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Abstract 

We describe an interior-point algorithm for monotone linear complementarity problems in 
which primal-dual affine scaling is used to generate the search directions. The algorithm is shown 
to have global and superlinear convergence with Q-order up to (but not including) two. The 
technique is shown to be consistent with a potential-reduction algorithm, yielding the first 
potential-reduction algorithm that is both globally and superlinearly convergent. 
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1. Introduction 

During the past three years, we have seen the appearance of several papers dealing 
with primal-dual interior-point algorithms for linear programs (LP) and monotone linear 
complementarity problems (LCP) that are superlinearly or quadratically convergent. For 
LP, these works include McShane [7], Mehrotra [8], Tsuchiya [15], Ye [17], Ye et al. 
[19], Zhang and Tapia [21], and Zhang, Tapia and Dennis [22]. For LCP, we mention Ji, 
Potra and Huang [1], Ji et al. [2], Kojima, Kurita and Mizuno [3], Kojima, Meggido and 
Noma [5], Ye and Anstreicher [18], and Zhang, Tapia and Potra [23]. The introductory 
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section of Ye and Anstreicher [18] contains an interesting discussion of the historical 
development of superlinearly convergent primal-dual interior-point algorithms. 

In this paper, we discuss superlinearly convergent primal-dual affine scaling methods 
for solving the monotone LCP. This problem consists of finding a vector pair (x, y) 
~n  X ~n  such that 

y = Mx + q, ( la)  

x~>0, y>~0, ( lb)  

xTy = 0, ( lc)  

where q ~ R n, and M G  ~n×n is positive semidefinite. In subsequent discussion, we 
say that a point (x, y) is feasible if it satisfies the equations (la) and (lb), and strictly 
feasible if (la) and (lb) are satisfied with x > 0, y > 0. We refer to (x, y) as a solution 
only if all three conditions in (1) hold. 

Previous superlinearly convergent algorithms for (1) have required all iterates to 
belong to a neighborhood of the central path defined by either 

B2( /3 )  -~- {(X, y) feasible I ll XYe - (xWy/n)e][2 <~/3(xTy/n)} 

or 

Af®( /3 )  = {(x, y) feasible [ x i y  i >~ (1 - / 3 ) ( x T y / n ) ,  V i = 1 . . . . .  n}, 

where 

X = d i a g ( x ) ,  Y = d i a g ( y ) ,  e = ( 1 , 1  . . . . .  1) T, 

and /3 ~ [0, 1) is a constant, For example, the predictor-corrector algorithms of Ye et al. 
[19] for LP and Ji, Potra and Huang [1] and Ye and Anstreicher [18] for LCP use the 
neighborhood JK2, while the linear programming algorithm of Zhang and Tapia [20] 
uses ù¢'_~. In this paper, we use a different neighborhood defined with respect to two 
parameters 8 >~ 0 and r /> 0 by 

A/'( 8, r/) = { ( x, y) strictly feasible [ x i Y i >~ rl( x Ty ) I + 8, V i = 1 , . . ,  n}. (2) 

Clearly, JK(8, ~1) is equal to the neighborhood AP_~(1 - nr/) when 8 = 0. The parame- 
ters 8 and r/ that define ./K(8, 7/) do not need to be changed as the solution is 
approached to obtain rapid local convergence. In this respect, the neighborhood (2) 
differs from JK 2 and JK_ ~, which need to be expanded during the final stages of the 
algorithm to achieve superlinear convergence (see [17,18]). 

Our algorithm uses primal-dual affine scaling search directions. These directions are 
simply Newton steps for the system of nonlinear equations formed by (la) and the 
complementarity condition XYe = 0. Because of the connection to Newton's method, we 
would expect such an algorithm to be quadratically convergent if started close to a 
unique nondegenerate solution and allowed to take full steps. In this paper, we show that 
by judicious choice of the step size, all iterates will remain in A/'(6, ~/) while 
simultaneously achieving fast local convergence. Depending on the choice of 8, the 
Q-order of the local convergence can lie anywhere in the range (1, 2). Moreover, our 
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nondegeneracy assumption requires only that one of the solutions (x *, y * ) has x * + 
y * > 0, not that the solution is unique. 

In Section 2, we define the search directions and find bounds on the components of 
these directions, in terms of the complementarity gap xTy and the parameters 8 and Tl 
that define the neighborhood .A~(8, '1)- We pay special attention to the case of M 
skew-symmetric, which occurs when (1) is derived from a linear programming problem. 
In this case, the bounds on the search directions a rea  little tighter and are global; that 
is, they hold everywhere in the relative interior of the set of feasible points and not just 
in the neighborhood At(8, '1)- In Section 3, we show that a specific choice of step 
length yields a globally and superlinearly convergent algorithm. For particular choices of 
the parameter 8, the number of iterates is polynomial in the size of the problem. Finally, 
in Section 4, we show that the algorithm of Section 3 is consistent with a potential 
reduction algorithm based on the Tanabe-Todd-Ye potential function 

qs«(x, y ) = q l o g  xTy-- ~ l o g  xiYi, q>n,  (3) 
i=1  

where an Armijo line search with a well-chosen initial trial step length is used. The 
resulting algorithm is again globally and supeflinearly convergent. 

Tunnel [16] introduced an algorithm for linear programming that uses affine scaling 
search directions in conjunction with a penalty function of the form 

~~(x,  y) = ( 8 +  1 ) l o g ( x T y / n ) - - l o g ( m ! n { x j y , } ) ,  (4) 

for 8 > 0. Step lengths are chosen to keep ~~ constant from iteration to iteration. This 
function is closely related to out neighborhood At(8, '1) since 

(x ,  y) E.Ar(8,  7/) ** • ( x ,  y) ~ --log ~/-- (1 + 8) log n. 

Tunnel [16] proves global convergence but has no superlinear convergence result. In 
Section 5, we prove as a consequence of our results that Tun~el's method is superlinear 
for 8 ~ (0, 1), Mizuno and Nagasawa [9] describe a method for linear programming 
which also uses affine scaling search directions and the potential function (3). They 
prove complexity results for an algorithm that takes a step length greater than a specified 
minimum value (defined by a formula not unlike our (35)) which does not increase (3). 

The following notational conventions are used in the remainder of the paper: Unless 
otherwise specified, II • Il denotes the Euclidean norm. For a general vector z ~ •" and 
index set B _c { 1 , . . ,  n}, z» denotes the vector made up of components z i for i ~ B. If 
M ~ ~n×n and B,N c {1 . . . . .  n}, then MB. refers to the submatrix of M consisting of 
the rows i ~ B. Similarly, M.~ v denotes the submatrix of M corresponding to the 
columns j~N .  If D ~ ~n×n is diagonal, we write D > 0  when all the diagonal 

elements are strictly positive, and use the notation D B to denote the diagonal submatrix 
constructed from Dii, i ~ B .  We say that (B, N)  is a partition of { 1 , . . , n }  if 
B t 2 N = { 1  . . . . .  n}and B~N=O.  
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2. Technical results 

In this section, we state our assumptions and derive bounds on components of the 
iterates (x  k, yk) and the steps (Ax  k, Ay k) for k = 0, 1 , . . .  It is assumed throughout 
that (x k, yk) lies in the neighborhood ./1/'(6, 7). 

We make use of the following assumptions. The first assumption is implicit through- 
out the paper; the second is invoked explicitly where needed. 

Assumption 1 (Existence of a strictly feasible point). The set of strictly feasible points 
for (1) is nonempty. 

Assumption 2 (Nondegeneracy). There exists a solution (x *, y * )  of (1) such that 

x* + y *  >0 .  

When (x*,  y *) is the vector pair from Assumption 2, we can define a partition 
(B, N)  of {1 . . . .  , n} by 

B = (il xi* > 0}, N = {i[si* > 0}. 

It is easy to show that all solutions to (1) have x N = 0 and y~ = 0. 
We consider in this paper the following class of primal-dual affine scaling algo- 

rithms. 

AIgorithm PDA 

initially: Let (x  °, y0) be a strictly feasible point; 

for k = 0 ,  1, 2 . . . .  
Let (Ax  k, Ay ~) denote the solution of the linear system 

YAx + X A y  = - YXe, 

Ay - M A x  = O, 

where (x, y) = (x ~, yk), X = diag(x), and Y = diag(y); 
Choose a k > 0 such that (x  k + akAx k, yk + akAyk)  is strictly feasible; 
Set (x  k+l, yk+l)= (x  k + akAx k, yk + akAYk); 

end for 

(5a) 

(»b) 

We start by stating a well-known result from linear algebra. 

Lemma 2.1. Let F E ~  p×q be given. Then there exists a nonnegative constant 
C = C(F) with the following property: for g ~ ~"  such that the system Fw = g is 
feasible, there exists a solution ~ of Fw = g such that 

}1~11 <eil  gll. 
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The following technical lemma unifies Theorem 2.5 and Lemma A.1 of Monteiro, 
Tsuchiya and Wang [13], which in turn are based on Theorem 2 of Tseng and Luo [14]. 

L e m m a  2.2. Let f ~  ~q and H e ~P×q be giuen. Then there exists a nonnegative 

constant L = L( f ,  H )  with the property that for any diagonal matrix D > 0 and any 

l'ector h Œ Range(H), the (unique) optimal solution w = ~ (D ,  h) of 

1 
minfTWw + 2 I[ Dw I[ 2, subject to Hw -- h, (6)  

satisfies 

11 ~ ][ ~ ~ L{I f T ~ ]  + 11 h 11 ~}. (7)  

Proofi  We first show that I fTw]-4-II h II~ = 0 if and only if ~ = 0. The reverse 
assertion is clear, since from (6) we have h = H-ff = 0. For the forward assertion, note 
that the optimality conditions for (6) imply that D 2 ~  + f +  HTu = 0 for some u ~ ~P.  
Since f T ~  = 0 and H-~ = h = 0, we have 

~TD2 ~ = __fT~ __ ~ T H T  u = O. 

Hence, since D > 0, the result follows. Clearly the inequality (7) holds in this case. In 
the remainder of  the proof we show that L can be chosen such that (7) also holds for 
nonzero solutions to (6). 

Assume for contradiction that there exists a sequence of diagonal matrices {D k} with 
D k > 0 and a sequence {h c} C Range(H) such that I fTWC[ + [I h ~ II ~ > 0 for every k 

and 

Il w c I[ 
lim fTwC h c = oo, k-,~L I+IL II 

where w c is the (unique) optimal solution of (6) with D = D k and h = h k. By taking 

subsequences of  subsequences, if necessary, we can identify a constant L 1 > 0 and a 
nonempty index set J ~ _  {1 . . . . .  q} such that 

i fTwCl+l lhk l [~  ~<L1, V j ~ J ,  (8)  

Jw~J 
lim = ~ ,  V j e J ' .  (9)  

k-~ ~ I f W w C l  + II h c IJ 

Let us define the following linear system 

f T w  =fTwC,  (10a) 

n w  = h*, (10b)  

wj - wf ,  Vj ~..,¢, (10c) 
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and note that w c is a solution of this system. By Lemma 2.1, (10) has a solution ~k 
such that 

j ~ J  / ]  

(the last term being omitted if J =  { 1 , . . ,  q}), where L 2 ~ 0 is a constant depending 
only on f,  H,  and J .  By substituting (8) into this bound, we obtain 

II ~,k Il ~ <L2{I ITwk I + II h ~ I1~ + q ( I  ITwk I + II h « I1~)} 

=L~(I ITw~ I + II h '  lid), (11) 

where L 3 -=L2(1 +L1). From (9), there exists K>~ 0 such that for all k >~ K we have 

I w~l >L3(I fTwkl  + Il h k I1~), Vy ~ J .  (12) 

Combining (11) and (12), we have 

[w~l > lid, kilo, V j ~ J ,  Vk>~K. 

From this relation and the fact that ffk satisfies (10c), we obtain 

II D«r~ « Il 2 ~ k ^ k 2 
jfi,.yr j ~ j  

< ;c ' ~~ (»;,wj) 
j ~ J  j ~ J  

= Il D k w  k Il 2, Vk >1 K. 

Hence, since ffk satisfies (10a), we have 

1 1 
f T ~ k - t -  -~lIDk~kll2 <fTwk + -~llDkwkl[~, Vk>~K. (13) 

This relation together with the fact that ffk satisfies (10b) contradicts the assertion that 
w k is an optimal solution of (6) with D = D ~ and h = h k. [] 

Our main alm now is to derive bounds on the components of the search directions 
generated by Algorithm PDA. We first deal with the case of M skew-symmetric. This 
special case is of interest mainly because the linear programming formulation 

min cTw, subject to Aw >~ b, w >1 O, 
W 

can, with the introduction of a Lagrange multiplier A, be posed in the form (1) with 

[0 A] ICl M =  - A  T , q = . 

The following two lemmas lay the foundations for a global bound on (Ax, Ay) which is 

found in Theorem 2.5. 
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Lemma 2.3. Assume that the matrix M in (1) is skew-symmetric, that is, M = - M  T, 

and that Assumption 1 holds. Then for any strictly feasible point (x,  y), the solution 
( Ax,  Ay)  of (5) solves the quadratic program 

1 1 
min qTw + ~ Il D - a w  Il 2 +~llDzll 2, subjectto z - M w = O ,  (14) 
(w,z) 

where D - X 1 / 2 y  - 1 / 2 .  

Proofi From (5b), (Ax, Ay) is clearly feasible for (14). It remains to verify that the 
optimality conditions hold, that is, 

q +D-2Ax  = M T u ,  D2Ay = - u ,  (15) 

for some u ~ ~n. By using relations (5a), (5b), and (la) and the fact that M = - M  T, 
we obtain 

q + D - 2 A x =  q + X - 1 Y A x =  q - y -  Ay 

= - M ( x + Z l x )  = M T ( x + A x )  

and 

D2Ay = y - a x A y  = - x  - Ax.  

Hence, (Ax,  Ay)  satisfies (15) with u = x + Ax. [] 

Lemma 2.4. Assume that M in (1) is skew-symmetric. Let a strictly feasible point 
(x, y) be given, and consider the solution (Ax,  Ay) of (5). Then, 

qTx = xTy = -- qTAx. (16) 

Proof. We have 

qT x = ( Y -- Mx) Tx ----- yT x -- xTMx = yTx, 

where the last equality is due to fact that M = - M  T. Using this fact again, together 
with (5a) and (la), we obtain 

--xTy = yTZlx + xTAy = ( Mx + q)T Ax + xTMAx 

= qTAx + x T M T A x  -- x T M T A x  = q ~ x .  [] 

Theorem 2.5. Assume that M = - M  T. Then, for every strictly feasible point (x, y), 
the solution ( Ax, Ay) of (5) satisfies 

II(ax, ay)I1~ < --ClqTZ~X = C l x T y ,  (17) 

where C 1 >~ 0 is a constant independent of (x,  y). 
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Proof. The bound follows directly from Lemmas 2.2, 2.3, and 2.4. [] 

We stress that this result holds when (x, y) is any strictly feasible point, not just 
when (x, y) lies in the neighborhood ~ ' (~ ,  ~/). An interesting consequence of this 
result is that the sequence {(x t, yt)} generated by Algorithm PDA when M is 
skew-symmetric always converges, regardless of the choice of step sizes {at}, though 
not necessarily to a solution of (1). We offer a formal proof as our next result. 

Corollary 2.6. Assume that M = - M  T. Then the sequence {(x t, yt)} generated by 
Algorithm PDA converges. 

Proof. From (5) and the skew-symmetry of M, we have 

0 ~< x t+ 1Ty t+l = xt~yt(1 - a t )  + a2AxtTMAxt  = xt~yt(1 - a t )  ~< xt~y t. 

Hence, by Lemma 2.4, the sequence {xk~y t} = {qTxt} is monotonically decreasing and 
bounded below by zero and therefore convergent. Using Theorem 2.5, we obtain 

II x t + l - x t l l  = «t  II axkll  ~< --CIott(qTZIxk)=CI(qTxt--qTxk+I). (18) 

Since the sequence {qTxt} is convergent, the above relation implies that {x t} is a 
Cauchy sequence and therefore convergent. Therefore {yt} = {Mx k + q} is also conver- 
gent, and we have the result. [] 

We now turn to the case of general positive semidefinite matrices M. We start with 
the following technical result which provides bounds on several quantities involving the 
direction (Ax,  Ay). Its proof is well known and can be found in several papers (see for 
example [6,10,12]). 

Lemma 2.7. Let (x,  y) be a strictly feasible point and ( Ax, Ziy) be the solution of (5). 
Then 

(a) maxl<i< n [ AxiAyi l  <~xTy/4, 
(b) 0 ~< AxTAy <~ xTy/4 ,  
(c) max{ [I D -  aAx II, II DAy II} ~< ( xTy) 1/2, where D = X1 /2y  -1/2. 

We next state some simple results concerning boundedness of certain components of 
(x, y) and (Ax ,  Ay). 

Lemma 2.8. Suppose that Assumption 2 holds. Then there exists a constant r > 0 such 
that 

x i<~(xTy ) / r ,  V i ~ N ,  (19a) 

y i<~(xTy ) / r ,  r i e B ,  (19b) 

for every feasible point ( x, y). 
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Proof. Consider a solution (x *, y * ) with x * + y * > 0, as in Assumption 2. Because of 
monotonicity, we obtain 

0 <~ ( X - - x * ) T M ( x - - x  *) = ( x - - x * ) T ( y - - y  *) = x T y - - x * T y - - x T y  *, 

where the last equality is due to the fact that x * Ty, = 0. Hence, xTy * <~ xTy, which 
implies that 

X i < ( x T y ) / y i  *, V i ~ N .  

Similarly, we obtain 

Yi <~ ( x T y ) / x * ,  V i ~ B ,  

and the result follows by choosing r to be the smallest component of (x~, y~ ). [] 

Lemma 2.9. Suppose that Assumption 2 holds and that 6 >t 0 and rl > 0 are given. 
Then for any ( x, y) ~ A/'(6, 7) with corresponding ( Ax, Ay)  defined by (5), we have 

I kxi[  <<. 

I Ay i  <~ 

and 

( xTy)l- 6/2 

V i ~ N, (20a) 
r~71/2 , 

( x T y )  1-6/2  

Vi ~ B, (20b) rT]l/2 " 

T 6 xi>~rrl(x y) , V i ~ B ,  

T #i 
yi>~r'o(x y) , V i ~ N ,  

where r is the constant from Lemma 2.8. 

Proof. Let D = X1/ZY - 1/2, and note from Lemma 2.7(c) that 

[[ D- ' Ax  {1 <~ (xTy)  1/2. 

Since (x, y ) ~  Je'(8, ~), we have 
1+8 

x i Y  i >1 "rl(xTy) , Vi --- 1 , . . ,  n. 
Using relations (22), (19a), and (23), we obtain 

[ x T y )  1/2 ( f ~ )  1 )1/2 -6/2 
[ A x i [  < ~ x i l - -  « I = (XTy)I 

\ x~yi n (x~y)  ~ r~l 1/2 ' 

yielding (20a). Relation (20b) follows similarly. To show (21b), we 
relations (23) and (19a) imply 

" (  xTy)I+ô T 
Yi> >~r~l(x y) , V i ~ N ,  

xi  

yielding (21b). Similarly, (21a) follows from (23) and (19b). [] 

Vi ~ N ,  

(2la) 

(21b) 

(22) 

(23) 

observe that 
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We now provide upper bounds for the remaining components of the search directions, 
namely, Ax B and Ay~v. This part of the development is based on the approach of Ye 
and Anstreicher [18] and, in particular, the following lemma. 

Lemma 2.10 (Ye and Anstreicher [18, Lemma 3.5]). Suppose thatAssumption 2 holds 
and le( ( Ax, Ay)  be the solution of (5). Then (u, v) = ( Ax B, Ayu)  solves the problem 

1 2 min ½ II DBlu l] 2 + ~ I] D~v II , 
(u,v) 

subject to 

I .NV -- M . ù U  ~- M . N A x  N -- I m A y ù .  (24) 

Our bounds for Ax» and Ay N are given in the following result. 

Lemma 2.11 Suppose that Assumption 2 holds and that 6 », 0 and ~7 > 0 are given. 
Then there exists a constant C 2 > 0 independent of 6 and ~7 such (hat for any 
(x, y) E A/( 6, 7) with corresponding ( Ax, Ay)  defined by (5), we have 

C2 T 1 - ~ / 2  C2 / T , l - g / 2  
Il Ax» Il® ~< ~ "--7777(x y )  , I[ AYN I[~ <~ -B-i-f£(x y )  • (25) 

Proof. Applying Lemma 2.2 to problem (24), we conclude that there exists a constant 
C 3 > 0 which depends only on the matrix M and the index sets B and N such (hat 

][( A x , ,  Ayu)  I]® < C3 Il M.NAxu -- I.ùAYB II~ 

< C3{ II M .  N Il o~ Il A x  N Il oo -k- I I / . ,  Il oo II Ay,  [] oo} 

( x T y ) , -  8/2 

C 3 max{ 1] M N Il ~, 1110 IP ~) • r7~1/2 ' 

where the last inequality is due to relations (20a) and (20b). The result now follows by 
setting 

C2 zx (C3//F) max{ll M.jv JJo~, Il I B Jlo~}. [] 

We note that the result of Lemma 2.11 with ~ = 0 is slighfly stronger than the one 
obtained by Ye and Anstreicher [18, Theorem 3.6] in the sense that the constant C 2 does 
not depend on the size of (x, y). Lemma 2.2 plays a crucial role in deriving this 
stronger version. 

We can now merge the results of Theorem 2.5 with Lemmas 2.9 and 2.11 to obtain 
the following theorem. 
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Theorem 2.12. Suppose that Assumption 2 holds and that 8 > 0 and 71 > 0 are given. 
Then there exists a constant C 4 >~ 1 independent of 8 and ~l such that for any 
(x, y) ~./K(8, ,/) with ( Ax, A y) defined by (5) we have 

C4 1- °~ , ~ -~o 
Il A x  I[~ ~< "~õ - (xTy)  e Il Ay Il <~ " ~  ( x T y )  1-p~, 

where p = 0 if M is skew-symmetric and p = 1 / 2  otherwise. 

3. The basic algorithm 

A 
X = max 

i=1 . . . .  ,n 
AxiAyi<O 

In this section, we develop a special version of a primal-dual affine scaling algorithm 
for which all iterates lie in a neighborhood IK(8, r/), for some 8 > 0 and r />  0. We 
show that when 8 e (0, 1/2)  (8 e (0, 1), if M is skew-symmetric), the algorithm is 
superlinearly convergent with q-order equal to 2 -  28 (respectively, 2 -  8). We also 
derive a bound on the number of iterations to reduce the duality gap below a specified 
tolerance. For certain choices of 8, the algorithm is shown to have a polynomial bound 
on the total number of iterations. 

The following notation and definitions will be used in the remainder of the paper. 
Given the strictly feasible point (x, y) and the search direction (Ax, Ay) from (5), 
define 

( x ( a ) ,  y ( a ) )  ~x ( x ,  y) + a (  Ax, Ay) ,  

th ~= AxTay 
xTy  ' 

(26) 

(1 axiayil), xiyi 

where we assume that the maximum over the empty set is 0. We use th« and X« for the 
values of th and X at (x, y) = (x k, yk) and (Ax, Ay) --- (Ax  k, Ayk). 

Lemma 3.1. Let (x,  y) be a strictly feasible point and ( Ax, Ay) be the solution of (5). 
Then the following statements hold for all a ~ [0,1]: 

(a) X(ot)Ty(ot)= xTy(1 -- a + Ot2th), 

(b) Xi(Ol)yi(ol) ) xiYi(1 -- Ot -  ot2x), 
(C) (1 --  Ot)xTy <~ X ( a ) T y ( o t )  ~< (1 - Ot/2)2xTy; 

(d) AxiAy  i = 0 for all i = 1 . . . . .  n if and only if (x(1), y(1)) is a solution of (1) 
with x(1) + y(1) > 0. 

Proof. Statements (a) and (b) follow immediately from (5a) and (26). Lemma 2.7(b) 
implies that 0 ~< th ~ 1/4,  which together with (a) implies statement (c). 
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To prove (d), we assume first that A x i A y  i = 0 for all i = 1 , . . ,  n, so that 
Using (5a), we can partition {1 . . . .  , n} into index sets B and N such that 

i ~ B  ~ A Y i = - - Y i ,  Axi=O» 

i ~ N  ~ A x i - = - x i ,  Ay i=O.  

Therefore, 

i ~ ß  ~ Y i ( 1 ) = 0 ,  x i ( 1 ) = x i > O ,  

i ~ N  ~ x i ( 1 ) = 0 ,  y i ( 1 ) = y i  >0,  

4,=o. 

and so (x(1), y(1)) satisfies ( lb)  and ( lc )  and x(1) + y(1) > 0, The equations y = Mx 

+ q and (5b) imply that ( la )  is also satisfied, so the forward irnplication is true. For the 
converse, assume (x(1),  y(1)) is a solution with x(1) + y(1) > 0. Partitioning {1 . . . . .  n} 

into B = {il x/(1) > 0} and N = {i] yi(1) > 0}, we have using (5a) that 

i E B  ~ A y i = - - Y i ,  A x i = O ,  

i ~ N  ~ AX i = --xi, Ay  i = O. 

Hence, the converse is proved, and so (d) holds. [] 

L e m m a  3.2. I f u  ~< 1 and 6 ~  (0, 1], then (1 - u )  1 + 6  ~ I - (1 + 6)u + 6u 2. 

Proof.  By the mean value theorem, we have that 

i,/2 
( l - u )  a =  1 -  6 u +  ( 6 -  1 ) 6 ( 1  - ü )  a - 2 -  

2 

for some ü between 0 and u. The last term in the above expression is nonpositive, and 

therefore (1 - u) a ~< 1 - 6u. Hence, 

(1  - u )  ' + ~  = (1  - u ) ( 1  - u )  ~ .< (1  - ù ) ( 1  - a ù )  = 1 - ( 1  + 6 ) u  + a u  2, 

giving the result. [] 

L e m m a  3.3. Let 6 ~ (0, 1] and ~q > 0 be given, and assume that (x,  y)  ~ JK(6, ~1). 

Let ( Ax, Ay)  be defined by (5), and suppose that A x i A y  i # 0 for some i = 1 . . . .  , n, 

so that (x(1), y(1)) does not solve (1). Then, for every 

a ~ J  ~= o, ô + x + ( ~ + a ) 4 ,  ' 

the following statements hold." 
(a) 1 - a - - a 2 x > O ,  

(b) ( x ( a ) ,  y(o~)) ~A/ ' (6 ,  r/). 

Proof .  Since Ax i A y  i ~: 0 for some i, we can easily see that either X > 0 or ~b > 0, or 
both. Hence, J G [0, 1). In view of Lemma 3.1(c) and xTy > 0, this implies that 
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x ( a ) T y ( a )  > 0 for all a ~ J .  Using Lemma 3.1(a), I_emma 3.2, and the inclusions 
~b ~ [0, 1/4], a ~ [0, 1), we obtain 

o < Ty( 

= ~(xTy)I+8[1 -- a (1  -- a~b)] '+a 

~< ~7(xZy)l+~[1--(1 + 6 ) a ( 1 - - a 4 ) )  + 6 a 2 ( 1 - a d # )  2] 

~< rl(xTy):+a[l -- (1 + 6)a(l--a~) + 6a2] 

<~ ~7( xTy)'+a[1-- a--  a2X], (27) 

where in the last inequality we used the fact that the interval J is exactly the set of all 
a >~ 0 for which 

1 - a (1  + 6 ) (1  - ad~) + 8 a  2 <-N 1 - a -  a 2 X .  

Clearly, (27) implies statement (a). 
Since (x, y)~ . /K(6 ,  ~/), we have 

xiYi>~rl(xTy) :+a, V i = l  . . . .  ,n .  (28) 

Using this relation together with Lemma 3.1(b) and statement (a), we obtain 

xi( a)Yi (  a )  >~ xiYi(1 - oz-  a2X) >~ rl(xTy) l+a (1 -- a--  a2X), 

V i =  1 , . . . , n .  (29) 

Hence, it follows from (27) and (29) that 

min {Xi(Ol)yi(ol)}>/'q[X(ol)Ty(ol)]l+a>O, Vot~J. 
i ~ l , . . . , n  

Thus, (x (a ) ,  y (a ) )  ~ JF(6, ~) for all a ~ J, and the result follows. [] 

Lemma 3.4. Assume that (x,  y) ~JK(8,  "O), where 8 ~ (0, 1] and rl > 0 are given 
constants. Then 

" r / (xTy)  a 1 - .  ( 3 0 )  
n 

Proof. Since (x, y) ~JV(6, ~7), we have 
It  

1+8 
xTy = ~ xiyi >1 nrl(xTY) , 

i=1  

giving the result. [] 

Lemma 3.5. Suppose that 8 ~ (0, 1] and r I > 0 are given. There exists a constant C > 0 
independent of 8 and r I such that if ( x, y) ~ JV( 8, rl) , then 

max{~b, X} ~< c ( x T y ) ' - ~ e  (31) 
3r/~ ' 

where ~ = 1 if the matrix M is skew-symmetric and ~ = 2 otherwise. 
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Proof. Consider the constant C 4 

B =  3C42. We will show that C fulfills the requirements 
(x, y ) ~ , / ~ ( 6 ,  ù), Theorem 2.12 and Lemma 3.4 imply that 

Ax~y 
fb= xTy 

~< 
nC~[(xTy)2(1-°6)]/ù 2o 

xTy 

x Ty ) l  - (20+ 1)6 

=n"(xTY) ~C2 ù20+1 

=nù(xTy)6c~(XTY) 1-6~ 

as in the statement of Theorem 2.12, and define 
of the lemma. For any 

~< C ( x T y ) I - 6 «  
(32) 

3ùe ' 

where in the last equality we have used the fact that 2 p + 1 = ~. For a bound on X, we 
use (x, y) ~ .///(6, ù) and Theorem 2,12 to deduce that 

Ca4 [ ( xTy) 2(1 08)]/~'/20 (,~x/~yil} 
X ~< max ~< 

l<~i~n x i Y  i ù ( x T y )  1+6 

t T xl-(2p+1)~ 
=c4 ~tx Y) =~  (xTy)I-6~ (33) 

ù 20+1 3ù~ • 

Clearly, (32) and (33) imply the result. [] 

We now state the main theorem concerning convergence of the algorithm. For the 
purpose of this theorem and the next section we define a measure of centrality of the 
initial point as follows: 

mini= 1 ...... { x°i Yi ° } 
7r o = xO~yO/n (34) 

Theorem 3.6. Let 6 ~ (0, 1 / ~ )  and the strictly feasible point (x °, yO) be given, where 
is the constant defined in Lemma 3.5. Suppose that Algorithm PDA is applied with 

step lengths 

a k =  ~ + X k +  (1 + 6)~b k " (35) 
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Then 

(a) the sequence {xk~y k} converges monotonically to O, 
• T 

(b) given any e ~ (0, xOTyO), the algorithm achteves x k yk <~ e in at most 

» n x°~y°l 

iterations, 
termmates wtth x k yk = 0 in a finite number of  iterations, or (c) either the algorithm " . r 

else the sequence {x«Ty ~} converges to zero superlinearly with Q-order 2 - 6~. 

Proof. First, we observe that there is an index K>~ 0 with Ax~Ay~ = 0 for all 
i=  l , . , . , n  if and only if (x  K+I, y r + l )  is a solution of (1) (see Lemma 3.1(d)). 
Moreover, using the proof of statement (b) below, one can easily see that if such an 
index K exists, then it taust be of the order in (36). We will henceforth assume that 
finite termination does not occur and so for all k >/0, there is at least one i = 1 . . . .  , n 
such that Ax~Ay~ ~ O. 

(a) Choosing any ~/> 0 such that (x °, yO) ~ ~¢~(6, r/), we have from relation (35) 
and l_emma 3.3 that (x ~, yk) ~ù4~(6, aT) for all k~> 0. We now find a lower bound on 
the step length a k. By Lemma 3.1(c) and the fact that ct« ~ [0, 1] for all k >~ 0, we have 
that {xk~y ~} is a decreasing sequence. Hence, using (31), we obtain 

max{~bk, Xt} ~ < ~(xk~yk) l -~ '  «(x°~Y°)l-se ~< Vk>~O, 
3~/« 37/« ' 

which, in view of (35), implies 

ak>~~~  > 0 ,  Vk>~0. ~ + ~(x0"yO)'-~«/n« 

Using Lemma 3.1(c) again, we get xk+l~y k+l ~ ( 1 -  ~/2)2x~~y k, Vk>~0, which 
clearly implies statement (a). 

(b) Let 

7r o 
~/= 6, (37) 

n( xOTy O) 

where 7r o is defined in (34). Note that 7/ is the largest possible choice for which 
(x  °, y° )~JV(ô ,  r/). By relation (35) and Lemma 3.3, we know that (x  k, y k ) ~  
JK(6, 7/) for all k >~ 0. Assuming that xkTy k >~ e, we now seek bounds on q~k and Xk 
that are independent of the somewhat murky constant C. Using Lemma 2.7(a) and the 
fact that (x  k, yk) ~ X ( 6 ,  ~), we obtain 

( '  AxkiAyik'} xk~yk/4 1 
Xk ~< max ~< = . 

l<~i<~n xkiYi k ~ ( x k T y k )  1+8 4~/(xkTy«) ~ 
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Hence, from (37) and the assumption that xk~y k » e, we obtain 

1 n 

x k  < xkTv% ~ < ~ " 4~7( _ _ ,  47%(e/x°~y °) 

Moreover, Lernma 2.7(b) implies that qSk ~< 1/4.  These two last relations together with 
(35) then imply that 

+ n /  47ro(é/x°~y°) ~ + ( 1 / 2 )  2n 

where in the last inequality we used the fact that ~o ~< 1 and Œ < x°ry °. Hence, by 
Lemma 3.1(c), we conclude that 

x~+l~y~+l ( ~~o(,/x°~y°/~i~ 
x«~yk ~< 1 -  ~ n  ] " (38) 

We have thus shown that (38) holds whenever x*~y k ~> «. Now, let K be the smallest 
nonnegative integer k for which x k+ 1 ~yk+ 1 < e. Assume for contradiction that 

K >  ] ~ 6rro ] log é . 

By taking logarithms and using the inequality log(1 - 13) ~< - / 3  for 13 ~ (0, 1), we can 
show that 

2K 

1 - ~ n  ] x0~y - - - ö "  

Using this relation and the fact that (38) holds for every k 4 K, we obtain 
2K 

xK~y K ~< 1 -  4n 

which contradicts the fact that xK~y K ~> e. Therefore (36) holds, and we have proved 
statement (b). 

(c) Choose ~ as in the proof of part (a). From Lemma 3.1(a), (35), and (31), we have 
2 x k + l Ty k + l -~ x kTy k ( 1 - -  Ol k + O~ k ¢~ k ) 

~x~)~( x~+(a + ~)~~ 
~+xk+  (1 + ~)4,k 

4C k T k" 2 -  6~ 

~ 3 - ~ ¢ ( x  y ) , 

which implies statement (c). [] 
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We observe that for certain values of 8, the algorithm of Theorem 3.6 has a 
polynomial bound on the number of iterations. To see this, assume that L > 0 is such 
that 2 L >~ max{x°~y °, e-i}. Assume also that the initial point (x °, yO) is chosen in such 
a way that ~r 0 = O(1) is independent of n and L. Then, in terms of n, L, and 6, the 
algorithm of Theorem 3.6 terminates in O(nL22Ls/8) iterations. If we choose 6 = 
O(1/L),  then the number of iterations is O(nL2). 

4. A superlinearly convergent potential reduction algorithm 

Although our algorithm has excellem local convergence properties, preliminary 
computations have shown that its behavior at points remote from the solution is poor. It 
is therefore worthwhile to merge out method with other methods with more attractive 
global convergence properties. In this section, we embed our method in a potential 
reduction method. The resulting method retains the global convergence behavior of 
potential reduction methods while exhibiting the fast local convergence associated with 
the algorithm of Section 3. We are also motivated by a desire to show that potential 
reduction methods can be superlinearly convergent. 

Our potential reduction algorithm is based on the Tanabe-Todd-Ye potential func- 
tion 

tpq(X, y) =q log xTy - ~ l o g  xiYi, q>n. (39) 
i = 1  

We start by specifying the algorithm and stating a global convergence theorem. Then we 
show that if q lies in the range (n, n + 1 /~ ) ,  the algorithm becomes compatible with 
the methõd described in the previous section and is superlinearly convergent. 

We start by specifying the algorithm. 

Aigorithm PDPR 

initiaily: Choose fixed constants /3 > 1 and /~ ~ (0, 1). Let {~'k} be a scalar sequence 
satisfying q'k ~> 1/2,  and let (x °, y0) be stri¢tly feasible; 

for k = 0 , 1 , 2  . . . .  
Find (Ax ~, Ay k) by solving (5) with (x, y) = (x k, yk); 

Define «~ = fl-mk~'k, where m k is the smallest nonnegative integer for which 
(xk(/3-m«~.k) ' yk(13-m~~.k) ) > 0 and 

~Jq( xk( Æ--mkrk), yk( [~-mkTk) ) 

< q,«( x k, yk) + ù( /3- m~~.k) % (  x k, yk)"[ aY k ] '  (40) 

Set (x k+l, y k + l ) =  (xk(«k), yk(olk)); 

end for 
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This algorithm is closely related to the algorithm of Monteiro [11] for convex 
programming. Its global convergence properties can be analyzed by using techniques 
like those of Monteiro [11] and Kojima et al. [4]. We omit the details of this analysis and 
simply state the final theorem. 

Theorem 4.1. Suppose that Assumption 2 holds. Then the sequence of iterates {(x ~, yk)} 
generated by Algorithm PDPR satisfies 

lim xkTy k = 0. 
k---~ ~ 

The following assumption ensures that Algorithm PDPR enters a superlinear phase in 
which the local convergence rate of the algorithm of Theorem 3.6 is attained. 

Assumption 3. There is an integer K > 0 such that the iterate (x K, yK) of Algorithm 
PDPR satisfies 

xiKy~: >~ (xK~yK) 1+1/~, (41) min 

where C and ~ are defined in Lemma 3.5. 

Suppose that for some 6 ~ (0, 1 /« ) ,  the sequence of initial step sizes {r k} is selected 
a s  

r « = m a x  -~, 6 + X k + ( l + 6 ) ~ b  k , 

We have the following result. 

Vk >~ O. (42) 

Lemma 4.2. Suppose that Assumptions 2 and 3 hold, and let {(x k, yk)} be the 
sequence of iterates generated by Algorithm PDPR with the initial step size T k defined 
by (42) for all k >~ O. Define 

min xigy ff 
7/= (x/~~yK)l+ ~, (43) 

where K is the index in Assumption 3. Then, for all k >i K, we have 
(a) (x k, yk) ~ JK(6, ~7), and 
(b) rk = 6 / ( 3  + Xk + (1 + ô)4,~). 

Proof. Recall that by Lemma 3.1(c), the sequence {xk~y k} decreases. Using this fact 
together with relations (41) and (43), one can easily verify that 

~<8, Vk~>K. (44) 
r/« 
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We show first that (a) implies (b) for each k ~> K. Assuming (a), we have from (31) and 
(44) that 

x~+ (1+ 6)6~ a(x~~y~)~-~~/,« 6 1 
a +  x« + (1 + a)$k < 6+C(xkTyk)-- 1- ~:6//~~ < - - = - - ' 2 6  2 

and therefore, from (42), statemem (b) holds. 
We now prove (a) by induction. Clearly, by the definition (43), (a) holds for k = K. 

Assume now that (a) is satisfied at some arbitrary k >~ K. Then (b) also holds at the 
index k, and we can use Lemma 3.3(b) and the fact that a k ¢ (0, ~'k] to conclude that 
(xk+I, yk+l) ¢./F(6, ~q), giving the result. [] 

A result like Theorem 3.6(c) ensures superlinear convergence provided we show that 
m k = 0 for all k sufficiently large, that is, cz~ = ~'k. We do so in the following theorem. 

Theorem 4.3. Suppose that Assumptions 2 and 3 hold, and let {(x k, yk)} be the 
sequence of iterates generated by Algorithm PDPR with the initial step size "r k defined 
by (42) for some 6~ (0, l / E ) .  Assume also that rk < 1 for all k. Then the sequence 
{xk~y k} converges to zero superlinearly with Q-order 2 - 6~. 

Proof. Global convergence of the sequence {xk~y k) to zero follows from Theorem 4.1. 
We next show that a« = ~'k for all k ~> K sufficiently large, from which superlinear 
convergence of {xkTy k} to zero follows as a consequence of Lemma 4.2(b) and Theorem 
3.6(c). To show that a« = ~'k, we need only show that 

(xk(~'k),yk(~'t)) > O, (45) 

and 

[Ax~ 1 I[1«( xk (  T k ) ,  yk(  Tk ) ) -- ~lq( X k , yk) <~ txrkV~bq ( x k, yk)T[ A yk ]" (46) 

Lemma 4.2(a) implies that (45) holds for all k >~ K. To prove that (46) holds for all 
k >~ K sufficiently large, we start by finding a lower bound on its right-hand side. Using 
(39) and (5a), we have 

B~k~7~lq (X k, ykff{ Axk] Ay k ] 

=tz'rB([Xk;-----~yk--(Xk)-le]TAxk+[Xk;-----~Xk--(Yk)-le]TAy k } 

( q Y  Y«Äx« ~ [[ AX~x--Ti ~Ayik ] ] = Ix'r, x,(r.---'-~( + x*Äy k) - __ + 
i=1  

= - / x ~ ' k ( q  -- n )  ~> - - / x ( q  -- n ) .  ( 4 7 )  
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To find an upper bound for the lefl-hand side of (46), note that for all k ~> K, we have 

2 max(~bk, Xk) ùJ'k 

1 - ~'k 

( 8 1 2 ( 6 + X k + ( l + 6 ) ~ k )  max(~k, Xk) 
= 6+Xk+~l+6)qb « Xk + (1 + 6)thk 

= (  82 ) max(~bk, Xk) 

6+x~+(a+Ô)4,~ x~+ (1 + 6)4,~ 

--.<6. 

Using this bound together with statements (a) and (b) of Lemma 3.1, we obtain 

*q(Xk(~k),y~(~k)) -- ~q(X ~, yk) 

f ] kk]  x~('~)Ty~(~~) __ [xi(~~)Y/ ( '~) 
= q  log ~ - L log] _-Z-k..-~ 

i= 1 [ Xi Yi 

~<q l o g ( l - 7 "  k + T~~k) -  ~] l o g ( 1 -  ~'k-- "r2xk) 
i=1 

Tk Xk 
=(q- -n )  log(1--Tk)+qlog 1 +  1--~'k - - n l o g  1 i~~.- ~ 

~< (q - n) log(1 - r~) + q log(1 + 6) - n log(1 - 6).  (48) 

Since xkry k --* 0, it follows from (31) and (42) that 1 - ~'k -* 0. Therefore, from (48), 
the lefl-hand side of (46) approaches - ~  as k ~ ~. Hence, in view of (47), the 
inequality (46) will hold for all sufficiently large k ~> K. 

The proof of superlinearity now follows as in Theorem 3.6(c). [] 

Note that if ~'~ = 1 for some k, we have Ax~Ay~-----0 for all i; therefore, from 
Lemma 3.1(d), (x k+ 1, yk+l) is an exact solution of (1). In this case, Algorithm PDPR 
will reject the step «k = ~'k because (45) is not satisfied! Any implementation would 
surely recognize this special case, so we have avoided the complication that it introduces 
into the analysis above. 

Obviously, we cannot explicitly identify the index K required by Assumption 3, 
since we do not know the value of C in general. However, we can be sure that 
Assumption 3 holds if we choose q to be in the interval (n, n + l / E ) ,  as we show in 
the following theorem. 

Theorem 4.4. Suppose that Assumptions 1 and 2 hold and that q ~ (n, n + 1 /«) .  Then 
there is an index K such that (41) holds at the iterate (x K, yK) generated by Algorithm 
PDPR. 
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Proof. Let us define Q and ~9 as 

Q ~ qJq(X o, yO), 0 a= Q - (n  - 1) log(n - 1). 

Since ~bq is reduced at each iteration of Algorithm PDPR, we have ~bq(x ~, yk) ~< Q for 
all k >~ 0. Hence, for all k ~> 0 and i = 1 . . . . .  n, we have 

(q  - n + 1) log xk~y k -  log xkiYi k 

< ~ Q - ( n -  1) log xtTy k + E l o g  x~y] 
j4:i 

<~ Q - ( n - 1) log( x'~y t - x/k y/~) + E log x~ yjk 
ja:i 

~ < Q - ( n - 1 )  l o g ( n - 1 ) = Q ,  

where the third inequality follows from the arithmetic-geometric mean inequality, 
namely: (E/P= la i ) /p  >1 (Il/P= lai) a/p for any positive scalars a l , . . . ,  ap. Hence, 

log xki Yik -- - - 
(xk~Yk) q-"+l  i> - Q  = xkiYik >1 e_Q(xk~yk)q n+l, 

and so 

Since q - n - l / E <  0 and xk~y « ~ 0, there is a K >  0 such that the last bracketed 
term in the expression is greater than 1 for all k >1 K, giving the result. [] 

Finally, we combine the results of the last two theorems to obtain the following 
result. 

Coroilary 4.5. Suppose that Assumption 2 holds, that q ~ (n, n + 1 / « ) ,  that the 
sequence of initial step sizes {Zk} is defined by (42) for some 6 ~ (0, l / E ) ,  and that 
T k < 1 for all k. Then the sequence {xkTy ~} generated by Algorithm PDPR converges to 
zero superlinearly with Q-order 2 - 6~. 

5. Concluding remarks 

In this concluding section, we discuss the close relationship that exists between the 
algorithm of Theorem 3.6 and the one presented by Tunnel [16]. We also show that 
Tunqel's algorithm is superlinearly convergent whenever the parameter 6 that appears in 
the potential function (4) lies in the interval (0, 1). 

For simplicity, we assume that the affine scaling direction (Ax, Ay) at any strictly 
feasible point satisfies AxiAy  i ~ O, for some i ~ {1 . . . . .  n}, so that finite termination of 
the algorithm never occurs. For the purpose of this section, we also assume that the 
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matrix M in (1) is skew-symmetric. Since Tunqel's algorithm is for linear programs, it 
fits into this framework. 

We describe Tunqel's algorithm in an equivalent but slightly different way from [16] 
in order to better point out its connection to the neighborhood AP(6, ~7). Let the strictly 
feasible point (x k, yk) be the kth iterate of the algorithm. Tun~el's algorithm sets 
(x~+l, yk+l)= (xk(a~), yk(ak)), where the stepsize a k ~ (0, 1) is such that the point 
(Xk(ak), yk(ctk)) satisfies the equation in (x, y) defined by 

mini=  1 . . . . . .  { xiYi}  mini=  1 . . . . . .  {x~i Yi k } 
(xTy~ ~+~ (x~~~) 1+~ 

Tunnel shows that such a step size always exists and is unique. In the proof of this fact, 
he also shows that (Xk(ak), y k(a~)) satisfies the strict inequality 

mini= 1 ...... {x/k(«) Y/k(a) } mini= ~ ...... {x/kY/~ } 
> 

[x~~ «~Ty~~ «~11+~ (x~~~)~+ ~ 
for all a e (0, «k). Observe that the iterates of this algorithm satisfy 

0 0 min/=1 ...... { xki Yi k} min/=i ...... { xi Yi } A 
( x k ~ k ) l +  ~ (x0Ty0)I+ 6 7 ,  V k ~ 0 ,  

which, in terms of the potential function (4), is equivalent to ~ ( x  k, yk) = ~ô(x °, y0) 
for all k >~ 0. It is now easy to see that Tunqel's step size is the largest a > 0 for which 
(xk(a) ,  yk(«))  ~ JK(6, ~7). In view of Lemma 3.3(b), it follows that our step size (35) 
is less than or equal to Tun§el's step size. Therefore Tun~el's algorithm achieves larger 
or equal reduction of the duality gap at each iteration while generating all points within 
the neighborhood JF'(6, 7/). Hence, the same proof given for Theorem 3.6(c) can be 
used to show that Tunqel's algorithm is superlinearly convergent with q-order of 
convergence equal to 2 - 6, whenever 6 ~ (0, 1). 
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