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On the iteration-complexity of a non-Euclidean hybrid
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ABSTRACT
Pointwise and ergodic iteration-complexity results for the
proximal alternating direction method of multipliers (ADMM)
for any stepsize in (0, (1+√5)/2) have been recently estab-
lished in the literature. In addition to giving alternative proofs
of these results, this paper also extends the ergodic iteration-
complexity result to include the case in which the stepsize is
equal to (1+√5)/2. As far as we know, this is the first ergodic
iteration-complexity for the stepsize (1+√5)/2 obtained in
the ADMM literature. These results are obtained by showing
that the proximal ADMM is an instance of a non-Euclidean
hybrid proximal extragradient framework whose pointwise
and ergodic convergence rate are also studied.
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1. Introduction

This paper considers the following linearly constrained convex problem:

inf{f (y)+ g(s) : Cy+ Ds = c}, (1)

where S , Y and X are finite-dimensional inner product spaces, f : Y →
(−∞,∞] and g : S → (−∞,∞] are proper closed convex functions, C : Y →
X and D : S → X are linear operators, and c ∈ X . Convex optimization prob-
lemswith a separable structure such as (1) appear inmany applications areas such
as machine learning, compressive sensing and image processing. A well-known
method that takes advantage of the special structure of (1) is the alternating
direction method of multipliers (ADMM).

Many variants of the ADMM have been considered in the literature; see, for
example, [1–11]. Here, we study the proximal ADMM [4,12] which, recursively,
computes a sequence {(sk, yk, xk)} as follows. Given (sk−1, yk−1, xk−1), the kth
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2 M. L. N. GONÇALVES ET AL.

triple (sk, yk, xk) is determined as

sk = argmins

{
g(s)− 〈xk−1,Ds〉 + β

2
‖Cyk−1 + Ds− c‖2

+1
2
〈s− sk−1,H(s− sk−1)〉

}
,

yk = argminy

{
f (y)− 〈xk−1,Cy〉 + β

2
‖Cy+ Dsk − c‖2

+1
2
〈y− yk−1,G(y− yk−1)〉

}
,

xk = xk−1 − θβ
[
Cyk + Dsk − c

]
, (2)

where β > 0 is a penalty parameter, θ > 0 is a stepsize parameter, and H : S →
S andG : Y → Y are positive semidefinite self-adjoint linear operators.We refer
to the subclass obtained from (2) by setting (H,G) = (0, 0) to as the standard
ADMM.Also, the proximal ADMMwith (H,G) = (τ I − βD∗D,0) for some τ ≥
β‖D‖2 is known as the linearized ADMM or the split inexact Uzawa method
(see, e.g. [1,9,13,14]). It has the desirable feature that, for many applications, its
subproblems are much easier to solve or even have closed-form solutions (see
[3,9,15,16] for more details).

Pointwise and ergodic iteration-complexity results for the proximalADMM(2)
for any θ ∈ (0, (1+√5)/2) were established in [17]. Our paper develops alter-
native pointwise and ergodic iteration-complexity results for the proximal
ADMM (2) based on a different but related termination criterion. More specifi-
cally, a pointwise iteration-complexity is established for any θ ∈ (0, (1+√5)/2)
and an ergodic one is obtained for any θ ∈ (0, (1+√5)/2]. Hence, our anal-
ysis of the ergodic case includes the case θ = (1+√5)/2 which, as far as we
know, has not been established yet. Our approach towards obtaining this exten-
sion is based on viewing the proximal ADMM as an instance of a non-Euclidean
hybrid proximal extragradient (HPE) framework whose (pointwise and ergodic)
complexity is studied and is then used to derive that of the proximal ADMM.

Previous related works. The ADMM was introduced in [18,19] and is thor-
oughly discussed in [20,21]. To discuss complexity results about ADMM, we use
the terminology weak pointwise or strong pointwise bounds to refer to complex-
ity bounds relative to the best of the k first iterates or the last iterate, respectively,
to satisfy a suitable termination criterion. The first iteration-complexity bound
for the ADMMwas established only recently in [22] under the assumptions that
C is injective. More specifically, the ergodic iteration-complexity for the standard
ADMM is derived in [22] for any θ ∈ (0, 1] while a weak pointwise iteration-
complexity easily follows from the approach in [22] for any θ ∈ (0, 1). Paper [1]
analysed a primal–dual scheme for solving a saddle-point problem associated
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to (1) with C= I and c=0, and established, as a by-product, an ergodic iteration-
complexity bound for the linearized ADMM with θ = 1. An ergodic iteration-
complexity result for the latter algorithm applied to solve (1) was obtained in [9].
It should be noted however that [1,9,23] do not provide any details on how to
obtain an easily verifiable ergodic termination criterion with a well-established
iteration-complexity bound. A strong pointwise iteration-complexity bound for
the proximal ADMM (2) with G=0 and θ = 1 was derived in [24]. A num-
ber of papers (see for example [3,5,6,8,10,11,17,25] and references therein) have
extended most of these complexity results to the context of the ADMM class (2)
as well as other ADMM classes. Finally, during the review process of this paper,
we became aware of paper [26], which derived ergodic complexity results for the
proximalADMMwith stepsize parameter θ ∈ (0, (1+√5)/2). It was shown that
the latter algorithm is an instance of an HPE scheme which, on the other hand, is
a special instance of the non-Euclidean HPE framework analysed here. It should
be mentioned that the analysis presented in [26] does not include the extreme
case θ = (1+√5)/2.

The non-Euclidean HPE framework is a class of inexact proximal point meth-
ods for solving the monotone inclusion problem which uses a relative (instead of
summable) error criterion. The proximal point method, proposed by Rockafel-
lar [27], is a classical iterative scheme for solving the latter problem. Paper [28]
introduces a Euclidean version of the HPE framework. Iteration-complexities of
the latter framework are established in [29] (see also [30]). Generalizations of the
HPE framework to the non-Euclidean setting are studied in [6,31,32]. However,
none of the aforementionedHPE frameworks includes the proximalADMMcon-
sidered here as a special case. Applications of the HPE framework can be found
for example in [22,29,30,33–35].

Organization of the paper. Section 1.1 presents our notation and basic results.
Section 2 describes the proximal ADMM and presents its pointwise and ergodic
convergence rate results whose proofs are given in Section 4. Section 3 is devoted
to the study of a non-Euclidean HPE framework. This section is divided into two
subsections, Section 3.1 introduces the framework and presents its convergence
rate bounds whose proofs are given in Section 3.2.

1.1. Notation and basic results

This subsection presents some definitions, notation and basic results used in this
paper.

Let V be a finite-dimensional real vector space with inner product and asso-
ciated norm denoted by 〈·, ·〉V and ‖ · ‖V , respectively. For a given self-adjoint
positive semidefinite linear operator A : V → V , the seminorm induced by A on
V is defined by ‖ · ‖V ,A = 〈A(·), ·〉1/2V . For an arbitrary seminorm ‖ · ‖ on V , its
dual (extended) seminorm, denoted by ‖ · ‖∗, is defined as ‖ · ‖∗ := sup{〈·, v〉V :
‖v‖ ≤ 1}.
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The following result gives some properties of ‖ · ‖∗V ,A whose proof is omitted.

Proposition 1.1: Let A : V → V be a self-adjoint positive semidefinite linear
operator. Then, dom‖ · ‖∗V ,A = Im (A) and ‖A(·)‖∗V ,A = ‖ · ‖V ,A.

Given a set-valued operator T : V ⇒ V , its domain and graph are defined
as DomT := {v ∈ V : T(v) �= ∅} and Gr(T) = {(v1, v2) ∈ V × V | v2 ∈ T(v1)},
respectively, and its inverse operator T−1 : V ⇒ V is given by

T−1(v2) := {v1 : v2 ∈ T(v1)}.
The operator T is said to be monotone if

〈u1 − v1, u2 − v2〉 ≥ 0 ∀ (u1, u2), (v1, v2) ∈ Gr(T).

Moreover, T is maximal monotone if it is monotone and there is no other mono-
tone operator S such thatGr(T) ⊂ Gr(S). Given a scalar ε ≥ 0, the ε-enlargement
T[ε] : V ⇒ V of a monotone operator T : V ⇒ V is defined as

T[ε](v) := {v′ ∈ V : 〈v′ − v2, v− v1〉 ≥ −ε, ∀ (v1, v2) ∈ Gr(T)} ∀ v ∈ V . (3)
Recall that the ε-subdifferential of a convex function f : V → [−∞,∞] is
defined by ∂εf (v) := {u ∈ V : f (v′) ≥ f (v)+ 〈u, v′ − v〉 − ε ∀ v′ ∈ V} for every
v ∈ V . When ε = 0, then ∂0f (x) is denoted by ∂f (x) and is called the subdif-
ferential of f at x. The operator ∂f is trivially monotone if f is proper. If f is
a proper lower semi-continuous convex function, then ∂f is maximal mono-
tone [36]. The domain of f is denoted by dom f and the conjugate of f is the
function f ∗ : V → [−∞,∞] defined as

f ∗(v) = sup
z∈V

(〈v, z〉 − f (z)
) ∀ v ∈ V .

2. Proximal ADMM and its convergence rate

In this section, we recall the proximal ADMM for solving (1) and present
pointwise and ergodic convergence rate results. The pointwise convergence rate
considers the stepsize parameter in the open interval (0, (

√
5+ 1)/2) while the

ergodic one includes also the stepsize (
√
5+ 1)/2.

Throughout this section, we assume that:

(A1) the problem (1) has an optimal solution (s∗, y∗) and an associated
Lagrange multiplier x∗, or equivalently, the inclusion

0 ∈ T(s, y, x) :=
⎡
⎣∂g(s)− D∗x

∂f (y)− C∗x
Cy+ Ds− c

⎤
⎦ (4)

has a solution (s∗, y∗, x∗);
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(A2) there exists x ∈ X such that (C∗x,D∗x) ∈ ri (dom f ∗)× ri (dom g∗).

Next, we state the proximal ADMM for solving the problem (1).

Proximal ADMM

(0) Let an initial point (s0, y0, x0) ∈ S × Y × X , a penalty parameter β > 0, a
stepsize θ > 0, and self-adjoint positive semidefinite linear operators H :
S → S and G : Y → Y be given, and set k = 1;

(1) compute an optimal solution sk ∈ S of the subproblem

min
s∈S

{
g(s)− 〈D∗xk−1s〉S + β

2
‖Cyk−1 + Ds− c‖2X +

1
2
‖s− sk−1‖2S ,H

}
(5)

and compute an optimal solution yk ∈ Y of the subproblem

min
y∈Y

{
f (y)− 〈C∗xk−1y〉Y + β

2
‖Cy+ Dsk − c‖2X +

1
2
‖y− yk−1‖2Y ,G

}
;

(6)
(2) set

xk = xk−1 − θβ
[
Cyk + Dsk − c

]
(7)

and k← k+ 1, and go to step (1).

end

The proximal ADMM has different features depending on the choice of the
operators H and G. For instance, by taking (H,G) = (0, 0) and (H,G) = (τ I −
βD∗D,0) with τ > 0, it reduces to the standard ADMM and the linearized
ADMM, respectively. The latter method is related to the split inexact Uzawa
method (see, e.g. [9,14]) and it basically consists of linearizing the quadratic term
(1/2)‖Cyk−1 + Ds− c‖2X in the standard ADMM and adding a proximal term
(1/2)‖s− sk−1‖2S ,H . In many applications, the corresponding subproblem (5) for
the linearized ADMM is much easier to solve or even has a closed-form solution
(see [9,15,16] for more details).We alsomention that depending on the structure
of problem (1), other choices ofH andGmay be recommended; see, for instance,
Section 1.1 of [3]. It is worth pointing out that the condition A2 is used only to
ensure that the subproblems of ADMM as well as some variants have solutions,
see for example [22, Proposition 7.2] and [6, comments on page 16]. In particu-
lar, under this assumption it is possible to show that the subproblems (5) and (6)
have solutions.

The next two results present pointwise and ergodic convergence rate bounds
for the proximal ADMMunder the assumption that θ ∈ (0, (

√
5+ 1)/2) and θ ∈

(0, (
√
5+ 1)/2], respectively. Their statements use the quantities d0, τθ and σθ



6 M. L. N. GONÇALVES ET AL.

defined as

d0 := d0(β , θ) = inf
(s,y,x)∈T−1(0)

{
1
2
‖s0 − s‖2S ,H +

1
2
‖y0 − y‖2Y ,(G+βC∗C)

+ 1
2βθ
‖x0 − x‖2X

}
, (8)

σθ := 3θ2 − 7θ + 5+
√

(3θ2 − 7θ + 5)2 − 4(2− θ)(3− θ)(θ − 1)2

2(3− θ)
, (9)

τθ := 4max

{
1√
θ
,
√

θ

2− θ

}
. (10)

It is easy to verify that σθ ∈ (0, 1) whenever θ ∈ (0, (
√
5+ 1)/2) and σθ = 1

when θ = (
√
5+ 1)/2.

Theorem 2.1 (Pointwise convergence of the proximal ADMM): Consider the
sequence {(sk, yk, xk)} generated by the proximal ADMM with θ ∈ (0, (

√
5+

1)/2), and let {x̃k} be defined as

x̃k = xk−1 − β(Cyk−1 + Dsk − c). (11)

Then, for every k ∈ N,⎛
⎜⎜⎝

H(sk−1 − sk)
(G+ βC∗C)(yk−1 − yk)

1
βθ

(xk−1 − xk)

⎞
⎟⎟⎠ ∈

⎡
⎣∂g(sk)− D∗x̃k

∂f (yk)− C∗x̃k
Cyk + Dsk − c

⎤
⎦ (12)

and there exists i ≤ k such that
(
‖si−1 − si‖2S ,H + ‖yi−1 − yi‖2Y ,(G+βC∗C) +

1
βθ
‖xi−1 − xi‖2X

)1/2

≤ 2
√
d0√
k

√
1+ σθ + 2τθ

1− σθ

where d0, σθ and τθ are as in (8), (9) and (10), respectively.

In contrast to the pointwise convergence rate result stated above, the ergodic
convergence rate result stated below holds for the extreme case in which θ =
(
√
5+ 1)/2.

Theorem 2.2 (Ergodic convergence of the proximal ADMM): Consider the
sequence {(sk, yk, xk)} generated by the proximal ADMM with θ ∈ (0, (

√
5+
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1)/2], and let {x̃k} be as in (11). Moreover, consider the ergodic sequences
{(sak, yak, xak , x̃ak)} and {εak} defined by

(sak, y
a
k, x

a
k , x̃

a
k) :=

1
k

k∑
i=1

(
si, yi, xi, x̃i

)
, (εak,s, ε

a
k,y)

= 1
k

k∑
i=1

(〈ri,s, si − sak〉, 〈ri,y, yi − yak〉
)
, (13)

where

(ri,s, ri,y) =
(
H(si−1 − si), (G+ βC∗C)(yi−1 − yi)

)
. (14)

Then, for every k ∈ N,⎛
⎜⎜⎝

H(sak−1 − sak)
(G+ βC∗C)(yak−1 − yak)

1
βθ

(xak−1 − xak)

⎞
⎟⎟⎠ ∈

⎡
⎢⎣

∂gεak,s(s
a
k)− D∗x̃ak

∂fεak,y(y
a
k)− C∗x̃ak

Cyak + Dsak − c

⎤
⎥⎦ , (15)

(
‖sak−1 − sak‖2S ,H + ‖yak−1 − yak‖2Y ,(G+βC∗C) +

1
βθ
‖xak−1 − xak‖2X

)1/2

≤ 2
√
2(1+ τθ )d0

k
(16)

and

εak,s + εak,y ≤
3(1+ τθ )[3θ2 + 4σθ(θ

2 + θ + 1)]d0
θ2k

(17)

where d0, σθ and τθ are as in (8), (9) and (10), respectively.

The proofs of Theorems 2.1 and 2.2 will be presented in Section 4. For this, we
first study a non-Euclidean HPE framework from which the proximal ADMM is
a special instance.

3. A non-Euclidean HPE framework

This section describes and derives convergence rate bounds for a non-Euclidean
HPE framework for solving monotone inclusion problems. Section 3.1 describes
the non-Euclidean HPE framework and its corresponding pointwise and ergodic
convergence rate bounds. Section 3.2 gives the proofs for the two convergence
rate results stated in Section 3.1.

3.1. A non-Euclidean HPE framework and its convergence rate

Let Z be finite-dimensional inner product real vector space. We start by intro-
ducing the definition of a distance-generating function and its corresponding
Bregman distance adopted in this paper.
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Definition 3.1: A proper lower semi-continuous convex function w : Z →
(−∞,∞] is called a distance-generating function if int(domw) = Dom ∂w �= ∅
and w is continuously differentiable on this interior. Moreover, w induces the
Bregman distance dw : Z × int(dom w)→ R defined as

(dw)(z′; z) := w(z′)− w(z)− 〈∇w(z), z′ − z〉Z ∀ (z′, z) ∈ Z × int(dom w).
(18)

For simplicity, for every z ∈ int(dom w), the function (dw)(·; z) will be
denoted by (dw)z so that

(dw)z(z′) = (dw)(z′; z) ∀ (z′, z) ∈ Z × int(dom w).

The following useful identities follow straightforwardly from (18):

∇(dw)z(z′) = −∇(dw)z′(z) = ∇w(z′)− ∇w(z) ∀ z, z′ ∈ int(dom w), (19)

(dw)v(z′)− (dw)v(z) = 〈∇(dw)v(z), z′ − z〉Z + (dw)z(z′) ∀ z′ ∈ Z ,

× ∀ v, z ∈ int(dom w). (20)

Our analysis of the non-Euclidean HPE framework requires the distance-
generating function to be regular with respect to a seminorm according to the
following definition.

Definition 3.2: Let distance-generating function w : Z → [−∞,∞], semi-
norm ‖ · ‖ in Z and convex set Z ⊂ int(dom w) be given. For given positive
constantsm andM, w is said to be (m,M)-regular with respect to (Z, ‖ · ‖) if

(dw)z(z′) ≥ m
2
‖z − z′‖2 ∀ z, z′ ∈ Z, (21)

‖∇w(z)− ∇w(z′)‖∗ ≤ M‖z − z′‖ ∀ z, z′ ∈ Z. (22)

We now make some remarks about the class of regular distance-generating
functions as in Definition 3.2, which was first introduced in [6]. First, if the semi-
norm in Definition 3.2 is a norm, then (21) implies that w is strongly convex, in
which case the corresponding dw is said to be nondegenerate. However, since
‖ · ‖ is not assumed to be a norm, a regular distance-generating function w does
not need to be strongly convex, or equivalently, dw can be degenerate. Second,
some examples of (m,M)-regular distance-generating functions can be found in
[6, Example 2.3]. For the purpose of analysing the proximal ADMM, we make
use of the distance-generating function given by w(·) = (1/2)‖ · ‖2Z ,Q where Q
is a self-adjoint positive semidefinite linear operator. This w can be easily shown
to be (1, 1)-regular with respect to (Z , ‖ · ‖Z ,Q). Third, if w : Z → [−∞,∞] is
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(m,M)-regular with respect to (Z, ‖ · ‖), then

m
2
‖z − z′‖2 ≤ (dw)z(z′) ≤ M

2
‖z − z′‖2 ∀ z, z′ ∈ Z. (23)

Throughout this section, we assume that w : Z → [−∞,∞] is an (m,M)-
regular distance-generating function with respect to (Z, ‖ · ‖) where Z ⊂
int(domw) is a closed convex set and ‖ · ‖ is a seminorm in Z . Our problem
of interest in this section is the monotone inclusion problem (MIP)

0 ∈ T(z) (24)

where T : Z ⇒ Z is a maximal monotone operator and the following conditions
hold:

(B1) DomT ⊂ Z;
(B2) the solution set T−1(0) of (24) is nonempty.

We now state a non-Euclidean HPE (NE-HPE) framework for solving (24).

NE-HPE framework for solving (24).

(0) Let z0 ∈ Z, η0 ∈ R+ and σ ∈ [0, 1] be given, and set k = 1;
(1) choose λk > 0 and find (z̃k, zk, εk, ηk) ∈ Z × Z × R+ × R+ such that

rk := 1
λk
∇(dw)zk(zk−1) ∈ T[εk](z̃k), (25)

(dw)zk(z̃k)+ λkεk + ηk ≤ σ(dw)zk−1(z̃k)+ ηk−1; (26)

(2) set k← k+ 1 and go to step 1.

end

We now make some remarks about the NE-HPE framework. First, [6] stud-
ies an NE-HPE framework based on a regular distance-generating function w
for solving a monotone inclusion problem consisting of the sum of T and a
μ-monotone operator Swith respect tow. The latter notion implies strongmono-
tonicity of S when dw is nondegenerate (see [6, Assumption (A1)]). Second, the
NE-HPE does not specify how to find λk and (z̃k, zk, εk) satisfying (25) and (26).
The particular scheme for computing λk and (z̃k, zk, εk) will depend on the
instance of the framework under consideration and the properties of the operator
T. Third, if w is strongly convex on Z and σ = 0, then (26) implies that εk = 0
and zk = z̃k for every k, and hence that rk ∈ T(zk) in view of (25). Therefore, the
HPE error conditions (25)–(26) can be viewed as a relaxation of an iteration of
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the exact non-Euclidean proximal point method, namely,

0 ∈ 1
λk
∇(dw)zk−1(zk)+ T(zk).

Fourth, if w is strongly convex on Z, then it can be shown that the above inclu-
sion has a unique solution zk, and hence that, for any given λk > 0, there exists
a triple (z̃k, zk, εk) of the form (zk, zk, 0) satisfying (25)–(26) with σ = 0. Clearly,
computing the triple in this (exact) manner is expensive, and hence computation
of (inexact) quadruples satisfying the HPE (relative) error conditions with σ > 0
is more computationally appealing.

We end this subsection by presenting pointwise and ergodic convergence rate
results for theNE-HPE frameworkwhose proofs are given in the next subsection.
Their statements use the quantity (dw)0 defined as

(dw)0 = inf{(dw)z0(z
∗) : z∗ ∈ T−1(0)}. (27)

Theorem 3.3 (Pointwise convergence of the NE-HPE): Consider the sequence
{(rk, εk, λk)} generated by the NE-HPE framework with σ < 1. Then, for every k ≥
1, rk ∈ T[εk](z̃k) and the following statements hold:

(a) if λ := inf j≥1 λj > 0, then there exists i ≤ k such that

‖ri‖∗ ≤ 2M√
m

√√√√(1+ σ)(dw)0 + 2η0
1− σ

(
λ−1i∑k
j=1 λj

)

≤ 2M
λ
√
mk

√
(1+ σ)(dw)0 + 2η0

1− σ

εi ≤ (1+ σ)(dw)0 + 2η0
(1− σ)

∑k
i=1 λi

≤ (1+ σ)(dw)0 + 2η0
(1− σ)λk

;

(b) there exists an index i ≤ k such that

‖ri‖∗ ≤ 2M√
m

√√√√(1+ σ)(dw)0 + 2η0
1− σ

(
1∑k

j=1 λ2j

)
,

εi ≤ [(1+ σ)(dw)0 + 2η0]λi
(1− σ)

∑k
j=1 λ2j

,

where (dw)0 is as defined in (27).
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From now on, we focus on the ergodic convergence of the NE-HPE frame-
work. For k ≥ 1, define 
k :=

∑k
i=1 λi and the ergodic iterate (z̃ak , r

a
k , ε

a
k) as

z̃ak =
1


k

k∑
i=1

λiz̃i, rak := 1

k

k∑
i=1

λiri, εak := 1

k

k∑
i=1

λi
(
εi + 〈ri, z̃i − z̃ak〉

)
.

(28)
The following result provides convergence rate bounds for ‖rak‖∗ and εak . The pair
(rak , ε

a
k) plays the role of a residual for z̃

a
k .

Theorem 3.4 (Ergodic convergence of the NE-HPE): For every k ≥ 1, rak ∈
T[εak ](z̃ak) and

‖rak‖∗ ≤
2
√
2M((dw0)+ η0)

1/2
√
m
k

, εak ≤
(
3M
m

)[
3((dw)0 + η0)+ σρk


k

]
.

where

ρk := max
i=1,...,k

(dw)zi−1(z̃i).

Moreover, the sequence {ρk} is bounded under either one of the following situa-
tions:

(a) σ < 1, in which case

ρk ≤ (dw)0 + η0

1− σ
; (29)

(b) DomT is bounded, in which case

ρk ≤ 2M
m

[(dw)0 + η0 + D],

where D := sup{min{(dw)y(y′), (dw)y′(y)} : y, y′ ∈ DomT} is the diameter
of DomT with respect to dw, and (dw)0 is as defined in (27).

The bound on εak presented in Theorem 3.4 depends on the quantity ρk which
is bounded under the assumption σ < 1 or boundedness of DomT. As we will
show in Section 4, proximal ADMM is an instance of the NE-HPE in which the
stepsize θ = (

√
5+ 1)/2 corresponds to the parameter σ = 1. Even in this case,

the sequence {ρk} is bounded regardless the boundedness of DomT.

3.2. Convergence rate analysis of the NE-HPE framework

Themain goal of this subsection is to present the proofs of Theorems 3.3 and 3.4.
Toward this goal, we first establish some technical lemmas which provide useful
properties of regular Bregman distances and of the NE-HPE framework.
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Lemma 3.5: Let w : Z → [−∞,∞] be an (m,M)-regular distance-generating
function with respect to (Z, ‖ · ‖) as in Definition 3.2. Then, the following state-
ments hold:

(a) for every z, z′ ∈ Z, we have

(‖∇(dw)z′(z)‖∗
)2 ≤ 2M2

m
min{(dw)z(z′), (dw)z′(z)}; (30)

(b) for every l ≥ 1 and u0, u1, . . . , ul ∈ Z, we have

(dw)u0(ul) ≤
lM
m

l∑
i=1

min{(dw)ui−1(ui), (dw)ui(ui−1)}. (31)

Proof: (a) It is easy to see that (30) immediately follows from (19), (21) and (22).
(b) It follows from the second inequality in (23) that

(dw)u0(ul) ≤
M
2
‖ul − u0‖2 ≤ M

2

( l∑
i=1
‖ui − ui−1‖

)2

≤ lM
2

l∑
i=1
‖ui − ui−1‖2

which, in view of (21), immediately implies (31). �

The next result presents some useful estimates related to the sequence gener-
ated by the NE-HPE framework.

Lemma 3.6: For every k ≥ 1, the following statements hold:

(a) for every z ∈ domw, we have

(dw)zk−1(z)− (dw)zk(z) = (dw)zk−1(z̃k)− (dw)zk(z̃k)+ λk〈rk, z̃k − z〉Z ;

(b) for every z ∈ domw, we have

(dw)zk−1(z)− (dw)zk(z)+ ηk−1 ≥ (1− σ)(dw)zk−1(z̃k)

+ λk(〈rk, z̃k − z〉Z + εk)+ ηk;

(c) for every z∗ ∈ T−1(0), we have

(dw)zk−1(z
∗)− (dw)zk(z

∗)+ ηk−1 ≥ (1− σ)(dw)zk−1(z̃k)+ ηk;

(d) for every z∗ ∈ T−1(0), we have

(dw)zk(z
∗)+ ηk ≤ (dw)zk−1(z

∗)+ ηk−1.
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Proof: (a) Using (20) twice and using the definition of rk given by (25), we obtain

(dw)zk−1(z)− (dw)zk(z) = (dw)zk−1(zk)+ 〈∇(dw)zk−1(zk), z − zk〉Z
= (dw)zk−1(zk)+ 〈∇(dw)zk−1(zk), z̃k − zk〉Z
+ 〈∇(dw)zk−1(zk), z − z̃k〉Z
= (dw)zk−1(z̃k)− (dw)zk(z̃k)

+ 〈∇(dw)zk−1(zk), z − z̃k〉Z
= (dw)zk−1(z̃k)− (dw)zk(z̃k)+ λk〈rk, z̃k − z〉Z .

(b) This statement follows as an immediate consequence of (a) and (26).
(c) This statement follows from (b), the fact that 0 ∈ T(z∗) and rk ∈ T[εk](z̃k),

and (3).
(d) This statement follows as an immediate consequence of (c) and σ ≤ 1. �

The pointwise convergence rate bounds for the NE-HPE framework will
follow directly from the next result which estimates the residual pair (ri, εi).

Lemma 3.7: Let {(rk, εk, λk)} and (η0, σ) be given by the NE-HPE framework and
assume that σ < 1. Then, for every t ∈ R and every k ≥ 1, there exists an i ≤ k
such that

‖ri‖∗ ≤ 2M√
m

√√√√(1+ σ)(dw)0 + 2η0
1− σ

(
λt−2i∑k
j=1 λtj

)
,

εi ≤ (1+ σ)(dw)0 + 2η0
1− σ

(
λt−1i∑k
j=1 λtj

)

where (dw)0 is as defined in (27).

Proof: For every i ≥ 1, define

θi = max

{
mλ2i (‖ri‖∗)2

4M2 , λiεi

}
.

It is easy to see that the conclusion of the lemma will follow if we show that, for
every i ≥ 1, we have

(1− σ)

k∑
i=1

θi ≤ (1+ σ)(dw)0 + 2η0.
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In order to show that the last inequality hold, we have, from (19) and (25), for
every i ≥ 1

λi‖ri‖∗ = ‖∇(dw)zi−1(z̃i)− ∇(dw)zi(z̃i)‖∗ ≤ ‖∇(dw)zi−1(z̃i)‖∗
+ ‖∇(dw)zi(z̃i)‖∗

≤
√
2M√
m
[
(dw)zi−1(z̃i)

1/2 + (dw)zi(z̃i)
1/2]

≤
√
2M√
m
[
(dw)zi−1(z̃i)

1/2 + (σ (dw)zi−1(z̃i)+ ηi−1 − ηi)
1/2] ,

where the second and third inequalities are due to (30) and (26), respectively.
Hence,

mλ2i (‖ri‖∗)2
2M2 ≤ 2(1+ σ)(dw)zi−1(z̃i)+ 2(ηi−1 − ηi).

The previous estimative together with (26) and definition of θi imply that

θi ≤ (1+ σ)(dw)zi−1(z̃i)+ (ηi−1 − ηi), ∀ i ≥ 1.

Thus, if z∗ ∈ T−1(0), it follows from Lemma 3.6(c) that

(1− σ)

k∑
i=1

θi ≤ (1+ σ)[(dw)z0(z
∗)− (dw)zk(z

∗)+ η0 − ηk]

+ (1− σ)(η0 − ηk)

≤ (1+ σ)(dw)z0(z
∗)+ 2η0.

The desired inequality follows from the latter inequality and the definition of
(dw)0 in (27). As a consequence, we obtain the conclusion of the lemma. �

Now we are ready to prove Theorems 3.3 and 3.4 stated in Section 3.1.

Proof of Theorem 3.3: The inclusion rk ∈ T[εk](z̃k)holds due to (25). Statements
(a) and (b) follow directly from Lemma 3.7 with t=1 and t=2, respectively. �

Proof of Theorem 3.4: The inclusion rak ∈ T[εak ](z̃ak) follows from the transporta-
tion formula (see [37, Theorem 2.3]). Now, let z∗ ∈ T−1(0). Using (19), (25)
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and (28), we easily see that


krak = ∇(dw)z0(zk) = ∇(dw)z0(z
∗)− ∇(dw)zk(z

∗)

which, together with (30) and Lemma 3.6(d), imply that


k‖rak‖∗ ≤ ‖∇(dw)z0(z
∗)‖∗

+ ‖∇(dw)zk(z
∗)‖∗

≤
√
2M√
m

[(dw)z0(z
∗)1/2 + (dw)zk(z

∗)1/2]

≤ 2
√
2M√
m

((dw)z0(z
∗)+ η0)

1/2.

This inequality together with definition of (dw)0 clearly imply the bound on
‖rak‖∗. To show the bound on εak , first note that Lemma 3.6(b) implies that for
every z ∈W,

(dw)z0(z)+ η0 ≥
k∑

i=1
λi(〈ri, z̃i − z〉Z + εi).

Letting z = z̃ak in the last inequality and using the fact that (dw)z0(·) is convex,
we obtain

max
i=1,...,k

(dw)z0(z̃i)+ η0 ≥ (dw)z0(z̃
a
k)+ η0 ≥

k∑
i=1

λi(〈ri, z̃i − z̃ak〉Z + εi) = 
kε
a
k ,

(32)
where the equality is due to (28). On the other hand, (31) implies that, for every
i ≥ 1 and z∗ ∈ T−1(0),

(dw)z0(z̃i) ≤
3M
m
[
(dw)zi(z̃i)+ (dw)zi(z

∗)+ (dw)z0(z
∗)
]

≤ 3M
m
[
σ(dw)zi−1(z̃i)+ ηi−1 + (dw)zi−1(z

∗)+ ηi−1 + (dw)z0(z
∗)
]

≤ 3M
m
[
σ(dw)zi−1(z̃i)+ 2((dw)zi−1(z

∗)+ ηi−1)+ (dw)z0(z
∗)
]

≤ 3M
m
[
σ(dw)zi−1(z̃i)+ 3(dw)z0(z

∗)+ 2η0
]
,

where the second inequality is due to (31) and Lemma 3.6(d), and the last
inequality is due to Lemma 3.6(d). Combining the above relations with (32) and
using the definitions of ρk and (dw)0 and the fact that M/m ≥ 1, we conclude
that the bound on εak holds.

We now establish the bounds on ρk under either one of the condi-
tions (a) or (b). First, if σ < 1, then it follows from Lemma 3.6(c,d) that
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(1− σ)(dw)zi−1(z̃i) ≤ (dw)zi−1(z∗)+ ηk−1 ≤ (dw)z0(z∗)+ η0 for every i ≥ 1
and z∗ ∈ T−1(0), and hence that (29) holds. Assumenow thatDomT is bounded.
Then, it follows from inequality (31) and Lemma 3.6(d) that, for every i ≥ 1 and
z∗ ∈ T−1(0),

(dw)zi−1(z̃i) ≤
2M
m
[
(dw)zi−1(z

∗)+min{(dw)z̃i(z
∗), (dw)z∗(z̃i)}

]
≤ 2M

m
[
(dw)z0(z

∗)+ η0 + D
]

which, in view of definitions of ρk and (dw)0, proves (b). �

4. Convergence rate analysis of the proximal ADMM

Our goal in this section is to show that the proximal ADMM is an instance
of the NE-HPE framework for solving the inclusion problem (4) and, as a by-
product, establish its pointwise and ergodic convergence rate bounds presented
in Section 2.

We start by presenting a preliminary technical result about the proximal
ADMM.

Lemma 4.1: Consider the triple (sk, yk, xk) generated at the k-iteration of the
proximal ADMM and the point x̃k defined in (11). Then,

0 ∈ H(sk − sk−1)+
[
∂g(sk)− D∗x̃k

]
, (33)

0 ∈ (G+ βC∗C)(yk − yk−1)+
[
∂f (yk)− C∗x̃k

]
, (34)

0 = 1
θβ

(xk − xk−1)+
[
Cyk + Dsk − c

]
, (35)

x̃k − xk−1 = βC(yk − yk−1)+ xk − xk−1
θ

. (36)

Proof: From the optimality condition of (5), we have

0 ∈ ∂g(sk)− D∗(xk−1 − β(Cyk−1 + Dsk − c))+H(sk − sk−1),

which, combined with definition of x̃k in (11), yields (33). Now, from the
optimality condition of (6) and definition of x̃k in (11), we obtain

0 ∈ ∂f (yk)− C∗xk−1 + βC∗(Cyk + Dsk − c)+ G(yk − yk−1)

= ∂f (yk)− C∗[xk−1 + β(Cyk−1 + Dsk − c)]

+ βC∗C(yk − yk−1)+ G(yk − yk−1)

= ∂f (yk)− C∗x̃k + βC∗C(yk − yk−1)+ G(yk − yk−1),



OPTIMIZATION 17

which proves (34). Moreover, (35) follows immediately from (7). On the other
hand, it follows from definition of xk in (7) that

xk − xk−1
θ

+ βC(yk − yk−1) = −β(Cyk−1 + Dsk − c)

which, combined with definition of x̃k in (11), yields (36). �

In order to show that the proximal ADMM is an instance of the NE-
HPE framework, we need to introduce the elements required by the setting of
Section 3, namely, the spaceZ , the seminorm ‖ · ‖ onZ , the distance-generating
function w : Z → [−∞,∞] and the convex set Z ⊂ int(dom w). We consider
Z := S × Y × X and endow it with the inner product given by

〈z, z′〉 := 〈s, s′〉S + 〈y, y′〉Y + 〈x, x′〉X ∀ z = (s, y, x), z′ = (s, y, x).

The seminorm ‖ · ‖, the function w and the set Z are defined as

‖z‖ :=
(
‖s‖2S ,H + ‖y‖2Y ,(G+βC∗C) +

1
βθ
‖x‖2X

)1/2

w(z) := 1
2
‖(s, y, x)‖2, Z := Z (37)

for every z = (s, y, x) ∈ Z . Clearly, the Bregman distance associated with w is
given by

(dw)z(z′) = 1
2
‖s′ − s‖2S ,H +

1
2
‖y′ − y‖2Y ,(G+βC∗C) +

1
2βθ
‖x′ − x‖2X (38)

for every z = (s, y, x) ∈ Z and z′ = (s′, y′, x′) ∈ Z .
Using Proposition 1.1 and the fact that ‖ · ‖ = ‖ · ‖Z ,Q where Q is the self-

adjoint positive semidefinite linear operator given by

Q(s, y, x) = (Hs, (G+ βC∗C)y, x/(βθ)) ∀ (s, y, x) ∈ Z , (39)

it is easy to see that the functionw is a (1, 1)-regular distance-generating function
with respect to (Z, ‖ · ‖).

To simplify some relations in the proofs given below, define

�sk = sk − sk−1, �yk = yk − yk−1, �xk = xk − xk−1. (40)

The following technical result will be used to prove that the proximal ADMM is
an instance of the NE-HPE framework.

Lemma 4.2: Let {(sk, yk, xk)} be the sequence generated by the proximal ADMM.
Then, the following statements hold:
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(a) if θ < 2, then

1√
θ

(
1
2
‖�y1‖2Y ,G −

1√
θ
〈C�y1,�x1〉X

)
≤ τθd0,

where d0 and τθ are as in (8) and (10), respectively.
(b) for any θ > 0, we have

1
θ
〈C�yk,�xk〉X ≥ 1− θ

θ
〈C�yk,�xk−1〉X + 1

2
‖�yk‖2Y ,G

− 1
2
‖�yk−1‖2Y ,G, ∀ k ≥ 2.

Proof: (a) Let a point z∗ := (s∗, y∗, x∗) be such that 0 ∈ T(s∗, y∗, x∗) (see
Assumption A1). Since 〈x, x′〉X ≤ (1/2)(‖x‖2X + ‖x′‖2X ) for every x, x′ ∈ X ,
using (40) we obtain

1
2
‖�y1‖2Y ,G −

1√
θ
〈C�y1,�x1〉X ≤ 1

2βθ
‖�x1‖2X +

β

2
‖C�y1‖2X +

1
2
‖�y1‖2Y ,G

≤ 1
βθ
‖x1 − x∗‖2X + β‖C(y1 − y∗)‖2X

+ ‖y1 − y∗‖2Y ,G

+ 1
βθ
‖x0 − x∗‖2X + β‖C(y0 − y∗)‖2X

+ ‖y0 − y∗‖2Y ,G

which, combined with (38) and simple calculus, yields

1√
θ

(
1
2
‖�y1‖2Y ,G −

1√
θ
〈C�y1,�x1〉X

)
≤ 2√

θ

(
(dw)z1(z

∗)+ (dw)z0(z
∗)
)
.

(41)
On the other hand, consider

z0 = (s0, y0, x0), z1 = (s1, y1, x1), z̃1 = (s1, y1, x̃1), λ1 = 1, ε1 = 0.
(42)

Lemma 4.1 implies that inclusion (25) is satisfied for (z0, z1, z̃1, λ1, ε1)with T and
dw as in (4) and (38), respectively. Hence, it follows from Lemma 3.6(a) with z =
z∗, λ1 = 1 and the fact that 〈r1, z̃1 − z∗〉 ≥ 0 (because 0 ∈ T(z∗) and r1 ∈ T(z̃1))
that

(dw)z1(z
∗) ≤ (dw)z0(z

∗)+ (dw)z1(z̃1)− (dw)z0(z̃1). (43)



OPTIMIZATION 19

Using the definitions in (38) and (42) and equation in (36), we obtain

(dw)z1(z̃1)− (dw)z0(z̃1) ≤
1

2βθ
‖x̃1 − x1‖2X −

β

2
‖C(y1 − y0)‖2X

− 1
2βθ
‖x̃1 − x0‖2X

= (θ − 1)
2βθ2

‖x1 − x0‖2X −
1
2

∥∥∥∥x1 − x0
θ
√

β

+
√

βC(y1 − y0)
∥∥∥2
X

≤ (θ − 1)
2βθ2

‖x1 − x0‖2X .

If θ ∈ (0, 1], then the last inequality implies that

(dw)z1(z̃1) ≤ (dw)z0(z̃1). (44)

Now, if θ ∈ (1, 2), we have

(dw)z1(z̃1)− (dw)z0(z̃1) ≤
(θ − 1)
2βθ2

‖x1 − x0‖2X

≤ 2(θ − 1)
θ

(‖x1 − x∗‖2X
2βθ

+ ‖x0 − x∗‖2X
2βθ

)

≤ 2(θ − 1)
θ

[
(dw)z1(z

∗)+ (dw)z0(z
∗)
]
,

where the second inequality is due to the fact that 2ab ≤ a2 + b2 for all a, b ≥
0, and the last inequality is due to (38) and definitions of z0, z1 and z∗. Hence,
combining the last estimative with (43), we obtain

(dw)z1(z
∗) ≤ θ

2− θ

(
1+ 2(θ − 1)

θ

)
(dw)z0(z

∗) = 3θ − 2
2− θ

(dw)z0(z
∗),

which, combined with (44), yields

(dw)z1(z
∗) ≤ max

{
1,
3θ − 2
2− θ

}
(dw)z0(z

∗).

Therefore, statement (a) follows from (41), the last inequality, definition of τθ in
(10) and the fact that d0 (as defined in (8)) satisfies d0 = infz∈T−1(0)(dw)z0(z).
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(b) From the inclusion (34) and relation (36), we see that, for every j ≥ 1,

∂f (yj) � C∗(x̃j − βC(yj − yj−1))− G(yj − yj−1)

= 1
θ
C∗(xj − (1− θ)xj−1)− G(yj − yj−1).

For every k ≥ 2, using the previous inclusion for j=k−1 and j=k, it follows from
the monotonicity of the subdifferential of f that

0 ≤
〈
1
θ
C∗(xk − xk−1)− (1− θ)

θ
C∗(xk−1 − xk−2)− G(yk − yk−1)

+G(yk−1 − yk−2), yk − yk−1
〉
Y

which, combined with (40), yields

1
θ
〈C�yk,�xk〉X ≥ (1− θ)

θ
〈C�yk,�xk−1〉X + ‖�yk‖2Y ,G − 〈G�yk−1,�yk〉Y .

Hence, item (b) follows from the last inequality and the fact that

〈Gy, y′〉Y ≤ (1/2)(‖y‖2Y ,G + ‖y′‖2Y ,G), ∀ y, y′ ∈ Y .

Therefore, the proof of the lemma is concluded. �

We now present some properties of the parameter σθ defined in (9).

Lemma 4.3: Let θ ∈ (0, (
√
5+ 1)/2] be given and consider the parameter σθ as

defined in (9). Then, the following statements hold:

(a) σ = σθ is the largest root of the equation det(Mθ (σ )) = 0 and det(Mθ (σ )) >

0 for every σ > σθ where det(·) denotes the determinant function and

Mθ (σ ) :=
[

σ(1+ θ)− 1 (σ + θ − 1)(1− θ)

(σ + θ − 1)(1− θ) σ − (1− θ)2

]
; (45)

(b) 1/3 < max{(1− θ)2, 1− θ , 1/(1+ θ)} ≤ σθ ≤ 1;
(c) the matrix Mθ (σ ) in (45) is positive semidefinite for σ = σθ .

Proof: (a) It is a simple algebraic computation to see that σ = σθ is the largest
root of the second-order equation det(Mθ (σ )) = 0.

(b) The second inequality follows by (a) and the fact that det(Mθ (σ )) ≤ 0 for
σ equal to (1− θ)2, 1− θ and 1/(1+ θ). Now, the first and third inequalities are
due to the fact that θ ∈ (0, (

√
5+ 1)/2] and 1/3 ≤ 1/(1+ θ).

(c) Statements (a) and (b) imply that det(Mθ (σθ )) = 0 and the main diagonal
entries ofMθ (σθ ) are nonnegative. SinceMθ (σ ) is symmetric, we then conclude
that (c) holds. �
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The next result shows that the proximal ADMM can be seen as an instance of
the NE-HPE framework.

Theorem 4.4: Consider the operator T and Bregman distance dw as in (4)
and (38), respectively. Let {(sk, yk, xk)} be the sequence generated by the proximal
ADMM with θ ∈ (0, (

√
5+ 1)/2] and consider {x̃k} as in (11). Define

zk−1 = (sk−1, yk−1, xk−1), z̃k = (sk, yk, x̃k), λk = 1, εk = 0 ∀ k ≥ 1,
(46)

and the sequence {ηk} as

η0 = τθd0, ηk = [σθ − (θ − 1)2]
‖�xk‖2X
2βθ3

+ σθ + θ − 1
2θ

‖�yk‖2Y ,G, ∀ k ≥ 1,

(47)
where d0, σθ , τθ and (�xk,�yk) are as in (8), (9), (10) and (40), respectively.
Then, the sequence {(zk, z̃k, λk, εk, ηk)} is an instance of the NE-HPE framework
with input z0 = (s0, y0, x0), η0 and σ = σθ .

Proof: The inclusion (25) follows from (33)–(35), (46) and definitions of T and
dw. Now it remains to show that the error condition (26) holds. First of all, it
follows from (36), (38), (40) and (46) that

(dw)zk(z̃k)+ λkεk = 1
2βθ
‖x̃k − xk‖2X =

1
2βθ

∥∥∥∥βC�yk + 1− θ

θ
�xk

∥∥∥∥
2

X

= β

2θ
‖C�yk‖2X +

(1− θ)

θ2
〈C�yk,�xk〉X

+ (1− θ)2

2βθ3
‖�xk‖2X . (48)

Also, (38), (40) and (46) imply that

(dw)zk−1(z̃k) =
1
2
‖�sk‖2S ,H +

1
2
‖�yk‖2Y ,G +

β

2
‖C�yk‖2X +

1
2βθ
‖xk−1 − x̃k‖2X .

(49)
It follows from (36) and (40) that

‖xk−1 − x̃k‖2X =
∥∥∥∥βC�yk + 1

θ
�xk

∥∥∥∥
2

X
= β2‖C�yk‖2X +

2β
θ
〈C�yk,�xk〉X

+ 1
θ2
‖�xk‖2X

which, combined with (49), yields

(dw)zk−1(z̃k) =
‖�sk‖2S ,H

2
+ ‖�yk‖2Y ,G

2
+ β(θ + 1)‖C�yk‖2X

2θ

+ 1
θ2
〈C�yk,�xk〉X +

‖�xk‖2X
2βθ3

. (50)
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Therefore, combining (48) and (50), we see, after simple algebraicmanipulations,
that the error condition (26) is satisfied if and only if

[σ(1+ θ)− 1]
β‖C�yk‖2X

2θ
+ [σ − (θ − 1)2

] ‖�xk‖2X
2βθ3

+ σ
‖�yk‖2Y ,G

2

+ (σ + θ − 1)
θ2

〈C�yk,�xk〉X

≥ ηk − ηk−1 − σ
‖�sk‖2S ,H

2
. (51)

We now show that inequality (51) with σ = σθ holds for k=1. Indeed, it follows
from definition of η1 and σθ ≥ 1/(1+ θ) (see Lemma 4.3(b)) that

[σθ(1+ θ)− 1]
β‖C�y1‖2X

2θ
+ [σθ − (1− θ)2

] ‖�x1‖2X
2βθ3

+ σθ

‖�y1‖2Y ,G
2

+ (σθ + θ − 1)
θ2

〈C�y1,�x1〉X

≥
[
σθ − σθ + θ − 1

θ
+ σθ + θ − 1

θ3/2

] ‖�y1‖2Y ,G
2

+ η1

+ (σθ + θ − 1)
θ3/2

(
1√
θ
〈C�y1,�x1〉X − 1

2
‖�y1‖2Y ,G

)

≥
[
σθ − σθ + θ − 1

3θ

] ‖�y1‖2Y ,G
2

+ η1 − (σθ + θ − 1)
θ

τθd0

≥ η1 − η0,

where the second inequality follows from the fact that
√

θ ≤ 3/2 and Lem-
mas 4.2(a) and 4.3(b), and the third inequality is due to the fact that 1/3 ≤ σθ ≤ 1
(see Lemma 4.3(b)) and definition of η0. Therefore, inequality (51) holds with
k=1 and σ = σθ .

We next show that inequality (51) with σ = σθ holds for k ≥ 2. Using
Lemma 4.2(b) and the definition of {ηk} in (47), we see, after simple calculus,
that a sufficient condition for (51) to hold with σ = σθ and k ≥ 2 is that

(σθ (1+ θ)− 1)β
‖C�yk‖2X

2
+ [σθ − (1− θ)2]

‖�xk−1‖2X
2βθ2

+ (σθ + θ − 1)(1− θ)

θ
〈C�yk,�xk−1〉X ≥ 0.

Hence, since the last inequality holds due to Lemma 4.3(c), we conclude the proof
of the theorem. �

Nowwe are ready to present the proof of the pointwise convergence rate of the
proximal ADMM.
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Proof of Theorem 2.1: Since σθ ∈ [0, 1) for any θ ∈ (0, (
√
5+ 1)/2) and w as

defined in (37) is a (1, 1)-regular distance-generating function and λ := inf λk =
1, we obtain by combining Theorems 4.4 and 3.3(a) that inclusion (12) holds and
there exists i ≤ k such that

(
‖si−1 − si‖2S ,H + ‖yi−1 − yi‖2Y ,(G+βC∗C) +

1
βθ
‖xi−1 − xi‖2X

)1/2

≤ 2√
k

√
(1+ σθ)d0 + 2η0

1− σθ

,

where we also used the definition of the norm ‖ · ‖ in (37) and Proposition 1.1.
The result now follows from the last inequality and definition of η0 in (47). �

In order to establish the ergodic convergence rate of the proximal ADMM, we
need the next auxiliary result.

Lemma 4.5: Let {(sk, yk, xk)} be the sequence generated by the proximal ADMM
and {x̃k} be given by (11). Then, the pair (zk−1, z̃k) as defined in (46) satisfies

(dw)zk−1(z̃k) ≤
4(1+ τθ )(θ

2 + θ + 1)
θ2

d0 k ≥ 1,

where dw is the Bregman distance given in (38), d0 and τθ are as in (8) and (10),
respectively.

Proof: It follows from (38) and (46) that

(dw)zk−1(z̃k) =
1
2
‖�sk‖2S ,H +

1
2
‖�yk‖2Y ,G +

β

2
‖C�yk‖2X +

1
2βθ
‖xk−1 − x̃k‖2X .

(52)
On the other hand, using (36) we have

1
2βθ
‖xk−1 − x̃k‖2X =

1
2βθ
‖βC�yk + �xk

θ
‖2X

= β

2θ
‖C�yk‖2X +

1
βθ2
〈βC�yk,�xk〉X + 1

2βθ3
‖�xk‖2X

≤ β(θ + 1)
2θ2

‖C�yk‖2X +
θ + 1
2βθ3

‖�xk‖2X ,
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where the inequality is due to Cauchy–Schwarz inequality and the fact that 2ab ≤
a2 + b2 for all a, b ≥ 0. Combining the last inequality and (52), we have

(dw)zk−1(z̃k) ≤
(θ2 + θ + 1)

θ2

×
[1
2
‖�sk‖2S ,H +

1
2
‖�yk‖2Y ,G +

β

2
‖C�yk‖2X +

1
2βθ
‖�xk‖2X

]

≤ 2(θ2 + θ + 1)
θ2

[
(dw)zk−1(z

∗)+ (dw)zk(z
∗)
]
,

where the last inequality is due to (38) and the fact that 2ab ≤ a2 + b2 for all
a, b ≥ 0. Hence, since by Theorem 4.4 the proximal ADMM is an instance of the
NE-HPE framework, it follows from the last estimative and Lemma 3.6(d) that

(dw)zk−1(z̃k) ≤
4(θ2 + θ + 1)

θ2
((dw)z0(z

∗)+ η0)

which, combined with the definition of η0 in (47) and the fact that d0 (as defined
in (8)) satisfies d0 = infz∈T−1(0)(dw)z0(z), proves the result. �

Next, we present the proof of the ergodic iteration-complexity bound for the
proximal ADMM.

Proof of Theorem 2.2: First, it follows from Theorem 4.4 that the proximal
ADMMwith θ ∈ (0, (

√
5+ 1)/2] is an instance of the NE-HPE applied to prob-

lem (4) in which σ := σθ , {(zk, z̃k, λk, εk)} and {ηk} are as defined in (9), (46)
and (47), respectively. Hence, since w as defined in (37) is a (1, 1)-regular
distance-generating function and 1 = λ = inf λk, we obtain fromProposition 1.1
and Theorem 3.4, and Lemma 4.5 that, for every k ≥ 1,(

‖sak−1 − sak‖2S ,H + ‖yak−1 − yak‖2Y ,(G+βC∗C) +
1

βθ
‖xak−1 − xak‖2X

)1/2

≤ 2
√
2(d0 + η0)

k
(53)

and

εak =
1
k

k∑
i=1

(〈ri,s, si − sak〉S + 〈ri,y, yi − yak〉Y + 〈ri,x, x̃i − x̃ak〉X
)

≤ 3[3θ2(d0 + η0)+ 4σθ(1+ τθ )(θ
2 + θ + 1)d0]

θ2k
, (54)

where (ri,s, ri,y, ri,x) = (H(si−1 − si), (G+ βC∗C)(yi−1 − yi), (xi−1 − xi)/(βθ).
Moreover, (13) and (35) yield

Dsk + Cyk = rk,x + c, rak,x :=
1
k

k∑
i=1

ri,x = Dsak + Cyak − c.



OPTIMIZATION 25

Additionally, (13) and some algebraic manipulations imply that

k∑
i=1
〈ri,x, x̃i − x̃ak〉X =

k∑
i=1
〈ri,x − rak,x, x̃i − x̃ak〉X =

k∑
i=1
〈ri,x − rak,x, x̃i〉X

=
k∑

i=1
〈Dsi − Dsak + Cyi − Cyak, x̃i〉X .

Hence, the inequalities in (16) and (17) now follow from (53) and (54), and simple
calculus.

To finish the proof of the theorem, note that direct use of the transportation
formula (see [37, Theorem 2.3]) and (33)–(35) give εak,x, εak,y ≥ 0 and (15). �

5. Concluding remark

This paper developed alternative pointwise and ergodic iteration-complexity
results for the proximal ADMM for solving convex linearly constrained opti-
mization problems. A pointwise iteration-complexity was established for any
stepsize θ ∈ (0, (1+√5)/2) and an ergodic one was obtained for any θ ∈
(0, (1+√5)/2]. Hence, our analysis of the ergodic case included the stepsize
θ = (1+√5)/2 which, as far as we know, has not been established yet.

Regarding the asymptotic convergence in the ergodic case of the proximal
ADMM with θ = (

√
5+ 1)/2, if the linear operator Q as in (39) is positive

definite, then the ergodic sequence {(sak, yak, x̃ak)} (see (13)) is bounded and its
accumulation points are solutions of the Lagrangian system (4). Indeed, it fol-
lows from Theorem 4.4 that the proximal ADMM can be seen as an instance of
theNE-HPE frameworkwhose nondegenerate Bregman distance dw is as in (38).
Hence, Lemma 3.6(d) with {zk} as in (46) implies that {(sk, yk, xk)} is bounded
which in turn implies that {zak := (sak, y

a
k, x

a
k)} is bounded. Thus, from Lemma 4.5,

we also obtain the boundedness of the sequence {z̃ak := (sak, y
a
k, x̃

a
k)}. Hence, it

follows from Theorem 2.2 that any accumulation point of {(sak, yak, x̃ak)} is a solu-
tion of (4). Now, if θ ∈ (0, (

√
5+ 1)/2) and Q is positive definite, then it can be

shown, by using a similar argument, that {(sk, yk, x̃k)} and {(sak, yak, x̃ak)} converge
to a solution of (4).
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