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Abstract The main goals of this paper are to: i) relate two iteration-complexity
bounds derived for the Mizuno-Todd-Ye predictor-corrector (MTY P-C) algorithm
for linear programming (LP), and; ii) study the geometrical structure of the LP central
path. The first iteration-complexity bound for the MTY P-C algorithm considered in
this paper is expressed in terms of the integral of a certain curvature function over the
traversed portion of the central path. The second iteration-complexity bound, derived
recently by the authors using the notion of crossover events introduced by Vavasis and
Ye, is expressed in terms of a scale-invariant condition number associated with m × n
constraint matrix of the LP. In this paper, we establish a relationship between these
bounds by showing that the first one can be majorized by the second one. We also
establish a geometric result about the central path which gives a rigorous justification
based on the curvature of the central path of a claim made by Vavasis and Ye, in view
of the behavior of their layered least squares path following LP method, that the central
path consists of O(n2) long but straight continuous parts while the remaining curved
part is relatively “short”.
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1 Introduction

The main goals of this paper are to: i) relate two iteration-complexity bounds associated
with the Mizuno-Todd-Ye predictor-corrector algorithm [7] for linear programming
(LP), one expressed in terms of an integral of a certain curvature of the central path [11,
22] and another depending on a certain scale-invariant condition number associated
with the LP constraint matrix derived recently by the authors [10] using the notion
of crossover events introduced in [19], and; ii) study the geometrical structure of the
central path in the context of LP using the forementioned central path curvature.

Let us consider the following dual pair of linear programs:

minimize x cT x

subject to Ax = b, x ≥ 0,
(1)

and

maximize (y,s) bT y

subject to AT y + s = c, s ≥ 0,
(2)

where A ∈ �m×n , c ∈ �n and b ∈ �m are given, and the vectors x, s ∈ �n and
y ∈ �m are the unknown variables. The MTY P-C algorithm is a path following
method which approximately follows the so called central path, i.e. a well-defined
trajectory ν > 0 �→ w(ν) = (x(ν), y(ν), s(ν)) lying within the set of strictly feasible
solutions of (1) and (2) and having the property thatw∗ = limν→0 w(ν) exists and is a
primal-dual optimal solution of (1) and (2). The derivations of the two forementioned
iteration-complexity bounds share the fact that they both take into consideration the
geometry of the central path by exploiting the very intuitive idea that (most) path
following algorithms trace the straight parts of the central path faster than the remaining
curved parts. This idea was first introduced in a paper by Karmarkar [5] which analyzes
the convergence behavior of an interior-point algorithm for a very specific and simple
type of LP problems using the point of view of Riemannian Geometry.

The first forementioned iteration-complexity bound involves a certain integral
I (ν f , νi ) := ∫ νi

ν f
(κ(ν)/ν) dν, which was first introduced by Sonnevend et al. [11].

The term κ(ν) can be interpreted as a measure of the curvature of the path at w(ν)
in that the smaller its value, the more straight the path is at w(ν), and hence the lar-
ger reduction of the duality gap is obtained by a step of a path following algorithm
from (points nearby) w(ν). Stoer and Zhao [22] have formally given a rigorous com-
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A strong bound on the integral of the central path curvature 107

plexity analysis of a variant of the MTY P-C algorithm based on the forementioned
curvature integral (see also [21]). More specifically, they have shown that the num-
ber of iterations for this variant of the MTY P-C algorithm to approximately traverse
the path from νi to ν f is bounded by O(I (ν f , νi ) + log(νi/ν f )). In Sect. 2 of this
paper, we provide another link between the forementioned curvature integral and the
iteration-complexity of the MTY P-C algorithm. More specifically, this result shows
that the number of iterations of the MTY P-C algorithm for traversing the portion
{w(ν) : ν ∈ [ν f , νi ]} of the central path multiplied by the square root of the opening
β > 0 of the outer neighborhood of the central path converges to the curvature integral
I (ν f , νi ) as β approaches 0. Hence, the integral not only gives an upper bound but
also a precise asymptotic estimate on the number of iterations performed by the MTY
P-C algorithm as the opening β approaches 0.

The second forementioned iteration-complexity bound is expressed in terms of a
condition number associated with the constraint matrix A, in addition to the usual
quantities m, n and νi/ν f . A first bound of this type was obtained in the pioneering
work of Vavasis and Ye [19] in the context of a path following algorithm which
performs not only ordinary Newton steps but also another type of steps called layered
least squares (LLS) steps (see also [6,9] for variants of the latter algorithm). Using
the notion of crossover events, they showed that their method needs to perform at
most O(n2) LLS steps and O(n3.5 log(χ̄A + n)) overall steps to obtain a primal-dual
optimal solution of (1) and (2), where χ̄A is a certain condition number associated
with A. As opposed to the MTY P-C algorithm, Vavasis and Ye’s algorithm is not
scale-invariant under the change of variables (x, y, s) = (Dx̃, ỹ, D−1s̃), where D is
a positive diagonal matrix. Hence, when Vavasis and Ye’s algorithm is applied to the
scaled pair of LP problems, the number of iterations performed by it generally changes
and is now bounded by O(n3.5 log(χ̄AD + n)), as AD is the coefficient matrix for the
scaled pair of LP problems. Since χ̄AD depends on D, the latter bound does as well.
The condition number χ̄A was first introduced implicitly by Dikin [1] in the study
of primal affine scaling (AS) algorithms and was later studied by several researchers
including Vanderbei and Lagarias [18], Todd [13], and Stewart [12]. Properties of χ̄A

are studied in [2,4,16,17].
Using the notion of crossover events, LLS steps and a few other nontrivial ideas,

Monteiro and Tsuchiya [10] have shown that, for the MTY P-C algorithm, the number
of iterations needed to approximately traverse the central path from νi to ν f is bounded
by O(n3.5 log(χ̄∗

A + n) + T (νi/ν f )), where χ̄∗
A is the infimum of χ̄AD as D varies

over the set of positive diagonal matrices and T (t) := min{n2 log(log t), log t} for all
t > 0. The condition number χ̄∗

A is clearly scale-invariant and the ratio χ̄∗
A/χ̄A, as a

function of A, can be arbitrarily small (see [10]). Hence, while the iteration-complexity
obtained in [10] for the MTY P-C algorithm has the extra term T (νi/ν f ), its first term
can be considerably smaller than the bound obtained by Vavasis and Ye. Also note
that, as νi/ν f grows to ∞, the iteration-complexity bound obtained in [10] is smaller
than the classical iteration-complexity bound of O(n1/2 log(νi/ν f )) established in [7]
for the MTY P-C algorithm.

In view of the above discussion, the iteration-complexity of the MTY P-C
algorithm can be bounded both as O(I (ν f , νi ) + log(νi/ν f )) and O(n3.5 log(χ̄∗

A +
n) + log(νi/ν f )). These two bounds raise the natural question of whether the terms
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I (ν f , νi ) and n3.5 log(χ̄∗
A + n) are related in some way. The main and most difficult

result of this paper will be to show that the total curvature integral I (0,∞) defi-
ned in a improper sense as the limit of I (ν f , νi ) as ν f → 0 and νi → ∞ satisfies
I (0,∞) = O(n3.5 log(χ̄∗

A+n)), thereby showing that this integral is strongly bounded
by a polynomial of n and log χ̄∗

A.
In their paper, Vavasis and Ye made the claim that the central path consists of

O(n2) long but straight continuous parts while the remaining curved portion of the
path has a “logarithmic length” bounded by O(n3 log(χ̄A + n)). In this claim, the
O(n2) straight continuous parts of the central path correspond to the parts of the path
traversed by the O(n2) LLS steps while the remaining curved portion of the path
corresponds to the one traversed by ordinary path following steps. Hence, their claim
is based solely on the way their algorithm operates without being rigorously supported
by the geometric behavior of the central path itself. Our second main result of this
paper, which is obtained in the process of proving the main result mentioned above, is
to formally justify this claim using solely the curvature of the central path. This result
essentially shows that the points of the central path with curvature larger than a certain
threshold value κ̄ > 0 lie in O(n2) intervals, each with logarithmic length bounded
by O(n log(χ̄∗

A + n)+ log(κ̄−1)).
This paper is organized as follows. In Sect. 2, we describe the curvature of the

central path, the integral based on this curvature and the MTY P-C algorithm. This
section also gives another explanation of how the iteration-complexity of the MTY
P-C algorithm relates to the integral and states the two main results of the paper.
Finally, it also presents a simple LP instance to illustrate the main results of the paper.
We remark that a reader trying to gain some insight into the results of this paper without
delving with their technicalities should only read the paper up to the end of Sect. 2.
Section 3 explains some basic tools used in the derivation of the main results such as
crossover events and LLS steps. Section 4 derives one of the main technical results
which plays a fundamental role in the derivation of the strong bound on I (0,∞).
The main results are established in Sect. 5 and some concluding remarks are made in
Sect. 6.

The following notation is used throughout our paper. We denote the vector of all
ones by e. Its dimension is always clear from the context. The symbols �n , �n+ and
�n++ denote the n-dimensional Euclidean space, the nonnegative orthant of �n and
the positive orthant of �n , respectively. The set of all m × n matrices with real entries
is denoted by �m×n . If J is a finite index set then |J | denotes its cardinality, that is,
the number of elements of J . For J ⊆ {1, . . . , n} and w ∈ �n , we let wJ denote the
subvector [wi ]i∈J ; moreover, if E is an m × n matrix then E J denotes the m × |J |
submatrix of E corresponding to J . For a vector w ∈ �n , we let max(w) and min(w)
denote the largest and the smallest component of w, respectively, Diag(w) denote the
diagonal matrix whose i-th diagonal element is wi for i = 1, . . . , n, and w−1 denote
the vector [Diag(w)]−1e whenever it is well-defined. For two vectors u, v ∈ �n , uv
denotes their Hadamard product, i.e. the vector in �n whose i th component is uivi .
The Euclidean norm and the ∞-norm are denoted by ‖ · ‖ and ‖ · ‖∞, respectively.
For a matrix E , Im(E) denotes the subspace generated by the columns of E and
Ker(E) denotes the subspace orthogonal to the rows of E . The superscript T denotes
transpose.
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A strong bound on the integral of the central path curvature 109

2 Relation between the MTY P-C algorithm and a curvature of the central path

In this section, we discuss the notion of a curvature of the central path and its rela-
tionship to the iteration-complexity of path-following algorithms. We then state the
two main results derived in this paper, namely: i) the derivation of a strong bound on
a certain (improper) integral of the forementioned curvature (Theorem 2.4); and ii) a
geometric characterization of the central path in terms of its curvature (Theorem 2.5).

2.1 Curvature of the central path

In this subsection we describe the assumptions imposed on the pair of dual LP pro-
blems (1) and (2) and review the definition of the primal-dual central path and its
corresponding 2-norm neighborhoods. We also introduce and motivate the notion of a
certain curvature of the central path and discuss previous works which have used this
curvature to derive iteration-complexity bounds of path-following algorithms which
take into account the geometry of the central path. Finally, we state two major results
derived in this paper, namely: 1) a strong bound on the forementioned curvature (see
Theorem 2.4); and 2) a geometric characterization of the central path in terms of its
curvature (see Theorem 2.5).

Given A ∈ �m×n , c ∈ �n and b ∈ �m , consider the dual pair of linear programs
(1) and (2), where x ∈ �n and (y, s) ∈ �m × �n are their respective variables. The
set of strictly feasible solutions for these problems are

P++ := {x ∈ �n : Ax = b, x > 0},
D++ := {(y, s) ∈ �m×n : AT y + s = c, s > 0},

respectively. Throughout the paper we make the following assumptions on the pair of
problems (1) and (2).

A.1 P++ and D++ are nonempty.
A.2 The rows of A are linearly independent.

Under the above assumptions, it is well-known that for any ν > 0 the system

xs = νe, (3)

Ax = b, x > 0, (4)

AT y + s = c, s > 0, (5)

has a unique solution w = (x, y, s), which we denote by w(ν) = (x(ν), y(ν), s(ν)).
The central path is the set consisting of all these solutions as ν varies in (0,∞). As
ν converges to zero, the path (x(ν), y(ν), s(ν)) converges to a primal-dual optimal
solution (x∗, y∗, s∗) for problems (1) and (2). Given a point w = (x, y, s) ∈ P++ ×
D++, its duality gap and its normalized duality gap are defined as xT s and µ =
µ(w) := xT s/n, respectively.
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We define the proximity measure of a point w = (x, y, s) ∈ P++ × D++ with
respect to the central path by

φ(w) = ‖xs/µ− e‖. (6)

Clearly, φ(w) = 0 if and only if w = w(µ), or equivalently w coincides with its
associated central point. The 2-norm neighborhood of the central path with opening
β > 0 is defined as

N (β) := {w ∈ P++ × D++ : φ(w) ≤ β}.

The curvature of the central path is the function κ : (0,∞) → [0,∞) defined as

κ(ν) := ‖ν ẋ(ν)ṡ(ν)‖1/2 ∀ν > 0, (7)

where (ẋ(ν), ẏ(ν), ṡ(ν)) denote the derivative of the central path at ν. The following
result states some simple facts about this function.

Lemma 2.1 The following statements hold:

i) κ(ν) ≤ √
n/2 for all ν > 0;

ii) if κ(ν0) = 0 for some ν0 > 0 then κ(ν) = 0 for every ν > 0.

Proof Differentiating (3)–(5) with respect to ν, we conclude that for every ν > 0:

ẋ(ν)s(ν)+ x(ν)ṡ(ν) = e, Aẋ(ν) = 0, AT ẏ(ν)+ ṡ(ν) = 0. (8)

To show i), fix ν > 0 and define p := ẋ(ν)s(ν) and q := x(ν)ṡ(ν). Using (3) and
(8), we easily see that p + q = e and pT q = 0. These identities, the Pythagorean
theorem, relation (3) and the definition of κ(ν) then imply that

2κ(ν)2 = 2‖pq‖ ≤ 2‖p‖ ‖q‖ ≤ ‖p‖2 + ‖q‖2 = ‖e‖2 = n,

from which i) follows. To show ii), assume that κ(ν0) = 0 for some ν0 > 0, and define
w̃(ν) := w(ν0)+(ν−ν0)ẇ(ν0) for every ν > 0. Using the assumption that κ(ν0) = 0,
and hence that ẋ(ν0)ṡ(ν0) = 0, we easily see that w̃(ν) = (x̃(ν), ỹ(ν), s̃(ν)) satisfies
system (3)–(5) for every ν > 0. Since the solution of this system is unique, it follows
that for every ν > 0, w(ν) = w̃(ν) = w(ν0) + (ν − ν0)ẇ(ν0), and hence ẇ(ν) =
ẇ(ν0). Clearly, this implies that κ(ν) = κ(ν0) = 0 for every ν > 0. 
�

Since the case covered by statement ii) of Lemma 2.1 is trivial, from now on we
make the following assumption which discards this case.

A.3 κ(ν) > 0 for every ν > 0.

To give some intuition behind the definition (7), let ν > 0 and β ∈ (0, 1) be given,
and consider the set

T (β, ν) := {t ∈ � : w(ν)− tνẇ(ν) ∈ N (β)}
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It can be easily shown that

T (β, ν) =
{

t ∈ � : t2

1 − t
κ2(ν) ≤ β

}

,

and hence that T (β, ν) is a closed interval containing 0 whose left endpoint t−(β, ν)
and right endpoint t+(β, ν) are given by

t−(β, ν) = −2

(1 + 4κ(ν)2/β)1/2 − 1
, t+(β, ν) = 2

(1 + 4κ(ν)2/β)1/2 + 1
. (9)

Note that the point w(ν)− tνẇ(ν) is nothing more than the first-order estimation of
the central path point w((1 − t)ν). As t varies, this set of points defines a line tangent
to the central path at w(ν). The scalars t ∈ � in the interval T (β, ν) correspond to
points in this tangent line whose distance to the central path defined by (6) is less than
or equal to β. Observe that the smaller the curvature at ν is, the larger the interval
T (β, ν) becomes, and hence the larger the region in which the first-order estimation
w(ν) − tνẇ(ν) provides a β-approximation of the central path. Note also that the
length of the interval T (β, ν) converges to 0 as β ↓ 0. However, for fixed ν > 0 and
as β ↓ 0, the length of this interval divided by

√
β converges to a quantity related to

the κ(ν) as the following result states.

Proposition 2.2 For every ν > 0, we have

lim
β↓0

|t−(β, ν)|√
β

= lim
β↓0

t+(β, ν)√
β

= 1

κ(ν)

Proof It follows as an immediate consequence of (9). 
�
Given νi ≥ ν f ∈ [0,∞], the following integral

I (ν f , νi ) :=
νi∫

ν f

κ(ν)

ν
dν (10)

is known to play a fundamental role in the iteration-complexity analysis of primal-dual
path following algorithm. This integral was first introduced by Sonnevend et al. [11]
with the goal of deriving iteration-complexity bounds for path-following algorithms
which take into account the geometric structure of the central path. Moreover, Zhao
and Stoer [22] have shown that, when started from a suitably centered initial iterate
wi , a variant of the MTY P-C algorithm generates an iterate w f satisfying µ(w f ) ≤
ν f in at most O

(
I (ν f , νi )+ log(νi/ν f )

)
iterations, where νi := µ(wi ). Another

result along the same direction is derived in the next subsection which shows that the
number of iterations to reduce µ from µ = νi to µ ≤ ν f asymptotically approaches
I (ν f , νi )/

√
β, as the opening β of the outer neighborhood employed by the MTY P-C

algorithm tends to 0.
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One of the goals of this paper is to provide a strong bound on the improper integral
I (0,∞). Before presenting this bound, we introduce an important notion of a condition
number associated with the constraint matrix A. Let D denote the set of all positive
definite n × n diagonal matrices and define

χ̄A := sup
{
‖AT (AD̃ AT )−1 AD̃‖ : D̃ ∈ D

}
< ∞. (11)

The parameter χ̄A plays a fundamental role in the complexity analysis of algorithms
for linear programming and layered least squares problems (see [19] and references
therein). Its finiteness has been firstly established by Dikin [1]. Other authors have
also given alternative derivations of the finiteness of χ̄A (see for example Stewart [12],
Todd [13] and Vanderbei and Lagarias [18]).

We summarize in the next proposition a few important facts about the parameter
χ̄A.

Proposition 2.3 Let A ∈ �m×n with full row rank be given. Then, the following
statements hold:

a) χ̄H A = χ̄A for any nonsingular matrix H ∈ �m×m ;
b) χ̄A = max{‖G−1 A‖ : G ∈ G} where G denotes the set of all m × m nonsingular

submatrices of A;
c) If the entries of A are all integers, then χ̄A is bounded by 2O(L A), where L A is the

input bit length of A;
d) χ̄A = χ̄F for any F ∈ �(n−m)×n such that Ker(A) = Im(FT ).

Proof Statement a) readily follows from the definition (11). The inequality χ̄A ≥
max{‖G−1 A‖ : G ∈ G} is established in Lemma 3 of [19] while the proof of the
reverse inequality is given in [13] (see also Theorem 1 of [14]). Hence, b) holds. The
proof of c) can be found in Lemma 24 of [19]. A proof of d) can be found in [4]. 
�

We are now in a position to state the main result of this paper which gives a strong
bound on I (0,∞). Its proof is quite involved and is the subject of Sects. 3, 4 and 5,
with the actual proof given at the end of Sect. 5.

Theorem 2.4 We have

I (0,∞) = O(n3.5 log(χ̄∗
A + n)), (12)

where χ̄∗
A := inf{χ̄AD : D ∈ D}.

The central path is scale-invariant in the following sense. If the change of variables
(x, y, s) = (Dx̃, ỹ, D−1s̃), for some D ∈ D, is performed on the pair of problems (1)
and (2), then the central path (x̃(ν), ỹ(ν), s̃(ν)) with respect to resulting dual pair of
scaled LP problems is related to the original central path (x(ν), y(ν), s(ν)) according
to (x(ν), y(ν), s(ν)) = (Dx̃(ν), ỹ(ν), D−1s̃(ν)), i.e. the two paths are essentially the
same entity. Hence the curvature of the two central paths at a certain ν > 0 coincide,
that is the curvature of the central path is invariant under the above transformation.
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A strong bound on the integral of the central path curvature 113

In Sects. 3–5, we will consider only the pair of LP problems and show that I (0,∞)≤
O(n3.5 log(χ̄A +n)) (see Theorem 5.10). It turns out that, in view of the observation in
the previous paragraph, this inequality implies (12). Indeed, applying this inequality
to the scaled pair of LP problems corresponding to a given D ∈ D, we conclude that
I (0,∞) ≤ O(n3.5 log(χ̄AD + n)) since I (0,∞) is invariant. Since this relation holds
for every D ∈ D, it follows from the definition of χ̄∗

A that (12) holds.
In the process of proving the above result, we will establish the following geometric

result about the central path.

Theorem 2.5 For any constant κ̄ ∈ (0,
√

n/2), there exist l ≤ n(n − 1)/2 closed
intervals Ik = [dk, ek], k = 1, . . . , l, such that:

i) ek+1 ≤ dk for all k = 1, . . . , l − 1;
ii) {ν > 0 : κ(ν) ≥ κ̄} ⊆ ∪l

k=1 Ik ;
iii) log(ek/dk) = O

(
n log(χ̄∗

A + n)+ n| log κ̄|) for all k = 1, . . . , l.

The above result says that the set of points with large curvature, i.e. with curvature
greater than or equal to κ̄ , is contained in at most O(n2) intervals, each with length in a
logarithmic scale bounded by O

(
n log(χ̄∗

A + n)+ n| log κ̄|). The rate of convergence
of path-following algorithms along this part of the central path is slow but the result
above says that this curved part is generally a small portion of the central path. On the
other hand, the remaining straight part of the central path is generally much longer but
path-following algorithms exhibit fast rate of convergence along it.

Finally, by reasoning exactly as in the two paragraphs following Theorem 2.4, we
observe that to establish iii) of Theorem 2.5, it suffices to show that log(ek/dk) =
O (n log(χ̄A + n)+ n| log κ̄|) for all k = 1, . . . , l (see Theorem 5.5).

2.2 Relation between the MTY P-C algorithm and the curvature integral

In this subsection we review the well-known MTY P-C algorithm introduced in [7]
and the iteration-complexity bounds that have been obtained in [7] and [10] for it. We
then establish a result showing that the number of iterations to reduce µ from µ = νi

to µ ≤ ν f can be asymptotically estimated as I (ν f , νi )/
√
β as the opening β of the

central path neighborhood used by the MTY P-C algorithm approaches 0.
Each iteration of the MTY P-C algorithm consists of two steps, namely the predictor

(or affine scaling) step and the corrector (or centrality) step. The search direction used
by both steps at a given point w = (x, y, s) ∈ P++ × D++ is the unique solution of
the following linear system of equations

s�x + x�s = σµe − xs,

A�x = 0, (13)

AT�y +�s = 0,

where µ = µ(w) and σ ∈ [0, 1] is a prespecified parameter, commonly referred to
as the centrality parameter. When σ = 0, we denote the solution of (13) by �wa and
refer to it as the (primal-dual) affine scaling (AS) direction at w; it is the direction
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used in the predictor step. When σ = 1, we denote the solution of (13) by �wc and
refer to it as the centrality direction at w; it is the direction used in the corrector step.

To describe an entire iteration of the MTY P-C algorithm, suppose that a constant
β ∈ (0, 1/2] is given. Given a point w = (x, y, s) ∈ N (β2), this algorithm generates
the next point w+ = (x+, y+, s+) ∈ N (β2) as follows. It first moves along the
direction �wa until it hits the boundary of the larger neighborhood N (β). More
specifically, it computes the point wa := w + αa�w

a where

αa := sup {α ∈ [0, 1] : w + α′�wa ∈ N (β), ∀α′ ∈ [0, α]}. (14)

Next, the point w+ inside the smaller neighborhood N (β2) is generated by taking
a unit step along the centrality direction �wc at the point wa, that is, w+ := wa +
�wc ∈ N (β2). Starting from a point w0 ∈ N (β2) and successively performing
iterations as described above, the MTY P-C algorithm generates a sequence of points
{wk} ⊆ N (β2) which converges to the primal-dual optimal face of problems (1) and
(2).

The following iteration-complexity bound for the MTY P-C algorithm was obtained
in [7] and [10].

Theorem 2.6 Given 0 < ε ≤ 1 and an initial point w0 ∈ N (β2) with β ∈ (0, 1/2],
the MTY P-C algorithm generates an iteratewk ∈ N (β2) satisfyingµ(wk) ≤ εµ(w0)

in at most
O
(

min{√n log(ε−1) , T (ε−1)+ n3.5 log(χ̄∗
A + n)}

)
(15)

iterations, where T (t) := min{n2 log(log t), log t} for all t > 0.

As mentioned in the previous subsection, the curvature integral I (ν f , νi ) has been
used to provide iteration-complexity bounds for primal-dual path following algo-
rithms. Zhao and Stoer [22] have shown that, when started from a suitably centered
initial iteratewi , a variant of the MTY P-C algorithm generates an iteratew f satisfying
µ(w f ) ≤ ν f in at most O

(
I (ν f , νi )+ log(νi/ν f )

)
, where νi := µ(wi ).

Our next result gives another relationship between the number of iterations of the
MTY P-C algorithm and the above integral.

Theorem 2.7 Let β ∈ (0, 1/2]. For given w0 ∈ N (β) and 0 < ν f < µ(w0), denote
by #(w0, ν f , β) the number of iterations of the MTY P-C algorithm with β ∈ (0, 1/2]
needed to reduce the duality gap from νi := µ(w0) to ν f . Then,

lim
β→0

I (ν f , νi )/
√
β

#(w0, ν f , β)
= 1. (16)

Before giving the proof of the above result, we will first state a few easy but
important technical results. Given r ∈ �n++ and ν > 0, the system of equations

xs = νr, Ax = b, AT y + s = c, (17)

has a unique solution w = (x, y, s) ∈ �n++ × �m × �n++, which we denote by
w(ν, r) = (x(ν, r), y(ν, r), s(ν, r)). It is well-known that the map (ν, r) ∈ �++ ×
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�n++ �→ w(ν, r) is analytic. Clearly,w(ν, e) = w(ν) for every ν > 0. We will denote
the partial derivative of w(ν, r) with respect to ν simply by ẇ(ν, r). The following
result relates the affine scaling direction�wa(w) at the point w ∈ P++ × D++ with
this partial derivative.

Lemma 2.8 For every w ∈ P++ × D++, we have �wa(w) = −µẇ(µ, r) where
µ = µ(w) and r = r(w) := xs/µ.

Proof Differentiating (17) with respect to ν and using the first relation in (17), we
easily see that −µẇ(µ, r) is a solution of the linear system (13) with σ = 0, and
hence that �wa(w) = −µẇ(µ, r). 
�

We are now ready to prove Theorem 2.7.

Proof of Theorem 2.7 Define ψ(ν, r) := ν ẋ(ν, r)ṡ(ν, r) for every ν > 0. Clearly,
ψ(ν, r) is analytic over the set �++ ×�n++. It is easy to see that this implies that there
exists a constant C = C(ν f , νi ) > 0 such that

max
{‖ψ(ν, r)− ψ(ν, e)‖ : ν ∈ [ν f , νi ]

} ≤ C‖r − e‖, (18)

for every r lying in the closed ball {r ∈ �n : ‖r − e‖ ≤ 1/2}. Let w0, . . . , wK be
a (finite) sequence generated by the MTY P-C algorithm with opening β satisfying
the conditions that µ0 = νi and µK ≤ ν f < µK−1, where µk := µ(wk) for all
k = 0, . . . , K . By Lemma 2.8, we have that �wa(wk) = −µkẇ(µk, rk), where
rk := xksk/µk , for every k = 0, . . . , K . It is easy to see that the stepsize αa

k defined
in (14) at iterate wk satisfies

(1 − αa
k )β =

∥
∥
∥
∥(1 − αa

k )(r
k − e)+ (αa

k )
2�xa(wk)�sa(wk)

µk

∥
∥
∥
∥

=
∥
∥
∥(1−αa

k )(r
k − e)+(αa

k )
2ψ(µk, r

k)

∥
∥
∥=

∥
∥
∥qk +(αa

k )
2ψ(µk, e)

∥
∥
∥

(19)

where the second last equality follows from the definition ψ(·, ·) and Lemma 2.8 and
the vector qk in the last expression is defined as

qk := (1 − αa
k )(r

k − e)+ (αa
k )

2[ψ(µk, r
k)− ψ(µk, e)]

Since αa
k ∈ [0, 1] and ‖rk − e‖ ≤ β2 ≤ 1/4, it follows from the above relation and

(18) that ‖qk‖ ≤ (C + 1)‖rk − e‖ = O(β2). This estimate together with (7) and (19)
then imply that

(αa
k )

2κ(µk)
2 = (αa

k )
2‖ψ(µk, e)‖ = O(β). (20)

Noting that the quantity κ(ν) is bounded below by a positive constant over the
(compact) interval [ν f , νi ] in view of Assumption A.3, it follows from (20) that

123



116 R. D. C. Monteiro, T. Tsuchiya

αa
k = O(β1/2). This conclusion together with (19) again then imply that

(αa
k )

2κ(µk)
2 = (αa

k )
2‖ψ(µk, e)‖ = β

(
1 + O(β1/2)

)
. (21)

Using the identity µk+1 = (1 − αa
k )µk , relation (21), the mean value theorem and the

compactness of the interval [ν f , νi ], it is easy to see that

µk∫

µk+1

κ(ν)

ν
dν = κ(µk)

µk
(µk − µk+1)+ O

(
(µk − µk+1)

2
)

= αa
k κ(µk)+ O

(
(αa

k )
2µ2

k

)
= αa

k κ(µk)+ O(β)

= β1/2
(

1 + O(β1/2)
)1/2 + O(β),

where the second last equality follows from the fact that αa
k = O(β1/2) and µk ≤ νi

for all k. The last relation and (21) then imply

I (ν f , νi )/
√
β

#(w0, ν f , β)
= 1

Kβ1/2

νi∫

ν f

κ(ν)

ν
dν

= 1

Kβ1/2

⎛

⎜
⎝

K−2∑

k=0

µk∫

µk+1

κ(ν)

ν
dν +

µK−1∫

ν f

κ(ν)

ν
dν

⎞

⎟
⎠

= 1

Kβ1/2

(
(K −1)β1/2[1+O(β1/2)]1/2+(K −1)O(β)+O(β1/2)

)
.

Since αa
k = O(β1/2), we have that αa

k converges to 0, as β tends to 0, for every
k = 0, . . . , K − 1. This observation implies that K = K (β) must converge to ∞ as
β tends to 0. Using this observation in the previous relation, we conclude that (16)
holds. 
�

Before ending this subsection, we introduce a new canonical parametrization of
the central path based on the function η(ν) := I (0, ν). Note that this function is well-
defined and strictly increasing in view of Assumption A.3 and Theorem 2.4. Hence,
it has an inverse ν(η) whose domain is the open interval (0, η̄), where η̄ := I (0,∞).
Using this function, we can reparametrize the central path w(ν) in terms of η as
w̃(η) = w(ν(η)). This parametrization is quite natural in the sense that the iteration-
complexity of the MTY P-C algorithm to trace the reparametrized central path from
η = ηi to η = η f ≤ ηi can be estimated as (ηi − η f )/

√
β. It would be worth noting

that the MTY P-C algorithm admits an interpretation as a predictor-corrector type
numerical integration formula of an ordinary differential equation with respect to this
parametrization η.
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2.3 An illustrative example

In this subsection, we consider a simple LP instance to illustrate the results described
in Sects. 2.1 and 2.2. The first goal of this example is to illustrate the result of Theorem
2.7 which asymptotically relates the number of iterations performed by the MTY P-C
algorithm with the curvature integral. The second goal is to illustrate how the straight
parts of the primal-dual central path actually look as being the curved parts of the
dual-only central path, thereby showing that examination of only one of the primal
or dual components of the central path might give you the wrong indication of what
pieces of the (primal-dual) central path constitute its straight parts.

Consider the following simple LP instance

max bT y
s.t. c − AT y ≥ 0,

where

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

√
6

3
−

√
6

3
0

0

√
2

3

√
2

3
−2

√
2

3

−1
1

3

1

3

1

3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, b =
⎛

⎝
−10−9

−10−5

−1

⎞

⎠ , c =

⎛

⎜
⎜
⎜
⎜
⎝

0
2
√

6

3
0
0

⎞

⎟
⎟
⎟
⎟
⎠
.

The feasible region of this LP instance (which we refer to as the dual problem) is a
tetrahedron which is drawn together with the (dual) central path in Fig. 1. By choosing
|b3| � |b2| � |b1| forces the dual central path to make two sharp turns as the optimal
solution, i.e. the origin, is approached, namely: they occur as the facet and edge of
the tetrahedron lying in the (y1, y2)-plane and along the y1-axis, respectively, are
approached.

0

1

2 0

1

2
0

0.5

1

1.5

2

y2y1

y3

Fig. 1 Figure for the LP instance
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Figure 2 plots the number of iterations performed by the MTY P-C algorithm versus
the logarithm of the current duality gap for different values of the opening β, namely
when

√
β is equal to 0.0025, 0.005, 0.01 and 0.02, respectively. (The points in the

graph is plotted every ten iterations of the MTY P-C algorithm.) Observe that the
points corresponding to the same value of β appear to form a smooth curve and that
the different “curves”, except for the different scalings along the vertical axis, have
the same shape. In fact, Theorem 2.7 claims that by changing the scaling along the
vertical axis, i.e. by multiplying the number of iterations by

√
β, the curves converge

to a well-defined smooth curve (see Fig. 3) defined by the set of points

⎧
⎨

⎩

⎛

⎝logµ ,

νi∫

µ

κ(ν)

ν
dν

⎞

⎠ : 0 < µ ≤ νi

⎫
⎬

⎭
,

where νi denotes the duality gap at the initial iterate.
In Fig. 4, the forementioned limiting curve is plotted again. It is easy to see that the

absolute value of the slope of this curve at logµ is exactly the curvature κ(µ). Note
that three continuous parts of this curve are drawn using circles. They correspond to
the parts of the central path where the duality gap reduces slowly, i.e. the curvature is
large. It is interesting to note that these three pieces of the curve correspond to the three
continuous pieces (drawn in circles) of the dual-only central path plotted in Fig. 1.
Note that these curved pieces actually look quite straight in the dual space.

On the other hand, in Fig. 4, the two continuous parts (drawn using normal dots)
between the three continuous parts mentioned above correspond to the parts of the
central path where the curvature is small, i.e., the duality gap reduces quickly. It is
interesting to note that these two pieces of the curve correspond to the two continuous
pieces (drawn in normal dots) of the dual-only central path plotted in Fig. 1. Note that

-30 -25 -20 -15 -10 -5 0 5
0

500

1000

1500

2000

2500

3000

3500

log (mu)

T
he

 n
um

be
r 

of
 it

er
at

io
ns
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Fig. 4 log µ versus
√
β · #(102, µ, β) (the solid dots and circles corresponding to the ones in Fig. 1)

these pieces actually look like points making very sharp turns in the dual space in spite
of the fact that the curvature is small.

Hence, we conclude that examination of the dual central path only may give us
the wrong perception of what constitute the curved parts of the primal-dual central
path. In this example, the two straight parts of the primal-dual central path actually
correspond to the two sharp turns of the dual central path drawn in Fig. 1.

Finally, we plot in Fig. 5 the canonical parametrization η(µ) = I (0, µ) versus
logµ. Note that the boundedness of the integral can be observed in this figure. The
limit I (0,∞) of the parametrization η(µ) as µ → ∞ depends on b and c, but it is
strongly bounded by O(n3.5 log(χ̄∗

A + n)).

123



120 R. D. C. Monteiro, T. Tsuchiya

Fig. 5 logµ versus
η(µ) = I (0, µ)
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3 Basic tools

In this section we introduce the basic tools that will be used in the proof of Theorem 2.4.
The analysis heavily relies on the notion of crossover events due to Vavasis and Ye [19].
In Sect. 3.1, we give a definition of crossover event which is slightly different than the
one introduced in [19] and then discuss some of its properties. In Sect. 3.2, we describe
the notion of an LLS direction introduced in [19] and then state a proximity result that
gives sufficient conditions under which the AS direction can be well approximated
by an LLS direction. We also review from a different perspective an important result
from [19], namely Lemma 17 of [19], that essentially guarantees the occurrence of
crossover events. Since this result is stated in terms of the residual of an LLS step,
the use of the proximity result of Sect. 3.2 allows us to obtain a similar result stated
in terms of the residual of the AS direction. In Sect. 3.3, we introduce two ordered
partitions of the set of variables which play an important role in our analysis.

3.1 Crossover events

In this subsection we discuss the important notion of a crossover event developed by
Vavasis and Ye [19].

Definition For indices i �= j ∈ {1, . . . , n}, scalars 0 < ν1 < ν0, and a constant
C ≥ 1, a C-crossover event for the pair (i, j) is said to occur on the interval (ν1, ν0] if

there exists ν ∈ (ν1, ν0] such that
s j (ν)

si (ν)
= xi (ν)

x j (ν)
≤ C,

and,
s j (ν

′)
si (ν′)

= xi (ν
′)

x j (ν′)
> C for all ν′ ≤ ν1.

(22)
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Moreover, the interval (ν1, ν0] is said to contain a C-crossover event if (22) holds for
some indices i �= j ∈ {1, . . . , n}.

Note that the notion of a crossover event is independent of any algorithm and is
a property of the central path only. We have the following simple but crucial result
about crossover events.

Proposition 3.1 Let C ≥ 1 be a given constant. There can be at most n(n − 1)/2
disjoint intervals of the form (ν1, ν0] containing C-crossover events.

3.2 LLS directions and their relationship with the AS direction

In this subsection we describe another type of direction which plays an important role
on a criterion which guarantees the occurrence of crossover events (see Lemma 3.3),
namely the layered least squares (LLS) direction, which was first introduced by Vavasis
and Ye in [19]. We also state a proximity result which describes how the AS direction
can be well-approximated by suitable LLS directions.

For any point w = (x, y, s) ∈ P++ × D++, we define

δ(w) := s1/2x−1/2 ∈ �n . (23)

Moreover, for any search direction�w = (�x,�y,�s) atw, we refer to the quantity

(Rx, Rs) :=
(
δ(x +�x)√

µ
,
δ−1(s +�s)√

µ

)

=
(

x1/2s1/2 + δ�x√
µ

,
x1/2s1/2 + δ−1�s√

µ

)

, (24)

where δ := δ(w), to as the residual of �w (at w). We will denote the residual of the
affine scaling direction �wa = (�xa,�ya,�sa) at w as (Rxa(w), Rsa(w)). Note
that if (Rxa, Rsa) := (Rxa(w), Rsa(w)) and δ := δ(w), then

Rxa = − 1√
µ
δ−1�sa, Rsa = − 1√

µ
δ�xa, (25)

and

Rxa + Rsa = x1/2s1/2

√
µ

, (26)

due to the fact that (�xa,�ya,�sa) satisfies the first equation in (13) with σ = 0.
The following quantity plays an important role in our analysis:

εa∞(w) := max
i

{
min

{∣∣Rxa
i (w)

∣
∣ ,
∣
∣Rsa

i (w)
∣
∣}} . (27)

We will now give the definition of the LLS direction. Let w = (x, y, s) ∈
P++ × D++ and a partition J = (J1, . . . , Jp) of the index set {1, . . . , n} be given
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and let δ := δ(w). The primal LLS direction �x ll = (�x ll
J1
, . . . ,�x ll

Jp
) at w with

respect to J is defined recursively according to the order �x ll
Jp
, . . . ,�x ll

J1
as fol-

lows. Assume that the components �x ll
Jp
, . . . ,�x ll

Jk+1
have been determined. Let

�Jk : �n → �Jk denote the projection map defined as �Jk (u) = u Jk for all u ∈ �n .
Then �x ll

Jk
:= �Jk (L

x
k ) where Lx

k is given by

Lx
k := Argmin�x∈�n

{
‖δJk (xJk +�x Jk )‖2 : �x ∈ Lx

k+1

}

= Argmin�x∈�n

{
‖δJk (xJk +�x Jk )‖2 : �x ∈ Ker(A), �x Ji

= �x ll
Ji

for all i = k + 1, . . . , p
}
, (28)

with the convention that Lx
p+1 := Ker(A). The slack component �sll = (�sll

J1
, . . . ,

�sll
Jp
) of the dual LLS direction (�yll,�sll) atw with respect to J is defined recursi-

vely as follows. Assume that the components�s ll
J1
, . . . ,�sll

Jk−1
have been determined.

Then �sll
Jk

:= �Jk (L
s
k) where Ls

k is given by

Ls
k := Argmin�s∈�n

{
‖δ−1

Jk
(sJk +�s Jk )‖2 : �s ∈ Ls

k−1

}

= Argmin�s∈�n

{
‖δ−1

Jk
(sJk +�s Jk )‖2 : �s ∈ Im(AT ), �s Ji = �sll

Ji

for all i = 1, . . . , k − 1} , (29)

with the convention that Ls
0 := Im(AT ). Finally, once �sll has been determined, the

component �yll is determined from the relation AT�yll +�sll = 0.
It is easy to verify that the AS direction is a special LLS direction, namely the one

with respect to the only partition in which p = 1 (see Sect. 5 of [19]). Clearly, the
LLS direction at a givenw ∈ P++ × D++ depends on the partition J = (J1, . . . , Jp)

used.
We next introduce some more definitions and notation which will be used throu-

ghout the paper. Given a partition J = (J1, . . . , Jp) of {1, . . . , n} and a point w =
(x, y, s) ∈ P++ × D++, we define

gap (w, J ) := min

{
δ j (w)

δi (w)
: i ∈ Jk and j ∈ Jl for some 1 ≤ k < l ≤ p

}

,

= min
1≤k≤p−1

min(δJk+1(w), . . . , δJp (w))

max(δJ1(w), . . . , δJk (w))
. (30)

(By convention, we let gap (w, J ) := ∞ if p = 1.) Moreover, the partition J is said
to be ordered at w if gap (w, J ) ≥ 1, or equivalently, if for any 1 ≤ k < l ≤ p, we
have δi (w) ≤ δ j (w) for any i ∈ Jk and j ∈ Jl . Note that the order of the indices
within a layer Jk of an ordered partition J at w is irrelevant, which is the reason for
viewing Jk as a set instead of an ordered tuple.
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Note that when J is ordered at w, we have:

gap (w, J ) = min

{
δ j (w)

δi (w)
: i ∈ Jk and j ∈ Jk+1 for some 1 ≤ k < p

}

= min
1≤k≤p−1

min(δJk+1(w))

max(δJk (w))
. (31)

Note also that for the special where w = w(ν), we have

gap (w(ν), J ) = min

{
xi (ν)

x j (ν)
: i ∈ Jk and j ∈ Jl for some 1 ≤ k < l ≤ p

}

. (32)

The following result, whose proof can be found in [9], gives an upper bound on the
distance between the AS direction at a givenw ∈ P++ × D++ and a LLS direction at
the same point in terms of n, χ̄A and gap (w, J ), where J is the partition corresponding
to the LLS direction. It essentially states that the larger gap (w, J ) is, the closer these
two directions will be to one another.

Proposition 3.2 Let w = (x, y, s) ∈ P++ × D++ and a partition J = (J1, . . . , Jp)

of {1, . . . , n} be given, and let (Rxa, Rsa) and (Rx ll, Rsll) denote the residuals of
the AS direction at w and of the LLS direction at w with respect to J , respectively. If
gap (w, J ) ≥ 4 p χ̄A, then

max
{ ∥∥
∥Rxa − Rx ll

∥
∥
∥∞ ,

∥
∥
∥Rsa − Rsll

∥
∥
∥∞

}
≤ 12

√
n χ̄A

gap (w, J )
.

In view of the above result, the AS direction can be well approximated by LLS
directions with respect to partitions J which have large gaps. Obviously, the LLS
direction with p = 1, which is the AS direction, provides the perfect approximation
to the AS direction itself. However, this kind of trivial approximation is not useful
for us due to the need of keeping the “spread” of some layers Jk under control (see
Lemma 3.3 below). For a point w ∈ P++ × D++ and a partition J = (J1, . . . , Jp)

of {1, . . . , n}, the spread of the layer Jk at w, denoted by spr(w, Jk), is defined as

spr(w, Jk) := max(δJk (w))

min(δJk (w))
, ∀k = 1, . . . , p.

We will now state a result due to Vavasis and Ye which provides a sufficient condition
for the occurrence of a crossover event on a interval (ν′, ν]. The result is an immediate
consequence of Lemma 17 of [19] and the proof of a slightly more general version of
this result can be found in Lemma 3.4 of [9].

Lemma 3.3 Let J = (J1, . . . , Jp) be an ordered partition atw(ν) for some ν > 0. Let
(Rx ll, Rsll) denote the residual of the LLS direction (�x ll,�yll,�sll) at w(ν) with
respect to J . Then, for any index q ∈ {1, . . . , p}, any constant Cq ≥ spr(w(ν), Jq),
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and any ν′ ∈ (0, ν) such that

ν′

ν
≤

‖Rx ll
Jq

‖∞‖Rsll
Jq

‖∞
n3C2

q χ̄
2
A

, (33)

the interval (ν′, ν] contains a Cq-crossover event.

3.3 Two important ordered partitions

In this subsection we describe two ordered partitions which play an important role in
our analysis.

The first ordered partition is due to Vavasis and Ye [19]. Given a point w ∈
P++ × D++ and a parameter ḡ ≥ 1, this partition, which we refer to as the VY
ḡ-partition at w, is defined as follows. Let (i1, . . . , in) be an ordering of {1, . . . , n}
such that δi1 ≤ . . . ≤ δin , where δ = δ(w). For k = 2, . . . , n, let rk := δik/δik−1 and
define r1 := ∞. Let 1 = k1 < . . . < kp be all the indices k such that rk > ḡ. The VY
ḡ-partition J is then defined as J = (J1, . . . , Jp), where Jq := {ikq , ikq+1, . . . , ikq+1−1}
for all q = 1, . . . , p. (Here, by convention, kp+1 := n + 1.) More generally, given a
subset I ⊆ {1, . . . , n}, we can similarly define the VY ḡ-partition of I at w by taking
an ordering (i1, . . . , im) of I satisfying δi1 ≤ · · · ≤ δim where m = |I |, defining the
ratios r1, · · · , rm as above, and proceeding exactly as in the construction above to
obtain an ordered partition J = (J1, . . . , Jp) of I .

It is easy to see that the following result holds for the partition J described in the
previous paragraph (see Sect. 5 of [19]).

Proposition 3.4 Given a subset I ⊆ {1, . . . , n}, a point w ∈ P++ × D++ and a
constant ḡ ≥ 1, the VY ḡ-partition J = (J1, . . . , Jp) of I atw satisfies gap (w, J ) > ḡ
and spr(Jq) ≤ ḡ|Jq | ≤ ḡn for all q = 1, . . . , p.

The second ordered partition at a given point w ∈ P++ × D++ which is heavily
used in our analysis is obtained as follows. First, we compute the AS-bipartition
(B, N ) = (B(w), N (w)) at w as

B(w) := {i : |Rsa
i (w)| ≤ |Rxa

i (w)| }, N (w) := {i : |Rsa
i (w)| > |Rxa

i (w)| }. (34)

Next, an order (i1, . . . , in)of the index variables is chosen so that δi1 ≤ . . . ≤ δin . Then,
the first block of consecutive indices in the n-tuple (i1, . . . , in) lying in the same set B
or N are placed in the first layer J1, the next block of consecutive indices lying in the
other set is placed inJ2, and so on. As an example assume that (i1, i2, i3, i4, i5, i6, i7) ∈
B×B×N×B×B×N×N . In this case, we have J1 = {i1, i2}, J2 = {i3}, J3 = {i4, i5}
and J4 = {i6, i7}. A partition obtained according to the above construction is clearly
ordered at w. We refer to it as an ordered AS–partition at w, and denote it by J (w).
Finally, for a point w ∈ P++ × D++, we define

gap (w) = gap (w,J (w)). (35)

Clearly, gap (w) ≥ 1 for all w ∈ P++ × D++.
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Another equivalent way of defining an ordered AS–partition is as a partition J =
(J1, . . . ,Jl) of {1, . . . , n} which is ordered at w (i.e., gap (w,J ) ≥ 1) and has
the property that Jk ⊆ B(w) (resp., Jk ⊆ N (w)) implies Jk+1 ⊆ N (w) (resp.,
Jk+1 ⊆ B(w)), for every k = 1, . . . , l − 1.

Note that an ordered AS–partition at w is not uniquely determined since there can
be more than one n-tuple (i1, . . . , in) satisfying δi1 ≤ . . . ≤ δin . This situation happens
exactly when there are two or more indices i with the same value for δi . It can be easily
seen that there exists a unique ordered AS–partition at w if and only if there do not
exist i ∈ B(w) and j ∈ N (w) such that δi = δ j , or equivalently gap (w) = 1.

The following result will be constantly invoked throughout our presentation and
follows as an immediate consequence of the second definition of an ordered AS–
partition.

Proposition 3.5 Let w, ŵ be points in P++ × D++ satisfying (B(ŵ), N (ŵ)) =
(B(w), N (w)) and let J = (J1, . . . ,Jl) be an ordered AS–partition at w. If gap
(ŵ,J ) ≥ 1, then J is also an ordered AS-partition at ŵ, and hence gap (ŵ) =
gap (ŵ,J ).

For a point w ∈ P++ × D++, note that (27) and (34) imply that

εa∞(w) = max
{‖Rxa

N (w)‖∞, ‖Rsa
B(w)‖∞

}
, (36)

where B := B(w) and N := N (w).
Finally, throughout this paper, if f (·) is a function defined in P++ × D++, we will

sometimes denote the value f (w(ν)) simply by f (ν). For example, B(ν), N (ν), J (ν),
Rxa(ν), Rsa(ν), gap (ν) and εa∞(ν) will denote the quantities B(w(ν)), N (w(ν)),
J (w(ν)), Rxa(w(ν)), Rsa(w(ν)), gap (w(ν)) and εa∞(w(ν)), respectively.

4 Technical results

In this section, we prove a technical result, namely Lemma 4.11, which plays a
fundamental role in the proof of Theorem 2.4. This result gives an upper bound on
the integral I (ν1, ν0) in terms of the quantities εa∞(ν0), gap (ν0) and the ratio ν0/ν1,
whenever the latter is not too small. With the exception of Lemmas 4.1 and 4.11, this
section may be skipped on a first reading without any loss of continuity.

Lemma 4.1 Let ν > 0 be given and let (B, N ) denote the AS-partition at w(ν).
Consider the vectors u, v ∈ �n defined as

ui =
{

Rsa
i (ν), if i ∈ B;

Rxa
i (ν), if i ∈ N ,

vi =
{

Rxa
i (ν), if i ∈ B;

Rsa
i (ν), if i ∈ N ,

for every i = 1, . . . , n. Then, the following statements hold:

i) vi ≥ max{1/2, |ui |} for all i = 1, . . . , n (and hence, ‖v‖ ≥ √
n/2);

ii) εa∞(ν) = ‖u‖∞ ≤ ‖u‖ ≤ ‖v‖ ≤ √
n;

iii) εa∞(ν)/2 ≤ κ(ν)2 ≤ √
n εa∞(ν).
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Proof By the definition of the vectors u and v and the partition (B, N ), we have
that |ui | = min{|Rxa

i (ν)|, |Rsa
i (ν)|} ≤ max{|Rxa

i (ν)|, |Rsa
i (ν)|} = |vi | for all i =

1, . . . , n. Since Rxa(ν) and Rsa(ν) are orthogonal and Rxa(ν) + Rsa(ν) = e, we
have that

u + v = e, uT v = 0. (37)

If vi < 1/2 for some i then, we would have ui = 1 − vi > 1/2 > vi , which is not
possible due to the fact that |ui | ≤ |vi |. Hence, i) follows. The equality and the first
two inequalities of ii) are immediate. The last inequality of ii) follows from (37). To
show iii), first note that

κ(ν)2 = ‖ν ẋ(ν)ṡ(ν)‖ = ‖�x(ν)�s(ν)‖
ν

= ‖Rxa(ν)Rsa(ν)‖ = ‖uv‖.

Statement iii) now follows by noting that i) and ii) imply that

εa∞(ν)
2

≤ ‖u‖∞
2

≤ ‖u‖
2

≤ min(v)‖u‖ ≤ ‖uv‖ ≤ ‖u‖∞‖v‖ ≤ εa∞(ν)
√

n.


�

Lemma 4.1(iii) shows that the integrand of the integral I (ν1, ν0) is majorized by the
term

√
n εa∞(ν). Our main task now will be to majorize this quantity by an expression

involving εa∞(ν0), gap (ν0)
−1 and the ratio ν0/ν. Since εa∞(ν) is given by (36) and

the quantities Rxa(ν) and Rsa(ν) are projections onto diagonally scaled subspaces,
it is important to understand how the sizes of these projections vary as the diagonal
scalings defining the subspaces change. The next result addresses this issue. For two
vectors u, v ∈ �k++, define

�(v; u) := min

{∥
∥
∥α

v

u
− e

∥
∥
∥

∞
: α > 0

}

.

Lemma 4.2 For i= 1, 2, let hi ∈ �n and di ∈ �n++ be given and define

pi : = argminp∈�n {‖hi − p‖ : Di p ∈ L}
= argminp∈�n {‖p‖ : D−1

i (hi − p) ∈ L⊥}, (38)

where Di := Diag(di ), L is a given subspace of �n and L⊥ denotes its orthogonal
complement. Then,

‖p2‖ ≤ ‖h2 − h1‖ +�21‖h1‖ + (1 +�21)‖p1‖, (39)

‖h2 − p2‖ ≤ ‖h2 − h1‖ +�12‖h1‖ + (1 +�12)‖h1 − p1‖, (40)
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where �12 := �(d1; d2) and �21 := �(d2; d1). In particular, if h1 = h2 = e, then

‖p2‖ ≤ �21
√

n + (1 +�21)‖p1‖, (41)

‖h2 − p2‖ ≤ �12
√

n + (1 +�12)‖h1 − p1‖. (42)

Proof Let α̂ > 0 be such that �21 = ‖α̂d2d−1
1 − e‖∞. Define p̂2 := h2 − α̂D2 D−1

1
(h1 − p1) and note that D−1

2 (h2 − p̂2) = α̂D−1
1 (h1 − p1) ∈ L⊥, and hence that p̂2 is

feasible for the second problem in (38) with i = 2. This observation and the fact that
α̂‖d2d−1

1 ‖∞ ≤ 1 +�21 then imply

‖p2‖ ≤ ‖ p̂2‖ ≤ ‖h2 − α̂D2 D−1
1 (h1 − p1)‖

≤ ‖h2 − h1 + (I − α̂D2 D−1
1 )h1 + α̂D2 D−1

1 p1‖
≤ ‖h2 − h1‖ + ‖e − α̂d2d−1

1 ‖∞ ‖h1‖ + ‖α̂d2d−1
1 ‖∞ ‖p1‖

≤ ‖h2 − h1‖ +�21‖h1‖ + (1 +�21)‖p1‖,

which shows (39). The proof of (40) is based on similar arguments. The last conclusion
of the lemma follows as an immediate consequence of (39) and (40) and the assumption
that h1 = h2 = e. 
�

Given A ∈ �m×n , h ∈ �m and z ∈ �n++, consider the projection p0 = p(z; h, A) ∈
�n given by

p0 := argminp∈�n {‖h − p‖2 : AZ p = 0}, (43)

where Z := Diag(z). It can be easily shown that for every ν > 0:

Rxa(ν) = e − p(ν), Rsa(ν) = p(ν), (44)

where p(ν) := p(x(ν); e, A). Using Lemma 4.2, it is possible to relate the size of p(ν)
(resp., e − p(ν)) with that of p(ν0) (resp., e − p(ν0)), but the relation will depend on
the quantity �(x(ν), x(ν0)), which can be very large due to the substantial variations
that the different components of x(ν)/x(ν0) undergo as ν changes. However, the two
similar quantities�(xB(ν), xB(ν0)) and�(xN (ν), xN (ν0)) individually can be shown
to be small enough for our purposes (see Lemma 4.8). In order to take advantage of
this observation, it is necessary to work with a set of projections approximating the
projection p(z; h, A), where each projection is over a subspace defined by a subset of
variables from either xB or xN .

For a given scaling vector z ∈ �n++ and partition J , the next lemma, whose proof
is given in the Appendix, shows that if gap (z, J ) is large then the projection matrix
onto Ker(A Diag(z)) can be well approximated by a block diagonal matrix where each
block is a projection matrix associated with a layer of J .

Lemma 4.3 Let A ∈ �m×n, h ∈ �m, z ∈ �n++ and a partition J = (J1, . . . , Jl) of
{1, . . . , n} be given. Define p0 ∈ �n as p0 := p(z; h, A) and p̃0 ∈ �n as

p̃0
Jk

:= argmin p̃Jk ∈�Jk { ‖ p̃Jk − h Jk ‖2 : AJk Z Jk p̃Jk ∈ Im(AJ̄k
) }, (45)
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for every k = 1, . . . , l, where J̄k := Jk+1 ∪ . . .∪ Jl . Then, for every k = 1, . . . , l, we
have

‖p0
Jk

− p̃0
Jk

‖ ≤ K (3 + 2K )‖h‖, (46)

where K = K (z, J ; A) := χ̄A/gap (z, J ).

We are ready to establish a preliminary bound on εa∞(ν) based on the previous two
lemmas.

For the proof of the next result, recall that p(ν) = p(x(ν); e, A) and let p̃(ν) denote
the optimal solution of (45) with h = e and z = x(ν), for every ν > 0.

Lemma 4.4 Let scalars 0 < ν < ν0 be given and let J 0 = (J 0
1 , . . . ,J 0

l ) denote the
ordered AS-partition at w(ν0). Then,

εa∞(ν) ≤ √
n
{
ψ + (1 + ψ)εa∞(ν0)+ (2 + ψ)K (3 + 2K )

}

where

ψ = ψ(ν, ν0) := max{�(xB(ν); xB(ν0)) , �(sN (ν); sN (ν0))}, (47)

K = K (ν, ν0) := χ̄A

min{gap (w(ν),J 0), gap (w(ν0),J 0)} . (48)

Proof First, recall that p(ν) = p(x(ν); e, A) is related to (Rxa(ν), Rsa(ν)) according
to (44) and let p̃(ν) denote the optimal solution of (45) with h = e, z = x(ν) and
J = J 0. Let J 0

i be a layer of J 0 such that J 0
i ⊆ B and note that ‖pJ 0

i
(ν0)‖∞ ≤

εa∞(ν0) in view of (36) and (44). Using this fact, the fact that �(xJ 0
i
(ν); xJ 0

i
(ν0)) ≤

�(xB(ν); xB(ν0)) ≤ ψ , inequality (41) of Lemma 4.2 with p1 = p̃J 0
i
(ν0) and p2 =

p̃J 0
i
(ν), and Theorem 4.3 twice, we obtain

‖pJ 0
i
(ν)‖ ≤ ‖ p̃J 0

i
(ν)− pJ 0

i
(ν)‖ + ‖ p̃J 0

i
(ν)‖ ≤ K (3 + 2K )

√
n + ‖ p̃J 0

i
(ν)‖

≤ K (3 + 2K )
√

n +
√

|J 0
i |ψ + (1 + ψ)‖ p̃J 0

i
(ν0)‖

≤ K (3+2K )
√

n+√
nψ+(1+ψ)

{
‖pJ 0

i
(ν0)‖+‖ p̃J 0

i
(ν0)− pJ 0

i
(ν0)‖

}

≤ K (3+2K )
√

n+√
nψ+(1+ψ)

{√
|J 0

i | ‖pJ 0
i
(ν0)‖∞+K (3+2K )

√
n

}

≤ √
n
{
ψ + (1 + ψ)εa∞(ν0)+ (2 + ψ)K (3 + 2K )

}
.

Now, let J 0
i be a layer of J 0 such that J 0

i ⊆ N and note that ‖e − pJ 0
i
(ν0)‖∞ ≤

εa∞(ν0) in view of (36) and (44). Using this fact, the fact that

�(xJ 0
i
(ν0); xJ 0

i
(ν)) = �((sJ 0

i
(ν); sJ 0

i
(ν0)) ≤ �(sN (ν); sN (ν0)) ≤ ψ,
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inequality (42) of Lemma 4.2 and Theorem 4.3 twice, we can similarly show that

‖e − p̃J 0
i
(ν)‖ ≤ √

n
{
ψ + (1 + ψ)εa∞(ν0)+ (2 + ψ)K (3 + 2K )

}
.

This inequality together with the previous one then imply that

εa∞(ν) ≤ max
j=1,...,n

{min(|p j (ν)| , |1 − p j (ν)|)}
≤ max

i=1,...,l
{min(‖pJ 0

i
(ν)‖∞ , ‖e − pJ 0

i
(ν)‖∞)}

≤ √
n
{
ψ + (1 + ψ)εa∞(ν0)+ (2 + ψ)K (3 + 2K )

}
.


�
In the next six results, we will purify the upper bound on εa∞(ν) obtained in

Lemma 4.4 by deriving bounds on the quantities (47) and (48) in terms of εa∞(ν0)

and ν/ν0.
The next result is well-known. A proof of it can be found for example in [3].

Lemma 4.5 If w ∈ P++ × D++ satisfies φ(w) < 1, then

max (‖x(µ)− x‖x , ‖s(µ)− s‖s) ≤ φ(w)

1 − φ(w)
,

where µ := µ(w) and φ(w) is defined by (6).

Lemma 4.6 For every scalars 0 < ν ≤ ν0, the point defined as

w(ν; ν0) := w(ν0)+ (ν − ν0)ẇ(ν0) (49)

satisfies the following relations:

µ(w(ν; ν0)) = ν, (50)

φ(w(ν; ν0)) = (1 − ν/ν0)
2ν0 κ(ν0)

2

ν
≤ ν0

√
n εa∞(ν0)

ν
, (51)

max

(∥∥
∥
∥

xB(ν; ν0)

xB(ν0)
− e

∥
∥
∥
∥∞

,

∥
∥
∥
∥

sN (ν; ν0)

sN (ν0)
− e

∥
∥
∥
∥∞

)

≤ εa∞(ν0). (52)

Proof Differentiating (3) with respect to ν, we obtain ẋ(ν)s(ν) + x(ν)ṡ(ν) = e for
all ν > 0. Using this relation together with (49), we easily see that w(ν; ν0) =
(x(ν; ν0), y(ν; ν0), s(ν; ν0)) satisfies

x(ν; ν0)s(ν; ν0) = νe + (ν0 − ν)2 ẋ(ν0)ṡ(ν0). (53)

Differentiating (4) and (5) with respect to ν, we conclude that Aẋ(ν) = 0 and AT ẏ(ν)+
ṡ(ν) = 0, and hence that ẋ(ν)T ṡ(ν) = 0, for all ν > 0. Relation (50) now follows by
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multiplying (53) on the left by (e/n)T and using the last observation. Moreover, using
(50), (53) and Lemma 4.1(iii), we derive (51) as follows:

φ(w(ν; ν0)) = ‖x(ν; ν0)s(ν; ν0)− µ(w(ν; ν0))e‖
µ(w(ν; ν0))

= (ν0 − ν)2‖ẋ(ν0)ṡ(ν0)‖
ν

= (1 − ν/ν0)
2ν0 κ(ν0)

2

ν
≤ ν0

√
n εa∞(ν0)

ν
.

Also, (49) and (36) imply that

max

(∥∥
∥
∥

xB(ν; ν0)

xB(ν0)
−e

∥
∥
∥
∥∞

,

∥
∥
∥
∥

sN (ν; ν0)

sN (ν0)
−e

∥
∥
∥
∥∞

)

= (ν0 − ν)max

(∥∥
∥
∥

ẋB(ν0)

xB(ν0)

∥
∥
∥
∥∞

,

∥
∥
∥
∥

ṡN (ν0)

sN (ν0)

∥
∥
∥
∥∞

)

=
(

1 − ν

ν0

)

max
(‖Rsa

B(ν0)‖∞, ‖Rxa
N (ν0)‖∞

) ≤ εa∞(ν0).


�

Lemma 4.7 For i = 1, 2, assume that ui ∈ �n and θi > 0 satisfy ‖ui − e‖∞ ≤ θi .
Then, ‖u1u2 − e‖∞ ≤ θ1 + θ2 + θ1θ2, and hence u1u2 ≤ (1 + θ1)(1 + θ2)e. If, in
addition, θi ≤ 1 for i = 1, 2, then u1u2 ≥ (1 − θ1)(1 − θ2)e.

Proof The assumption ‖u1 − e‖∞ ≤ θ1 implies that ‖u1‖∞ ≤ 1 + θ1. Hence,

‖u1u2 − e‖∞ = ‖u1(u2 − e)+ u1 − e‖∞
≤ ‖u1‖∞‖u2 − e‖∞ + ‖u1 − e‖∞
≤ (1 + θ1)θ2 + θ1.

The assumption that ‖ui −e‖∞ ≤ θi ≤ 1 implies that ui ≥ (1−θi )e ≥ 0 for i = 1, 2.
Combining these two inequalities, we obtain the last inequality of the lemma. 
�

Lemma 4.8 Let 0 < ν ≤ ν0 be scalars such that φν0(ν) := φ(w(ν; ν0)) < 1. Then,

max

{∥∥
∥
∥

xB(ν)

xB(ν0)
− e

∥
∥
∥
∥∞

,

∥
∥
∥
∥

sN (ν)

sN (ν0)
− e

∥
∥
∥
∥∞

}

≤ εa∞(ν0)+ φν0(ν)

1 − φν0(ν)
.

As a consequence, we have:

ν

ν0
max

(
sB(ν0)

sB(ν)
,

xN (ν0)

xN (ν)

)

= max

(
xB(ν)

xB(ν0)
,

sN (ν)

sN (ν0)

)

≤ 1 + εa∞(ν0)

1 − φν0(ν)
. (54)
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If, in addition, εa∞(ν0) < 1 and φν0(ν) < 1/2, we have:

ν

ν0
min

(
sB(ν0)

sB(ν)
,

xN (ν0)

xN (ν)

)

= min

(
xB(ν)

xB(ν0)
,

sN (ν)

sN (ν0)

)

≥ 1 − 2φν0(ν)

1 − φν0(ν)
(1 − εa∞(ν0)). (55)

Proof By Lemma 4.5 and the assumption that φ(w(ν; ν0)) < 1, it follows that

max

{∥∥
∥
∥

xB(ν)

xB(ν; ν0)
− e

∥
∥
∥
∥∞

,

∥
∥
∥
∥

sN (ν)

sN (ν; ν0)
− e

∥
∥
∥
∥∞

}

≤ max

{∥∥
∥
∥

x(ν)

x(ν; ν0)
− e

∥
∥
∥
∥ ,

∥
∥
∥
∥

s(ν)

s(ν; ν0)
− e

∥
∥
∥
∥

}

≤ φν0(ν)

1 − φν0(ν)
.

The result now follows from the above relation, inequality (52) and Lemma 4.7 with
θ1 = εa∞(ν0) and θ2 = φν0(ν)/(1 − φν0(ν)). 
�

The following lemma derives some properties of the function gap (·,J (ν0)) along
the central path w(ν).

Lemma 4.9 Let 0 < ν ≤ ν0 be scalars such that φν0(ν) < 1/2 and εa∞(ν0) < 1.
Then,

gap (w(ν),J (ν0))

gap (ν0)
≥ ν

ν0
(1 − 2φν0(ν))(1 − εa∞(ν0))

2. (56)

In addition, the following statements hold:

i) If gap (ν0) = xi (ν0)/x j (ν0) for some i ∈ N (ν0) and j ∈ B(ν0), then

gap (w(ν),J (ν0))

gap (ν0)
≤ ν

ν0

(
(1 − φν0(ν))

2

(1 − εa∞(ν0))2(1 − 2φν0(ν))
2

)

. (57)

ii) If gap (ν) = xi (ν)/x j (ν) for some i ∈ B(ν0) and j ∈ N (ν0), then

gap (ν)

gap (w(ν0),J (ν))
≥ ν0

ν

(
(1 − 2φν0(ν))

2(1 − εa∞(ν0))
2

(1 − φν0(ν))
2

)

. (58)

Proof Using Lemma 4.8, it is easy to see that

ν

ν0
(1 − φν0(ν))(1 − εa∞(ν0)) ≤ xi (ν)

xi (ν0)
≤ 1 − φν0(ν)

(1 − εa∞(ν0))(1 − 2φν0(ν))
.

for all i = 1, . . . , n. Hence, for every i, j ∈ {1, . . . , n}, we have

xi (ν)

x j (ν)
≥ ν

ν0
(1 − 2φν0(ν))(1 − εa∞(ν0))

2 xi (ν0)

x j (ν0)
.
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In view of (32), this inequality together with the fact that gap (ν0) := gap (w(ν0),

J (ν0)) imply (56).
Assume now that gap (ν0) = xi (ν0)/x j (ν0) for some i ∈ N (ν0) and j ∈ B(ν0).

Then, in view of (31), we have that i ∈ J 0
k and j ∈ J 0

k+1, where J 0
k and J 0

k+1 are
two consecutive layers of J (ν0). Using (32) and (55), we obtain

gap (w(ν),J (ν0))

gap (ν0)
≤ xi (ν)/x j (ν)

gap (ν0)
= xi (ν)/xi (ν0)

x j (ν)/x j (ν0)

≤ ν

ν0

(1 − φν0(ν))
2

(1 − εa∞(ν0))2(1 − 2φν0(ν))
2 ,

showing that statement i) of the lemma holds.
To show statement ii), assume now that gap (ν) = xi (ν)/x j (ν) for some i ∈ B(ν0)

and j ∈ N (ν0). Then, in view of (31), we have that i ∈ Jk and j ∈ Jk+1, where Jk

and Jk+1 are two consecutive layers of J (µ). Using (32) and (55), we obtain

gap (ν)

gap (w(ν0),J (ν))
≥ gap (ν)

xi (ν0)/x j (ν0)
= xi (ν)

xi (ν0)

x j (ν0)

x j (ν)

≥ ν0

ν

(1 − εa∞(ν0))
2(1 − 2φν0(ν))

2

(1 − φν0(ν))
2 ,

showing that statement ii) of the lemma also holds. 
�
With the aid of Lemmas 4.8 and 4.9, the following result purifies the upper bound

on εa∞(ν) derived in Lemma 4.4.

Lemma 4.10 Let 0 < ν ≤ ν0 be scalars such that ν/ν0 ≥ 4
√

nεa∞(ν0). Then,

εa∞(ν) ≤ √
n

{(

3 + 4
√

n ν0

3 ν

)

εa∞(ν0)+ 32χ̄A(ν0/ν)

gap (ν0)
+ 68 χ̄2

A(ν0/ν)
2

[gap (ν0)]2

}

.

Proof First note that the assumptions and Lemma 4.6 imply that

εa∞(ν0) ≤ 1

4
√

n
≤ 1

4
, φν0(ν) ≤ ν0

√
n εa∞(ν0)

ν
≤ 1

4
. (59)

Using these inequalities together with Lemma 4.9, we can now bound the quantities
K (ν, ν0) and ψ(ν, ν0) defined in (48) and (47), respectively, as

K (ν, ν0) ≤ χ̄A (ν0/ν)

gap (ν0)(1 − 2φν0(ν))(1 − εa∞(ν0))2
≤ 32 χ̄A (ν0/ν)

9 gap (ν0)

and

ψ(ν, ν0) ≤ εa∞(ν0)+ φν0(ν)

1 − φν0(ν)
≤ 4

3

[
εa∞(ν0)+φν0(ν)

]≤ 4

3
εa∞(ν0)

(

1+ ν0
√

n

ν

)

≤ 2

3
.
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The last two inequalities together with Lemma 4.4 then imply that

εa∞(ν) ≤ √
n
{
ψ + (1 + ψ)εa∞(ν0)+ (2 + ψ)K (3 + 2K )

}

≤ √
n

{
4

3
εa∞(ν0)

(

1 + ν0
√

n

ν

)

+ 5

3
εa∞(ν0)+ 8K + 16

3
K 2
}

≤ √
n

{(

3 + 4
√

n ν0

3 ν

)

εa∞(ν0)+ 32χ̄A(ν0/ν)

gap (ν0)
+ 68 χ̄2

A(ν0/ν)
2

[gap (ν0)]2

}

.


�

As an immediate consequence of Lemma 4.10, we can now derive the main result
of this section.

Lemma 4.11 Let ν0 > 0 be such that 4
√

nεa∞(ν0) ≤ 1. Then, for every ν1 > 0 such
that ν1/ν0 ∈ [4√

nεa∞(ν0), 1], we have

ν0∫

ν1

κ(ν)

ν
dν ≤ √

n

[(√
12 + 2n1/4

√
3

)

�0(ν0, ν1)

+√32�1(ν0, ν1)+ √
68�1(ν0, ν1)

]
, (60)

where

�0(ν0, ν1) :=
(

εa∞(ν0)
ν0

ν1

)1/2

, �1(ν0, ν1) := χ̄A ν0

gap (ν0) ν1
. (61)

Proof By Lemmas 4.1 and 4.10, we have for every ν ∈ [4√
n εa∞(ν0)ν0, ν0] that

κ(ν)

ν
≤ n1/4

ν
εa∞(ν)1/2

≤
√

n

ν

[

3εa∞(ν0)+
(

4
√

n εa∞(ν0)

3
+ 32 χ̄A

gap (ν0)

)
ν0

ν
+ 68 χ̄2

A ν
2
0

gap (ν0)2 ν2

]1/2

≤ √
n

[√
3 εa∞(ν0)

ν
+
(

2n1/4
√
εa∞(ν0)√
3

+
√

32χ̄A

gap (ν0)1/2

)
ν

1/2
0

ν3/2 +
√

68χ̄A

gap (ν0)

ν0

ν2

]

.
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Hence,

ν0∫

ν1

κ(ν)

ν
dν

≤√
n

[
√

3εa∞(ν0) log
ν0

ν1
+
(

2n1/4
√
εa∞(ν0)√
3

+
√

32 χ̄A

gap (ν0)1/2

)√
ν0

ν1
+

√
68 χ̄A ν0

gap (ν0) ν1

]

≤√
n

[√

12 εa∞(ν0)
ν0

ν1
+
(

2n1/4
√
εa∞(ν0)√
3

+
√

32 χ̄A

gap (ν0)1/2

)√
ν0

ν1
+

√
68 χ̄A ν0

gap (ν0) ν1

]

,

where in the last relation we used the fact that log α = 2 log(
√
α) ≤ 2(

√
α−1) ≤ 2

√
α

for every α > 0. Relation (60) now follows from the above relation and (61). 
�

5 Proof of the main results

In this section, we prove the main results of this paper, namely Theorems 2.4 and 2.5.
The structure of the analysis of this section is similar to that of Sect. 4 of [10], but
requires new and more involved ideas, such as the bound developed in Lemma 4.11.

We will now give a brief outline of the analysis of this section. Letting ḡ := 348nχ̄A,
we will show in Lemmas 5.1, 5.3 and 5.7 that, for any scalar ν0 > 0 satisfying one of
the following three conditions:

(i) gap (ν0) ≤ ḡ (Lemma 5.1);
(ii) gap (ν0) ≥ ḡ and εa∞(ν0) ≥ 24

√
nḡ/gap (ν0) (Lemma 5.3);

(iii) gap (ν0) ≥ ḡ, εa∞(ν0) ≤ 24
√

nḡ/gap (ν0) and gap (ν0) = xi (ν0)/x j (ν0) for
some i ∈ N (ν0) and j ∈ B(ν0) (Lemma 5.7),

there exists a scalar ν1 ≤ ν0 such that I (ν1, ν0) = O(n1.5 log(n + χ̄A)) and the
interval (ν1, ν0] contains a ḡn-crossover event. Moreover, we will show in Lemma 5.8
that if (νl , νu] ⊂ �++ is an interval which does not contain a scalar ν0 satisfying
one of the above three conditions, then we must have I (νl , νu) ≤ 25/9. Now, a
simple argument shows that it is possible to express �++ as the union of disjoint
(possibly empty) intervals of the above two types which alternate from one type to
the other as we traverse the set �++. Since the number of intervals of the first type
can not exceed n(n − 1)/2 in view of Proposition 3.1, a simpe argument reveals that
I (0,∞) = O(n3.5 log(n + χ̄A)).

As a consequence of Lemmas 5.1 and 5.3, we will prove in Theorem 5.5 a geometric
result about the central path which claims that the points in the path with curvature
larger than a given threshold value κ̄ > 0 lie in O(n2) intervals, each with logarithmic
length bounded by O(n log(χ̄∗

A + n)+ log(κ̄−1)).

Lemma 5.1 Let ν0 > 0 be given and let ḡ be a constant such that

ḡ ≥ max
{
4 nχ̄A , 48

√
n χ̄A

}
. (62)
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If gap (ν0) ≤ ḡ, then there exists ν1 ∈ (0, ν0) such that the interval (ν1, ν0] contains
a ḡn-crossover event and

log
ν0

ν1
= O (log(χ̄A + n)+ n log ḡ) , (63)

ν0∫

ν1

κ(ν)

ν
dν = O

(√
n log(χ̄A + n)+ n1.5 log ḡ

)
. (64)

Proof To simplify notation, let (Rxa, Rsa) := (Rxa(ν0), Rsa(ν0)). Moreover, let
J = (J1, . . . , Jp) denote the VY ḡ–partition at w(ν0) and let (Rx ll, Rsll) be the
residual of the LLS direction atw(ν0)with respect to J . Note that, by Proposition 3.4,
we have gap (w(ν0), J ) > ḡ and spr(Jl) ≤ ḡn for every l = 1, . . . , n. It is easy to see
that the assumption that gap (ν0) ≤ ḡ and the fact that J is the VY ḡ–partition atw(ν0)

imply the existence of two indices i, j lying in some layer Jq of J , with one contained
in B(ν0) and the other in N (ν0). Without loss of generality, assume that i ∈ B(ν0) and
j ∈ N (ν0). By Lemma 4.1(i), we have Rxa

i ≥ 1/2 and Rsa
j ≥ 1/2. Since i, j ∈ Jq ,

this implies that min{‖Rxa
Jq

‖∞, ‖Rsa
Jq

‖∞} ≥ 1/2. Moreover, Proposition 3.2 together
with the fact that gap (w(ν0), J ) > ḡ and relation (62) imply that

max
{ ∥∥
∥Rxa − Rx ll

∥
∥
∥∞ ,

∥
∥
∥Rsa − Rsll

∥
∥
∥∞

}
≤ 12

√
n χ̄A

gap (w(ν0), J )
≤ 1

4
. (65)

Hence, we have

min
{
‖Rx ll

Jq
‖∞, ‖Rsll

Jq
‖∞
}

≥ min
{ ∥∥
∥Rxa

Jq

∥
∥
∥∞ −

∥
∥
∥Rxa − Rx ll

∥
∥
∥∞ ,

∥
∥
∥Rsa

Jq

∥
∥
∥∞ −

∥
∥
∥Rsa − Rsll

∥
∥
∥∞

}

≥ min
{∥∥
∥Rxa

Jq

∥
∥
∥∞ ,

∥
∥
∥Rsa

Jq

∥
∥
∥∞

}
− 1

4
≥ 1

2
− 1

4
= 1

4
. (66)

By Lemma 3.3 with Cq = ḡn , we know that the interval (ν, ν0] contains a ḡn-crossover
event for any ν > 0 satisfying (33). Letting ν1 be the largest ν > 0 satisfying (33),
we then have

log
ν0

ν1
= O

(
log(χ̄A + n)+ log Cq

)+ log
(
‖Rx ll

Jq
‖−1∞ ‖Rsll

Jq
‖−1∞

)

= O (log(χ̄A + n)+ n log ḡ) ,

where the last inequality is due to (66). The bound on the integral now follows from
the observation that, for any 0 < ν1 < ν0, we have

ν0∫

ν1

κ(ν)

ν
dν ≤

√
n

2
log

ν0

ν1
, (67)

in view of Lemma 2.1(i). 
�

123



136 R. D. C. Monteiro, T. Tsuchiya

Lemma 5.2 Let ν0 > 0 be given and let ḡ be a constant satisfying (62). Let (Rx l, Rsl)

denote the residual of the LLS direction at w(ν0) with respect to J , where J =
(J1, . . . ,Jl) is an ordered AS-partition at w(ν0). Assume that

εl∞ := max
{∥∥
∥Rx l

N

∥
∥
∥∞ ,

∥
∥
∥Rsl

B

∥
∥
∥∞

}
> 0, (68)

where (B, N ) := (B(ν0), N (ν0)). If gap (ν0) > ḡ, then there exists ν1 ∈ (0, ν0) such
that the interval (ν1, ν0] contains a ḡn-crossover event and

log
ν0

ν1
= O ( log(χ̄A + n)+ n log ḡ )+ log

(
(εl∞)−1

)
. (69)

Proof Assume without loss of generality that εl∞ = ‖Rx l
N ‖∞; the case in which

εl∞ = ‖Rsl
B‖∞ can be proved similarly. Then, εl∞ = |Rx l

i | for some i ∈ N . Let Jt

be the layer of J containing the index i and note that

εl∞ = |Rx l
i | = ‖Rx l

Jt
‖∞ ≤ ‖Rx l

Jt
‖. (70)

Now, let I = (I1, . . . , Ip) be the VY ḡ-partition of Jt at w(ν0) and consider the
ordered partition J ′ defined as

J ′ := (J1, . . . ,Jt−1, I1, . . . , Ip,Jt+1, . . . ,Jl).

Let (Rx ll, Rsll) denote the residual of the LLS direction at w(ν0) with respect to
J ′. Using the definition of the LLS step, it is easy to see that Rx l

J j
= Rx ll

J j
for all

j = t + 1, . . . , l. Moreover, we have ‖Rx l
Jt

‖ ≤ ‖Rx ll
Jt

‖ since ‖Rx l
Jt

‖ is the optimal

value of the least squares problem which determines the�x l
Jt

-component of the LLS

step with respect to J , whereas ‖Rx ll
Jt

‖ is the objective value at a certain feasible
solution for the same least squares problem. Hence, for some q ∈ {1, . . . , p}, we have

‖Rx ll
Iq

‖∞ = ‖Rx ll
Jt

‖∞ ≥ 1√|Jt | ‖Rx ll
Jt

‖ ≥ 1√
n

‖Rx ll
Jt

‖ ≥ 1√
n

‖Rx l
Jt

‖. (71)

Combining (70) and (71), we then obtain

‖Rx ll
Iq

‖∞ ≥ 1√
n
εl∞. (72)

Let us now bound the quantity ‖Rs ll
Iq

‖∞ from below. First note that the assumption that

gap (ν0) := gap (w(ν0),J ) > ḡ and Proposition 3.4 imply that gap (w(ν0),J ′) > ḡ
and spr(Iq) ≤ ḡn . Using the triangle inequality for norms, Lemma 4.1(i) together with
the fact that Iq ⊆ N , Proposition 3.2 together with the fact that gap (w(ν0),J ′) > ḡ
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and relation (62), we obtain

‖Rsll
Iq

‖∞ ≥ ‖Rsa
Iq

‖∞ − ‖Rsll
Iq

− Rsa
Iq

‖∞

≥ 1

2
− 12

√
n χ̄A

gap (w(ν0),J ′)
≥ 1

2
− 1

4
= 1

4
, (73)

where Rsa := Rsa(ν0). By Lemma 3.3 with J = J ′, Jp = Iq and Cq = ḡn , we know
that the interval (ν, ν0] contains a ḡn-crossover event for any ν > 0 satisfying (33).
Letting ν1 be the largest ν > 0 satisfying (33), we then have

log
ν0

ν1
= O

(
log(χ̄A + n)+ log Cq

)+ log
(
‖Rx ll

Jq
‖−1∞ ‖Rsll

Jq
‖−1∞

)

≤ O (log(χ̄A + n)+ n log ḡ)+ log
(
(εl∞)−1

)
,

where the last inequality is due to (72) and (73). 
�
Lemma 5.3 Let ν0 > 0 be given and let ḡ be a constant satisfying (62). If gap (ν0) > ḡ
and εa∞(ν0) ≥ 24

√
nχ̄A/gap (ν0), then there exists ν1 ∈ (0, ν0) such that the interval

(ν1, ν0] contains a ḡn-crossover event, relation (64) holds, and

log
ν0

ν1
= O ( log(χ̄A + n)+ n log ḡ )+ log

(
εa∞(ν0)

−1
)
, (74)

Proof Let (Rxa, Rsa) and (Rx l, Rsl) denote the residuals of the AS direction at
w(ν0) and the LLS direction at w(ν0) with respect to J , respectively, where J =
(J1, . . . ,Jl) denotes an ordered AS-partition atw(ν0). Using Proposition 3.2, relation
(62) and the assumptions that gap (ν0) > ḡ and εa∞(ν0) ≥ 24

√
nχ̄A/gap (ν0), we

obtain

max
{ ∥∥
∥Rxa − Rx l

∥
∥
∥∞ ,

∥
∥
∥Rsa − Rsl

∥
∥
∥∞

}
≤ 12

√
n χ̄A

gap (ν0)
≤ εa∞(ν0)

2
.

Hence, we have

εl∞ := max
{
‖Rx l

N ‖∞, ‖Rsl
B‖∞

}

≥ max
{ ∥
∥Rxa

N

∥
∥∞ −

∥
∥
∥Rxa

N − Rx l
N

∥
∥
∥∞ ,

∥
∥Rsa

B

∥
∥∞ −

∥
∥
∥Rsa

B − Rsl
B

∥
∥
∥∞

}

≥ max
{∥∥Rxa

N

∥
∥∞ ,

∥
∥Rsa

B

∥
∥∞
}− εa∞(ν0)

2
= εa∞(ν0)− εa∞(ν0)

2
= εa∞(ν0)

2
> 0,

where the strict inequality follows from Assumption A.3 and Lemma 4.1(iii). Hence,
by Lemma 5.2, there exists ν1 ∈ (0, ν0) such that the interval (ν1, ν0] contains a ḡn-
crossover event and relation (69) holds, which clearly implies (74) due to the above
estimate.

It remains to show that (64) holds. If εa∞(ν0) ≥ 1/(4
√

n), then it follows from (74)
that (63) holds in this case, and hence that (64) holds too due to (67). Assume then
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that εa∞(ν0) < 1/(4
√

n) and let ν̄ := 4
√

n εa∞(ν0)ν0 < ν0. The definition of ν̄ and
the assumption that εa∞(ν0) ≥ 24

√
n χ̄A/gap (ν0) then imply that

�0(ν0, ν̄) :=
√

εa∞(ν0)
ν0

ν̄
= 1

2
n−1/4, �1(ν0, ν̄) := χ̄A ν0

gap (ν0) ν̄
≤ 1

96 n
.

Using Lemma 4.11 with ν1 = ν̄ and the above estimates, we then conclude that

ν0∫

ν̄

κ(ν)

ν
dν = O(

√
n). (75)

Also, using (74) and the fact that ν0/ν̄ = (4
√

n εa∞(ν0))
−1, we easily see that

log
ν̄

ν1
= log

ν0

ν1
− log

ν0

ν̄
= O (log(χ̄A + n)+ n log ḡ) ,

which, in view of (67), implies that

ν̄∫

ν1

κ(ν)

ν
dν = O

(√
n log(χ̄A + n)+ n1.5 log ḡ

)
(76)

Clearly, (64) follows by adding (75) and (76). 
�
We will now use Lemmas 5.1 and 5.3 to establish a result about the geometric

structure of the central path, namely Theorem 2.5. These two lemmas give two inde-
pendent sets of conditions on a scalar ν0 > 0 which guarantee the occurrence of a
crossover event in an interval of the form (ν1, ν0]. Both sets involve a condition on
the quantity gap (ν0), which is not scale-invariant. Moreover, the notion of crossover
event itself is not scale-invariant. Nevertheless, it is possible to derive scale-invariant
geometric properties of the central path in terms of its curvature using the above two
lemmas as will be shown in Theorem 2.5. Before establishing this theorem, we need
to state one more lemma which estimates the length of an interval (ν1, ν0] containing
a crossover event in terms of the curvature κ(ν0).

Lemma 5.4 Let κ̄ ∈ (0,√n] be given and define

ḡ(κ̄) := max

{

4 nχ̄A , 48
√

n χ̄A ,
24 n χ̄A

κ̄2

}

. (77)

Then, for every scalar ν0 > 0 such that κ(ν0) ≥ κ̄ , there exists ν1 ∈ (0, ν0) such that
the interval (ν1, ν0] contains a [ḡ(κ̄)]n-crossover event and

log
ν0

ν1
= O (n log(χ̄A + n)+ n| log κ̄| ) .
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Proof Assume that ν0 > 0 is such that κ(ν0) ≥ κ̄ and let J = (J1, . . . ,Jl) denote an
ordered AS-partition at w(ν0). There are two cases to consider, namely: i) gap (ν0) ≤
ḡ(κ̄); and ii) gap (ν0) > ḡ(κ̄). If case i) holds then the conclusion of the lemma follows
from Lemma 5.1 and definition (77) of ḡ(κ̄). Consider now case ii) in which gap (ν0) >

ḡ(κ̄). Using the assumption that κ(ν0) ≥ κ̄ , relation (77) and Lemma 4.1(iii), we
conclude that in this case we have

εa∞(ν0) ≥ κ(ν0)
2

√
n

≥ κ̄2

√
n

= 24
√

nχ̄A

ḡ(κ̄)
≥ 24

√
nχ̄A

gap (ν0)
.

The conclusion of the lemma under case ii) now follows immediately from Lemma 5.3,
the above inequality and relation (77). 
�
Theorem 5.5 For any constant κ̄ ∈ (0,

√
n], there exist l ≤ n(n − 1)/2 closed

intervals Ik = [dk, ek], k = 1, . . . , l, such that:

i) dk ≥ ek+1 for all k = 1, . . . , l − 1;
ii) {ν > 0 : κ(ν) ≥ κ̄} ⊆ ∪l

k=1 Ik ;
iii) log(ek/dk) = O

(
n log(χ̄∗

A + n)+ n| log κ̄| ) for all k = 1, . . . , l.

Proof The intervals Ik can be constructed inductively as follows. Suppose that q ≥ 0
intervals Ik = [dk, ek], k = 1, . . . , q, have been constructed so that: a) properties
i) and iii) hold with l replaced by q; b) {ν ≥ dq : κ(ν) ≥ κ̄} ⊆ ∪q

k=1 Ik , and;
c) each interval Ik , k = 1, . . . , q, contains a [ḡ(κ̄)]n-crossover event. Note that, by
Proposition 3.1, the latter property implies that q can not exceed n(n − 1)/2. If the
set {ν ≤ dq : κ(ν) ≥ κ̄} is empty then property ii) obviously hold with l = q, and
the conclusion of the theorem holds with l = q. Otherwise, let eq+1 := max{ν ≤
dq : κ(ν) ≥ κ̄}. (Here, by convention, d0 := ∞.) By Lemma 5.4, there exists
dq+1 < eq+1 such that log(eq+1/dq+1) = O (n log(χ̄A + n)+ n| log κ̄|) and the
interval Iq+1 = [dq+1, eq+1] contains a [ḡ(κ̄)]n-crossover event. Clearly, the intervals
Ik , k = 1, . . . , q + 1, satisfy the above statements a), b) and c) with q replaced by
q + 1. Since the number of intervals Ik satisfying a), b) and c) above can not exceed
n(n − 1)/2, it is clearly that the above construction eventually yields intervals Ik’s
satisfying the conclusion of the theorem. 
�

We will now continue with our goal of proving Theorem 2.4. Our next objective is
to derive one more set of conditions on a scalar ν0 which guarantees the occurrence of
a crossover event in an interval of the form (ν1, ν0] over which the curvature integral
can be bounded as in (64). This set of conditions is slightly more general than the
third set of conditions introduced at the beginning of this section. But first we need to
establish the following technical result.

Lemma 5.6 Let scalars 0 < ν1 < ν0 be given. Then, the following implications hold:

i) if (B(ν1), N (ν1)) �= (B(ν0), N (ν0)), then there exists ν′ ∈ [ν1, ν0] such that
εa∞(ν′) ≥ 1/2;

ii) if J (ν1) �= J (ν0), then there exists ν′ ∈ [ν1, ν0] such that either εa∞(ν′) ≥ 1/2
or gap (w(ν′)) = 1.
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Proof We first prove i). If εa∞(ν0) ≥ 1/2, then the conclusion of implication i)
obviously holds. Assume then that εa∞(ν0) < 1/2. The assumption that (B(ν1),

N (ν1)) �= (B(ν0), N (ν0)) implies that either B(ν1)∩ N (ν0) �= ∅ or N (ν1)∩ B(ν0) �=
∅. Without loss of generality, assume that B(ν1) ∩ N (ν0) �= ∅ and let i be an index
lying in this intersection. Then, |Rxa

i (ν0)| ≤ εa∞(ν0) < 1/2 since i ∈ N (ν0).
Moreover, by Lemma 4.1(i) and the fact that i ∈ B(ν1), we have that Rxa

i (ν1) ≥
1/2. The intermediate value theorem applied to the continuous function Rxa

i (·) then
implies the existence of a scalar ν′ ∈ [ν1, ν0] such that Rxa

i (ν
′) = 1/2. Since

Rxa
i (ν

′) + Rsa
i (ν

′) = 1, we conclude that Rsa
i (ν

′) = 1/2, and hence that εa∞(ν′) ≥
min{|Rxa

i (ν
′)|, |Rsa

i (ν
′)|} = 1/2.

To prove ii), assume that J (ν1) �= J (ν0). We may also assume that gap (ν0) > 1
and that (B(ν1), N (ν1)) = (B(ν0), N (ν0)) since otherwise the conclusion of ii)
would either obviously hold or follow from i). The fact that J (ν1) �= J (ν0) and
(B(ν1), N (ν1)) = (B(ν0), N (ν0)) together with Lemma 3.5 imply that gap (w(ν1),

J (ν0)) < 1. Noting that 1 < gap (ν0) := gap (w(ν0),J (ν0)), it follows from the
intermediate value theorem applied to the continuous function ν → gap (w(ν),J (ν0))

that there exists ν′ ∈ [ν1, ν0] such that gap (w(ν′),J (ν0)) = 1. In view of Lemma 3.5,
this implies that J (ν0) = J (ν′) and hence that gap (ν′) := gap (w(ν′),J (ν′)) = 1.


�
We are now ready to establish the result mentioned in the paragraph before

Lemma 5.6.

Lemma 5.7 Let ν0 > 0 be given and let ḡ be a constant satisfying (62). Assume that
gap (ν0) > ḡ,

εa∞(ν0) ≤ ḡ

16
√

n gap (ν0)
, (78)

and gap (ν0) = xi (ν0)/x j (ν0) for some i ∈ N (ν0) and j ∈ B(ν0). Then, there exists
ν1 ∈ (0, ν0) such that the interval (ν1, ν0] contains a ḡn-crossover event, relation (64)
holds, and

log
ν0

ν1
= O ( log(χ̄A + n)+ n log ḡ )+ log (gap (ν0)) ,

≤ O ( log(χ̄A + n)+ n log ḡ )+ log
(
εa∞(ν0)

−1
)

(79)

Proof Let ν̄ := (1 − t̄)ν0, where

t̄ := 1 − ḡ

4 gap (ν0)
. (80)

In view of (78) and the assumption that gap (ν0) > ḡ, we have ν̄/ν0 = (1 − t̄) =
ḡ/(4gap (ν0)) ∈ [4√

nεa∞(ν0), 1]. This conclusion together with (62) then imply that

log
ν0

ν̄
= log

(
4 gap (ν0)

ḡ

)

≤ log(gap (ν0)) (81)
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and

�0(ν0, ν̄) :=
√

εa∞(ν0)
ν0

ν̄
≤ 1

2
n−1/4, �1(ν0, ν̄) := χ̄A ν0

gap (ν0) ν̄
= 4χ̄A

ḡ
≤ 1

n
.

Using Lemma 4.11 with ν1 = ν̄ and the last two estimates, we then conclude that

ν0∫

ν̄

κ(ν)

ν
dν = O(

√
n). (82)

We will next show that gap (w(ν̄),J ) < ḡ, where J := J (ν0). Indeed, first note that
the assumption that gap (ν0) > ḡ and relations (51), (78) and (80) imply that

εa∞(ν0) ≤ 1

16
√

n
≤ 1

16
,

φν0(t̄) ≤
√

n εa∞(ν0)

1 − t̄
≤ 4

√
n εa∞(ν0) gap (ν0)

ḡ
≤ 1

4
.

The above estimates together with Lemma 4.9(i) and relation (80) imply that

gap (w(ν̄),J ) ≤ (1 − t̄)(1 − φν0(t̄))
2

(1 − εa∞(ν0))2(1 − 2φν0(t̄))
2 gap (ν0)

≤ 64

25
(1 − t̄) gap (ν0) ≤ 16

25
ḡ < ḡ.

Since gap (w(ν̄),J ) < ḡ and ḡ < gap (ν0) := gap (w(ν0),J ) by assumption,
it follows from the intermediate value theorem applied to the continuous function
gap (w(·),J ) that there exists a scalar ν̂ ∈ (ν̄, ν0) such that gap (w(ν̂),J ) = ḡ. We
will now consider the following two possible cases separately: i) (B(ν̂), N (ν̂)) =
(B(ν0), N (ν0)); and ii) (B(ν̂), N (ν̂)) �= (B(ν0), N (ν0)). If case i) holds then it
follows from Proposition 3.5 that J is also an AS partition at w(ν̂), and hence
that gap (ν̂) := gap (w(ν̂)) = gap (w(ν̂),J ) = ḡ. This conclusion together with
Lemma 5.1 then imply the existence of a scalar ν1 ∈ (0, ν̂) such that the interval
(ν1, ν̂], and hence (ν1, ν0], contains a ḡn-crossover event and

log
ν̂

ν1
= O (log(χ̄A + n)+ n log ḡ) , (83)

ν̂∫

ν1

κ(ν)

ν
dν = O

(√
n log(χ̄A + n)+ n1.5 log ḡ

)
. (84)

Note that in this case, (79) and (64) follow from the fact that ν̄ < ν̂ and relations
(81), (82), (83) and (84). Consider now case ii). In this case, it follows from Lemma
5.6(i) that εa∞(ν′) ≥ 1/2 for some ν′ ∈ [ν̂, ν0]. Applying Lemma 5.3 with ν0 = ν′,
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we conclude that there exists ν1 ∈ (0, ν′) such that the interval (ν1, ν
′], and hence

(ν1, ν0], contains a ḡn-crossover event and

log
ν′

ν1
= O (log(χ̄A + n)+ n log ḡ) , (85)

ν′∫

ν1

κ(ν)

ν
dν = O

(√
n log(χ̄A + n)+ n1.5 log ḡ

)
. (86)

As before, (79) and (64) follow from the fact that ν̄ < ν′ and relations (81), (82), (85)
and (86). 
�

Our goal now will be to estimate the curvature integral over intervals which do not
contain scalars satisfying the three set of conditions (i), (ii) and (iii) introduced at the
beginning of this section. Estimation of the integral over an interval of this type is
done by dividing the interval into a finite number of disjoint subintervals. The first
lemma below estimates the integral on each one of these subintervals while the second
lemma below gives an estimate of the integral over the whole interval with the aid of
the estimate obtained in the first lemma.

Lemma 5.8 Let 0 < ν1 ≤ ν0 and ḡ ≥ 1 be scalars such that

ν1

ν0
≥ ḡ

4gap (ν0)
(87)

and the following conditions hold for every ν ∈ [ν1, ν0]:
i) gap (ν) > ḡ;

ii) εa∞(ν) ≤ ḡ/(16
√

n gap (ν));
iii) there exist i ∈ B(ν) and j ∈ N (ν) such that gap (ν) = xi (ν)/x j (ν).

Then, we have:

gap (ν1) ≥ 25ν0

64ν1
gap (ν0), (88)

ν0∫

ν1

κ(ν)

ν
dν ≤ 4

5

(
ḡ

gap (ν0)

)1/2

. (89)

Proof Using (51), (87) and assumptions i) and ii), we conclude that for every ν ∈
[ν1, ν0], we have

εa∞(ν) ≤ 1

16
√

n
≤ 1

16
,

φν0(ν) ≤ ν0
√

n εa∞(ν0)

ν
≤ 4

√
n εa∞(ν0) gap (ν0)

ḡ
≤ 1

4
.

(90)
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Also, assumption i), relation (90) and Lemma 5.6 (ii) imply that (B(ν), N (ν)) =
(B(ν0), N (ν0)) and J (ν0) = J (ν). Using these observations together with
Lemma 4.9 (ii) and assumption iii), we obtain

gap (ν)

gap (ν0)
= gap (ν)

gap (w(ν0),J (ν0))
= gap (ν)

gap (w(ν0),J (ν))

≥
(
(1 − 2φν0(t))

2(1 − εa∞(ν0))
2

(1 − φν0(t))
2

)
ν0

ν
≥ 25

64

ν0

ν
. (91)

The above relation with ν = ν1 yields (88). We will now show that (89) holds.
Lemma 4.1(iii), assumption (ii) and relation (91) imply

κ(ν)2 ≤ √
nεa∞(ν) ≤ ḡ

16gap (ν)
≤ 4 ḡ

25 gap (ν0)

ν

ν0
.

This implies that

ν0∫

ν1

κ(ν)

ν
dν ≤ 2

5

(
ḡ

gap (ν0)

)1/2
ν0∫

ν1

1√
ν0ν

dν ≤ 4

5

(
ḡ

gap (ν0)

)1/2

.


�
Lemma 5.9 Let ḡ be a constant satisfying (62) and let 0 < ν1 ≤ ν0 be scalars such
that conditions i)–iii) of Lemma 5.8 holds for every ν ∈ [ν1, ν0]. Then, we have

ν0∫

ν1

κ(ν)

ν
dν ≤ 25

9
.

Proof Let ν1 = µl < · · · < µ1 < µ0 = ν0 be a subdivision of the interval [ν1, ν0]
such that

µk+1 = max

{

ν1,
ḡµk

4gap (w(µk))

}

, k = 0, . . . , l − 1.

Lemma 5.8 and the above relation then imply that

gap (w(µk+1)) ≥ 25µk

64µk+1
gap (w(µk)) = 25

16

gap (w(µk))
2

ḡ
, k = 0, . . . , l − 2,

µk∫

µk+1

κ(ν)

ν
dν ≤ 4

5

(
ḡ

gap (w(µk))

)1/2

, k = 0, . . . , l − 1.

Now, let ak := (16ḡ)/(25gap (w(µk))
2) for all k = 0, . . . , l − 1. Then, the first

relation above is equivalent to the condition that ak+1 ≤ a2
k for l = 0, . . . , l − 2. This
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implies that ak ≤ (a0)
2k ≤ a2k

0 for all k = 0, . . . , l − 1. Moreover, the last relation
above implies that

µk∫

µk+1

κ(ν)

ν
dν ≤ 4

5

(
25ak

16

)1/2

≤ √
ak ≤ ak

0 ≤
(

16

25

)k

, k = 0, . . . , l − 1.

Hence, we obtain

ν0∫

ν1

κ(ν)

ν
dν =

l−1∑

k=0

µk∫

µk+1

κ(ν)

ν
dν ≤

l−1∑

k=0

(
16

25

)k

≤ 25

9
.


�
Finally, we are ready to prove the main theorem.

Theorem 5.10 There holds

∞∫

0

κ(ν)

ν
dν = O

(
n3.5 log(χ̄A + n)

)
.

Proof It suffices to show that for every ν0 > 0, we have

ν0∫

0

κ(ν)

ν
dν = O

(
n3.5 log(χ̄A + n)

)
, (92)

where the constant of proportionality in the O(·) does not depend on ν0. Indeed, define
ḡ := 384 nχ̄A and let ν0 > 0 be given. Let �(ν0) denote the set of scalars ν ∈ (0, ν0]
such that at least one of the following conditions hold:

C1 gap (ν) ≤ ḡ;
C2 gap (ν) > ḡ and εa∞(ν) ≥ 24

√
nχ̄A/ gap (ν));

C3 gap (ν) > ḡ, εa∞(ν) ≤ ḡ/(16
√

n gap (ν)) and there exist i ∈ N (ν) and j ∈ B(ν)
such that gap (ν) = xi (ν)/x j (ν).

We claim that there exist l ≤ n(n − 1)/2 intervals [dk, ek], k = 1, . . . , l, such that:
i) dk ≥ ek+1 > 0 for all k = 1, . . . , l − 1; ii) �(ν0) ⊆ ∪l

k=1[dk, ek]; and, iii) for all
k = 1, . . . , l, we have

ek∫

dk

κ(ν)

ν
dν = O

(
n1.5 log(χ̄A + n)

)
, (93)

where the constant of proportionality in the O(·) does not depend on ν0. Indeed,
the intervals [dk, ek] can be constructed inductively as follows. Suppose that q ≥ 0
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intervals [dk, ek], k = 1, . . . , q, have been constructed so that: a) properties i) and
iii) hold with l replaced by q; b) {ν ≥ dq : ν ∈ �(ν0)} ⊆ ∪q

k=1[dk, ek], and; c)
each interval (dk, ek], k = 1, . . . , q, contains a ḡn-crossover event. Note that, by
Proposition 3.1, the latter property implies that q can not exceed n(n − 1)/2. If the set
{ν < dq : ν ∈ �(ν0)} is empty then property ii) obviously hold with l = q, and the
conclusion of the theorem holds with l = q. Otherwise, let eq+1 := sup{ν ∈ (0, dq) :
ν ∈ �(ν0)}. It is easy to see that eq+1 ∈ �(ν0). Applying one of the Lemmas 5.1,
5.3 or 5.7 depending on which of the conditions C1, C2 or C3 holds and noting that
ḡ ≥ max{4 nχ̄A , 48

√
n χ̄A}, we conclude the existence of a scalar dq+1 < eq+1 such

that (93) holds with k = q + 1 and the interval (dq+1, eq+1] contains a ḡn-crossover
event. Clearly, the intervals [dk, ek], k = 1, . . . , q + 1, satisfy the above requirements
a), b) and c) with q replaced by q +1. Since the number of intervals [dk, ek] satisfying
a), b) and c) above can not exceed n(n − 1)/2, it is clear that the above construction
eventually yields intervals [dk, ek]’s according to the above claim.

Using the fact that ḡ = 384 nχ̄A, we easily see that the set (0, ν0) \ ∪l
k=1[dk, ek]

consists of at most l + 2 open intervals, each one satisfying the assumptions of
Lemma 5.9. Hence, it follows from Lemma 5.9 that the integral of the function κ(ν)/ν
over each one of these intervals is bounded by 25/9. Putting all the conclusions obtai-
ned above together, we easily see that (92) holds. 
�

6 Concluding remarks

In this paper, we have studied the geometric structure of the central path for linear
programming based on the curvature κ(ν) and its corresponding integral I (ν f , νi ).
We have provided a link between two iteration-complexity bounds for the MTY P-C
algorithm. There remains several interesting topics for future research.

One topic is to investigate whether the results of this paper can be extended to
other classes of convex programming such as convex quadratic programming (or,
more generally, monotone linear complementarity problems) and symmetric cone
programming. In this regard, the following questions arise: i) how can the curvature
integral be defined in the context of symmetric cone programming?; ii) how can an
analogous bound for the curvature integral be derived in the context of convex quadratic
programming?

Another topic would be to investigate whether the curvature defined in this paper
is related to the concept of the curvature of a path in differential or Riemannian
geometry.
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Appendix

The objective of this section is to provide a proof of Lemma 4.3.
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Proposition 6.1 Let Fi ∈ �m×ni , hi ∈ �ni , zi ∈ �ni++, for i = 1, 2, be given.
Consider the projections p0 = (p0

1, p0
2) and p̃0 = ( p̃0

1, p̃0
2) given by

(p0
1, p0

2) := argmin(p1,p2)
{‖p1−h1‖2+‖p2−h2‖2 : F1 Z1 p1+F2 Z2 p2 =0},

(94)

p̃0
1 := argminp1

{ ‖p1 − h1‖2 : F1 Z1 p1 ∈ Im(F2) }, (95)

p̃0
2 := argminp2

{ ‖p2 − h2‖2 : F2 Z2 p2 = 0 }, (96)

where Z1 := Diag(z1) and Z2 := Diag(z2). Then:

‖p0
1 − p̃0

1‖ ≤ 2χ̄F�(1 + χ̄F�)‖h‖, ‖p0
2 − p̃0

2‖ ≤ χ̄F�‖h‖, (97)

where � = �(z1, z2) := ‖z1‖∞‖(z2)
−1‖∞ and F := [F1, F2].

Before giving the proof of the above proposition, we present two technical results.
The first result is an error bound result for a system of linear equalities whose proof
can be found for example in [9].

Lemma 6.2 Let A ∈ �m×n with full row rank be given and let (K,L) be an arbitrary
bipartition of the index set {1, . . . , n}. Assume that w̄ ∈ �|L| is an arbitrary vector
such that the system AKu = ALw̄ is feasible. Then, this system has a feasible solution
ū such that ‖ū‖ ≤ χ̄A‖w̄‖.

The next result characterizes the displacements δ0
1 := p0

1 − p̃0
1 and δ0

2 := p0
2 − p̃0

2
as optimal solutions of certain optimization problems.

Lemma 6.3 Let Fi and Zi , i = 1, 2, be as in Proposition 6.1. Then, the following
statements hold:

a) The vector δ0
2 := p0

2 − p̃0
2 is the unique optimal solution of the problem

minimizeδ2
1
2‖δ2‖2

subject to F2 Z2δ2 = −F1 Z1 p0
1; (98)

b) The pair (δ0
1, p0

2), where δ0
1 := p0

1 − p̃0
1 , is the unique optimal solution of the

problem

minimize(δ1,p2)
1
2‖δ1‖2 + 1

2‖p2 − h2‖2

subject to F1 Z1δ1 + F2 Z2 p2 = −F1 Z1 p̃0
1 .

(99)

Proof We first show a). Since p0 and p̃0
2 are optimal solutions of (94) and (96),

respectively, we have

(
p0

1 − h1

p0
2 − h2

)

∈ Im

(
Z1 FT

1

Z2 FT
2

)

, F1 Z1 p0
1 + F2 Z2 p0

2 = 0 (100)

p̃0
2 − h2 ∈ Im(Z2 FT

2 ), F2 Z2 p̃0
2 = 0, (101)
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and hence

p0
2 − p̃0

2 ∈ Im(Z2 FT
2 ), F2 Z2δ

0
2 = −F1 Z1 p0

1 . (102)

This shows that δ0
2 = p0

2 − p̃0
2 satisfies the optimality conditions for problem (98).

Since (98) is a strictly convex quadratic program, its optimal solution is unique and
hence a) follows. We next show b). Since p̃0

1 is the optimal solution of (95), we have

(
p̃0

1 − h1
0

)

∈ Im(Z FT ), F1 Z1 p̃0
1 ∈ Im(F2) (103)

which, together with (100) and the definition of δ0
1, yields

(
δ0

1
p0

2 − h2

)

∈ Im(Z FT ), F1 Z1δ
0
1 + F2 Z2 p0

2 = −F1 Z1 p̃0
1 . (104)

This shows that (δ0
1, p0

2) satisfies the optimality conditions for (99). Since (99) is a
strictly convex quadratic program, its optimal solution is unique and hence b) holds.


�
Using the above lemma, we can now prove Proposition 6.1.

Proof of Proposition 6.1 By Lemma 6.2, there exists u2 ∈ �n2 such that F2u2 =
−F1 Z1 p0

1, or equivalently Z−1
2 u2 is feasible for (98), and

‖u2‖ ≤ χ̄F‖Z1 p0
1‖ ≤ χ̄F‖z1‖∞‖p0

1‖. (105)

Hence, in view of Lemma 6.3(a) and the definition of �, we have

‖δ0
2‖ ≤ ‖Z−1

2 u2‖ ≤ ‖z−1
2 ‖∞‖u2‖ ≤ χ̄F�‖p0

1‖,

from which the second inequality of (97) follows in view of the fact that ‖p0
1‖ ≤ ‖h‖.

By (100) and (103), we have that F1 Z1 p0
1 ∈ Im(F2). Hence, by Lemma 6.2, there

exists a vector v0
2 such that

F2v
0
2 = F1 Z1δ

0
1, ‖v0

2‖ ≤ χ̄F‖Z1δ
0
1‖ ≤ χ̄F‖z1‖∞ ‖δ0

1‖. (106)

Relation (104) and (106) imply that F2[Z2 p0
2 + v0

2] = −F1 Z1 p̃0
1, and hence that the

pair (0, p0
2 + Z−1

2 v0
2) is feasible for (99). This together with Lemma 6.3(b) imply that

‖p0
2 − h2‖2 + ‖δ0

1‖2 ≤ ‖p0
2 + Z−1

2 v0
2 − h2‖2.

Rearranging this expression and using relation (106), the definition of�, the facts that
max{‖p0

i ‖, ‖hi − p0
i ‖} ≤ max{‖p0‖, ‖h − p0‖} ≤ ‖h‖ and ‖ p̃0

i ‖ ≤ ‖hi‖ ≤ ‖h‖ for
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i = 1, 2 and the inequality ‖r‖2 − ‖u‖2 ≤ ‖r − u‖ ‖r + u‖ for any r, u ∈ �p, we
obtain

‖δ0
1‖ ≤ ‖δ0

1‖−1
(
‖p0

2 + Z−1
2 v0

2 − h2‖2 − ‖p0
2 − h2‖2

)

≤ ‖δ0
1‖−1‖Z−1

2 v0
2‖ ‖ 2 (p0

2 − h2)+ Z−1
2 v0

2 ‖
≤ ‖δ0

1‖−1‖v0
2‖ ‖z−1

2 ‖∞
(

2 ‖p0
2 − h2‖ + ‖v0

2‖ ‖z−1
2 ‖∞

)

≤ χ̄F �
{

2 ‖h‖ + χ̄F � ‖δ0
1‖
}

≤ χ̄F �
{

2 ‖h‖ + χ̄F �(‖p0
1‖ + ‖ p̃0

1‖)
}

≤ 2χ̄F � (1 + χ̄F �) ‖h‖,

which shows that the first inequality of (97) also holds.

We are now ready to give the proof of Lemma 4.3.

Proof of Lemma 4.3 Fix k ∈ {1, . . . , l} and define

(q0
J1
, . . . , q0

Jk
)

:= argmin(qJ1 ,...,qJk )∈�n1×...×�nk

{
k∑

i=1

‖h Ji − qJi ‖2 :
k∑

i=1

AJi Z Ji qJi = 0

}

.

By Proposition 6.1 with F1 = [AJk+1, . . . , AJl ] and F2 = [AJ1, . . . , AJk ], we conclude
that

‖q0
Jk

− p0
Jk

‖ ≤ ‖(q0
J1

− p0
J1
, . . . , q0

Jk
− p0

Jk
)‖≤ χ̄A

max(z Jk+1, . . . , z Jl )

min(z J1, . . . , z Jk )
‖h‖ ≤ K‖h‖.

Moreover, Proposition 6.1 with F1 = AJk and F2 = [AJ1 , . . . , AJk−1 ] implies that

‖q0
Jk

− p̃0
Jk

‖ ≤ 2K (1 + K )‖(h J1, . . . , h Jk )‖ ≤ 2K (1 + K )‖h‖.

Combining the two previous inequality and using the triangle inequality for norms,
we obtain (46).
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