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Abstract In this paper, we study convex optimization methods for computing the
nuclear (or, trace) norm regularized least squares estimate in multivariate linear regres-
sion. The so-called factor estimation and selection method, recently proposed by Yuan
et al. (J Royal Stat Soc Ser B (Statistical Methodology) 69(3):329–346, 2007) con-
ducts parameter estimation and factor selection simultaneously and have been shown
to enjoy nice properties in both large and finite samples. To compute the estimates,
however, can be very challenging in practice because of the high dimensionality and the
nuclear norm constraint. In this paper, we explore a variant due to Tseng of Nesterov’s
smooth method and interior point methods for computing the penalized least squares
estimate. The performance of these methods is then compared using a set of randomly
generated instances. We show that the variant of Nesterov’s smooth method gener-
ally outperforms the interior point method implemented in SDPT3 version 4.0 (beta)
(Toh et al. On the implementation and usage of sdpt3—a matlab software package for
semidefinite-quadratic-linear programming, version 4.0. Manuscript, Department of
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Mathematics, National University of Singapore (2006)) substantially. Moreover, the
former method is much more memory efficient.
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1 Introduction

Multivariate linear regression is routinely used in statistics to model the predictive
relationships of multiple related responses on a common set of predictors. In general
multivariate linear regression, we have l observations on q responses b = (b1, . . . , bq)

′
and p explanatory variables a = (a1, . . . , ap)

′, and

B = AU + E, (1)

where B = (b1, . . . ,bl)′ ∈ �l×q and A = (a1, . . . , al)′ ∈ �l×p consists of the
data of responses and explanatory variables, respectively, U ∈ �p×q is the coefficient
matrix, E = (e1, . . . , el)′ ∈ �l×q is the regression noise, and all ei ’s are independently
sampled from N (0, �).

Classical estimators for the coefficient matrix U such as the least squares estimate
are known to perform sub-optimally because they do not utilize the information that
the responses are related. This problem is exacerbated when the dimensionality p or
q is moderate or large. Linear factor models are widely used to overcome this prob-
lem. In the linear factor model, the response B is regressed against a small number
of linearly transformed explanatory variables, which are often referred to as factors.
More specifically, the linear factor model can be expressed as

B = F�+ E, (2)

where � ∈ �r×q , and F = A� for some � ∈ �p×r and r ≤ min{p, q}. The col-
umns of F , namely, Fj ( j = 1, . . . , r) represent the so-called factors. Clearly (2)
is an alternative representation of (1) with U = ��, and the dimension of the esti-
mation problem reduces as r decreases. Many popular methods including canonical
correction [9,10], reduced rank [1,11,18], principal components [14], partial least
squares [24] and joint continuum regression [6] among others can all be formulated
in the form of linear factor regression. They differ in the way in which the factors are
determined.

Given the number of factors r , estimation in the linear factor model most often
proceeds in two steps: the factors, or equivalently �, are first constructed, and then
� is estimated by least squares for (2). It is obviously of great importance to be able
to determine r for (2). For a smaller number of factors, a more accurate estimate
is expected since there are fewer free parameters. But too few factors may not be
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Convex optimization methods for dimension reduction 165

sufficient to describe the predictive relationships. In all of the aforementioned meth-
ods, the number of factors r is chosen in a separate step from the estimation of (2)
through either hypothesis testing or cross-validation. The coefficient matrix is typ-
ically estimated on the basis of the number of factors selected. Due to its discrete
nature, this type of procedure can be very unstable in the sense of Breiman [5]: small
changes in the data can result in very different estimates.

Recently, Yuan et al. [25] proposed a novel method that can simultaneously choose
the number of factors, determine the factors and estimate the factor loading matrix
�. It has been demonstrated that the so-called factor estimation and selection (FES)
method combines and retains the advantages of the existing methods. FES is a con-
strained least square estimate where the nuclear or trace norm (or, the Ky Fan m-norm
where m := min{p, q}) of the coefficient matrix U is forced to be smaller than an
upper bound:

min
U

{
Tr((B − AU )W (B − AU )′) :

m∑
i=1

σi (U ) ≤ M

}
, (3)

where W is a positive definite weight matrix. Common choices of the weight matrix
W include �−1 and I . To fix ideas, we assume throughout the paper that W = I .
Under this assumption, (3) is equivalent to

min
U

{
‖B − AU‖2F :

m∑
i=1

σi (U ) ≤ M

}
. (4)

It is easy to see that, when the variable U in (4) is further required to be a diagonal
matrix, problem (4) reduces to the well-known LASSO problem introduced in [19] and
hence to a model that is known to induce sparsity on its optimal solution. More gener-
ally, it is shown in Yuan et al. [25] that the constraint used by FES encourages sparsity
in the factor space and at the same time gives shrinkage coefficient estimates and thus
conducts dimension reduction and estimation simultaneously in the multivariate lin-
ear model. Recently, Bach [2] further provided necessary and sufficient conditions for
rank consistency of nuclear norm minimization with the square loss by considering
the Lagrangian relaxation of (4). He also proposed a Newton-type method for finding
an approximate solution to the latter problem, but his method is only suitable for the
problems where p and q are not too large.

In addition, the nuclear norm relaxation has been used in literature for rank min-
imization problem. In particular, Fazel et al. [7] considered minimizing the rank of
a matrix U subject to U ∈ C, where C is a closed convex set. They proposed a con-
vex relaxation to this problem by replacing the rank of U by the nuclear norm of U .
Recently, Recht et al. [17] showed that under some suitable conditions, such a convex
relaxation is tight when C is an affine manifold. The authors of Recht et al. [17] also
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discussed some first- and second-order optimization methods for solving the nuclear
norm relaxation problem.

The goal of this paper is to explore convex optimization methods, namely, a variant
due to Tseng [21] of Nesterov’s smooth method [15,16], and interior point methods for
solving (4). We also compare the performance of these methods on a set of randomly
generated instances. We show that the variant of Nesterov’s smooth method generally
outperforms the interior point method implemented in the code SDPT3 version 4.0
(beta) [20] substantially, and that the former method requires much less memory than
the latter one.

The rest of this paper is organized as follows. In Sect. 1.1, we introduce the nota-
tion that is used throughout the paper. In Sect. 2, we present some technical results
that are used in our presentation. In Sect. 3, we provide a simplification for prob-
lem (4), and present cone programming and smooth saddle point reformulations for
it. In Sect. 4, we review a variant of Nesterov’s smooth method [15,16,21] and
discuss the details of its implementation for solving the aforementioned smooth
saddle point reformulations of (4). In Sect. 5, we present computational results com-
paring a well-known second-order interior-point method applied to the aforemen-
tioned cone programming reformulations of (4) with the variant of Nesterov’s smooth
method for solving smooth saddle point reformulations of (4). Finally, we present
some concluding remarks in Sect. 6 and state some additional technical results in the
Appendix.

1.1 Notation

The following notation is used throughout our paper. For any real number α, [α]+
denotes the nonnegative part of α, that is, [α]+ = max{α, 0}. The symbol �p denotes
the p-dimensional Euclidean space. We denote by e the vector of all ones whose dimen-
sion should be clear from the context. For any w ∈ �p,Diag(w) denotes the p × p
diagonal matrix whose i th diagonal element is wi for i = 1, . . . , p. The Euclidean
norm in �p is denoted by ‖ · ‖.

We let Sn denote the space of n × n symmetric matrices, and Z � 0 indicate that
Z is positive semidefinite. We also write Sn+ for {Z ∈ Sn : Z � 0}, and Sn++ for its
interior, the set of positive definite matrices in Sn . For any Z ∈ Sn , we let λi (Z), for
i = 1, . . . , n, denote the i th largest eigenvalue of Z , λmin(Z) (resp., λmax(Z)) denote
the minimal (resp., maximal) eigenvalue of Z , and define ‖Z‖∞ := max1≤i≤n |λi (Z)|
and ‖Z‖1 = ∑n

i=1 |λi (Z)|. Either the identity matrix or operator will be denoted
by I .

The space of all p×q matrices with real entries is denoted by�p×q . Given matrices
X and Y in �p×q , the standard inner product is defined by X • Y = Tr(X T Y ), where
Tr(·) denotes the trace of a matrix. The operator norm and the Frobenius norm of a
p × q-matrix X are defined as ‖X‖ := max{‖Xu‖ : ‖u‖ ≤ 1} = [λmax(X T X)]1/2
and ‖X‖F :=

√
X • X , respectively. Given any X ∈ �p×q , we let vec(X) denote

the vector in �pq obtained by stacking the columns of X according to the order in
which they appear in X , and σi (X) denote the i th largest singular value of X for
i = 1, . . . ,min{p, q}. (Recall that σi (X) = [λi (X T X)]1/2 = [λi (X X T )]1/2 for
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Convex optimization methods for dimension reduction 167

i = 1, . . . ,min{p, q}.) Also, let G : �p×q → �(p+q)×(p+q) be defined as

G(X) :=
(

0 X T

X 0

)
, ∀X ∈ �p×q . (5)

The following sets are used throughout the paper:

B p×q
F (r) := {X ∈ �p×q : ‖X‖F ≤ r},
�n=(r) := {Z ∈ Sn : ‖Z‖1 = r, Z � 0},
�n≤(r) := {Z ∈ Sn : ‖Z‖1 ≤ r, Z � 0},

Lp :=
{

x ∈ �p : x1 ≥
√

x2
2 + · · · + x2

p

}
,

where the latter is the well-known p-dimensional second-order cone.
Let U be a normed vector space whose norm is denoted by ‖ · ‖U . The dual space

of U , denoted by U∗, is the normed vector space consisting of all linear functionals of
u∗ : U → �, endowed with the dual norm ‖ · ‖∗U defined as

‖u∗‖∗U = max
u
{〈u∗, u〉 : ‖u‖U ≤ 1}, ∀u∗ ∈ U∗,

where 〈u∗, u〉 := u∗(u) is the value of the linear functional u∗ at u.
If V denotes another normed vector space with norm ‖ · ‖V , and E : U → V∗ is a

linear operator, the operator norm of E is defined as

‖E‖U ,V = max
u
{‖Eu‖∗V : ‖u‖U ≤ 1}. (6)

A function f : � ⊆ U → � is said to be L-Lipschitz-differentiable with respect to
‖ · ‖U if it is differentiable and

‖∇ f (u)−∇ f (ũ)‖∗U ≤ L‖u − ũ‖U , ∀u, ũ ∈ �. (7)

2 Some results on eigenvalues and singular values

In this subsection, we establish some technical results about eigenvalues and singular
values which will be used in our presentation.

The first result gives some well-known identities involving the maximum eigen-
value of a real symmetric matrix.

Lemma 2.1 For any Z ∈ Sn and scalars α > 0 and β ∈ �, the following statements
hold:

λmax(Z) = max
W∈�n=(1)

Z •W, (8)

[αλmax(Z)+ β]+ = max
W∈�n≤(1)

αZ •W + βTr(W ). (9)
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Proof Identity (8) is well-known. We have

[αλmax(Z)+ β]+ = [λmax(αZ + β I )]+ = max
t∈[0,1] tλmax(αZ + β I )

= max
t∈[0,1],W∈�n=(1)

t (αZ + β I ) •W = max
W∈�n≤(1)

(αZ + β I ) •W,

where the third equality is due to (8) and the fourth equality is due to the fact that tW
takes all possible values in�n≤(1) under the condition that t ∈ [0, 1] and W ∈ �n=(1).

��
The second result gives some characterizations of the sum of the k largest eigen-

values of a real symmetric matrix.

Lemma 2.2 Let Z ∈ Sn and integer 1 ≤ k ≤ n be given. Then, the following state-
ments hold:

(a) For t ∈ �, we have

k∑
i=1

λi (Z) ≤ t ⇔
⎧⎨
⎩

t − ks − Tr(Y ) ≥ 0,
Y − Z + s I � 0,
Y � 0,

for some Y ∈ Sn and s ∈ �;
(b) The following identities hold:

k∑
i=1

λi (Z) = min
Y∈Sn+

max
W∈�n=(1)

k(Z − Y ) •W + Tr(Y ) (10)

= max
W∈Sn
{Z •W : Tr(W ) = k, 0 � W � I }. (11)

(c) For every scalar α > 0 and β ∈ �, the following identities hold:
[
α

k∑
i=1

λi (Z)+ β
]+

= min
Y∈Sn+

max
W∈�n≤(1)

k(αZ − Y ) •W + [β + Tr(Y )]Tr(W ) (12)

= max
W∈Sn , t∈�

{αZ •W + βt : Tr(W ) = tk, 0 � W � t I, 0 ≤ t ≤ 1} . (13)

Proof

(a) This statement is proved on pages 147–148 of Ben-Tal and Nemirovski [3].
(b) Statement (a) clearly implies that

k∑
i=1

λi (Z) = min
s∈�,Y∈Sn

{ks + Tr(Y ) : Y + s I � Z , Y � 0}. (14)
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Noting that the condition Y + s I � Z is equivalent to s ≥ λmax(Z − Y ), we can
eliminate the variable s from the above min problem to conclude that

k∑
i=1

λi (Z) = min {kλmax(Z − Y )+ Tr(Y ) : Y ∈ Sn+}. (15)

This relation together with (8) clearly implies identity (10). Moreover, noting
that the max problem (11) is the dual of min problem (14) and that they both
have strictly feasible solutions, we conclude that identity (11) holds in view of a
well-known strong duality result.

(c) Using (15), the fact that infx∈X [x]+ = [inf X ]+ for any X ⊆ � and (9), we
obtain

[
α

k∑
i=1

λi (Z)+ β
]+
=
[

k∑
i=1

λi

(
αZ + β

k
I

)]+

=
[

min
Y∈Sn+

kλmax

(
αZ + β

k
I − Y

)
+ Tr(Y )

]+

= min
Y∈Sn+

[
kλmax

(
αZ + β

k
I − Y

)
+ Tr(Y )

]+

= min
Y∈Sn+

max
W∈�n≤(1)

k

(
αZ + β

k
I − Y

)
•W + Tr(Y )Tr(W ),

from which (12) immediately follows. Moreover, using (11), the fact that [γ ]+ =
maxt∈[0,1] tγ for every γ ∈ � and performing the change of variable Y = t Ỹ in
the last equality below, we obtain

[
α

k∑
i=1

λi (Z)+ β
]+
=
[

k∑
i=1

λi

(
αZ + β

k
I

)]+

=
[

max
Ỹ∈Sn

{(
αZ + β

k
I

)
• Ỹ : Tr(Ỹ ) = k, 0 � Ỹ � I

}]+

= max
Ỹ∈Sn , t∈�

{
t

(
αZ + β

k
I

)
• Ỹ : Tr(Ỹ ) = k, 0 � Ỹ � I, 0 ≤ t ≤ 1

}

= max
Y∈Sn , t∈�

{(
αZ + β

k
I

)
• Y : Tr(Y ) = tk, 0 � Y � t I, 0 ≤ t ≤ 1

}
,

i.e., (13) holds.

��

Lemma 2.3 Let X ∈ �p×q be given. Then, the following statements hold:
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(a) the p + q eigenvalues of the symmetric matrix G(X) defined in (5), arranged in
nonascending order, are

σ1(X), . . . , σm(X), 0, . . . , 0,−σm(X), . . . ,−σ1(X),

where m := min(p, q);
(b) For any positive integer k ≤ m, we have

k∑
i=1

σi (X) =
k∑

i=1

λi (G(X)).

Proof Statement (a) is proved on page 153 of [3] and statement (b) is an immediate
consequence of (a). ��

The following result about the sum of the k largest singular values of a matrix
follows immediately from Lemmas 2.2 and 2.3.

Proposition 2.4 Let X ∈ �p×q and integer 1 ≤ k ≤ min{p, q} be given and set
n := p + q. Then:
(a) For t ∈ �, we have

k∑
i=1

σi (X) ≤ t ⇔
⎧⎨
⎩

t − ks − Tr(Y ) ≥ 0,
Y − G(X)+ s I � 0,
Y � 0,

for some Y ∈ Sn and s ∈ �;
(b) The following identities hold:

k∑
i=1

σi (X) = min
Y∈Sn+

max
W∈�n=(1)

k(G(X)− Y ) •W + Tr(Y ) (16)

= max
W∈Sn
{G(X) •W : Tr(W ) = k, 0 � W � I }. (17)

(c) For every scalar α > 0 and β ∈ �, the following identities hold:
[
α

k∑
i=1

σi (X)+ β
]+
= min

Y∈Sn+
max

W∈�n≤(1)
k(αG(X)− Y ) •W+[β+Tr(Y )]Tr(W )

(18)

= max
W∈Sn , t∈�

{αG(X) •W + βt : Tr(W ) = tk, 0 � W � t I, 0 ≤ t ≤ 1} .
(19)
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3 Problem reformulations

This section consists of three subsections. The first subsection shows that the restricted
least squares problem (4) can be reduced to one which does not depend on the (usually
large) number of rows of the matrices A and/or B. In the second and third subsec-
tions, we provide cone programming and smooth saddle point reformulations for (4),
respectively.

3.1 Problem simplification

Observe that the number of rows of the data matrices A and B which appear in (4) is
equal to the number of observations l, which is usually quite large in many applica-
tions. However, the size of the decision variable U in (4) does not depend on l. In this
subsection we show how problem (4) can be reduced to similar types of problems in
which the new matrix A is a p× p diagonal matrix and hence to problems which do not
depend on l. Clearly, from a computational point of view, the resulting formulations
need less storage space and can be more efficiently solved.

Since in most applications, the matrix A has full column rank, we assume that
this property holds throughout the paper. Thus, there exists an orthonormal matrix
Q ∈ �p×p and a positive diagonal matrix � ∈ �p×p such that AT A = Q�2 QT .
Letting

X := QT U, H := �−1 QT AT B, (20)

we have

‖B − AU‖2F − ‖B‖2F = ‖AU‖2F − 2 (AU ) • B

= Tr
(

U T AT AU
)
− 2 Tr

(
U T AT B

)
= Tr

(
U T Q�2 QT U

)
− 2 Tr

(
U T Q�H

)
= ‖�X‖2F − 2(�X) • H = ‖�X − H‖2F − ‖H‖2F .

Noting that the singular values of X = QT U and U are identical, we immediately see
from the above identity that (4) is equivalent to

min
X

{
1

2
‖�X − H‖2F :

m∑
i=1

σi (X) ≤ M

}
, (21)

where � and H are defined in (20).
A related problem to (21) is the one given by

min
X

1

2
‖�X − H‖2F + λ

m∑
i=1

σi (X). (22)
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In view of Theorem 6.2, we observe that for any λ ≥ 0 and ε ≥ 0, any ε-optimal
solution Xε of (22) is an ε-optimal solution of problem (21) with M =∑m

i=1 σi (Xε).
Hence, as is the case in our statistics application mentioned in the beginning of Sect. 1,
if one is interested in solving (21) for an arbitrary sequence of M values, then it suf-
fices to solve (22) for a sequence of λ values. However, there are situations in which
one is interested in solving (21) for one particular M value. This situation arises for
example in the root-finding approach recently proposed by Friedlander and van den
Berg [22,23] for solving

min
U

{
m∑

i=1

σi (U ) : ‖B − AU‖2F ≤ τ
}

(23)

for some τ ≥ 0, in which subproblems of the form (4) (or equivalently, (21)) must
be solved at every iteration. In their implementation, a projected gradient method is
used to solve these subproblems, but we observe that one of the first-order methods
discussed in Sect. 4 can alternatively be used to solve these subproblems.

More specifically, we will describe first-order algorithms for solving problem (21)
in Sects. 3.3.2 and 4.3 and problem (22) in Sects. 3.3.1 and 4.2. In Sect. 5, we only
present computational results for the method for solving problem (22) since it is quite
comparable to the algorithm for solving (21) both in terms of theoretical complexity
and computational efficiency.

Before ending this subsection, we provide bounds on the optimal solutions of prob-
lems (21) and (22).

Lemma 3.1 For every M > 0, problem (21) has a unique optimal solution X∗M .
Moreover,

‖X∗M‖F ≤ r̃x := min

{
2‖�H‖F

λ2
min(�)

,M

}
. (24)

Proof Using the fact that � is a p × p positive diagonal matrix, it is easy to see that
the objective function of (21) is a (quadratic) strongly convex function, from which
we conclude that (21) has a unique optimal solution X∗M . Since ‖H‖2F/2 is the value
of the objective function of (21) at X = 0, we have ‖�X∗M − H‖2F/2 ≤ ‖H‖2F/2, or
equivalently ‖�X∗M‖2F ≤ 2(�H) • X∗M . Hence, we have

(λmin(�))
2 ‖X∗M‖2F ≤ ‖�X∗M‖2F ≤ 2(�H) • X∗M ≤ 2‖X∗M‖F ‖�H‖F ,

which implies that ‖X∗M‖F ≤ 2‖�H‖F/λ
2
min(�). Moreover, using the fact that

‖X‖2F =
∑m

i=1 σ
2
i (X) for any X ∈ �p×q , we easily see that

‖X‖F ≤
m∑

i=1

σi (X). (25)
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Since X∗M is feasible for (21), it then follows from (25) that ‖X∗M‖F ≤ M . We have
thus shown that inequality (24) holds. ��
Lemma 3.2 For every λ > 0, problem (22) has a unique optimal solution X∗λ. More-
over,

‖X∗λ‖F ≤
m∑

i=1

σi (X
∗
λ) ≤ rx := min

{
‖H‖2F

2λ
,

m∑
i=1

σi

(
�−1 H

)}
. (26)

Proof As shown in Lemma 3.1, the function X ∈ �p×q → ‖�X−H‖2F is a (quadratic)
strongly convex function. Since the term λ

∑m
i=1 σi (X) is convex in X , it follows that

the objective function of (22) is strongly convex, from which we conclude that (22)
has a unique optimal solution X∗λ. Since ‖H‖2F/2 is the value of the objective function
of (22) at X = 0, we have

λ

m∑
i=1

σi (X
∗
λ) ≤

1

2
‖�X∗λ − H‖2F + λ

m∑
i=1

σi (X
∗
λ) ≤

1

2
‖H‖2F . (27)

Also, considering the objective function of (22) at X = �−1 H , we conclude that

λ

m∑
i=1

σi (X
∗
λ) ≤

1

2
‖�X∗λ − H‖2F + λ

m∑
i=1

σi (X
∗
λ) ≤ λ

m∑
i=1

σi (�
−1 H). (28)

Now, (26) follows immediately from (25), (27) and (28). ��

3.2 Cone programming reformulations

In this subsection, we provide cone programming reformulations for problems (21)
and (22), respectively.

Proposition 3.3 Problem (22) can be reformulated as the following cone program-
ming:

min
r,s,t,X,Y

2r + λt

s.t.

⎛
⎝ r + 1

r − 1
vec(�X − H)

⎞
⎠ ∈ Lpq+2,

Y − G(X)+ s I � 0,

ms + Tr(Y )− t ≤ 0, Y � 0,

(29)

where (r, s, t, X,Y ) ∈ �×�×�×�p×q ×Sn with n := p+q and G(X) is defined
in (5).
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Proof We first observe that (22) is equivalent to

min
r,X

2r + λt

s.t. ‖�X − H‖2F ≤ 4r
m∑

i=1
σi (X)− t ≤ 0.

(30)

Using Lemma 2.3 and the following relation

4r ≥ ‖v‖2 ⇔
⎛
⎜⎝

r + 1
r − 1
v

⎞
⎟⎠ ∈ Lk+2,

for any v ∈ �k and r ∈ �, we easily see that (30) is equivalent to (29) ��
The following proposition can be similarly established.

Proposition 3.4 Problem (21) can be reformulated as the following cone program-
ming:

min
r,s,X,Y

2r

s.t.

⎛
⎝ r + 1

r − 1
vec(�X − H)

⎞
⎠ ∈ Lpq+2,

Y − G(X)+ s I � 0,

ms + Tr(Y ) ≤ M, Y � 0,

(31)

where (r, s, X,Y ) ∈ �×�×�p×q ×Sn with n := p+ q and G(X) is defined in (5).

3.3 Smooth saddle point reformulations

In this section, we provide smooth saddle point reformulations for problems (21) and
(22).

3.3.1 Smooth saddle point reformulations for (22)

In this subsection, we reformulate (22) into a smooth saddle point problem that can
be suitably solved by a variant of Nesterov’s smooth method [15,16,21] as described
in Sects. 4.1 and 4.2.

We start by introducing the following notation. For every t ≥ 0, we let �t denote
the set defined as

�t := {W ∈ S p+q : 0 � W � t I/m,Tr(W ) = t}. (32)
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Theorem 3.5 For some ε ≥ 0, assume that Xε is an ε-optimal solution of the smooth
saddle point problem

min
X∈Bp×q

F (rx )

max
W∈�1

{
1

2
‖�X − H‖2F + λmG(X) •W

}
, (33)

where G(X) and rx are defined in (5) and (26), respectively. Then, Xε is an ε-optimal
solution of problem (22).

Proof This result follows immediately from Lemma 3.2 and relations (17) with k = m,
(22) and (32) with t = 1. ��

In addition to the saddle point ( min-max) reformulation (33), it is also possible to
develop an alternative saddle point reformulation based on the identity (16). These two
reformulations can in turn be solved by a suitable method, namely Nesterov’s smooth
approximation scheme [16], for solving these min-max type problems, which we will
not describe in this paper. In our computational experiments, we found that, among
these two reformulations, the first one is computationally superior than the latter one.
Details of the computational comparison of these two approaches can be found in the
technical report (see [13]), which this paper originated from.

A more efficient method than the ones outlined in the previous paragraph for solving
(22) is based on solving the dual of (33), namely the problem

max
W∈�1

min
X∈Bp×q

F (rx )

{
1

2
‖�X − H‖2F + λmG(X) •W

}
, (34)

whose objective function has the desirable property that it has Lipschitz continuous
gradient (see Sect. 4.2 for specific details). In Sects. 4.1 and 4.2, we describe an algo-
rithm, namely, a variant of Nesterov’s smooth method [15,16,21], for solving (34)
which, as a by-product, yields a pair of primal and dual nearly-optimal solutions, and
hence a nearly-optimal solution of (33). Finally, Sect. 5 only reports computational
results for the approach outlined in this paragraph since it is far superior than the other
two approaches outlined in the previous paragraph.

3.3.2 Smooth saddle point reformulations for (21)

In this subsection, we will provide a smooth saddle point reformulation for (21) that can
be suitably solved by a variant of Nesterov’s smooth method [15,16,21] as described
in Sect. 4.1.

By directly applying Theorem 6.1 to problem (21), we obtain the following result.

Lemma 3.6 Let m := min(p, q). Suppose that X̄ ∈ �p×q satisfies
m∑

i=1
σi (X̄) < M

and let γ be a scalar such that γ ≥ γ̄ , where γ̄ is given by

γ̄ = ‖�X̄ − H‖2F/2
M −

m∑
i=1

σi (X̄)
. (35)
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Then, the following statements hold:
(a) The optimal values of (21) and the penalized problem

min
X∈�p×q

{
1

2
‖�X − H‖2F + γ

[
m∑

i=1

σi (X)− M

]+}
(36)

coincide, and the optimal solution solution X∗M of (21) is an optimal solution of
(36);

(b) if ε ≥ 0 and Xε is an ε-optimal solution of problem (36), then the point X ε

defined as

X ε := Xε + θ X̄

1+ θ , where θ :=
[∑m

i=1 σi (Xε)− M
]+

M −∑m
i=1 σi (X̄)

, (37)

is an ε-optimal solution of (21).

We next provide a smooth saddle point reformulation for problem (21).

Theorem 3.7 Let m := min(p, q). Suppose that X̄ ∈ �p×q satisfies
∑m

i=1 σi (X̄) <
M and let γ be a scalar such that γ ≥ γ̄ , where γ̄ is defined in (35). For some ε ≥ 0,
assume that Xε is an ε-optimal solution of the problem

min
X∈Bp×q

F (r̃x )

max
(t,W )∈�̃

{
1

2
‖�X − H‖2F + γ (mG(X) •W − Mt)

}
, (38)

where r̃x is defined in (24) and �̃ is defined as

�̃ := {(t,W ) ∈ � × S p+q : W ∈ �t , 0 ≤ t ≤ 1}. (39)

Let X ε be defined in (37). Then, X ε is an ε-optimal solution of (21).

Proof Let X∗M denote the unique optimal solution of (21). Then, X∗M is also an optimal
solution of (36) in view of Lemma 3.6(a), and X∗M satisfies X∗M ∈ B p×q

F (r̃x ) due to
Lemma 3.1. Also, relation (19) with α = 1, β = −M and k = m implies that the
objective functions of problems (36) and (38) are equal to each other over the whole
space�p×q . The above observations then imply that X∗M is also an optimal solution of
(38) and that problems (36) and (38) have the same optimal value. Since by assumption
Xε is an ε-optimal solution of (38), it follows that Xε is also an ε-optimal solution of
problem (36). The latter conclusion together with Lemma 3.6(b) immediately yields
the conclusion of the theorem. ��

The saddle point ( min-max) reformulation (38) can be solved by a suitable method,
namely, Nesterov’s smooth approximation scheme [16], which we will not describe
in this paper. A more efficient method for solving (21) is based on solving the dual of
(38), namely the problem

max
(t,W )∈�̃

min
X∈Bp×q

F (r̃x )

{
1

2
‖�X − H‖2F + γ (mG(X) •W − Mt)

}
, (40)
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whose objective function has the desirable property that it has Lipschitz continuous
gradient (see Sect. 4.3 for specific details). In Sects. 4.1 and 4.3, we describe an algo-
rithm, namely a variant of Nesterov’s smooth method [15,16,21], for solving (40)
which, as a by-product, yields a pair of primal and dual nearly-optimal solutions, and
hence a nearly-optimal solution of (38).

4 Numerical methods

In this section, we discuss numerical methods for solving problem (22). More specifi-
cally, Sect. 4.1 reviews a variant of Nesterov’s smooth method [15,16,21], for solving
a convex minimization problem over a relatively simple set with a smooth objective
function that has Lipschitz continuous gradient. In Sects. 4.2 and 4.3, we present the
implementation details of the variant of Nesterov’s smooth method for solving the
reformulations (34) of problem (22) and (40) of problem (21), respectively.

The implementation details of the other formulations discussed in the paper, more
specifically, the reformulations (33) of problem (22) and (38) of problem (21) will
not be presented here. The implementation details of some other reformulations of
problems (22) and (21) can be found in Section 4.2 of [13].

4.1 Review of a variant of Nesterov’s smooth method

In this subsection, we review a variant of Nesterov’s smooth first-order method [15,
16,21] for solving a class of smooth convex programming (CP) problems.

Let U and V be normed vector spaces with the respective norms denoted by ‖ · ‖U
and ‖ · ‖V . We will discuss a variant of Nesterov’s smooth first-order method for
solving the class of CP problems

min
u∈U

f (u) (41)

where the objective function f : U → � has the form

f (u) := max
v∈V

φ(u, v), ∀u ∈ U, (42)

for some continuous function φ : U×V → � and nonempty compact convex subsets
U ⊆ U and V ⊆ V . We make the following assumptions regarding the function φ:

B.1 for every u ∈ U , the function φ(u, ·) : V → � is strictly concave;
B.2 for every v ∈ V , the function φ(·, v) : U → � is convex differentiable;
B.3 the function f is L-Lipschitz-differentiable on U with respect to ‖ · ‖U (see (7).

It is well-known that Assumptions B.1 and B.2 imply that the function f is convex
differentiable, and that its gradient is given by

∇ f (u) = ∇uφ(u, v(u)), ∀u ∈ U, (43)
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where v(u) denotes the unique solution of (42) (see for example Proposition B.25 of
[4]). Moreover, problem (41) and its dual, namely:

max
v∈V
{g(v) := min

u∈U
φ(u, v)}, (44)

both have optimal solutions u∗ andv∗ such that f (u∗) = g(v∗). Finally, using Assump-
tion B.3, Lu [12] recently showed that problem (41-42) and its dual problem (44) can
be suitably solved by Nesterov’s smooth method [16], simultaneously. However, we
note that Nesterov’s smooth method [16] requires solving two prox-type subprob-
lems per iteration. More recently, Tseng [21] proposed a variant of Nesterov’s smooth
method which solves one prox subproblem per iteration only.

We will now describe the aforementioned variant. Let pU : U → � be a dif-
ferentiable strongly convex function with modulus σU > 0 with respect to ‖ · ‖U ,
i.e.,

pU (u) ≥ pU (ũ)+ 〈∇ pU (ũ), u − ũ〉 + σU

2
‖u − ũ‖2U , ∀u, ũ ∈ U. (45)

Let u0 be defined as

u0 = arg min{pU (u) : u ∈ U }. (46)

By subtracting the constant pU (u0) from the function pU (·), we may assume without
any loss of generality that pU (u0) = 0. The Bregman distance dpU : U × U → �
associated with pU is defined as

dpU (u; ũ) = pU (u)− l pU (u; ũ), ∀u, ũ ∈ U, (47)

where l pU : U ×U → � is the “linear approximation” of pU defined as

l pU (u; ũ) = pU (ũ)+ 〈∇ pU (ũ), u − ũ〉, ∀(u, ũ) ∈ U ×U.

Similarly, we can define the function l f (·; ·) that will be used subsequently.
We will now explicitly state Tseng’s variant of Nesterov’s smooth method for solv-

ing problem (41)–(42) and its dual problem (44). It uses a sequence {αk}k≥0 of scalars
satisfying the following condition:

0 < αk ≤
(

k∑
i=0

αi

)1/2

, ∀k ≥ 0. (48)

Clearly, (48) implies that α0 ∈ (0, 1].
Variant of Nesterov’s smooth algorithm:

Let u0 ∈ U and {αk}k≥0 satisfy (46) and (48), respectively.

Set usd
0 = u0, v0 = 0 ∈ V, τ0 = 1 and k = 1;
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(1) Compute v(uk−1) and ∇ f (uk−1).
(2) Compute (usd

k , uag
k ) ∈ U ×U and vk ∈ V as

vk ≡ (1− τk−1)vk−1 + τk−1v(uk−1)

uag
k ≡ argmin

{
L

σU
dpU (u; u0)+

k−1∑
i=0

αi l f (u; ui ) : u ∈ U

}
(49)

usd
k ≡ (1− τk−1)u

sd
k−1 + τk−1uag

k .

(3) Set τk = αk/(
∑k

i=0 αi ) and uk = (1− τk)usd
k + τkuag

k .
(4) Set k ← k + 1 and go to step (1).

end
We now state the main convergence result for the above variant of Nesterov’s

smooth algorithm. Its proof is given in Corollary 3 of Tseng [21].

Theorem 4.1 The sequence {(usd
k , vk)} ⊆ U × V generated by the variant of Neste-

rov’s smooth algorithm satisfies

0 ≤ f (usd
k )− g(vk) ≤ L DU

σU (
∑k−1

i=0 αi )
, ∀k ≥ 1, (50)

where

DU = max{pU (u) : u ∈ U }. (51)

A typical sequence {αk} satisfying (48) is the one in which αk = (k + 1)/2 for all
k ≥ 0. With this choice for {αk}, we have the following specialization of Theorem 4.1.

Corollary 4.2 If αk = (k + 1)/2 for every k ≥ 0, then the sequence {(usd
k , vk)} ⊆

U × V generated by the variant of Nesterov’s smooth algorithm satisfies

0 ≤ f (usd
k )− g(vk) ≤ 4L DU

σU k(k + 1)
, ∀k ≥ 1,

where DU is defined in (51). Thus, the iteration-complexity of finding an ε-optimal
solution to (41) and its dual (44) by the variant of Nesterov’s smooth algorithm does
not exceed 2[(L DU )/(σU ε)]1/2.

Before ending this subsection, we state sufficient conditions for the function φ
to satisfy Assumptions B.1–B.3. The proof of the following result can be found in
Theorem 1 of [16].

Proposition 4.3 Let a norm ‖ · ‖V on V be given. Assume that φ : U × V → � has
the form

φ(u, v) = θ(u)+ 〈u, Ev〉 − h(v), ∀(u, v) ∈ U × V, (52)
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where E : V → U∗ is a linear map, θ : U → � is Lθ -Lipschitz-differentiable in U
with respect to ‖ · ‖U , and h : V → � is a differentiable strongly convex function
with modulus σV > 0 with respect to ‖ · ‖V . Then, the function f defined by (42) is
(Lθ + ‖E‖2V,U/σV )-Lipschitz-differentiable in U with respect to ‖ · ‖U . As a conse-

quence, φ satisfies Assumptions B.1–B.3 with norm ‖ · ‖U and L = Lθ +‖E‖2V,U/σV .

We will see in Sect. 4 that all saddle-point reformulations (41)–(42) of problems
(21) and (22) studied in this paper have the property that the corresponding function
φ can be expressed as in (52).

4.2 Implementation details of the variant of Nesterov’s smooth method for (34)

The implementation details of the variant of Nesterov’s smooth method (see Sect. 4.1)
for solving formulation (34) (that is, the dual of (33) are addressed in this subsec-
tion. In particular, we describe in the context of this formulation the prox-function,
the Lipschitz constant L and the subproblem (49) used by the variant of Nesterov’s
smooth algorithm of Sect. 4.1.

For the purpose of our implementation, we reformulate problem (34) into the prob-
lem

min
W∈�1

max
X∈Bp×q

F (1)

{
−λmrxG(X) •W − 1

2
‖rx�X − H‖2F

}
(53)

obtained by scaling the variable X of (34) as X ← X/rx , and multiplying the resulting
formulation by−1. From now on, we will focus on formulation (53) rather than (34).

Let n := p + q, u := W, v := X and define

U := �1 ⊆ Sn =: U ,
V := B p×q

F (1) ⊆ �p×q =: V,

and

φ(u, v) := −λmrxG(v) • u − 1

2
‖rx�v − H‖2F , ∀(u, v) ∈ U × V, (54)

where �1 is defined in (32). Also, assume that the norm on U is chosen as

‖u‖U := ‖u‖F , ∀u ∈ U .

Our aim now is to show that φ satisfies Assumptions B.1–B.3 with ‖ · ‖U as above
and some Lipschitz constant L > 0, and hence that the variant of Nesterov’s method
can be applied to the corresponding saddle-point formulation (53). This will be done
with the help of Proposition 4.3. Indeed, the function φ is of the form (52) with θ ≡ 0
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and the functions E and h given by

Ev := −λmrxG(v), ∀v ∈ V,
h(v) := 1

2
‖rx�v − H‖2F , ∀v ∈ V.

Assume that we fix the norm on V to be the Frobenius norm, i.e., ‖ · ‖V = ‖ · ‖F .
Then, it is easy to verify that the above function h is strongly convex with modulus
σV := r2

x /‖�−1‖2 with respect to ‖ · ‖V = ‖ · ‖F . Now, using (6), we obtain

‖E‖V,U = max
{‖λmrxG(v)‖∗U : v ∈ V, ‖v‖V ≤ 1

}
,

= λmrx max {‖G(v)‖F : v ∈ V, ‖v‖F ≤ 1} ,
= λmrx max

{√
2‖v‖F : v ∈ V, ‖v‖F ≤ 1

}
= √2λmrx . (55)

Hence, by Proposition 4.3, we conclude that φ satisfies Assumptions B.1–B.3 with
‖ · ‖U = ‖ · ‖F and

L = ‖E‖2V,U/σV = 2λ2m2‖�−1‖2.

The prox-function pU (·) for the set U used in the variant of Nesterov’s algorithm is
defined as

pU (u) = Tr(u log u)+ log n, ∀u ∈ U = �1. (56)

We can easily see that pU (·) is a strongly differentiable convex function on U with
modulus σU = m with respect to the norm ‖ · ‖U = ‖ · ‖F . Also, it is easy to verify
that min{pU (u) : u ∈ U } = 0 and that

u0 := arg min
u∈U

pU (u) = I/n,
(57)

DU := max
u∈U

pU (u) = log(n/m).

As a consequence of the above discussion and Theorem 4.2, we obtain the following
result.

Theorem 4.4 For a given ε > 0, the variant of Nesterov’s smooth method applied to
(34) finds an ε-optimal solution of problem (34) and its dual, and hence of problem
(22), in a number of iterations which does not exceed

⌈
2
√

2λ‖�−1‖√
ε

√
m log(n/m)

⌉
. (58)

We observe that the iteration-complexity given in (58) is in terms of the transformed
data of problem (4). We next relate it to the original data of problem (4).
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Corollary 4.5 For a given ε > 0, the variant of Nesterov’s smooth method applied to
(34) finds an ε-optimal solution of problem (34) and its dual, and hence of problem
(22), in a number of iterations which does not exceed

⌈
2
√

2λ‖(AT A)−1/2‖√
ε

√
m log(n/m)

⌉
.

Proof We know from Sect. 3.1 that AT A = Q�2 QT , where Q ∈ �p×p is an ortho-
normal matrix. Using this relation, we have

∥∥∥�−1
∥∥∥ = ∥∥∥�−2

∥∥∥1/2 =
∥∥∥(AT A)−1

∥∥∥1/2 =
∥∥∥(AT A)−1/2

∥∥∥ .
The conclusion immediately follows from this identity and Theorem 4.4. ��

It is interesting to note that the iteration-complexity of Corollary 4.5 depends on
the data matrix A but not on B. Based on the discussion below, the arithmetic oper-
ation cost per iteration of the variant of Nesterov’s smooth method when applied to
problem (40) is bounded by O(mpq) where m = min(p, q), due to the fact that its
most expensive operation consists of finding a partial singular value decomposition
of a p × q matrix h as in (61). Thus, the overall arithmetic-complexity of the variant
of Nesterov’s smooth method when applied to (34) is

O
(
λ‖(AT A)−1/2‖√

ε
m3/2 pq

√
log(n/m)

)
.

After having completely specified all the ingredients required by the variant of
Nesterov’s smooth method for solving (53), we now discuss some of the computa-
tional technicalities involved in the actual implementation of the method.

First, recall that, for a given u ∈ U , the optimal solution for the maximization
subproblem (42) needs to be found in order to compute the gradient of ∇ f (u). Using
(54) and the fact that V = B p×q

F (1), we see that the maximization problem (42) is
equivalent to

min
v∈Bp×q

F (1)

1

2
‖rx�v − H‖2F + G • v, (59)

where G := G∗(u) ∈ �p×q . We now briefly discuss how to solve (59). For any ξ ≥ 0,
let

v(ξ) = (r2
x�

2 + ξ I )−1(rx�H − G), �(ξ) = ‖v(ξ)‖2F − 1.

If�(0) ≤ 0, then clearly v(0) is the optimal solution of problem (59). Otherwise, the
optimal solution of problem (59) is equal to v(ξ∗), where ξ∗ is the root of the equation
�(ξ) = 0. The latter can be found by well-known root finding schemes specially
tailored for solving the above equation.
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In addition, each iteration of the variant of Nesterov’s smooth method requires solv-
ing subproblem (49). In view of (43) and (54), it is easy to see that for every u ∈ U ,
we have ∇ f (u) = G(v) for some v ∈ �p×q . Also, ∇ pU (u0) = (1 − log n)I due to
(56) and (57). These remarks together with (47) and (56) imply that subproblem (49)
is of the form

min
u∈�1

(ς I + G(h)) • u + Tr(u log u) (60)

for some real scalar ς and h ∈ �p×q , where �1 is given by (32).
We now present an efficient approach for solving (60) which, instead of finding the

eigenvalue factorization of the (p+q)-square matrix ς I +G(h), computes the singu-
lar value decomposition of the smaller p × q-matrix h. First, we compute a singular
value decomposition of h, i.e., h = Ũ�Ṽ T , where Ũ ∈ �p×m, Ṽ ∈ �q×m and � are
such that

Ũ T Ũ = I, � = Diag(σ1(h), . . . , σm(h)), Ṽ T Ṽ = I, (61)

where σ1(h), . . . , σm(h) are the m = min(p, q) singular values of h. Let ξi and ηi

denote the i th column of Ũ and Ṽ , respectively. Using (5), it is easy to see that

f i = 1√
2

(
ηi

ξi

)
, i = 1, . . . ,m; f m+i = 1√

2

(
ηi

−ξi

)
, i = 1, . . . ,m, (62)

are orthonormal eigenvectors of G(h) with eigenvalues σ1(h), . . . , σm(h),−σ1(h),
. . . ,−σm(h), respectively. Now let f i ∈ �n for i = 2m + 1, . . . , n be such that the
matrix F := ( f 1, f 2, . . . , f n) satisfies FT F = I . It is well-known that the vectors
f i ∈ �n, i = 2m + 1, . . . , n, are eigenvectors of G(h) corresponding to the zero
eigenvalue (e.g., see [3]). Thus, we obtain the following eigenvalue decomposition of
ς I + G(h):

ς I + G(h) = FDiag(a)FT , a = ςe + (σ1(h), . . . ,

σm(h),−σ1(h), . . . ,−σm(h), 0, . . . , 0)T .

Using this relation and (32) with t = 1, it is easy to see that the optimal solution of
(60) is v∗ = FDiag(w∗)FT , where w∗ ∈ �n is the unique optimal solution of the
problem

min aTw + wT logw
s.t. eTw = 1,

0 ≤ w ≤ e/m.
(63)
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It can be easily shown that w∗i = min{exp(−ai − 1 − ξ∗), 1/m}, where ξ∗ is the
unique root of the equation

n∑
i=1

min{exp(−ai − 1− ξ), 1/m} − 1 = 0.

Let ϑ := min{exp(−ς − 1− ξ∗), 1/m}. In view of the above formulas for a and w∗
, we immediately see that

w∗2m+1 = w∗2m+2 = · · · = w∗n = ϑ. (64)

Further, using the fact that F FT = I , we have

n∑
i=2m+1

f i ( f i )T = I −
2m∑
i=1

f i ( f i )T .

Using this result and (64), we see that the optimal solution v∗ of (60) can be efficiently
computed as

v∗ = FDiag(w∗)FT =
n∑

i=1

w∗i f i
(

f i
)T = ϑ I +

2m∑
i=1

(w∗i − ϑ) f i
(

f i
)T
,

where the scalar ϑ is defined above and the vectors { f i : i = 1, . . . 2m} are given by
(62).

Finally, to terminate the variant of Nesterov’s smooth method, we need to evaluate
the primal and dual objective functions of problem (53). As mentioned above, the
primal objective function f (u) of (53) can be computed by solving a problem of the
form (59). Additionally, in view of (17) and (32), the dual objective function g(v) of
(53) can be computed as

g(v) = −1

2
‖rx�v − H‖2F − λrx

m∑
i=1

σi (v), ∀v ∈ V .

4.3 Implementation details of the variant of Nesterov’s smooth method for (40)

The implementation details of the variant of Nesterov’s smooth method (see Sect. 4.1)
for solving formulation (40) (that is, the dual of (38) are addressed in this subsec-
tion. In particular, we describe in the context of this formulation the prox-function,
the Lipschitz constant L and the subproblem (49) used by the variant of Nesterov’s
smooth algorithm of Sect. 4.1.
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For the purpose of our implementation, we reformulate problem (40) into the
problem

min
(t,W )∈�̃

max
X∈Bp×q

F (1)

{
−γ [mr̃xG(X) •W − Mt] − 1

2
‖r̃x�X − H‖2F

}
(65)

obtained by scaling the variables X of (40) as X ← X/r̃x , and multiplying the result-
ing formulation by −1. From now on, our discussion in this subsection will focus on
formulation (65) rather than (40).

Let n := p + q, u := (t,W ), v := X and define

U := �̃ ⊆ �× Sn =: U ,
V := B p×q

F (1) ⊆ �p×q =: V

and

φ(u, v) := −γ [mr̃xG(v) •W − Mt] − 1

2
‖r̃x�v − H‖2F, ∀(u, v) ∈ U × V, (66)

where �̃ is defined in (39). Also, assume that the norm on U is chosen as

‖u‖U :=
(
ξ t2 + ‖W‖2F

)1/2
, ∀u = (t,W ) ∈ U ,

where ξ is a positive scalar that will be specified later. Our aim now is to show that φ
satisfies Assumptions B.1-B.3 with ‖·‖U as above and some Lipschitz constant L > 0,
and hence that the variant of Nesterov’s method can be applied to the corresponding
saddle-point formulation (65). This will be done with the help of Proposition 4.3.
Indeed, the function φ is of the form (52) with θ, E and h given by

θ(u) := γMt, ∀u = (t,W ) ∈ U ,
Ev := (0,−γmr̃xG(v)), ∀v ∈ V, (67)

h(v) := 1

2
‖r̃x�v − H‖2F , ∀v ∈ V.

Clearly, θ is a linear function, and thus it is a 0-Lipschitz-differentiable function on
U with respect to ‖ · ‖U . Now, assume that we fix the norm on V to be the Frobenius
norm, i.e., ‖·‖V = ‖·‖F . Then, it is easy to verify that the above function h is strongly
convex with modulus σV := r̃2

x /‖�−1‖2 with respect to ‖ · ‖V = ‖ · ‖F . Now, using
(6), (67) and the fact that

‖u‖∗U =
(
ξ−1t2 + ‖W‖2F

)1/2
, ∀u = (t,W ) ∈ U∗ = U , (68)

123



186 Z. Lu et al.

we obtain

‖E‖V,U = max
{‖(0,−γmr̃xG(v))‖∗U : v ∈ V, ‖v‖V ≤ 1

}
,

= γmr̃x max {‖G(v)‖F : v ∈ V, ‖v‖F ≤ 1} ,
= γmr̃x max

{√
2‖v‖F : v ∈ V, ‖v‖F ≤ 1

}
= √2γmr̃x . (69)

Hence, by Proposition 4.3, we conclude that φ satisfies Assumptions B.1–B.3 with
‖ · ‖U = ‖ · ‖F and

L = Lθ + ‖E‖2V,U/σV = 2γ 2m2‖�−1‖2. (70)

We will now specify the prox-function pU for the set U used in the variant of
Nesterov’s algorithm. We let

pU (u) = Tr(W log W )+ at log t + bt + c, ∀u = (t,W ) ∈ U, (71)

where

a := log
n

m
, b := log n − a − 1 = log m − 1, c := a + 1. (72)

For a fixed t ∈ [0, 1], it is easy to see that

min
W∈�t

pU (t,W ) = ψ(t) := t log
t

n
+ at log t + bt + c,

and that the minimum is achieved at W = t I/n. Now,

ψ ′(1) = log
1

n
+ 1+ a(log 1+ 1)+ b = 1− log n + a + b = 0,

where the last equality follows from the second identity in (72). These observations
together with (39) allow us to conclude that

arg minu∈U pU (u) = u0 := (1, I/n), (73)

minu∈U pU (u) = ψ(1) = − log n + b + c = 0, (74)

where the last equality is due to second and third identities in (72). Moreover, it is
easy to see that

DU := max
u∈U

pU (u) = max
t∈[0,1] t log

t

m
+ at log t + bt + c

= c +max {0, b − log m} = 1+ log
n

m
, (75)
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where the last identity is due to (72). Also, we easily see that pU (·) is a strongly
differentiable convex function on U with modulus

σU = min(a/ξ, m) (76)

with respect to the norm ‖ · ‖U .
In view of (70), (75), (76) and Corollary 4.2, it follows that the iteration-complexity

of the variant of Nesterov’s smooth method for finding an ε-optimal solution of (65)
and its dual is bounded by

�(ξ) =
⌈

2γm‖�−1‖√
ε

√
2[1+ log(n/m)]

min(a/ξ, m)

⌉
.

As a consequence of the above discussion and Corollary 4.2, we obtain the following
result.

Theorem 4.6 For a given ε > 0, the variant of Nesterov’s smooth method, with prox-
function defined by (71)–(72), L given by (70) and σU given by (76) with ξ = a/m,
applied to (65), finds an ε-optimal solution of problem (65) and its dual in a number
of iterations which does not exceed

⌈
2
√

2γ ‖�−1‖√m√
ε

√
1+ log(n/m)

⌉
. (77)

Proof We have seen in the discussion preceding this theorem that the iteration-com-
plexity of the variant of Nesterov’s smooth method for finding an ε-optimal solution
of (65) and its dual is bounded by �(ξ) for any ξ > 0. Taking ξ = a/m, we obtain
the iteration-complexity bound (77). ��

We observe that the iteration-complexity given in (77) is in terms of the transformed
data of problem (4). We next relate it to the original data of problem (4). The proof of
the following corollary is similar to that of Corollary 4.5.

Corollary 4.7 For a given ε > 0, the variant of Nesterov’s smooth method, with prox-
function defined by (71)–(72), L given by (70) and σU given by (76) with ξ = a/m,
applied to (40) finds an ε-optimal solution of problem (40) and its dual in a number
of iterations which does not exceed

⌈
2
√

2γ ‖(AT A)−1/2‖√m√
ε

√
log(n/m)+ 1

⌉
. (78)

Observe that, in view of Lemma 3.6 with X̄ = 0 and Theorem 3.7, (78) is also an
iteration-complexity bound for finding an ε-optimal solution of problem (21) whenever
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γ = ‖H‖
2
F

M
= ‖(A

T A)−1/2 AT B‖2F
M

, (79)

where the latter equality is due to (20).
Given a λ > 0, by Theorem 6.2, the optimal solution X∗λ of the λ-problem (22)

is also an optimal solution of problem (21) with M = Mλ := ∑m
i=1 σi (X∗λ). The

latter problem, which we refer to as the Mλ-problem, is hence equivalent to the λ-
problem. By Lemma 3.2, Mλ ≤ ‖H‖2F/(2λ), so that γ given by (79) with M = Mλ

satisfies γ ≥ 2λ. Hence, the complexity of solving the Mλ-problem is at least on the
same order as that of solving the equivalent λ-problem. In practice, the computational
complexities of solving these two problems are about the same.

If one is interested in solving a single M-problem, one could try to use a search
scheme to find a scalar λ such that Mλ ≈ M , and then solve the corresponding
λ-problem. However, we believe that a more promising approach is to solve the
M-problem directly by using the method described in this subsection.

Based on the discussion below and in Sect. 4.2, the arithmetic operation cost per
iteration of the variant of Nesterov’s smooth method when applied to problem (40) is
bounded by O(mpq) where m = min(p, q), due to the fact that its most expensive
operation consists of finding a partial singular value decomposition of a p×q matrix h
as in (61). Thus, the overall arithmetic-complexity of the variant of Nesterov’s smooth
method when applied to (40) is

O
(
γ ‖(AT A)−1/2‖√

ε
m3/2 pq

√
log(n/m)

)
.

After having completely specified all the ingredients required by the variant of
Nesterov’s smooth method for solving (65), we now discuss some of the compu-
tational technicalities involved in the actual implementation of the method.

First, for a given u ∈ U , the optimal solution for the maximization subproblem
(42) needs to be found in order to compute the gradient of∇ f (u). The details here are
similar to the corresponding ones described in Sect. 4.2 (see the paragraph containing
relation (59)).

In addition, each iteration of the variant of Nesterov’s smooth method requires
solving subproblem (49). In view of (43) and (66), it is easy to observe that for every
u = (t,W ) ∈ U , we have ∇ f (u) = (η,G(v)) for some η ∈ � and v ∈ �p×q . Also,
by (71), (72) and (73), we easily see that ∇ pU (u0) = (log n− 1)(1,−I ). Using these
results along with (47) and (56), we easily see that subproblem (49) is equivalent to
one of the form

min
(t,W )∈�̃

{(ς I + G(h)) •W + αt + Tr(W log W )+ at log t} (80)

for some α, ς ∈ � and h ∈ �p×q , where a and �̃ are given by (72) and (39), respec-
tively.

We now discuss how the above problem can be efficiently solved. First, note
that by (39), we have (t,W ) ∈ �̃ if, and only if, W = tW ′ for some W ′ ∈ �1.
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This observation together with the fact that TrW ′ = 1 for every W ′ ∈ �1 allows us to
conclude that problem (80) is equivalent to

min
W ′∈�1, t∈[0,1]{
t (ς I + G(h)) •W ′ + αt + t

[
Tr(W ′ log W ′)+ (log t)Tr(W ′)

]+ at log t
}
(81)

= min
t∈[0,1]αt + (a + 1)t log t + td, (82)

where

d := min
W ′∈�1

(ς I + G(h)) •W ′ + Tr(W ′ log W ′). (83)

Moreover, if W ′ is the optimal solution of (83) and t is the optimal solution of (82),
then W = tW ′ is the optimal solution of (81). Problem (83) is of the form (60) where
an efficient scheme for solving it is described in Sect. 4.2. It is easy to see that the
optimal solution of (82) is given by

t = min

[
1, exp

(
−1− α + d

a + 1

)]
.

5 Computational results

In this section, we report the results of our computational experiment which compares
the performance of the variant of Nesterov’s smooth method discussed in Sect. 4.2 for
solving problem (22) with the interior point method implemented in SDPT3 version
4.0 (beta) [20] on a set of randomly generated instances. We do not report compu-
tational results on the performance of the variant of Nesterov’s smooth method for
solving the M-problem (21) since the latter approach is quite similar to the one for
solving the λ-problem (22) both in terms of theoretical complexity and computational
efficiency (see Sect. 4.3 for a discussion regarding this issue).

The random instances of (22) used in our experiments were generated as follows.
We first randomly generated matrices A ∈ �l×p and B ∈ �l×q , where p = 2q and
l = 10q, with entries uniformly distributed in [0, 1] for different values of q. We then
computed H and � for (22) according to the procedures described in Sect. 3.1 and
set the parameter λ in (22) to one. In addition, all computations were performed on
an Intel Xeon 5320 CPU (1.86 GHz) and 12 GB RAM running Red Hat Enterprise
Linux 4 (kernel 2.6.9).

In this experiment, we compared the performance of the variant of Nesterov’s
smooth method (labeled as VNS) discussed in Sect. 4.2 for solving problem (22) with
the interior point method implemented in SDPT3 version 4.0 (beta) [20] for solving
the cone programming reformulation (29). The code for VNS is written in C, and the
initial point for this method is set to be u0 = I/(p+q). It is worth mentioning that the
code SDPT3 uses MATLAB as interface to call several C subroutines to handle all its
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Table 1 Comparison of VNS and SDPT3

Problem (p, q) Iter Obj Time Memory

VNS SDPT3 VNS SDPT3 VNS SDPT3 VNS SDPT3

(20, 10) 36,145 17 4.066570508 4.066570512 16.6 5.9 2.67 279

(40, 20) 41,786 15 8.359912031 8.359912046 55.7 77.9 2.93 483

(60, 30) 35,368 15 13.412029944 13.412029989 96.7 507.7 3.23 1,338

(80, 40) 36,211 15 17.596671337 17.596671829 182.9 2209.8 3.63 4,456

(100, 50) 33,602 19 22.368563640 22.368563657 272.6 8916.1 4.23 10,445

(120, 60) 33,114 N/A 26.823206950 N/A 406.6 N/A 4.98 >16,109

heavy computational tasks. SDPT3 can be suitably applied to solve a standard cone
programming with the underlying cone represented as a Cartesian product of nonneg-
ative orthant, second-order cones, and positive semidefinite cones. The method VNS
terminates once the duality gap is less than ε = 10−8, and SDPT3 terminates once
the relative accuracy is less than 10−8.

The performance of VNS and SDPT3 for our randomly generated instances are
presented in Table 1. The problem size (p, q) is given in column one. The num-
bers of iterations of VNS and SDPT3 are given in columns two and three, and the
objective function values are given in columns four and five, CPU times (in seconds)
are given in columns six to seven, and the amount of memory (in mega bytes) used
by VNS and SDPT3 are given in the last two columns, respectively. The symbol
“N/A” means “not available”. The computational result of SDPT3 for the instance
with (p, q) = (120, 60) is not available since it ran out of the memory in our machine
(about 15.73 giga bytes). We conclude from this experiment that the method VNS,
namely, the variant of Nesterov’s smooth method, generally outperforms SDPT3 sub-
stantially even for relatively small-scale problems. Moreover, VNS requires much less
memory than SDPT3. For example, for the instance with (p, q) = (100, 50), SDPT3
needs 10, 445 mega (≈ 10.2 giga) bytes of memory, but VNS only requires about
4.23 mega bytes of memory; for the instance with (p, q) = (120, 60), SDPT3 needs
at least 16109 mega (≈ 15.73 giga) bytes of memory, but VNS only requires about
4.98 mega bytes of memory.

6 Concluding remarks

In this paper, we studied convex optimization methods for computing the nuclear norm
regularized least squares estimate in multivariate linear regression. In particular, we
explore a variant of Nesterov’s smooth method and interior point methods for com-
puting the penalized least squares estimate. The performance of these methods is then
compared using a set of randomly generated instances. We showed that the variant
of Nesterov’s smooth method generally substantially outperforms the interior point
method implemented in SDPT3 version 4.0 (beta) [20]. Moreover, the former method
is much more memory efficient.

In Sect. 3.1 we provided an approach for simplifying problem (4) which changes
the variable U , in addition to the data A and B. A drawback of this approach is that
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it can not handle extra constraints (not considered in this paper) on U . It turns out
that there exists an alternative scheme for simplifying problem (4), i.e. one that elimi-
nates the dependence of the data on the (generally, large) dimension l, which does not
change U . Indeed, by performing either a QR factorization of A or a Cholesky factor-
ization of AT A, compute an upper triangular matrix R such that RT R = AT A. Letting
G := R−T AT B, it is straightforward to show that problem (4) can be reduced to

min
U

{
‖G − RU‖2F :

m∑
i=1

σi (U ) ≤ M

}
. (84)

Clearly, in contrast to reformulation (21), the above one does not change the variable
U and hence extra constraints on U can be easily handled. On the other hand, a discus-
sion similar to that in Sect. 4.2 shows that each iteration of the variant of Nesterov’s
smooth method applied to (84), or its Lagrangian relaxation version, needs to solve
subproblem (59) with� replaced by R. Since R is an upper triangular matrix and� is
a diagonal matrix, the latter subproblems are much harder to solve than subproblems
of the form (59). For this reason, we have opted to use reformulation (21) rather than
(84) in this paper.
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Appendix

In this section, we discuss some technical results that are used in our presentation.
More specifically, we discuss two ways of solving a constrained nonlinear program-
ming problem based on some unconstrained nonlinear programming reformulations.

Given a set ∅ �= X ⊆ �n and functions f : X → � and h : X → �k , consider the
nonlinear programming problem:

f ∗ = inf { f (x) : x ∈ X, hi (x) ≤ 0, i = 1, . . . , k}. (85)

The first reformulation of (85) is based on the exact penalty approach, which consists
of solving the exact penalization problem

fγ
∗ = inf { fγ (x) := f (x)+ γ [g(x)]+ : x ∈ X}, (86)

for some large penalty parameter γ > 0, where g(x) = max{hi (x) : i = 1, . . . , k}. To
obtain stronger consequences, we make the following assumptions about problem (85):

(A.1) The set X is convex and functions f and hi are convex for each i = 1, . . . , k;
(A.2) f ∗ ∈ � and there exists a point x0 ∈ X such that g(x0) < 0.

We will use the following notion throughout the paper.

Definition 1 Consider the problem of minimizing a real-valued function f (x)
over a certain nonempty feasible region F contained in the domain of f and let
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f̄ := inf{ f (x) : x ∈ F}. For ε ≥ 0, we say that xε is an ε-optimal solution of this
problem if xε ∈ F and f (xε) ≤ ε + f̄ .

We note that the existence of an ε-optimal solution for some ε > 0 implies that f̄
is finite.

Theorem 6.1 Suppose Assumptions A.1 and A.2 hold and define

γ̄ := f (x0)− f ∗

|g(x0)| ≥ 0.

For x ∈ X, define

z(x) := x + θ(x)x0

1+ θ(x) , where θ(x) := [g(x)]
+

|g(x0)| . (87)

Then, the following statements hold:
(a) for every x ∈ X, the point z(x) is a feasible solution of (85);
(b) fγ ∗ = f ∗ for every γ ≥ γ̄ ;
(c) for every γ ≥ γ̄ and ε ≥ 0, any ε-optimal solution of (85) is also an ε-optimal

solution of (86);
(d) if γ ≥ γ̄ , ε ≥ 0 and xγε is an ε-optimal solution of (86), then the point z(xγε ) is

an ε-optimal solution of (85).
(e) if γ > γ̄ , ε ≥ 0 and xγε is an ε-optimal solution of (86), then f (xγε ) − f ∗ ≤ ε

and [g(xγε )]+ ≤ ε/(γ − γ̄ ).
Proof Let x ∈ X be arbitrarily given. Clearly, convexity of X , the assumption that
x0 ∈ X and the definition of z(x) imply that z(x) ∈ X . Moreover, Assumption A.1
implies that g : X → � is convex. This fact, the assumption that g(x0) < 0, and the
definitions of z(x) and θ(x) then imply that

g(z(x)) ≤ g(x)+ θ(x)g(x0)

1+ θ(x) ≤ [g(x)]
+ − θ(x)|g(x0)|
1+ θ(x) = 0.

Hence, statement (a) follows.
To prove statement (b), assume that γ ≥ γ̄ and let x ∈ X be given. Convexity of f

yields (1+ θ(x)) f (z(x)) ≤ f (x)+ θ(x) f (x0), which, together with the definitions
of γ̄ and θ(x), imply that

fγ (x)− f ∗ = f (x)+ γ [g(x)]+ − f ∗

≥ (1+ θ(x)) f (z(x))− θ(x) f (x0)+ γ [g(x)]+ − f ∗

= (1+ θ(x))( f (z(x))− f ∗)− θ(x)( f (x0)− f ∗)+ γ [g(x)]+
= (1+ θ(x))( f (z(x))− f ∗)+ (γ − γ̄ )[g(x)]+. (88)

In view of the assumption that γ ≥ γ̄ and statement (a), the above inequality implies
that fγ (x)− f ∗ ≥ 0 for every x ∈ X , and hence that fγ ∗ ≥ f ∗. Since the inequality
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fγ ∗ ≤ f ∗ obviously holds for any γ ≥ 0, we then conclude that fγ ∗ = f ∗ for any
γ ≥ γ̄ . Statement (c) follows as an immediate consequence of (b).

For some γ ≥ γ̄ and ε ≥ 0, assume now that xγε is an ε-optimal solution of (86).
Then, statement (b) and inequality (88) imply that

ε ≥ fγ (x
γ
ε )− fγ

∗ ≥ (1+ θ(xγε ))( f (z(xγε ))− f ∗)+ (γ − γ̄ )[g(xγε )]+. (89)

Using the assumption that γ ≥ γ̄ , the above inequality clearly implies that f (z(xγε ))−
f ∗ ≤ ε/(1+θ(xγε )) ≤ ε, and hence that z(xγε ) is an ε-optimal solution of (85) in view
of statement (a). Hence, statement (d) follows. Moreover, if γ > γ̄ , we also conclude
from (89) that [g(xγε )]+ ≤ ε/(γ − γ̄ ). Also, the first inequality of (89) implies that
f (xγε )− f ∗ ≤ f (xγε )+γ [g(xγε )]+− f ∗ = fγ (x

γ
ε )− fγ ∗ ≤ ε, showing that statement

(e) holds. ��
We observe that the threshold value γ̄ depends on the optimal value f ∗, and hence

can be computed only for those problems in which f ∗ is known. If instead a lower
bound fl ≤ f ∗ is known, then choosing the penalty parameter γ in problem (86) as
γ := ( f (x0)− fl)/|g(x0)| guarantees that an ε-optimal solution xγε of (86) yields the
ε-optimal solution z(xγε ) of (85), in view of Theorem 6.1(c).

The following result, which is a slight variation of a result due to H. Everett (see
for example pages 147 and 163 of [8]), shows that approximate optimal solutions of
Lagrangian subproblems associated with (85) yield approximate optimal solutions of
a perturbed version of (85).

Theorem 6.2 (Approximate Everett’s theorem) Suppose that for some λ ∈ �k+ and
ε ≥ 0, xλε is an ε-optimal solution of the problem

f ∗λ = inf

{
f (x)+

k∑
i=1

λi hi (x) : x ∈ X

}
. (90)

Then, xλε is an ε-optimal solution of the problem

f ∗ελ = inf
{

f (x) : x ∈ X, hi (x) ≤ hi (x
λ
ε ), i = 1, . . . , k

}
. (91)

Proof Let x̃ be a feasible solution of (91). Since xλε is an ε-optimal solution of (90), we
have f (xλε )+

∑k
i=1 λi hi (xλε ) ≤ f ∗λ + ε. This inequality together with the definition

of f ∗λ in (90) implies that

f (xλε ) ≤ f ∗λ −
k∑

i=1

λi hi (x
λ
ε )+ ε ≤ f (x̃)+

k∑
i=1

λi [hi (x̃)− hi (x
λ
ε )]+ε≤ f (x̃)+ ε,

where the last inequality is due to the fact that λi ≥ 0 for all i = 1, . . . , k and x̃ is
feasible solution of (91). Since the latter inequality holds for every feasible solution x̃
of (91), we conclude that f (xλε ) ≤ f ∗ελ+ ε, and hence that xλε is an ε-optimal solution
of (91). ��
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If our goal is to solve problem inf{ f (x) : x ∈ X, hi (x) ≤ bi , i = 1, . . . , k} for
many different right hand sides b ∈ �k , then, in view of the above result, this goal can
be accomplished by minimizing the Lagrangian subproblem (90) for many different
Lagrange multipliers λ ∈ �k+. We note that this idea is specially popular in statistics
for the case when k = 1.

References

1. Anderson, T.W.: Estimating linear restriction on regression coefficients for multivariate normal distri-
butions. Ann. Appl. Probab. 22, 327–351 (1951)

2. Bach, F.: Consistency of trace norm minimization. J. Mach. Learn. Res. 8, 1019–1048 (2008)
3. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis, algorithms, Engi-

neering Applications. MPS-SIAM Series on Optimization. SIAM, Philadelphia (2001)
4. Bertsekas, D.: Nonlinear Programming. 2nd edn. Athena Scientific, New York (1999)
5. Breiman, L.: Heuristics of instability and stabilization in model selection. Ann. Stat. 24, 2350–2383

(1996)
6. Brooks, R., Stone, M.: Joint continuum regression for multiple predictands. J. Am. Stat. Assoc. 89,

1374–1377 (1994)
7. Fazel, M., Hindi, H., Boyd, S.P.: A rank minimization heuristic with application to minimum order

system approximation. In: Proceedings American Control Conference, vol. 6, pp. 4734–4739 (2001)
8. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization algorithms I, volume 305

of Comprehensive Study in Mathematics. Springer, New York (1993)
9. Hotelling, H.: The most predictable criterion. J. Educational Psychol. 26, 139–142 (1935)

10. Hotelling, H.: Relations between two sets of variables. Biometrika 28, 321–377 (1936)
11. Izenman, A.: Reduced-rank regression for the multivariate linear model. J. Multivar. Anal. 5, 248–264

(1975)
12. Lu, Z.: Smooth optimization approach for covariance selection. SIAM J. Optim. 19, 1807–1827 (2009)
13. Lu, Z., Monteiro, R.D.C., Yuan, M.: Convex optimization methods for dimension reduction and coeffi-

cient estimation in multivariate linear regression. Technical report, Department of Mathematics, Simon
Fraser University, Burnaby, BC, V5A 1S6, Canada, January 2008

14. Massy, W.: Principle components regression with exploratory statistical research. J. Am. Stat.
Assoc. 60, 234–246 (1965)

15. Nesterov, Y. E.: A method for unconstrained convex minimization problem with the rate of convergence
O(1/k2). Doklady AN SSSR, 269:543–547, 1983. Translated as Soviet Math. Docl

16. Nesterov, Y.E.: Smooth minimization of nonsmooth functions. Math. Program. 103, 127–152 (2005)
17. Recht, B., Fazel, M., Parrilo, P.A. (2007) Guaranteed minimum-rank solutions of linear matrix equa-

tions via nuclear norm minimization. Technical report arXiv:0706.4138v1, arXiv
18. Reinsel, G., Velu, R.: Multivariate Reduced-rank Regression: Theory and Application. Springer,

New York (1998)
19. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Royal. Statist. Soc. B 58, 267–288

(1996)
20. Toh, K.C., Tütüncü, R.H., Todd, M.J.: On the implementation and usage of sdpt3—a matlab soft-

ware package for semidefinite-quadratic-linear programming, version 4.0. Manuscript, Department of
Mathematics, National University of Singapore, July 2006

21. Tseng, P.: On accelerated proximal gradient methods for convex–concave optimization. Manuscript,
Department of Mathematics, University of Washington, May 2008

22. van den Berg, E., Friedlander, M.: A root-finding approach for sparse recovery. Talk given at ISMP,
Chicago, 23–28 August 2009

23. van den Berg, E., Friedlander, M.: In pursuit of a root. Working paper, Department of Computer
Science, University of British Columbia, November 2009

24. Wold, H.: Soft modeling by latent variables: the nonlinear iterative partial least squares approach.
In: In Perspectives in Probability and Statistics: Papers in Honor of M. S. Bartlett. Academic Press,
New York (1975)

25. Yuan, M., Ekici, A., Lu, Z., Monteiro, R.D.C.: Dimension reduction and coefficient estimation in
multivariate linear regression. J. R. Stat. Soc. Series B Stat. Methodol. 69(3), 329–346 (2007)

123


	Convex optimization methods for dimension reduction and coefficient estimation in multivariate linear regression
	Abstract
	1 Introduction
	1.1 Notation

	2 Some results on eigenvalues and singular values
	3 Problem reformulations
	3.1 Problem simplification
	3.2 Cone programming reformulations
	3.3 Smooth saddle point reformulations
	3.3.1 Smooth saddle point reformulations for (22)
	3.3.2 Smooth saddle point reformulations for (21)


	4 Numerical methods
	4.1 Review of a variant of Nesterov's smooth method
	4.2 Implementation details of the variant of Nesterov's smooth method for (34)
	4.3 Implementation details of the variant of Nesterov's smooth method for (40)

	5 Computational results
	6 Concluding remarks
	Acknowledgments
	Appendix
	References


