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Abstract 

In this paper, we study the global convergence of a large class of primal--dual interior point 
algorithms for solving the linearly constrained convex programming problem. The algorithms in this 
class decrease the value of a primal--dual potential function and hence belong to the class of so-called 
potential reduction algorithms. An inexact line search based on Armijo stepsize rule is used to compute 
the stepsize. The directions used by the algorithms are the same as the ones used in primal--dual path 
following and potential reduction algorithms and a very mild condition on the choice of the "centering 
parameter" is assumed. The algorithms always keep primal and dual feasibility and, in contrast to the 
polynomial potential reduction algorithms, they do not need to drive the value of the potential function 
towards - oo in order to converge. One of the techniques used in the convergence analysis of these 
algorithms has its root in nonlinear unconstrained optimization theory. 
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1. Introduction 

Research in interior point  methods have been very intense since the publication of  the 

seminal paper [ 11 ] by Karmarkar in 1984. Since then several papers describing interior 

point methods for various classes of  optimizations problems have been published. These 

include papers in the context of  linear programming (e.g., see [ 3, 6, 12, 17, 24, 27, 33, 38, 

40, 41 ] ),  quadratic programming (e.g., see [26, 29 ] ),  convex programming (e.g., see [ 8 -  
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10, 19, 20, 23, 28, 31, 35, 42, 43] ), linear complementarity problems (e.g., see [ 14, 16, 
18, 25, 32] ), nonlinear complementarity problems (e.g., see [ 13, 39] ), nonlinear equations 
(e.g., see [36, 37] ) and etc. These methods can be classified according to certain classes 
depending on some of their aspects. Among these classes, we cite the following ones: 

(a) Path following methods (e.g., see [6, 8, 10, 13, 16, 17, 20, 23, 24, 26-28, 33, 36- 
40, 43] ). 

(b) Potential reduction methods (e.g., see [9, 14, 18, 19, 32, 41, 42] ). 
(c) Affine scaling methods (e.g., see [3, 29] ). 
(d) Projective scaling methods (e.g., see [ 11 ] ). 

One can also distinguish whether these algorithms are primal-only (or, dual-only) algo- 
rithms or primal-dual algorithms. The algorithms that we discuss in this work are more 
related to the algorithms of class (b) mentioned above and they are primal-dual methods. 

In this paper, we study the global convergence of a large class of primal-dual (PD) 
interior point algorithms for solving the convex programming problem 

(P) min{f(x) lAx= b, x>~0} 

wheref(x) is a smooth convex function, A is an m × n matrix and b is an m-vector. Our 
class of PD algorithms possesses many properties that are common to the class of algorithms 
(a) and (b) above. The directions generated are of the same type as those employed in the 
PD path following and PD potential reduction algorithms. Moreover, our class of algorithms 
use, at kth iteration, a direction of movement Aw~ which is a convex combination of two 
other directions, namely, a centering direction Aw~ and an affine direction Aw~. A very 
mild condition is imposed on the coefficient O'k of the convex combination AWk=--trk A~ + 

( 1 -- ~ )  Aw~. Namely, for some fixed scalar ~ (0,1), we require that o'k~ [0,~] for all 
k. This property is also present in a class of algorithms discussed by Kojima, Megiddo, 
Noma and Yoshise [ 14] where they investigate global convergence for algorithms in which 
even more freedom is allowed on the choice of the parameters O'k- The analysis in [ 14] is 
done only in the context of linear complementarity problems and no attempt is made to 
consider the nonlinear case which includes problem (P) as a special case. In Section 2, we 
present a detailed description of the class of algorithms that we consider in this paper. 

The class of algorithms we consider employs a primal-dual potential function as a merit 
function much like the PD potential reduction algorithms. For this reason, we can say that 
these algorithms belong to the class of potential reduction algorithms. The stepsize is 
determined by using an inexact line search procedure, namely, a version of Armijo rule 
specially tailored to our situation. One aspect of the algorithms we consider is that when 
viewed in a certain primal-dual space, the next iterate is searched from points lying along 
a curve, instead of a straight line, passing through the current iterate. This is due to the need 
of keeping primal and dual feasibility and the fact that the condition for dual feasibility in 
the case of a general convex functionf(x) involves nonlinear constraints. Calculation of 
the derivatives of these curves require the computation of the Hessian of f ( .  ). For this 
reason, a line search which does not require derivative computation at intermediate points 
of the search, like Armijo rule, is specially important for our situation. In Section 3, we 
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present a detailed analysis of Armijo rule applied to the situation where (1) the merit 
function is defined only on an open set D ___ ~n and (2) the next iterate is searched among 
points lying in a curve passing through the current iterate. We then show that if these curves 
satisfy certain reasonable conditions then no subsequence of the sequence of iterates gen- 
erated can lie in a compact subset of D (Corollary 3.1). In Section 4, we show that all the 
assumptions of Corollary 3.1 are satisfied by our class of algorithms and then, using the 
conclusion of this corollary, we derive the global convergence result that holds for this class 
of algorithms. 

Many algorithms for unconstrained (e.g., steepest descent, Newton, quasi-Newton and 
conjugate gradient methods) and constrained optimization (e.g., gradient projection meth- 
ods) have been presented in the literature which use inexact line searches and, in particular, 
Armijo stepsize selection rule. All these inexact line searches guarantee a sufficient decrease 
property of the objective or merit function under consideration. If the directions of movement 
are properly chosen then the iterates generated will eventually converge to a critical point 
in the unconstrained case and to a Karush-Kuhn-Tucker point in the constrained case (e.g., 
see Bertsekas [ 1, pp. 24-26] and Du and Zhang [4] ). Hence, the aim of these algorithms 
is to find either a critical point or a KKT point of the problem. For our class of algorithms, 
we have another aim in sight. In our case, it is desirable (but not achievable in general) to 
have the iterates "drive" a primal-dual potential function, the merit function, towards - ~. 
This is because such behavior of the iterates would guarantee that they converge to the set 
of optimal solutions of the problem (see Section 2). Many potential reduction algorithms 
for linear and quadratic programming problems have the property that their iterates drive 
the potential function towards - ~. For these algorithms, one can show that every iteration 
reduces the value of the potential function by a fixed positive constant. However, we can 
not show a similar behavior of the iterates generated by our class of algorithms when applied 
to the more general problem (P). Nevertheless, we are able to show the following weaker 
result; namely, no subsequence of the sequence of iterates is contained in a compact set of 
the primal--dual interior feasible region. This result is sufficient to demonstrate the global 
convergence of our class of algorithms. The above weaker result is implicitly used in [ 14] 
which establishes global convergence of several primal-dual algorithms for linear comple- 
mentarity problems by bounding the number of iterations necessary to drive the duality gap 
to a value less than s > 0. The resulting bound (possibly, exponential) is expressed in terms 
of the data of the problem and the tolerance s. In this work, we will not be concerned with 
bounding the number of iterations as in [ 14]. Rather, our approach will be more analytical 
and based on nonlinear programming techniques suitably modified to our situation. As 
mentioned above, the convergence analysis for our class of algorithms follows from general 
results involving the Armijo inexact line search presented in Section 3. 

It is appropriate to review other algorithms that have been presented for solving convex 
programming problems or more general classes of problems. Several algorithms have been 
presented for solving special classes of convex programming problems (e.g., see [8-10, 
19, 20, 23, 28, 31, 39, 42, 43 ] ). In all these approaches, some conditions have to be imposed 
on the behavior of the Hessian of the objective function (and of the nonlinear constraint 
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functions in case of more general convex programming problems). These conditions vary 

according to the approach being used but their main aim is the same, namely, to give 
estimates on the variation of the Hessian function. The final result obtained is that the 
number of iterations can be bounded by certain problem parameters including the parameters 
involved in estimating the variation of the Hessian function. The relationship between the 
several conditions as well as the generality of each condition imposed by the forementioned 
algorithms are not clearly understood and apparently there exists no paper which studies 
this issue in detail. One set of conditions for the class of separable convex functions and 

examples of subsets of separable convex functions which satisfy these conditions have been 
given in Monteiro and Adler [28]. Mehrotra and Sun [23] discuss a set of conditions for 
general convex functions and argue that these conditions are satisfied by a large set of 
convex functions (e.g., uniform convex functions). 

While the above algorithms solve special classes of convex programming problems, there 
are others designed to solve the general convex programming problem. A path following 

algorithm together with global convergence results is discussed in Kojima, Megiddo and 
Noma [ 13] in the context of special classes (e.g., the monotone class) of nonlinear com- 
plementarity problems which includes the convex problem (P) as a special case. This 

algorithm follows a path which may be infeasible but which eventually converges to a pair 
of primal and dual optimal solutions. Hence, we can view this algorithm as a path following 
infeasible PD algorithm. Finally, we should mention that Tanabe [36, 37] also describes a 
framework of path following algorithms for similar classes of problems but apparently no 

convergence results are given. 
The following notation is used throughout our work. En, ~_  and ~ _  + denote the n- 

dimensional Euclidean space, the nonnegative orthant of En and the positive orthant of En, 

respectively. ~, ~+  and ~+ + denote ~1, E1 and Rl+ +, respectively. ~1 denotes the set of 
all nonnegative integers. The vector whose components are all equal to 1 is denoted by e 
and its dimension is dictated by the appropriate context. If  T is a set then T n denotes the 

Cartesian product of n copies of T. Vectors are always denoted by lower case letters. The 
notation xk may either refer to the kth element of a sequence {xkj~= a or to the kth component 
of a vector x ~ ~n. The distinction will be made clear by the context. I fx  is a n-vector then 
diag (x) denotes the n X n diagonal matrix with the components of the vector on the diagonal. 

More notation will be introduced later as the need arises. 

2. Description of the problem and the class of algorithms 

In the first part of this section, we introduce the problem which will be the subject of our 
study and then discuss some of its properties. Next, we review basic notions related to path 

following and potential reduction algorithms, namely, the notions of central path and 
potential function. We also describe how PD algorithms generate the direction of movement 
at each iteration and how they compute the next iterate using this direction. The above 
description will establish a PD framework which is shared by many PD algorithms currently 
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available in the literature. We then describe our class of algorithms together with a descrip- 
tion of the Armijo stepsize rule. Lastly, we state the main result of this paper in Theorem 
2.1. The proof of Theorem 2. l is postponed until the end of Section 4. 

The problem we consider is the following minimization problem: 

(P) min{f(x) lax=b,  x>~O} (2.1) 

where f :  ~"  --* ll~ is a function, A is an m × n matrix and b is an m-vector. We make the 
following assumption regarding the functionf(x). 

Assumption 2.1. (a) f (x)  is a convex function. 
(b) f (x)  ~ C2(IRn), that isf(x)  is twice continuously differentiable over R". 

The Wolfe dual problem (see, e.g. Fletcher [5] ) associated with (P) is given by 

max f ( x )  - Vf(x)Vx+bTy 
(D) 

s.t. - Vf(x) +ATy~<0. 

For x ~  I~ n and y ~  It~ "~, let s(x,y) denote the slack corresponding to the dual constraint as 
a function of (x,y), that is, 

s(x ,y)=Vf(x)  --A Ty. (2.2) 

It is well-known (e.g., see Fletcher [5, p. 219] ) that the existence of an optimal solution X" 
for problem (P) implies: ( 1 ) the existence ofa vectory~ ~"' such that (Y',y) solves problem 
(D); (2) the primal and dual optimal values are equal, that is, Vf(Y')v.~ - bTy = 0. Using 
the fact that s(X;y)= Vf(a~)--ATy and Ay=b,  (2) can be equivalently expressed as 
S ( X , y ) T x  = O. 

We define the following sets: 

Fxr~{ (x,y) ~ " × R m l A x = b ,  x>~O, s(x,y) ~>0}, 

F ~r--{ (x,y) ~ Fxr lx> O, s(x,y) >0}, 

Fxs = { (x,s) ~ R" × ~"] (x,s) = (x, s(x,y) ) for some (x,y) ~ Fxr }, 

F~s--{ (x,s) ~Fxs Ix>0,  s>0}.  

In general, problem (P) might not have an optimal solution. Assumption 2.2(b) below 
guarantees the existence of an optimal solution for problem (P) (e.g., see Guler [7], Mord 
[30], Kojima, Mizuno and Noma [15], McLinden [21] ). 

Assumption 2.2.  ( a )  rank ( A )  = m < n. 

(b) F~.r is non-empty and a point (xo,Yo) ~ F ~ r  is given. 

It follows from the discussion above and Assumption 2.2(b) that a pair (Y,y) ~ Fxr exists 
such that Y" solves (P),  (Y,y) solves (D) and yTg= 0 where g=---s(Y,y). Equivalently, (Y,y,g) 
satisfies the following Karush-Kuhn-Tucker optimality conditions: 
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xisi =0, i=  1 ..... n, (2.3a) 

Ax=b, x>~0, (2.3b) 

- Vf(x) +ATy+s=O, s>~O. (2.3C) 

Assumption 2.2(a) implies that the correspondence that takes (x,y)eFxr into (x, 
s(x,y) ) E Fxs is one-to-one and onto. Its inverse takes (x,s) ~ Fxs into (x,y) ~ Fxr where 
y--=(AA T) - 1A(Vf(x) - s). Therefore, an algorithm whose iterates all lie in the set F~r can 
equally well be viewed as an algorithm which generates points in the set F~s. These two 
ways of viewing a primal--dual algorithm with respect to problem (P) will be used inter- 
changeably throughout our presentation. 

An important concept related to problems (P) and (D) is that of the central path. For 
/z > 0, consider the following system of equations: 

(Q(/z)) Zs= txe, 

Ax=b, x>0 ,  

- - V f ( x ) + a T y + s = 0 ,  s>0 .  

(2.4a) 

(2.4b) 

(2.4c) 

where X=diag(x). It can be shown that Assumption 2.1 and Assumption 2.2 imply that 
(Q(/z)) has a unique solution which we denote by w(tz)-(x(iz),y(tz),s(i  z) ). The set of 
all solutions w(/z) with/x > 0 is called the central path or, central curve. This path has the 
property that as/z tends to 0, the curve (x(/~) ,y (/z),s(/x) ) converges to the set of solutions 
of system (2.3). In view of this last property, many algorithms for solving problem (P) 
have been proposed which approximately traces the central path. These methods are denom- 
inated path-following algorithms and the first algorithm for linear programs of this type was 
proposed by Renegar [33]. His method is a primal algorithm in the sense that it generates 
points in the set {x~R~_+ lAx=b} that are close to the primal central trajectory 
{ x (/x) [/z > 0 }. On the other hand, PD algorithms generate points in the set F ~r. Early hints 
towards obtaining a PD path-following algorithm were given by Megiddo [22] but it was 
only in Kojima, Mizuno and Yoshise [ 17] that a first algorithm of this type was described. 
Later and independently, Kojima, Mizuno and Yoshise [ 16] and Monteiro and Adler [26, 
27] proposed another PD path following algorithm with follows the central path more 
closely and achieves a better theoretical computational complexity than the algorithm 
described in Kojima, Mizuno and Yoshise [ 17]. Since then many other PD path following 
algorithms have been proposed for different classes of problems (e.g., see [8, 10, 20, 24, 
28, 38, 39, 43] ). 

Another fundamental idea in the development of primal--dual algorithms was the intro- 
duction of the primal-dual potential function ~b:~_+ XI~%+-->R defined for all 
(x,s) ~R~_+ XR%+ as 

ch(x,s)=q log XTS-- L log XiSi (2.5) 
i=1 
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where q is a fixed scalar such that q > n. This function possesses a nice property. Namely, 
assume that { (Xk,Sk) } k~ ~ is a sequence of points in the set F~s with the property that 

lim ch(xk,sD = - ~. (2.6) 

Then, it follows that limk_, ~ x~ Sk = 0. TO see that, note that for every (x,s) ~R++,zn 

xTs/n 
4)(x 's)=(q--n)  l ° g x T s + n l ° g n + n l ° g  ¢rTn s~l/n 

\ l - l i = l x i  iJ 

>~ ( q - n )  log xTs+n log n, (2.7) 

where the inequality follows from the fact that the arithmetic mean xTs/n = (En= lx, si)/n 
of n positive numbers x~s~ ..... x,s, is greater than or equal to their geometric mean 
(I-I 7= ~ xlsi) 1/,. Clearly, relations (2.6) and (2.7) imply that limk ~ = x~ s~ = 0. As mentioned 
in the introduction, we are not able to prove relation (2.6) but relation (2.7) is used in our 
convergence analysis. 

Algorithms that reduce the value of ch(x,s) at each iteration have been named potential 
reduction algorithms in Ye [41]. The function 4)(x,s) was introduced independenOy by 
Tanabe [36, 37] and Todd and Ye [38]. Algorithms based on this function have been 
developed for various optimization problems (e.g., see [9, 14, 18, 19, 32, 41, 42] ). We 
should single out the work of Kojima, Megiddo, Noma and Yoshise [ 14], where a systematic 
study of PD potential reduction algorithms is undertaken in the context of linear comple- 
mentarity problems. It is shown there that several versions of primal-dual algorithms 
converge globally and that some of them also converge in polynomial-time. Polynomial- 
time versions of the potential reduction method are obtained by showing that the potential 
function (2.5) is reduced at every iteration by at least an amount 6> 0 independent of k, 
where 3 is not too small (e.g., see [ 18, 41] ). 

In spite of being different algorithms, PD path following and PD potential reduction 
algorithms have an important common property, namely, they use the same type of direction 
at each iteration. We next describe how these methods generate the direction at each iteration. 
Let (x,y,s) = (Xk,yk,sk) denote the kth iterate where (x,y) ~ F~r and s=-s(x,y). Choose a 
scalar o-= cr k ~ [ 0,1 ]. Then the direction Aw=-- (Z~x, Ay, As) = (ZlXk,Ayk, As~) associated with 
the point w = (x,y,s) is obtained by solving the following system of linear equations 

Szlx + XAs = cr(xrs/n) e - Xs, 

AZ~x= 0, 

-- V 2 f ( x ) z l x  + A  T A y +  A s = O ,  

(2.8a) 

(2.8b) 

(2.8c) 

where X--diag(x) and S~diag(s). This direction turns out to be the Newton direction at 
(x,y,s) with respect to system ( Q (/z) ) with/x = o'xTs/n. Hence, the full Newton step results 
in the point w + Aw for approximating the point w(o'xrs/n) of the central path. Depending 
on the value of o-, the direction Aw has different interpretations. For cr= 1, Aw is viewed as 
a centering direction since w+  Aw approximates the point w(xTs/n) which minimizes the 
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distance of w to the central path. Here, the "distance" of w = (x,y,s) to the central path is 

defined by 

min [IXs - x O z ) s ( ~ )  11 = min IlSs - ~zel[ = [[Xs- (xTs/n) ell.  
/z>O /z>O 

where X--diag (x) and X( /z) -d iag  (x(/z)) .  For o-= 0, zlw is interpreted as an affine scaling 
direction [29] since it is the primal-dual analogue of the primal affine scaling direction 
used in Dikin [3]. In this case, the point w + A w  aims at approximating the point 
w(0)-limg_~o+W(/Z). Observe that, when o-= 0, Aw is the Newton direction for the KKT 
system (2.3). For the case where cr~ (0,1), Aw is a convex combination of the affine 
direction and the centering direction. 

We next describe the issues involved in determining the next iterate 

(~,~,~) -- (xk+ 1,Yk+ 1,Sk+ 1). Define 

x(a)  =Xk(a)--Xk + adXk =X+ adX, (2.9a) 

y (a) = Yk(a) --Yk + aAYk = Y + aAy, (2.9b) 

s(a)  = sk( a) =-s( xk( a) ,Yk( a) ), (2.9c) 

where we recall that s( .,. ) is defined in relation (2.2). Then, the next iterate is found as 
($,~9,g) = (x(ak),y(ak),sk(ak)) where the stepsize ak is selected so that (~f,3~)~F~v. 
clearly, other conditions on ak must be imposed so that global convergence can be obtained. 
This important issue will be studied in much more detail later on. 

Note that within the set F~r,  a primal-dual algorithm determines the next iterate by 
moving along the straight line a ~ (x( a) ,y (a)  ) - (x,y) + a ( Ax, Ay). Considering the nat- 
ural correspondence between Fxr and Fxs, we can also view the situation in the context of 
F~s. It is easy to derive the following expression for s(a)  using relations (2.2), (2.8c) 
and (2.9): 

s( a) = s +  aAs + [Vf(x + aZlx) - Vf(x) - aV2f(x)Ax] (2.10) 

where s-s (x ,y) .  Clearly, when f (x)  is a quadratic function, it follows that the quantity 
within the brackets in relation (2.10) vanishes and this shows that a ~  ( x (a ) , s (a ) )  is a 
straight line. In general, however, this line is curved. Therefore, when viewed in the context 
of the (x,s)-space, the algorithm moves along a curve passing through the current iterate. 

For the purpose of future reference, we state the following simple result. 

Proposition 2.1. The following statements hold: 
(a) For every v = (x,s) ~ ~ _  + × ~ _  +, system (2.8) has a unique solution which we 

denote by Aw( v )=--( Ax( v ) , Ay( v ),As( v ) ). 

(b) Aw( v ) is a smooth function over g~ 2+n+. (A function is smooth if it belongs to C=). 
(c) Consider the curve w( a)~-( x( a),y(  a),s( a) ) defined by relations (2.9). Then, 

~ ( 0 )  = Aw(v ) .  
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Proof. It is easy to see that system (2.8) has an associated coefficient matrix which is both 
= ~ • ÷ +. Also, the right hand side of system nonsingular and smooth for every v (x,s) 2n 

(2.8) is obviously smooth. These two observations imply both (a) and (b). Obviously, by 
(2.9a) and (2.9b), we have ~(0) = Ax(v) and 3~(0) = Ay(v). Differentiating (2.10) with 
respect to ct and setting a = 0 ,  we obtain :/(0) = As(v). Hence, ~(0)  = Aw(v) and (c) 
follows. [] 

We have outlined above the framework involved in a large class of primal--dual algo- 
rithms. However, a complete description of a PD algorithm from this class involves the 
specification of the sequence of parameters { tYk } as well as the specification of the sequence 
of stepsizes { ak}. By properly choosing these two sequences, many PD algorithms devel- 
oped in the literature can be obtained as special cases of the above framework. 

We will now outline the class of PD algorithms that will be studied in this work for 
solving the convex problem (P). It is in fact a subclass of the class described above and it 
is obtained by imposing additional restrictions on {trk} and { ak}. By abuse of terminology, 
we refer to this class of algorithms as a PD algorithm, or more specifically, a potential 
reduction PD algorithm. 

Potential reduction primal-dual algorithm (PRPD algorithm). 
Step O. Let k= 0 and let e >  0 be a given tolerance for the duality gap. Let ~-~ [0,1) be 

a fixed scalar. The point (xo,Yo) as in Assumption 2.2(b) is used to initialize the algorithm. 
Step 1. Let (x,y) = (xk,Yk) and s = s(x ,y) .  IfxTs ~< e then stop, else go to Step 2. 
Step 2. Choose a scalar or= O-k~ [0,if]. Compute the direction A w =  (Ax,Ay,As)  by 

solving the system of linear equations (2.8). 
Step 3. Compute the stepsize a = ak > 0 in such a way that ( x ( a ) , y ( a ) , s ( a )  ) as defined 

by (2.9) satisfies the Armijo stepsize rule described below. 
Step 4. Set (Xk+l,yk+~,S~+l) = ( x ( c~ ) , y (a ) , s (a ) ) ,  replace k by k+  1 and go to Step 1. 

The only freedom involved in the above class of algorithms is in the selection of the 
sequence {trk} in Step 2. If a rule for selecting {ok} is specified then the above 5 steps 
describe a well-defined algorithm. The sequence of stepsizes { ak} is well-determined by 
the Armijo rule to be described below. At the end of this section, we state a global conver- 
gence result that holds for the above subclass of algorithms. It is interesting at this point to 
compare our class of algorithms with the one considered by Kojima, Megiddo and Mizuno 
in the paper [12]. They proved a global convergence result for a class of primal-dual 
algorithms for linear programs that allows ~r to be chosen with the same degree of freedom 
as in Step 2 above but that uses a different stepsize selection rule. The stepsize selection 
rule used in [ 12] seems to be applicable only in the context of linear programs although 
we can not make any definite claim in this respect. Our stepsize rule is based on the idea of 
producing a sufficient decrease on the potential function (2.5) and this might be the main 
reason that makes the rule successful for the more general class of convex programming 
problems. 
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We will now discuss our stepsize selection rule in detail. The choice of the stepsize 
employs a version of Armijo rule in order to obtain a sufficient decrease on the value of the 
potential function (2.5). Therefore, here as well as in several other papers, the potential 

function is used in the algorithm as a merit (or, descent) function. 

Armijo rule. L e t / z ~  (0,1) and/3> 1 be fixed parameters. Let {ct~ }k~_--i be a sequence of 
positive scalars to be specified more precisely later. The scalar ct~ will be used as an initial 
trial value for the kth stepsize ak. Given the k-iterate (x,y) = (xk,Yk) ~ F ~ r ,  and hence, 

(x,s) ~ F~s  where s--s(x,y),  consider the curve v (a )  - ( x ( a )  , s (a)  ) defined by relations 
(2.9). Set - ° - ' ~  ak=ak/3  where mk is the smallest nonnegative integer m for which 

and 

v( a;  /3 -o') ~ ~:+~+ 

4,(v(o~;/3-m)) _ ~(V (0))  < ~o~; 13 -m V4'(V (0))T~(0). (2.1 l) 

We will show in Section 4 that the quantity V~b(v(0)Tt~(0)) = (d /da )  (~bo v) (0) that 
appears in (2.11 ) is negative so that Armij o rule guarantees that the potential function ~b( • ) 
is reduced at each iteration (see Corollary 4.1 and the discussion following the statement 
of the Armijo rule in the more general context of Section 3). The description of the Armijo 
stepsize rule will be complete once we specify the sequence { a ;  } of initial trial stepsizes. 
We describe below two possible ways of choosing this sequence. 

Rule 1. Let ?e> 0 be a fixed parameter and set a~ - ~  for all k ~  N. 

Rule 2, Let r />0  be a fixed parameter. Define a~=--sup{a>lOlxk+aAxk>~O, 

sk + aAsk ~> 0 } and choose a~ so that a~  >~ ~Ta~ x, for all k ~ I~/. 

The following simple result shows that a~  ax is finite for all k ~/~ so that Rule 2 is always 
feasible. 

Proposition 2.2. For all k ~ ~ ,  we have 0 < a ~  ~x < o~. 

2 n  Proof. Clearly c~  ax > 0 since (Xk,Sk) ~ ll~ + +. To prove that a ~  x < co, it is sufficient to 

show that some component of (Axk, Ask) is negative. Assume, by contradiction that 

(Ax k, ASk) >10. This together with the fact that (Ark,As k ) satisfies (2.8a) with x = xk, s = sk 
and tr =trk imply that 

O<...eT[trk(x~sk/n)e--Xksk] = (oh -- 1)X~Sk < 0  

where Xk----diag(xk). The last inequality is due to the fact that tr k < 1. We have obtained a 
contradiction and therefore the result follows. [] 

We are now in a position to state the main result of this work. 
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Theorem 2.1. Assume that the sequence { ( xk,yk,Sk) } ~= 1 is generated by the PRPD Algo- 
rithm where the sequence of stepsizes { ~ } ~= 1 is selected according to Armijo rule and the 
sequence of initial stepsizes {a~ }~=1 is selected by means of either Rule 1 or Rule 2 
described above. Then, the following two statements hold: 

(a) limk-. =X ~ Sk = O, and; 
(b) The sequence { ( xk,yk,Sk ) } ~= 1 has a limit point and if ($,y,g) is one such limit point 

then ~ solves (P),  ()~,37) solves (D) and y~T~=O. 

Our main objective from now on will be to provide a proof of Theorem 2.1. In Section 
3, we analyze Armijo rule in a broader context where a general function defined in an open 
set is considered and where the iterates can be obtained by moving along curves instead of 
straight lines. The results obtained in Section 3 is then used in Section 4 to provide a proof 

of Theorem 2.1. 

3. Analysis of the Armijo rule 

In the previous section, we saw that when the PRPD Algorithm is viewed on the (x,s)- 
space, the next iterate is selected from among points of a curve passing through the current 

iterate. The next iterate is then selected by means of the Armijo stepsize rule applied to the 
potential function (2.5) whose domain of definition is an open subset of R zn, namely, the 
positive orthant Rz+n+. The objective of the present section is to present the necessary 

machinery in order to understand Armijo rule when applied to the above situation. This will 
be done by considering a general function h:D c R n ~  ~ and a general iterative algorithm 
in which the next iterate xk+j~D is obtained from the current iterate X k E D  through a 

recurrence relation of the form xk+~ = X,(ak) where Xk(" ) is a curve such that Xk(O) = Xk. 
We note that the notation used in this section is independent of the other sections so that 

the reader may see here a notation referring to an entity different from the one it used to 
refer in the other sections. 

Before stating the main result, we first need to introduce the necessary conditions on the 
function h(x) and on the iterative algorithm. Regarding the function h(x),  we make the 

following assumption throughout this section. 

Assumption 3.1. The function h :D ~ ~ is continuously differentiable on the open set 
D c R  ~. 

In analogy with the definition of a gradient method (or, gradient algorithm) defined in 
several textbooks (e.g., see Bertsekas [ 1, p. 20] ), we define the following more general 
notion of a gradient method. 

Definition 3.1. A sequence {xk } ~= ~ is said to be generated by a gradient method with 

respect to the function h(x) if given Xk ~ D, we find the next iterate Xk+ 1 as 
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Xk+l =Xk(ak) 

where xk :Ik = [0,~Tk) ~ N is a curve differentiable at 0 such that xk(0) =xk and 

xk(a)-x~ for all a~Ik ,  i fVh(x~) = 0 ,  

Vh(x~)T2~(O) <0 ,  ifVh(Xk) ~ 0  

and the selection of the stepsize a~ ~ [ 0,rh) must ensure that x~+ 1 ~ D and h(x~+ l) ~< h (x~). 
A sequence with the above properties will be called a gradient sequence with respect to 

h ( . ) .  

We note that we do not require thatXk(Ik) C__D in the above definition. Clearly, it follows 

from the definition that if Vh(xk) = 0  for some k c t ~  then xj=xk for a l l j > k .  In order to 
obtain relevant results regarding a gradient method, an additional notion regarding the 

curves Xk(a) is needed. 

Definition 3.2. Consider a sequence of curves {xk: [0,r/k) ~ R"}~=I as in Definition 3.1. 
The subsequence {xk( • ) }k~r is said to be uniformly differentiable at 0 if  the following two 

conditions hold: 

(a) 6K--infk~Kll2k(0) 11 ~Tk > 0. 
(b)  For all s > 0 ,  there exists 8 =  6(e)  ~ [0,6K) such that for all k~K,  

Ilxk(~) - x~(O) - ~ k ( 0 ) i l  ~ ~all~k(o)II 

for all a ~  ~ such that a[12k(O)II ~ [0 ,8) .  

Several observations regarding the above definition are in order. First, the terminology 
of  uniform differentiability introduced above might have already been used in the literature 
in connection with a notion distinct from the one above. However, the author is not aware 
of  any such case. Second, condition (a) of  Definition 3.2 implies that ~k(0) v~ 0 for all k ~ K. 
Third, condition (a) of  Definition 3.2 is automatically satisfied if/c----R+ and xk(0) 4:0 for 
all k ~ K. Fourth, if  Ik = E + and xk(a)  is an affine function of a such that Sk(0) 4= 0, for all 
k ~ ~/, then any subsequence of {xk(" ) }~= l satisfies the notion of uniform differentiability 

at 0. Fifth, observe that x~(a)  is well-defined, that is, a ~ I k ,  whenever a satisfies 

odl:Ck(0) II ~ [0,6K). Sixth, let { ~'k} k~- - 1 be a sequence of positive scalars and assume that the 
subsequence {xk: Ik--- [ 0,rlc) ~ ~n } k ~ K is uniformly differentiable at 0. Define the curves 
yk: Jk------ [0,~k) -~ ~ "  where, for all k ~  t~, ~'Tk----rlk/'Ck andyk(a)--xk(rka) for all a ~ J  k. Then, 

one can easily verify that {Yk}k~,r is uniformly differentiable at 0. In other words, the notion 
of uniform differentiability is invariant under a sequence of  changes of  variable of  the form 

a ~ cka, k ~ t~. However,  the notion of uniform differentiability may not be invariant under 
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scalar multiplications of the form z~(a)---=~'erk(a), k ~ N. Seventh, in addition to the above 

conditions, assume also that ~'~----112k(0)II- ~ for all k ~  N. In this case, it is easy to see that 
{ Yk(" ) }~= 1 as defined above satisfies ]l 3~k(0) 11 = 1 for all k ~ N and that the notion of uniform 
differentiability reduces to the following two simpler conditions: 

( a ' )  ~r--infk~K ~lk > O. 
(b ' )  For all e > 0, there exists 6 = 6(e)  ~ [0,~r) such that for all k ~ K, 

Ily~(c0 -y~(O) - ~ ( o ) 1 1  ~<~c~ for all a ~  [0,6). 

Lastly, it can also be shown that if 0<infk~NII2k(0) ll~supk~NII2~(0)ll<~ then 
{Xk(" ) }k~ris  uniformly differentiable at 0 if and only if {xk(. ) } ~ r  satisfies ( a ' )  and (b ' )  
above with Yk(" ) replaced by x~(. ). 

The following result is a consequence of Definition 3.2 and will be useful later in the 
proof of  Theorem 3.1 and Theorem 3.2. For the purpose of stating this result, we introduce 
the following notation. For an infinite set K _  N and an i n t e g e r / ~  N, let K(/~) denote the 
set 

K(k)=--lk~KIk>~k}.  (3.1) 

L e m m a  3.1. Consider a sequence of  curves { Xk: Ik--* R ~ } ~= 1 as in Definition 3.1. Assume 

that the subsequence {Xk(" )}k~K is uniformly differentiable at 0 and let {'rk}k~ K be a 
subsequence of  positive scalars such that limk ~ x ~'k II ~ (0) U = 0. Then the following state- 
ments hold: 

(a) there exists k ~  N such that ~'k ~ Ikfor all k~K(/~) ;  

(b) limk~m~) [Ixk(~-k) -xk (0 )  II = 0; 
(c) limk~mE)Ilax~(~'~) - - ~ ( 0 ) I I / I 1 ~ ( o )  II = 0  where Z~k(~')~[Xk(~') --Xk(0) ]/~', for  

~'E lk; 

(d) in addition, if we assume that there exists a compact subset G of  the open set D such 
that {x~(0) } k ~ l ~  G then there exists fc >~fc such that xk( Tk) ~ D for  all k ~ K( fc). 

Proof.  Since limk~K~'kll~k(0) l l=0,  it follows that there exists / ~ N  such that 

~'kll~k(0) II < 8K, for all k ~  K(/~), where 6x=infk~r[[2k(O) II wk> o (see Definition 3.2(a)  ). 
Hence, it follows that ~'k < r/k for all k ~  K(/~) and this shows statement (a) .  We leave the 
proof of  (b)  and (c)  to the reader. Statement (d) is an immediate consequence of (b)  and 
the fact that the distance dis t (G,R n \ D) between the sets G and the complement  R n \ D of 
D with respect to ~n, that is, dist ( G , ~  n \ D ) --=inf{ II x - y [[ [ x ~ G,y ~ R n \ D }, is positive 

due to the fact that G is compact  and D is open. [] 

We next state Armijo rule with respect to the function h(x)  and a general gradient 
algorithm as defined above. 
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Armijo stepsize rule. Select fixed parameters/, ~ (0,1 ) and/3 > 1. Assume that a sequence 
{ a~ }~= 1 of positive scalars is given. The scalar a~ will be used as an initial trial value for 
the kth stepsize ak. We say that a gradient sequence {xk } ~o= ~ with respect to h( .  ) has been 
generated according to Armijo stepsize rule if for all k ~ ~, the stepsize eek is determined as 
follows: _ o --,~k ak=akf l  where mk is the smallest nonnegative integer m for which 
a=-a~ fl -m satisfies 

a ~ I k ,  

xk(a) ~ D  

and 

h(xk( a) ) -- h(xk) <~ I~aVh(xJd~  

where dk=--Jk( O ) . 

The existence of the integer mk as in the above definition follows from the following 
remark: for each k E ~, there exists a positive scalar ek such that any c~ ~ [ 0,e~] satisfies the 
above three relations. This observation follows immediately once we note that 
[ h (xk ( c0 ) - h (x~) ] / a converges to h (xk) Tdk as a tends to 0 and use the fact that/, ~ (0,1 ) 
and Vh(x~) T dk < O. 

We next state one of the main results of this section. We note that, for this result, we do 
not need to impose any condition on the way the sequence { a~ }k~l is selected. However, 
as we will see later, significant and applicable results are obtained only when we choose 
this sequence appropriately. 

Theorem 3.1. Let h : D G~n--+~ satisfy Assumption 3.1 and assume that {xk}~=~ is a 

gradient sequence with respect to h ( x ) that has been generated according to Armijo stepsize 

rule. Let  K G  ~ be an infinite index set and let G be a compact subset o f  D. Assume that the 

subsequence {xk(" ) }k~r is uniformly differentiable at O. I f  we let dk=---:~k(O) for  all k ~ 

then the following two conditions: 

{ x k } ~ r C G ,  (3.2) 

inf ] Vh (xk) Tdk I / II dk [I > 0, (3.3) 
k E K  

imply 

lim a~ Ildkl[ =0.  (3.4) 
k ~ K  

Proof. By Armijo rule, the sequence {h(Xk)}~=l is monotonically decreasing. This fact 
together with relation (3.2) and the fact that G is compact imply that { h (x~) } ~= 1 converges, 
and consequently, 
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lim h(xk+ 1 ) -- h(xk) = 0. (3.5) 
k--~ oo 

By Armijo rule, we obtain 

h(xk+ 1 ) -- h(Xk) <~ tXak Vh(xk)Tdk = -- tZPk ak Ildk II (3.6) 

where we define Pk--- I Vh (xk) Tdk I / II d~ II for all k ~ [~. Then, it follows from ( 3.5 ) and (3.6) 
that limk,=pkaklldk[I = 0. This fact together with (3.3) imply 

lim ak II dk II = 0. (3 .7)  
k ~ K  

We claim that ak = a~ for all kE K sufficiently large. Note that the validity of this claim 
together with (3.7) proves (3.4) as well as the theorem. We show the claim by contradiction. 
Indeed, assume that ak<a?, for all k ~ K '  where K' is an infinite subset of K. Define 
6tk=--~ak for all k~  t~. From the way the stepsize a~ is determined by Armijo rule, for all 
k ~ K' it follows that either 

both &k ~Ik  and Xk(6Zk) ~ D  can not hold, (3.8) 

o r  

h(xk(&k) ) -- h(Xk) > tX&k Vh(xk)Tdk. (3.9) 

Relation (3.7) and the definition of &k clearly imply that limk ~ r&k II dk I[ = 0 which together 
with the uniform differentiability of the subsequence {xk (")  } k ~ r at 0 show that the assump- 
tions of Lemma 3.1 are satisfied. Hence, from statements (a) and (d) of Lemma 3.1, it 
follows that, for s o m e / ~  M, ak ~lk and Xk(t~k) ~ D  for every k ~ K ' ( f Q  (see (3.1)),  or 
equivalently, (3.8) is violated for every k ~ K' (/~). Thus, (3.9) must hold for every k ~ K" 
where K"--K' (/~). Note also that statements (b) and (c) of Lemma 3.1 imply 

lim Ilxk(~k) -x~ll =0  (3.10) 
k~K" 

and 

lim II rk--dkll/lldkll = 0  where rk--[Xk(&k) --xk]/&~. (3.11) 
k ~ K "  

Applying the mean value theorem on the left hand side of (3.9), we obtain for all k~  K" 
that 

Vh(Uk)  T r k > t zVh(xk)Tdk,  (3.12) 

where/xk is some point in the line segment joining x k to Xk(tik) and hence, limk~X, II Uk - -  

Xk [I = 0 due to (3.10). Using Cauchy-Schwartz inequality, relation (3.12) and the fact that 
Vh(xk)Tdk < 0 for all k ~ N, we obtain that, for all k ~ K", 

Vh(uk)T(rk -- dk) ] Ildk II + ]1Vh(uk) -- V h ( x k )  II 
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[ Vh(  uk) T ( rk -- dk) q- [ Vh (  uk) -- V h (  Xk) ] Tdk] / lld~ ll 

= [Vh(uk)Trk  -- Vh(xk)Tdk] /lid* II 

> (1 - / z ) [  Vh(xk)Tdkl/lldk[] 

= (1 --/z)pk. (3.13) 

Using the fact that G is compact, that Vh(x) is continuous in D~G,  that limk~K-Ilu,- 
xk II = 0 and relation (3.2), one can easily show that {11 Vh(uk)II }, ~,,  is bounded and that 
limk~x-II Vh(uk)-Vh(xk) II = o. These facts together with (3.l 1 ) imply that the first expres- 
sion in (3.13) converges to 0 as k ~ I C  tends to o0. This, in turn, implies that l im~/epk= 0 
contradicting (3.3). Hence, the claim must hold and the theorem is proved. [] 

For the purpose of stating the implications of Theorem 3.1, we first need to introduce 

some conditions on the way the sequence {a~ },~_1 is chosen. Let r/i> 0 be fixed scalars, 
i = 1,2,3,4. Consider an index k ~ ~. We consider the following four conditions for choosing 

o 
O/k ; 

o o (1) choose ak so that ak >~ rh, or; 
(2) define Jk=--R + \ { a >>- 0 [ xk + adk ~ D} where dk =2k(0) and let a~aX--inf J~; choose 

o o ~ 712 ¢~k a x ,  or; ak SO that ak 
(3) define ]k=--~+ \ {a{CX~Ik, Xk(a)~D} and let 6~a~--=inf]k; choose a~ so that 

a~ > / r 1 3 ~  x, or; 

(4) choose a~ so that c~ >1 r/4 Ildk II - 1 

We note that conditions (2) or (3) can be used only if ce ~ < oo or ¢i~ ~x < ~, respectively. 

(We are assuming that the infimum of the empty set is oo.) Otherwise, either conditions 
(1) or (4) should be used. In the result below, we do not specify any rule for deciding 
between the above conditions. We allow different conditions to be used at distinct iterations 

of the algorithm. However, for those indices k ~ ~ for which condition ( 1 ) is used, we need 
to assume that the norm of dk----.rk(0) is bounded away from 0. We use the following notation 
in the theorem below. For K ~  [~ and i ~ { 1,2,3,4 }, let K; c K  denote the set of those indices 
k ~ K for which the ith condition is used for the selection of a~ .  

T h e o r e m  3.2. Let the same assumptions of Theorem 3.1 hold. Assume that a~ is selected 
according to either conditions (1), (2), (3) or (4) above. Then, the following three 
relations are incompatible. 

{x~}k~xCG, (3.14) 

inf [ Vh(xk)Zdk ] /IId~ II > 0, (3.15) 
k~K 

inf Ildkll >0 .  (3.16) 
kEKI 

Proof. Assume that both (3.14) and (3.15) hold and let us show that (3.16) can not hold. 
By Theorem 3.1, we know that (3.14) and (3.15) imply that limk ~/¢ c~ ~ II dk II = 0. Since K 
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is infinite and K =  K1 t2 K2 U K3 U K4, it follows that one of the sets K~ with i ~ { 1,2,3,4} is 
infinite. These two observations imply the existence of an index i ~ { 1,2,3,4} satisfying 

K; is infinite, (3.17a) 

lim a~ Ildkll =0.  (3.17b) 
k~r, 

We next show that any i ~ { 2,3,4 } does not satisfy (3.17). We first show that i = 2 does not 
satisfy (3.17). Indeed, let k ~ K2 be given. Using the definition of a~k ax ( see condition (2) ) 
and the fact that D is an open set, we conclude that y~-xk + a~Xdk ~ ~n \ D. Since Xk ~ G 
and dist(G, Rn \ D) -- ~> 0, we obtain 

o~ ~ II dk II/> ~2 ~ ~.x II d~ II = rtz I lYk - x~ II >t ~2 if, for all k ~ g2,  

where the first inequality is due to the fact that a~ >/~12 a~ ~ax (see condition (2)) .  Hence, 
i = 2  does not satisfy (3.17). Next, we show that i = 3  does not satisfy (3.17). Indeed, 
assume by contradiction that (3.17) holds for i=  3. Since a~ >/r/3 t~ "ax for all k~K3 (see 
condition (3) ), we obtain limk ~ K3 &~ax [I dk II = o. Hence, the assumptions of Lemma 3.1 are 
satisfied with r k -&~ x  for all k ~ K3. By (a) and (d) of Lemma 3.1, it follows that there 
exists/~ ~ N such that f ~ ~ { a I a ~ I k ,X k ( Ot ) E D }, that is & ~ax ~ Jk, for all k ~ K 3 (]~). 

However, it is easily seen from the definition of t~  '~x that -max - ak ~Jk for all k ~ K  3. Hence, 
we obtain a contradiction and therefore (3.17) does not hold for i = 3. Clearly, (3.17) can 
not hold for i=  4 since a ~ >~ '/74 II dk II -1 for all k ~ K4 (see condition (4)) .  Hence, (3.17) 
must hold for i=  1. This implies that lim~x~ IId~ll = 0  since c~ >~ ~/1 for all k~K~ (see 
condition (1)) .  Therefore, (3.16) does not hold. [] 

The two rules described after the Armijo rule in Section 2 for selecting ct~ fit into the 
framework of the above conditions. Rule 1 imposes condition (1) at every iteration while 
Rule 2 imposes condition (2) at every iteration. Observe that if Rule 2 is used then K1 is 
empty for all K _  [~, and consequently, (3.16) is always true. Thus, in this case, Theorem 
3.2 reduces to the incompatibility of (3.14) and (3.15) only. The following special case of 
Theorem 3.2 is in fact the result we will use later to prove Theorem 2.1. 

Corollary 3.1. Let the same assumptions of  Theorem 3.1 hold and assume that a~ is 

selected according to either conditions (1),  (2),  (3) or (4). Then, the following three 
conditions are incompatible. 

{Xk }k~r C__ G, (3.18) 

sup IId~ll < ~  (3.19) 
k~K 

and 

inf ]Vh(xk)Td~ I > 0 (3.20) 
k~K 
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Proof. We will show that the validity of (3.18), (3.19) and (3.20) implies the validity of 
(3.14), (3.15) and (3.16). Hence, by Theorem 3.2, relations (3.18), (3.19) and (3.20) 
must be incompatible which proves the result. Indeed, it is obvious that (3.18), (3.19) and 
(3.20) imply (3.14) and (3.15). Relation (3.18) together with the continuity of Vh(. ) 
over D _D G imply that M~SUpk ~ rll Vh (xk) II < ~. By Cauchy-Schwartz inequality, it follows 
that Ildkll >/I Vh(xk)rdkl/ll Vh(xk)II >i I Vh(xDTdk[/M, for all k~K .  This and relation 
(3.20) then imply infk~,rlldkl[ > 0 and, in particular, relation (3.16). [] 

4. Proof  of  the main result 

In this section, we give the proof of Theorem 2.1. The proof of this result will follow as 
a consequence of several preliminary results, some of which were presented in Section 3. 
The other results are presented in this section. 

The next result is a consequence of more powerful theorems obtained in other papers 
(e.g., see Guler [ 7 ], Kojima, Mizuno and Noma [ 15 ], McLinden [21 ] ). However, for the 
sake of completeness, we include a more direct and simpler proof of this result here. Consider 

E n themappingJ:N% ×N~_ --*N~ definedasJ(x,s)=(XlSl . . . . .  XnSn) forall (x,s) I~+ × 
R~_ and let J:Fxs ~ N~_ denote the restriction of J to the set Fxs. 

Lemma 4.1. I f  C c ~"+ is a compact set then J -  ~ ( C) c_ Fxs is also a compact set. 

Proof. By Assumption 2.2(b), there exists a point (Xo,So) ~ F~:s. Now using the definition 
of Fxs it is easy to verify that for all (x,s) E Fxs, 

(S-So)  T(X-Xo) = (Vf(x) - Vf(xo) ) r(X-Xo) >~0, 

where the last inequality is due to the convexity off(x) (see Assumption 2.1 (a)). Hence, 
it follows that 

(s0)Tx+ (x0)Ts ~< (x0)Ts0 +xTs (4.1) 

for all (x,s) ~ Fxs. Since C is bounded, it follows from the definition of J that the set 
{xTs[ (X,S) ~a7-1(C) } is bounded. Since (xo,so) >0, relation (4.1) implies that J - I ( C )  
is also bounded. It is trivial to verify that Fxs is a closed subset of N2n. Since ] -1 (C)  is 
obviously closed with respect to Fxs, it follows that J -  1 (C) is also a closed subset of N 2n. 
Hence, J -  1 (C) is both bounded and closed as a subset of R 2,, and hence, it is compact. [] 

Lemma 4.2. Consider the function P: ~+ + ~ ~ defined by 

P(u)- -q  log eTu - ~ log ui 
i = 1  

for all u ~ ~+ +, where q > n is a fixed scalar. Then, for all y >  0 and 7q ~ ~, the set 

(4.2) 
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L(%'0) =-{ u ~ ~+ + l eVu >i 3' and P(u)  ~< '0} (4.3) 

is a compact subset o f~% +. 

Proof. We first claim that there exist scalars 61, 62 ~ R + + such that L(%'0) ___[61,62] n. 
(Here, by convention, if 61 > 62 then [ 61,62] =-0. The possibility that 61 > 6 2 exists only if 
L(%'0) = 0.) Indeed, by using the same argument used to derive (2.7), we obtain 

P(u)  >t ( q - n )  log eTu+n log n. (4.4) 

For every u ~ L(3',r/), we have P(u)  ~< "q and hence relation (4.4) implies 

62---exp[ ( ' 0 -  n log n ) / ( q - n ) ]  >~eTu. 

Hence, for every u~L(%'0)  and every i=  1 . . . . .  n, we have ui~< 6z. Using this fact and 
expressions (4.2) and (4.3), we obtain that for every i = 1 . . . . .  n and u ~ L(%'0), 

u i = e x p [ q l o g e T u - - P ( u ) - - ~ l o g u ~ ]  
j ~ i  

>~exp[q log 3 ' - ' 0 -  ( n -  1) log 62]~61. 

With the scalars 61 and 61 as defined above, the claim obviously follows. Since the inverse 
image of a closed set under a continuous function is again a closed set, it follows that 
L(3",'0) is closed with respect to ~ _  +. Since the compact set [61,62]"~R% + contains 
L(3','0), it follows that L(%'0) is compact. [] 

As a consequence of the previous two lemmas, we obtain the following result. 

Lemma 4.3. For every scalars 3"> 0 and "0 ~ ~, the set 

L(3','0)=-=-{ (x,s) ~ F ~s [xT s >~ 3" and ch(x,s) <~ '0} (4.5) 

is compact. 

Proof. The result easily follows by Lemma 4.1, Lemma 4.2 and the fact that/_~(3','0) = 

J-'(L(3'm)). [] 

In order to apply Corollary 3.1 in the proof of Theorem 2.1, it is necessary first to derive 
bounds on the quantity (d/dc~) ( ~bo v) (0) = V~b(v(0)T6(0) that appears on the right hand 
side of (2.11 ) (see (3.20) of Corollary 3.1 ). First we prove the following lemma. 

Lemma 4.4. Consider the function P( u) defined in (4.2) and define 

V(u) = V(u,o')=ff(eTu/n)e -- u for all u ~ R ~. (4.6) 

Then, for all u ~ ~+ +, 
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VP(u)TV(u)  <~ - (1 - o ' ) ( q - n ) .  

Proof. We have VP(u)  = (q/eTu)e--  U - l e ,  where U~diag(u) .  Hence, 

Ve(u)  TV(u) = [ (q/eTu)e--  U-1el  T [~r(eTu/n)e_ u] 

= q o ' - q - ~ ( ~  u i ) ( ~ l U T ~ ) + n  
tL \i~ 1 i= 

<<. q cr-  q - o-n + n 

= - ( 1 - o - )  ( q - n )  

where in the inequality above we have used the fact that ( E  ~= 1 ui) ( E 'I= ~ u 71 ) /n  >>. n. This 

relation can be shown as follows. Let Uav~=-eTu/n. Then, 

[U]/2 - 1 / 2 \ 2  

0 4  ~ ,..-7]7~ U]/2 uave) 
i =  1 . b l  ave  

i = l  i = l  

= - n u i u 1 F/ 

t 1 i =  

so that the validity of  the relation follows. [] 

~ + +, let (Ax, Ay,As) denote the solution of system (2.8).  Then, L e m m a  4.5. For ( x,s ) en 

V4,(x,s) 7(Ax, As) -VxoS(x,s)TAX + Vs~b(x,s) TAs ~< -- ( 1 -- or) (q -- n). 

Proof. Since qb(x,s)=P(J(x,s)) ,  it follows that VqS(x,s)= VJ(x,s)VP(J(x,s))  for all 
+ +. Here we are adopting the convention that the gradient of  a single-valued ( x , s )  ~ 2.  

function is a column vector and the gradient of  a multi-valued function is the matrix whose 
ith column is the gradient of  the ith component function. Observe that (2.8a) is equivalent 
to VJ(x,s)*(dx, As )=  V(J(x,s))  where V is defined by relation (4.6). Hence, for all 

2n 
(X ,S )  ~ R + + , 

Vqb(x,s) T ( zlx, As) = VP(J(x,s)  ) TVJ(x,s) T ( Ax, As) 

= VP(J(x,s)  )TV(J(x,s) ) 

< -- ( 1 - - t r )  ( q - - n ) ,  

where the inequality follows from Lemma 4.4. [] 

The following result is an immediate consequence of  Proposition 2.1 (c) and Lemma 4.5. 
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Corollary 4.1. Let (x,y) and ( Zix, As) be as in Lemma 4.5. Let v (a )  =--(x(or) ,s( a) ) where 
x ( a )  and s (a )  are defined by relations (2.9). Then, Vth(v(0))TtS(0) 
~ -  (1 - - t r ) (q - -n ) .  [] 

We need one more lemma before giving the proof of Theorem 2.1. 

Lemma 4.6. Let a sequence { (Xk,Sk) } ~=, ~ ~+  + be given. Assume that for  some infinite 
2n index set K c N  and some compact set Gc_R + +, there exists { (Xk,Sk) }k~rC_G. For all 

k E N, let ( Axk, Ayk, Ask) denote the solution of  system (2.8) with x and s replaced by xk and 
Sk, respectively. Consider the sequence o f  curves { (xk( " ),sk( " ) ) } k~= 1 defined by relations 

(2.9). Then: 
(a) The subsequence { ( Zlxk, Ayk,ASk) } k~K is bounded. As a consequence, it follows that 

supk~ KII ( - /k(O)&(O))l l  < o~. 
(b) The subsequence { (Xk( " ),S~(" ) ) } ~ r  is uniformly differentiable at O. (Here, we 

view each curve (xk( " ) ,Sk( " ) ) as being defined over lk=R +.) 

Proof. The first part of statement (a) is an immediate consequence of Proposition 2.1 (b) 
and the fact that a compact set is mapped by a continuous function into a bounded set. The 
second part of (a) follows immediately from Proposition 2.1 (c). We next show statement 
(b). Defne Vk(a) -- (Xk(a) ,S~ (a)  ), for k E N. Observe that condition (a) of Definition 3.2 
is clearly satisfied in this case since r/~=-~ and {k(0) 4:0, for all kE N. To show condition 
(b) of Definition 3.2, let e > 0 be given. From the assumptions of the lemma, it follows that 
{Xk}k~r~Gx, where Gx is some compact subset of R". Since, by Assumption 2.1(b), 

f ( x )  E C 2 over the set R n, it follows that there exists a scalar 8 > 0  such that IIV2f(x+ 
h) - V2f(x)[I < e for all x E G x  and h e  Nn satisfying Ilhll < 8. We claim that the scalar 6 
fulfills condition (b) of Definition 3.2. Indeed, let a E ~+ be such that a[[tJk(0 ) II < 8. Then, 

~ax~ = ~llAk(0) II < 8, and consequently, we obtain 

IIVZf(x~ + ~AxD - V2f(xk)II < e (4 .7)  

due to the way 8 is defined. Using (2.9) and (2.10), it is easy to see that 

Vk(CO--vk(O)--atJk(O)=(O, Vf(xk +o.:Lrk)-- Vf(xk)--otV2f(xk)Ar.k).  (4.8) 

Hence, we obtain 

IIv~(c0 - v~(0) - a ~ ( 0 ) U  = U Vf(xk + aArk) -- Vf(xk) - O t V 2 f ( X k ) Z ~ X k  U 

= af ,  I [VZf(xk + O~Axk)- V2f(Xk)]Ark dO] 
I 

f~  IIV2f(xk + Oazixk) - V2f(xk)U dO ~< OLIl-~k(O) II 

<,~llOk(o) {I e 

where the first equality is due to (4.8), the second equality is due to the first order integral 
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Taylor formula, the third inequality is due to a well-known inequality regarding integrals 
and the equality AXk=~k(0) and the last inequality follows from (4.7) and the inequality 
II~k(0) II ~< IlL;k(0)II. We have thus proved that {vk(" )}k~K is uniformly differentiable at 
0. [] 

We are now in a position to give the proof of Theorem 2.1. 

Proof  of  Theorem 2.1. It is easy to see that statement (b) follows from Lemma 4.1 and 
statement (a). To show statement (a), assume by contradiction that lim SUpk-~X~Sk > O, 
Then, there exists an infinite index set K__IN and a scalar y >  0 such that XXkSk >1 y, for all 
k ~ K. Let vk= (Xk,Sk) and vk(a) ---- (xk(ce) ,sk( c0 ) for all k ~ IN, where we recall that Xk(a) 
and sk(c~) are defined by relations (2.9). From the definition (4.5) of the set/2(y,r/) and 
the fact that {¢(vk)}~=~ is monotonically decreasing, it follows that {vk}k~r__C£(7,r/) 
where ~/------¢(vo). This last fact, Lemma 4.6 and the fact that/2(y,r/) is a compact subset of 
F~s c_~%. + × R%. ÷ (see Lemma 4.3) imply that {vk(" ) }k~x is uniformly differentiable 
at 0 and supk~x[I t;k(0)II < ~. By Corollary 4.1, we also know that 

lim inf[ V4'(Vk)TtJk(0) I ~> (1 --o-k)(q--n) >0>~ (1 - - ~ ) ( q - - n )  >0, 
k~K 

where ~ is the fixed scalar specified in step 0 of the PRPD algorithm. Letting D = ~%. + 
× ~ %_ ÷, G =/2(y,r/), h = 4' in Corollary 3.1, the assertions above show that the assumptions 
as well as relations (3.18), (3.19) and (3.20) of Corollary 3.1 are satisfied. But according 
to the conclusion of Corollary 3.1, this is impossible. Hence, we obtain a contradiction and 
statement (a) follows. [] 

5. Remarks 

In this section, we make the following observation regarding our approach in this paper. 
Assumption 2.1 can be somewhat relaxed to include more general convex functions. We 

could replace Assumption 2.1 by the following set of assumptions: 
(1) Assume that f :  ~n...._> ( - -  O0,~<)] is a closed convex function, that is the epigraph o f f  

is a closed convex set. Assume also that the effective domain of f, that is the set 
dom (f)--- {x E ~n [fix) < ~ }, contains R%. +. 

(2) Assume thatf(x) is twice continuously differentiable over R%. +. 
With the set of assumptions above replacing Assumption 2.1, one can show that Theorem 

2.1 is still valid. There is one minor technical difficulty that arises when the above weaker 
assumptions are considered. Namely, the constraints of the Wolfe dual problem may not be 
defined at points where the optimal solutions of (P) occur since we are not assuming that 
the gradient o f f  exists over the set ~%. \ ~%. ÷. In this case, one can instead work with the 
following more general dual problem 
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max f (x)-xrs  
s.t. ATy+s~Of(x), 

s>~0, x ~  dom(f).  

For points x ~  E~_ +, the above constraint involving the subgradient Of(x) reduces to the 
constraint involving the gradient Vf(x) of the Wolfe dual (D). This follows from the fact 

that Of(x)= {Vf(x)} whenever f is finite and differentiable at x (see Rockafellar [34, 
Theorem 25.1 ] ). One can show using Theorem 27.4 of Rockafellar [ 34] that if Y is an 
optimal solution for (P) then there exists (y,Y) ~ ~"~ X •" such that (Y,y,~) solves the above 
dual and satisfies y T g =  0. 

Next we mention a classical example (Dembo [2, p. 247] ) of a convex programming 
problem (P) which satisfies the conditions outlined above but not the conditions of Assump- 

tion 2.1. In this example,f(x) is defined over the whole ~_  and Wf(x) is defined for every 
E n n x R + +  b u t n o t f o r a l l x ~ +  \~ '~_+ .  

Example. For x ~ R 4 , let 

4 

f(x)=--~ xi log xi +x3 log 4 -  (x3 -~-x4) log (x3 +x4) 
i=l 

and define 

A= - 1 ½ , b=  . 
- 1  0 

It can be shownfis  a convex function and that problem (P) has the following properties: 
(a) it has the unique optimal solution Y-=(1,½,0,0) ; 
(b) f i s  not differentiable at Y; 

(c) F~s is non-empty. 
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