. In view of the comments made on the paragraph preceding the theorem and the
fact that A4 clearly implies A4’, it suffices to prove that ii) implies i). Assume for con-
tradiction that A4’ holds but A4 does not. Without loss of generality, we may assume
that XT (ν) = O(ν1/2) does not hold. Then, Lemma 10(i) implies the existence of an
accumulation point �̂XT /∈ S |T |

++ of {�XT (ν) : ν > 0} as ν ↓ 0. However, in view

of condition A4’, Lemma 11 implies that �̂XT must be in S |T |
++, yielding the desired

contradiction. ��

5. Convergence of the derivative of the central path

Even though the central path (X(ν), S(ν), y(ν)) is analytic in the open interval (0,+∞),
we have seen in the paragraph after Lemma 3 that the central path in this parametrization
can not be extended analytically to an interval of the form (−ε,+∞), for some ε > 0.
In this section we will show that the re-parametrized central path t → (X(t4), S(t4))

can be extended analytically to an interval of this form. Using this analyticity result, we
also derive results about the order of convergence of the central path towards the set
F∗(P )× F∗(D) and the limiting behavior of the normalized derivative of this path.

Throughout this section, we assume that condition A4 is in force. Hence, we will not
explicitly mention it in the statements of the results of this section.

For the sake of brevity, it is convenient to introduce the following definition.

Definition 1. Letw : (0,+∞) → E be a given function whereE is a finite dimensional
normed vector space. The function w is said to be analytic at 0 if there exist ε > 0 and
an analytic function ψ : (−ε, ε) → E such that w(t) = ψ(t) for all t ∈ (0, ε).

The basic result that we use to establish that a functionw : (0,+∞) → E is analytic
at 0 is the following corollary of the analytic version of the implicit function theorem.

Proposition 1. Let w : (0,+∞) → E be a given function where E is a finite dimen-
sional normed vector space. Assume that there exists an analytic function H : 
 ×
(−δ, δ) → E, where δ > 0 and 
 is an open subset of E, such that w = w(t) is the
unique solution of H(w, t) = 0 in 
 for every t ∈ (0, δ). Assume also there exists
w̄ ∈ 
 such that H(w̄, 0) = 0 and H ′

w(w̄, 0) is nonsingular. Then, w is analytic at 0
and, as a consequence, limt↓0 w(t) = w̄ and the limits of all the derivatives of w(t) as
t ↓ 0 exist.
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Our first goal will be to show that the path t > 0 → (X̃(t), S̃(t)) defined by (26) is
analytic at t = 0. Our point of departure will be the fact that (X̃(t), S̃(t)) is the unique
solution of system (30)–(32), for every t > 0. Our approach will be to apply Proposition
1 to a specific system of equations characterizing the path t > 0 → (X̃(t), S̃(t)). The
utilization of system (30)–(32) towards this end is not appropriate since its Jacobian
with respect to (X̃, S̃) is generally singular at t = 0 (even though for t > 0 it is always
nonsingular).

We will now show how the linear equations (31) and (32) can be reformulated as
equivalent linear equations for every t > 0. Moreover, the new linear equations have
the property that their rank remains constant for every t ∈ �. We start by recalling a
standard result from linear algebra but stated in terms of operators.

Lemma 12. Let A : Sn → Rm be an onto linear operator. Let (J1, . . . ,Jp) be
a given partition of the set {(k, �) : k, � = 1, . . . , n}. Then, there exist a partition
(I1, . . . , Ip) of the set {1, . . . , m} (possibly with some Ii = ∅), an isomorphism U :
Rm → RI1 × · · · × RIp , and a collection of linear operators ÃIiJj : SJj → RIi ,

i ≤ j ∈ {1, . . . , p}, whose diagonal ones ÃIiJi , i = 1, . . . , p, are all onto, satisfying

(U ◦ A)X =



p∑

j=1

ÃI1Jj XJj , · · · ,
p∑

j=i
ÃIiJj XJj , · · · ,

p∑

j=p
ÃIpJj XJj



 , ∀X ∈ Sn,

or equivalently, after we identify Sn with SJ1 × · · · × SJp ,

U ◦ A =










ÃI1J1 ÃI1J2 · · · ÃI1Jp

0 ÃI2J2

...
...

. . . ÃIp−1Jp
0 · · · 0 ÃIpJp










. (46)

The next result describes a suitable system of equations which characterizes the
re-parametrized central path and whose rank does not change as t becomes zero.

Lemma 13. Let (X∗, S∗, y∗) ∈ F∗(P ) × F∗(D) be given. Consider the partition
(J1, . . . ,J5) defined in (29) and the corresponding partition (I1, . . . , I5) and collec-
tion of operators ÃIiJj : SJj → RIi , i ≤ j ∈ {1, . . . , 5}, as in the Lemma 12. Then,

there exists an analytic curve ỹ : R → Rm such that, for every t > 0, (X̃(t), S̃(t), ỹ(t))
is the unique solution in Sn++ × Sn++ × �m of the system

−X̃−1 + S̃ = 0, (47)

Ã
∗
t ỹ + S̃ − S∗ = 0, (48)

Ãt

(
X̃ −X∗

)
= 0, (49)
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where

Ãt ≡










ÃI1J1 tÃI1J2 t
2
ÃI1J3 t

3
ÃI1J4 t

4
ÃI1J5

0 ÃI2J2 tÃI2J3 t
2
ÃI2J4 t

3
ÃI2J5

0 0 ÃI3J3 tÃI3J4 t2ÃI3J5

0 0 0 ÃI4J4 tÃI4J5

0 0 0 0 ÃI5J5










. (50)

Proof. Fix some t > 0. We claim that (X̃, S̃) ∈ Sn++ × Sn++ satisfies (30)–(32) if
and only if it satisfies (47)–(49) for some ỹ ∈ �m. Using this claim and Lemma 6(a),
it follows that the unique solution of (47)–(49) is (X̃(t), S̃(t), ỹ(t)), where ỹ(t) ≡
(Ãt Ã

∗
t )

−1
Ãt (S

∗ − S̃(t)). Since this curve ỹ is clearly analytic, the lemma follows.
We will now show the above claim. First, note that (47) is obviously equivalent to

(30). We will next show that (49) is equivalent to (32) by using Lemma 12. By identifying
Sn with SJ1 × · · · × SJ5 , we have

P−1
t X̃P−1

t −X∗ =
(
X̃J1 −X∗

J1
, tX̃J2 , t

2X̃J3 , t
3X̃J4 , t

4X̃J5

)

and hence, in view of (46) with p = 5, (32) is equivalent to










ÃI1J1 tÃI1J2 t
2
ÃI1J3 t

3
ÃI1J4 t

4
ÃI1J5

0 tÃI2J2 t
2
ÃI2J3 t

3
ÃI2J4 t

4
ÃI2J5

0 0 t2ÃI3J3 t
3
ÃI3J4 t

4
ÃI3J5

0 0 0 t3ÃI4J4 t
4
ÃI4J5

0 0 0 0 t4ÃI5J5



















X̃J1 −X∗
J1

X̃J2

X̃J3

X̃J4

X̃J5










= 0.

Dividing the second, third, fourth and fifth blocks of rows in the above system by t , t2,
t3 and t4, respectively, we obtain (49).

Finally, we will show that the condition S̃ − S∗ ∈ Im Ã
∗
t is equivalent to (31). First

note that Lemma 12 implies that

Im(A∗) = Im
[
(U ◦ A)∗

] = Im





















Ã
∗
I1J1

0 0 0 0

Ã
∗
I1J2

Ã
∗
I2J2

0 0 0

Ã
∗
I1J3

Ã
∗
I2J3

Ã
∗
I3J3

0 0

Ã
∗
I1J4

Ã
∗
I2J4

Ã
∗
I3J4

Ã
∗
I4J4

0

Ã
∗
I1J5

Ã
∗
I2J5

Ã
∗
I3J5

Ã
∗
I4J5

Ã
∗
I5J5





















= Im





















t4Ã
∗
I1J1

0 0 0 0

t4Ã
∗
I1J2

t3Ã
∗
I2J2

0 0 0

t4Ã
∗
I1J3

t3Ã
∗
I2J3

t2Ã
∗
I3J3

0 0

t4Ã
∗
I1J4

t3Ã
∗
I2J4

t2Ã
∗
I3J4

tÃ∗
I4J4

0

t4Ã
∗
I1J5

t3Ã
∗
I2J5

t2Ã
∗
I3J5

tÃ∗
I4J5

Ã
∗
I5J5





















.
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Hence, (31) is equivalent to

D−1
t S̃D−1

t − S∗ =










t4S̃J1

t3S̃J2

t2S̃J3

t S̃J4

S̃J5 − S∗
J5










∈ Im





















t4Ã
∗
I1J1

0 0 0 0

t4Ã
∗
I1J2

t3Ã
∗
I2J2

0 0 0

t4Ã
∗
I1J3

t3Ã
∗
I2J3

t2Ã
∗
I3J3

0 0

t4Ã
∗
I1J4

t3Ã
∗
I2J4

t2Ã
∗
I3J4

tÃ∗
I4J4

0

t4Ã
∗
I1J5

t3Ã
∗
I2J5

t2Ã
∗
I3J5

tÃ∗
I4J5

Ã
∗
I5J5





















.

Dividing the first, second, third and fourth blocks of rows in above system by t4, t3, t2

and t , respectively, we conclude that S̃ − S∗ ∈ Im Ã
∗
t , or equivalently that (48) holds

for some ỹ ∈ �m. ��
Theorem 5. The following statements hold:

i) the path t > 0 → (X̃(t), S̃(t), ỹ(t)) is analytic at t = 0, and hence, all its
higher-order derivatives converge as t ↓ 0;

ii) the path t > 0 → (X(t4), S(t4), y(t4)) is analytic at t = 0.

Proof. The proof is based on Proposition 1. Indeed, letE = Sn×Sn×Rm,
 = Sn++×
Sn++ ×Rm, δ = +∞,w : (0,+∞) → E denote the pathw(t) = (X̃(t), S̃(t), ỹ(t)) and
H(w, t) = H(X̃, S̃, ỹ, t) be the map determined by system (47)–(49). By Theorem 2, we
know that the path (X̃(t), S̃(t)) converges to (X̃∗, S̃∗), hence w(t) = (X̃(t), S̃(t), ỹ(t))

converges to the point w∗ = (X̃∗, S̃∗, ỹ∗) in 
, where ỹ∗ = (Ã0Ã
∗
0)

−1
Ã0(S

∗ − S̃∗),
since limt→0 Ãt = Ã0 and Ã0 has full rank. We claim that the Jacobian H ′

w(w
∗, 0) is

non-singular, or equivalently, that the only solution of the homogeneous system

X̃∗−1�̃XX̃∗−1 + �̃S = 0, (51)

Ã
∗
0 �̃y + �̃S = 0, (52)

Ã0�̃X = 0, (53)

is the trivial one. In fact, it follows from (52) and (53) that �̃X • �̃S = 0. Taking the
dot-product of the first equation with �̃X and using the last relation, we easily see that
‖(X̃∗)−1/2�̃X(X̃∗)−1/2‖ = 0, and hence that �̃X = 0. This together with (51), (52)
and the fact that Ã

∗
0 has full rank imply that �̃S = 0 and �̃y = 0. We have thus shown

thatH ′
w(w

∗, 0) is non-singular. Statement i) now follows from Proposition 1. Statement
ii) follows from i), relations (27) and (28), and the fact that y(t4) can be expressed as an
analytic function of S(t4). ��

Define
( ˙̃
X(0), ˙̃

S(0)
)

≡ lim
t→0

( ˙̃
X(t),

˙̃
S(t)

)
and

( ¨̃
X(0), ¨̃

S(0)
)

≡ lim
t→0

( ¨̃
X(t),

¨̃
S(t)

)
. (54)

We will now investigate the implications of the above theorem regarding the limiting
behavior of (Ẋ(ν), Ṡ(ν)) as ν ↓ 0. We will see that limν→0

√
ν (Ẋ(ν), Ṡ(ν)) exists, is

nonzero and can be characterized in terms of (X̃∗, S̃∗) and the first and second derivatives
in (54).
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Theorem 6. There hold

lim
ν→0

X(ν)−X∗
√
ν

= lim
ν→0

2
√
ν Ẋ(ν) =






1/2 ¨̃
XB(0)

˙̃
XBT (0) X̃BN(0)

˙̃
XTB(0) X̃T (0) 0
X̃NB(0) 0 0




 �= 0, (55)

lim
ν→0

S(ν)− S∗
√
ν

= lim
ν→0

2
√
ν Ṡ(ν) =






0 0 S̃BN(0)

0 S̃T (0)
˙̃
STN(0)

S̃NB(0)
˙̃
SNT (0) 1/2 ¨̃

SN (0)




 �= 0. (56)

Proof. We will prove only (55) since the proof of (56) is similar. It suffices to show that
(55) holds with ν = t4. First, observe that L’Hospital rule implies that

lim
t→0

X(t4)−X∗

t2
= lim
t→0

2t2Ẋ(t4),

as long as the second limit in (55) exists. That the T -block in (55) is nonzero follows
from the fact that Lemma 6(a) implies that X̃T S̃T = I , and hence that X̃T �= 0 and
S̃T �= 0. We will now show that the second limit in (55) does indeed exist. By (27), we
have

XJj (t
4) = tj−1X̃Jj (t), j = 1, . . . , 5.

Derivating the above relation and dividing the resulting expression by 2t , we obtain

2t2ẊJj (t
4) = tj−2

2
˙̃
XJj (t)+ j − 1

2
tj−3X̃Jj (t), j = 1, . . . , 5. (57)

Now, using Theorem 5(i) and the above expression, we easily see that limν→0 2
√
ν

ẊJ3:5(ν) = limt→0 2t2ẊJ3:5(t
4) = (X̃J3(0), 0, 0) �= 0, where J3:5 ≡ T ∪ BN ∪

NB ∪ TN ∪NT ∪ N . Since limt→0 X̃J2(t) = X̃∗
J2

= 0, it follows that

lim
t→0

X̃J2(t)

t
= ˙̃
XJ2(0). (58)

Hence, limt→0 2t2ẊJ2(t
4) = ˙̃

XJ2(0) in view of Theorem 5(i), (57) and (58). An argu-
ment similar to the one used for the case j = 2 can be used to prove that limt→0 2t2

ẊB(t4) = ¨̃
XB(0)/2 as long as we can show that ˙̃

XB(0) = 0. The latter condition follows
as a consequence of the lemma stated below. ��
Lemma 14. ˙̃

XJj (0) = 0 and ˙̃
SJj (0) = 0 for j = 1, 3, 5.

Proof. Derivating (49) with respect to t and setting t = 0 in the resulting expression,
we easily see that

ÃI1J1
˙̃
XJ1(0)+ ÃI1J2X̃

∗
J2

= 0,

ÃI3J3
˙̃
XJ3(0)+ ÃI3J4X̃

∗
J4

= 0,

ÃI5J5
˙̃
XJ5(0) = 0.
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Since by Lemma 6(b), X̃∗
J2

= 0 and X̃∗
J4

= 0, it follows from the above equations and
relation (50) with t = 0 that

Ã0�̃X0 = 0, where �̃X0 ≡
( ˙̃
XJ1(0), 0, ˙̃

XJ3(0), 0, ˙̃
XJ5(0)

)
. (59)

A similar argument in the S-space reveals that

�̃S0 ∈ Im Ã
∗
0, where �̃S0 ≡

( ˙̃
SJ1(0), 0, ˙̃

SJ3(0), 0, ˙̃
SJ5(0)

)
. (60)

Therefore, it follows from (59) and (60) that

�̃X0 • �̃S0 = 0. (61)

By (47) we have that X̃(t)S̃(t) = I for all t . Derivating this expression with respect to
t and setting t = 0, we obtain

˙̃
X(0) S̃∗ + X̃∗ ˙̃

S(0) = 0. (62)

By identifyingSn withSJ1 ×· · ·×SJ5 , we can define matrices �̃X1 ∈ Sn and �̃S1 ∈ Sn
as

�̃X1 ≡
(

0, ˙̃
XJ2(0), 0, ˙̃

XJ4(0), 0
)

and �̃S1 ≡
(

0, ˙̃
SJ2(0), 0, ˙̃

SJ4(0), 0
)
.

(63)

In view of (59), (60) and (63), we have that (62) is equivalent to the equation

�̃X0 S̃
∗ + X̃∗�̃S0 = −�̃X1 S̃

∗ − X̃∗�̃S1. (64)

Now, it is easy to see that the matrices on the left and right hand side of the above
equation have block structures given by




∗ 0 ∗
0 ∗ 0
∗ 0 ∗



 and




0 ∗ 0

0 ∗
0 ∗ 0



 ,

respectively. Therefore, both sides of (64) must be zero, and, in particular, �̃X0 S̃
∗ +

X̃∗�̃S0 = 0. Now, using this relation together with (61), we easily see that �̃X0 = 0
and �̃S0 = 0. ��

6. Convex quadratically constrained convex programming

In this section we consider the problem of minimizing a convex quadratic function
subject to convex quadratic constraints. It is well-known that this problem can be refor-
mulated as an SDP problem. Our goal in this section is to derive sufficient conditions
for the resulting SDP reformulation of this problem to satisfy our assumptions A1-A4,
so that all the results developed in the previous sections apply to it. The basic tool we
use to verify A4 is the equivalence between statements i) and iii) of Theorem 4. It turns
out that iii) can be guaranteed to hold for an important subclass of convex quadratically
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constrained convex programming (CQCCP) problems, namely the ones for which either
the objective function or one of the constraints active at every optimal solution is strictly
convex.

Consider the following CQCCP problem

miny∈Rm {f0(y) : fk(y) ≤ 0, k = 1, . . . , �} , (65)

where, for some Qk ∈ Sm+ , bk ∈ Rm and αk ∈ R, fk(y) ≡ yTQky − bTk y − αk for
every y ∈ �m and k = 0, . . . , �. Let C and C∗ denote its set of feasible solutions and
optimal solutions, respectively. Throughout this section, we assume that:

B1) there exists y0 ∈ Rm such that fk(y0) < 0 for all k = 1, . . . , �;
B2) C∗ �= ∅ and {(−f1(ȳ), . . . ,−f�(ȳ)) : ȳ ∈ C∗ } is bounded.

We remark that B1 and B2 imply that condition A2 holds (see for example Proposition
4.2 of Monteiro and Zhou [33]).

Clearly, (65) is equivalent to

max {−η : f0(y) ≤ η, fk(y) ≤ 0, k = 1, . . . , �} . (66)

Noting that the conditions f0(y) ≤ η and fk(y) ≤ 0 are equivalent to the following
semidefinite inequalities

S̃0(y, η) ≡
(

I Q
1/2
0 y

yTQ
1/2
0 bT0 y + α0 + η

)

∈Sm+1
+ , S̃k(y) ≡

(
I Q

1/2
k y

yT Q
1/2
k bTk y + αk

)

∈Sm+1
+ ,

for k = 1, . . . , �, it follows that problem (66), and hence (65), is equivalent to the
following special case of the dual SDP problem (D):

max
{
−η : S̃(y, η) ≡ Diag

(
S̃0(y, η), S̃1(y), . . . , S̃�(y)

)
� 0

}
.

We will now introduce a change of variables which enforces (4) in the new scaled
space. Fix some y∗ ∈ ri(C∗), and define P ≡ Diag (P0, . . . , P�), where

Pk ≡
(

I 0
−y∗T Q1/2

k 1

)

, k = 0, . . . , �.

The scaled dual slack S(y, η) ≡ P S̃(y, η)P T then becomes S(y, η) = Diag (S0(y, η),

S1(y), . . . , S�(y)), where

S0(y, η)≡
(

I Q
1/2
0 (y − y∗)

(y − y∗)T Q1/2
0 h0(y, y

∗)+ η

)

, Sk(y)≡
(

I Q
1/2
k (y − y∗)

(y − y∗)T Q1/2
k hk(y, y

∗)

)

,

(67)

and

hk(y, y
∗) ≡ (y∗)T Qky

∗−2(y∗)T Qky+bTk y+αk=−
[
fk(y

∗)+ ∇fk(y∗)T (y − y∗)
]
.
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for k = 0, . . . , �. The scaled dual SDP problem is then

max {−η : S(y, η) ≡ Diag (S0(y, η), S1(y), . . . , S�(y)) � 0} . (68)

Its set of optimal solutions in the (y, η)-space is given byC∗ ×{η∗}, where η∗ ≡ f0(y
∗).

Now, define I∗ ≡ {k ≥ 1 : fk(y∗) = 0} and note that since y∗ ∈ ri(C∗), we also have

I∗ = {
k ≥ 1 : fk(ȳ) = 0, ∀ ȳ ∈ C∗} . (69)

Hence, from (67) and (69) it follows that

Sk(y
∗) =

(
I 0
0 −fk(y∗)

)

� 0, k /∈ I∗ ∪ {0}, (70)

Sk(ȳ) = S0(ȳ, η
∗) =

(
I 0
0 0

)

, ∀ ȳ ∈ C∗, ∀ k ∈ I∗, (71)

where in the second relation we used the fact thatQ1/2
k (ȳ−y∗) = 0 for every k ∈ I∗∪{0}

and ȳ ∈ C∗. (The latter claim follows from Corollary 1 of Mangasarian [22] applied to
the problem min{fk(y) : y ∈ C∗} for every k ∈ I∗ ∪ {0}.)

By (70) and (71), we conclude that: i) for each k /∈ I∗ ∪ {0}, the block Sk is part
of the block SN , and: ii) for each k ∈ I∗ ∪ {0}, the leading principal m × m block of
Sk is part of the block SN and the (m + 1)-th diagonal element of Sk can be either in
SB or ST . In the following, we will say that k ∈ Ĵ for J = B, T , if the (m + 1)-th
diagonal element of Sk is in SJ . Clearly, I∗ ∪ {0} = B̂ ∪ T̂ . A characterization of these
sets requires us to examine the nature of the optimal set of the scaled primal problem.

We will now describe the associated scaled primal problem. Because of the block-
diagonal structure of the scaled dual problem (68), we may assume that the primal fea-
sible solutions X have the same block-diagonal structure X = Diag (X0, X1, . . . , X�),
where each

Xk ≡
(
Uk uk
uTk λk

)

∈ Sm+1
+ , k = 0, 1, . . . , �. (72)

Moreover, it is easy to see that the set of primal feasible solutions consists of thoseX � 0
as above satisfying

λ0 = 1,
�∑

k=0

λk(2Qky
∗ − bk)− 2

�∑

k=0

Q
1/2
k uk = 0. (73)

The scaled primal problem is then given by

min

{
�∑

k=0

[
I • Uk − 2(y∗)T Q1/2

k uk +
(
(y∗)T Qky

∗ + αk

)
λk

]
: (72) and (73) hold

}

.

(74)
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By (70), (71) and the complementarity slackness condition, it is easy to see that a primal
optimal solution X̄ = Diag(X̄0, X̄1, . . . , X̄�) of the scaled pair of dual problems has
the following structure:

X̄k =
(

0 0
0 λ̄k

)

, k = 0, 1 . . . , �, (75)

where λ̄0 = 1 and λ̄ ≡ (λ̄1, . . . , λ̄�) ∈ �� satisfies

λ̄kfk(y
∗) = 0, λ̄k ≥ 0, k = 1, . . . , �, (76)

∇f0(y
∗)+

�∑

k=1

λ̄k∇fk(y∗) = 0. (77)

We remark that the set M(y∗) ≡ {λ̄ = (λ̄1, . . . , λ̄�) : (76) and (77) holds } is
exactly the set of the Lagrange multipliers of problem (65). Since this set does not
depend on the particular y∗ ∈ C∗ chosen (see for example Proposition 3.1.1 of Chapter
VII of [15]), we will henceforth denote it simply by M. From the above discussion, it
is now easy to see that the following result holds.

Proposition 2. Assume that X̄ = Diag(X̄0, X̄1, . . . , X̄�) is a feasible solution for the
scaled primal SDP problem, or equivalently, that (72) and (73) holds. Then, X̄ is optimal
if and only if (75) holds and λ̄ = (λ̄1, . . . , λ̄�) ∈ M.

The following result whose proof is now straightforward gives a characterization of
the index set B̂ (and hence of T̂ ).

Lemma 15. B̂ = {0} ∪ {k : λ̄k > 0 for some λ̄ = (λ̄1, . . . , λ̄�) ∈ M }.
Based on the above discussion, it is now easy to see that our pair of scaled dual

problems (68) and (74) satisfies the requirement (4). We are now ready to state the main
result of this section, which provides a characterization for when condition A4 holds for
the pair of dual SDPs (68) and (74).

Theorem 7. Let (X(ν), S(ν)) denote the central path for the scaled pair of dual prob-
lems (68) and (74). Then, the following statements hold:

i) XT (ν) = O(
√
ν);

ii) condition A4 holds for the pair of dual SDPs (68) and (74) if and only if, for any
�y ∈ �m, the conditions

bTk �y = 0, ∀ k ∈ B̂ \ {0}, (78)

Qk�y = 0, ∀ k ∈ B̂,
(bk − 2Qky

∗)T �y ≥ 0, ∀ k ∈ T̂ , (79)

imply that (bk − 2Qky
∗)T �y = 0 for all k ∈ T̂ .

Proof. Statement i) and the fact that �XT = 0 is the unique solution of (40) follow
from Corollary 3(ii) and Lemma 9(i), respectively, by noting that the structure of the dual
problem (68) implies that AJ2 = 0. The special structure of the dual problem implies
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that�ST = Diag (�sk : k ∈ T̂ ), for some scalars�sk , k ∈ T̂ . Moreover, it is easy to see
that�ST satisfies (41) if and only if, for some�y ∈ Rm, 0 ≤ �sk = (bk−2Qky

∗)T �y
for all k ∈ T̂ and relations (78) and (79) hold. Statement ii) now follows from the above
observations and Theorem 4. ��

The following result, which is an immediate consequence of Theorem 7(ii), gives
some sufficient conditions for A4 to hold for the pair of dual SDPs (68) and (74).

Theorem 8. The following statements hold:

i) if
⋂ {Null(Qk) : k ∈ B̂} = {0}, then condition A4 holds for (68) and (74); in

particular, if Qk � 0 for some k ∈ B̂, then condition A4 holds for (68) and (74);
ii) ifQk = 0 for all k ∈ T̂ , then condition A4 holds for (68) and (74); in particular, if

the pair of SDPs (68) and (74) corresponds to a convex quadratic program, namely
problem (65) with Qk = 0 for all k = 1, . . . , �, then condition A4 holds for (68)
and (74).

Proof. Since the condition
⋂ {Null(Qk) : k ∈ B̂} = {0} is equivalent to �y = 0 being

the unique solution of (79), we conclude that statement i) follows immediately from
Theorem 7(ii).

To prove ii), assume that Qk = 0 for all k ∈ T̂ . Due to the special structure of the
dual problem (68) (see relation (67)), this implies that AJ4 = 0. Therefore, by Corollary
3(iii) and Theorem 7(i), we conclude A4 holds. ��

The following example shows the pair of dual SDPs (68) and (74) corresponding to
a general CQCCP problem may not satisfy condition A4.

Example 1. Consider the CQCCP problem (65), where

f0(y) = y2
1 +y2

3 , f1(y) = y2
1 +5y2

2 +4y1y2−y3, f2(y) = y2
2 +2y2

3 +2y2y3−y2−y3,

for every y = (y1, y2, y3) ∈ R3. Note that y0 = (0, 0, 0.25) satisfies condition B1.
Moreover, it is easy to see that C∗ = {(0, 0, 0)} and M = {(0, 0)} so that condition B2
is also satisfied and (B̂, N̂, T̂ ) = ({0},∅, {1, 2}) due to Lemma 15. Moreover, it is easy
to see that �y ≡ (0, 1, 0) does not satisfy the equivalent condition to A4 of Theorem
7(ii). We have thus shown that the pair of dual SDPs (68) and (74) corresponding to this
CQCCP problem satisfies conditions A2 and A3 but not A4.
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15. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization algorithms I. Volume 305 of
Comprehensive Study in Mathematics. Springer-Verlag, New York, 1993

16. Kojima, M., Megiddo, N., Noma, T.,Yoshise, A.: A unified approach to interior point algorithms for linear
complementarity problems. Volume 538 of Lecture Notes in Computer Science. Springer Verlag, Berlin,
Germany, 1991

17. Kojima, M., Mizuno, S., Noma, T.: Limiting behavior of trajectories by a continuation method for mono-
tone complementarity problems. Mathematics of Operations Research 15 (4), 662–675 (1990)

18. Kojima, M., Shindoh, S., Hara, S.: Interior-point methods for the monotone semidefinite linear comple-
mentarity problem in symmetric matrices. SIAM Journal on Optimization 7, 86–125 (1997)

19. Lu, Z., Monteiro, R.D.C.: Error bounds and limiting behavior of weighted paths associated with the SDP
map X1/2SX1/2. Manuscript, School of ISyE, Georgia Tech, Atlanta, GA, 30332, USA, June 2003

20. Lu, Z., Monteiro, R.D.C.: Limiting behavior of the Alizadeh-Haeberly-Overton weighted paths in semi-
definite programming. Manuscript, School of ISyE, Georgia Tech, Atlanta, GA, 30332, USA, July 2003

21. Luo, Z-Q., Sturm, J. F., Zhang, S.: Superlinear convergence of a symmetric primal-dual path-following
algorithm for semidefinite programming. SIAM Journal on Optimization 8, 59–81 (1998)

22. Mangasarian, O.L.: A simple characterization of solution sets of convex programs. Operations Research
Letters 7, 21–26 (1988)

23. McLinden, L.: An analogue of Moreau’s proximation theorem, with application to the nonlinear comple-
mentarity problem. Pacific Journal of Mathematics 88, 101–161 (1980)

24. McLinden, L.: The complementarity problem for maximal monotone multifunctions. In: R.W. Cottle, F.
Giannessi, J.-L. Lions, (eds.), Variational Inequalities and Complementarity Problems, Wiley, New York,
1980, pp. 251–270

25. Megiddo, N.: Pathways to the optimal set in linear programming. In: N. Megiddo, (ed.), Progress in
Mathematical Programming: Interior point and Related Methods, Springer Verlag, New York, 1989,
pp. 131–158; Identical version In: Proceedings of the 6th Mathematical Programming Symposium of
Japan, Nagoya, Japan, 1986, pp. 1–35

26. Milnor, J.: Singular points of complex hypersurfaces. Ann. Math. Stud., Princeton University Press, 1968
27. Monteiro, R.D.C.: Convergence and boundary behavior of the projective scaling trajectories for linear

programming. Mathematics of Operations Research 16 (4), 842–858 (1991)
28. Monteiro, R.D.C., Pang, J.-S.: Properties of an interior-point mapping for mixed complementarity prob-

lems. Mathematics of Operations Research 21, 629–654 (1996)



514 J. X. da Cruz Neto et al.: Asymptotic behavior of the central path for SDP problems

29. Monteiro, R.D.C., Pang, J.-S.: On two interior-point mappings for nonlinear semidefinite complementarity
problems. Mathematics of Operations Research 23, 39–60 (1998)

30. Monteiro, R.D.C., Todd, M.J.: Path-following methods for semidefinite programming. In: R. Saigal, L.
Vandenberghe, H. Wolkowicz, (eds.), Handbook of Semidefinite Programming. Kluwer Academic Pub-
lishers, Boston-Dordrecht-London, 2000

31. Monteiro, R.D.C., Tsuchiya, T.: Limiting behavior of the derivatives of certain trajectories associated
with a monotone horizontal linear complementarity problem. Mathematics of Operations Research 21,
793–814 (1996)
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