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Abstract. Kojima, Shindoh and Hara proposed a family of search directions for the semidefinite linear
complementarity problem (SDLCP) and established polynomial convergence of a feasible short-step path-
following algorithm based on a particular direction of their family. The question of whether polynomiality
could be established for any direction of their family thus remained an open problem. This paper answers
this question in the affirmative by establishing the polynomiality of primal-dual interior-point algorithms for
SDLCP based on any direction of the Kojima, Shindoh and Hara family of search directions. We show that
the polynomial iteration-complexity bounds of two well-known algorithms for linear programming, namely
the short-step path-following algorithm of Kojima et al. and Monteiro and Adler, and the predictor-corrector
algorithm of Mizuno et al., carry over to the context of SDLCP.

Key words. semidefinite programming – interior-point methods – polynomial complexity – path-following
methods – primal-dual methods

1. Introduction

Several authors have discussed generalizations of interior-point algorithms for linear
programming (LP) to the context of semidefinite programming (SDP) and the more
general semidefinite linear complementarity problem (SDLCP). The landmark work
in this direction is due to Nesterov and Nemirovskii [1,2] where a general approach
for using interior-point methods for solving convex programs is proposed based on the
notion of self-concordant functions. (See their book [3] for a comprehensive treatment
of this subject.) They show that the problem of minimizing a linear function over a
convex set can be solved in “polynomial time” as long as a self-concordant barrier
function for the convex set is known. In particular, Nesterov and Nemirovskii show
that linear programs, convex quadratic programs with convex quadratic constraints, and
semidefinite programs all have explicit and easily computable self-concordant barrier
functions, and hence can be solved in “polynomial time”. On the other hand, Alizadeh [4]
extends Ye’s projective potential reduction algorithm [5] for LP to SDP and argues that
many known interior point algorithms for LP can also be transformed into algorithms
for SDP in a mechanical way. Since then many authors have proposed interior-point
algorithms for solving the SDP problem and SDLCP, including Alizadeh, Haeberly and
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Overton [6], Freund [7], Helmberg, Rendl, Vanderbei and Wolkowicz [8], Jarre [9],
Kojima, Shida and Shindoh [10], Kojima, Shindoh and Hara [11], Lin and Saigal [12],
Luo, Sturm and Zhang [13], Monteiro [14,15], Monteiro and Zhang [16], Monteiro
and Tsuchiya [17], Monteiro and Zanjácomo [18], Nesterov and Nemirovskii [19],
Nesterov and Todd [20,21], Potra and Sheng [22], Sturm and Zhang [23], Tseng [24],
Vandenberghe and Boyd [25], and Zhang [26]. Most of these more recent works are
concentrated on primal-dual methods.

The first algorithms for SDP and SDLCP that are extensions of primal-dual algo-
rithms for LP, such as the long-step path-following algorithm of Kojima, Mizuno and
Yoshise [27], the short-step path-following algorithm of Kojima, Mizuno and Yoshise
[28] and Monteiro and Adler [29,30], and the predictor-corrector algorithm of Mizuno,
Todd and Ye [31], use one of the following three search directions: i) the Alizadeh,
Haeberly and Overton (AHO) direction proposed in [6], ii) the HRVW/KSH/M direc-
tion independently proposed by Kojima, Shindoh and Hara [11] and Helmberg, Rendl,
Vanderbei and Wolkowicz [8], and later rediscovered by Monteiro [14] via a formulation
based on a scaling and symmetrization of the Newton equation, and iii) the Nesterov
and Todd (NT) direction introduced in [20,21].

Several families of search directions have been proposed in the literature in an
attempt to study primal-dual algorithms for SDP in a unified manner. The first family,
proposed by Kojima, Shindoh and Hara [11], is known to contain the HRVW/KSH/M
and NT directions but not the AHO direction. The second family, namely the Monteiro
and Zhang (MZ) family, formally introduced by Zhang [26] to generalize a symmetric
formulation of the HRVW/KSH/M direction proposed by Monteiro [14], contains all
three search directions above. Proofs that the NT direction is a member of both the
KSH family and the MZ family can be found in Kojima, Shida and Shindoh [32] and
Todd, Toh and Tütüncü [33], respectively. The third family, namely the Monteiro and
Tsuchiya (MT) family introduced in [17] shortly after the release of the first version of
this paper, is based on a different representation of the central path that is directly related
to the centrality measures used in standard path following algorithms. This family also
contains the HRVW/KSH/M and NT directions (but not the AHO direction). Finally,
we mention that Tseng [24] also considers a family of search directions parametrized
by a single scalar parameter which contains the NT and HRVW/KSH/M directions.

Unified convergence analyses for the MZ family have been given by Monteiro and
Zhang [16] and Monteiro [15]. In the paper [16], iteration-complexity bounds are derived
for long-step primal-dual path-following methods based on a subclass of the MZ family
of search directions, which contains the HRVW/KSH/M and NT directions but not the
AHO direction. In particular, it is shown that the corresponding algorithms based on the
HRVW/KSH/M and NT directions performO(n3/2 logε−1) andO(n logε−1) iterations,
respectively, to reduce the duality gap by a factor of at leastε. (TheO(n3/2 logε−1)

iteration-complexity bound for the HRVW/KSH/M direction was in fact obtained earlier
by Monteiro [14].) More recently, Monteiro [15] proves the polynomiality of short-step
path following algorithms and Mizuno-Todd-Ye predictor-corrector type algorithms
based on any member of the MZ family, thus obtaining as a by-product the important
result that Frobenius-norm type algorithms based on the AHO direction are polynomial.

For the MT family, Monteiro and Tsuchiya [17] establishO(
√

n logε−1) and
O(n logε−1) iteration-complexity bounds for the short-step and semilong-step path
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following algorithms, respectively [17]. They also consider a subclass of the MT family
which contains the HRVW/KSH/M and NT directions, and establish anO(n3/2 logε−1)

iteration complexity bound for any long-step path following algorithm based on this
subclass. Monteiro and Zanjácomo [18] report promising computational results for
algorithms based on some directions of the MT family.

Unified analysis for the KSH family of search directions are provided in Kojima,
Shindoh and Hara [11]. This paper deals with primal-dual path-following algorithms
for the semidefinite linear complementarity problem based on the KSH family of search
directions and establishes the polynomiality of: 1) a feasible short-step path-following
method based on aspecialmember of their family, namely the HRVW/KSH/M direction
and; 2) a (feasible and infeasible) potential reduction algorithm based onany search
direction of their family. The question of whether polynomiality of algorithm 1) can
be established for any direction of the KSH family was thus left as an open problem.
(N. B. The polinomiality results for the MZ family and the MT family do not provide
answer to this question because these families have overlaps one another, but neither of
them includes others.)

In this paper, we answer the above question in the affirmative. Using new techniques
recently proposed by Monteiro [15], we prove the polynomial convergence of two
feasible primal-dual algorithms based on a narrow (or Frobenius norm) neighborhood
of the central path, namely: a short-step path-following method which is an extension
of the LP method of Kojima, Mizuno and Yoshise [28] and Monteiro and Adler [29,30],
and a predictor-corrector algorithm similar to the LP one of Mizuno, Todd and Ye [31].

This paper is organized as follows. In Section 2, we introduce the SDLCP problem
and motivate the search directions used by the algorithms studied in this paper. In Section
3, we state and prove the technical results used in the polynomial convergence analysis
of the algorithms of Section 4. In Section 4, we establish the polynomiality of two
primal-dual feasible algorithms: the short-step path-following algorithm in Subsection
4.1 and the predictor-corrector algorithm in Subsection 4.2. We give some concluding
remarks in Section 5.

1.1. Notation and terminology

The following notation is used throughout the paper. The superscriptT denotes transpose.
<p denotes thep-dimensional Euclidean space. The set of allp× q matrices with real
entries is denoted by<p×q. The set of all symmetricp× p matrices is denoted by
S p. For Q ∈ S p, Q � 0 meansQ is positive semidefinite andQ � 0 meansQ is
positive definite. The trace of a matrixQ ∈ <p×p is denoted by TrQ ≡ ∑n

i=1 Qii .
For a matrixQ ∈ <p×p with all real eigenvalues, we denote its eigenvalues byλi [Q],
i = 1, . . . , p, and its smallest eigenvalue byλmin[Q]. Given P and Q in <p×q, the
inner product between them in the vector space<p×q is defined asP • Q ≡ Tr PT Q.
The Euclidean norm and its associated operator norm are both denoted by‖ · ‖; hence,
‖Q‖ ≡ max‖u‖=1 ‖Qu‖ for any Q ∈ <p×p. The Frobenius norm ofQ ∈ <p×p is
‖Q‖F ≡ (Q • Q)1/2. We frequently use the inequalities‖Q‖ ≤ ‖Q‖F and‖QR‖F ≤
‖Q‖‖R‖F , for Q, R ∈ <p×p. S p

+ andS p
++ denote the set of all matrices inS p which

are positive semidefinite and positive definite, respectively.S
p
⊥ denotes the set of all
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skew-symmetric matrices in<p×p. SinceS p + S p
⊥ = <p×p andU • V = 0 for every

U ∈ S p and V ∈ S p
⊥, it follows thatS p

⊥ is the orthogonal complement ofS p with
respect to the inner product•.

2. Description of the problem and preliminary discussion

In this section, we introduce the semidefinite linear complementarity problem and the
assumptions made in our presentation. We also describe the family of search directions
introduced by Kojima, Shindoh and Hara [11] and give a short proof for the existence
and uniqueness of these directions.

LetL be an affine subspace ofSn × Sn whose dimension isn(n+ 1)/2. Let

L+ ≡ L ∩ (Sn+ × Sn+),
L++ ≡ L ∩ (Sn++ × Sn++).

In this paper, we deal with the semidefinite linear complementarity problem (SDLCP)
of finding a pair(X, S) such that

(X, S) ∈ L+, X • S= 0. (1)

Throughout our presentation, we assume that

[A1] L is monotone, that is(X1 − X2) • (S1 − S2) ≥ 0 for any (X1, S1) ∈ L and
(X2, S2) ∈ L.

[A2] L++ is nonempty.

This problem includes SDP which has numerous applications in systems and control
theory and combinatorial optimization. GivenC ∈ Sn and (Ai ,bi ) ∈ Sn × < for
i = 1, . . . ,m, a primal-dual pair of SDP problems is defined as

(P) min{C • X : Ai • X = bi , i = 1, . . . ,m, X � 0},
(D) max{bT y :

m∑
i=1

yi Ai + S= C, S� 0},

whereb ≡ (b1, . . . ,bm)
T . Under the assumption that problems(P) and (D) have

interior feasible solutions, that is feasible solutionsX and(S, y) satisfyingX � 0 and
S� 0, it is known that(X, S) is a solution of (1) with

L = {(X, S) ∈ Sn × Sn : Ai • X = bi , i = 1, . . . ,m,
m∑

i=1

yi Ai + S= C for somey ∈ <m},

if and only if (X, S, y) is a solution of(P) and(D) for somey ∈ <m. In this case, it is
easy to see thatL is a monotone affine space satisfying(X1− X2) • (S1− S2) = 0 for
any(X1, S1) ∈ L and(X2, S2) ∈ L.
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Under assumptions [A1] and [A2], it is known that problem (1) has at least one
solution. Since for(X, S) ∈ Sn+ × Sn+, we haveX • S = 0 if and only if XS= 0,
problem (1) is equivalent to find a pair(X, S) such that

(X, S) ∈ L+, XS= 0.

It has been shown by Kojima, Shindoh and Hara [11] that the perturbed system

(X, S) ∈ L+, XS= µI, (2)

has a unique solution inL++, denoted by(Xµ, Sµ), for everyµ > 0, and that
limµ→0(Xµ, Sµ) exists and is a solution of (1). The set{(Xµ, Sµ) : µ > 0} is cal-
led the central path associated with (1) and plays a fundamental role in the development
of interior point algorithms for solving SDP and SDLCP. Another equivalent formulation
of (2) is

(X, S) ∈ L+, X1/2SX1/2 = µI (or, S1/2XS1/2 = µI ),

which motivates the following measure of closeness of(X, S) ∈ Sn+ × Sn+ to the point
(Xµ, Sµ) of the central trajectory:

dµ(X, S) ≡
∥∥∥X1/2SX1/2− µI

∥∥∥
F
=
∥∥∥S1/2XS1/2− µI

∥∥∥
F
,

and the following (feasible) neighborhood of(Xµ, Sµ):

NF(µ, γ) =
{
(X, S) ∈ L+ : dµ(X, S) ≤ γµ} ,

whereγ > 0 is a given constant. Both algorithms described in Section 4 generate their
iterates in the neighborhood of the central path defined by

NF(γ) ≡ ∪µ>0NF(µ, γ).

Path-following algorithms for solving (1) are based on the idea of approximately
tracing the central path. Application of Newton method for computing the solution of
(2) withµ = µ̂ leads to the Newton search direction(1̂X, 1̂S) which solves the linear
system

X1̂S+ 1̂XS= µ̂I − XS, (X + 1̂X, S+ 1̂S) ∈ L. (3)

Unfortunately, this system does not always have a solution. To overcome this difficulty,
Kojima and Shindoh and Hara proposed the following modified Newton system of
equations:

X(1S+ 1̃S)+ (1X+ 1̃X)S= µ̂I − XS, (4a)

(X +1X, S+1S) ∈ L, (1̃X, 1̃S) ∈ L⊥, (4b)

whereL⊥ is a linear subspace of<n×n ×<n×n satisfying the following condition:

[A3] L⊥ ⊆ Sn⊥ × Sn⊥, dim(L⊥) = n(n− 1)/2 andL⊥ is monotone, that isU • V ≥ 0
for every(U,V) ∈ L⊥.
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It was shown in Corollary 4.3 of [11] that system (4) always has a unique solution.
The symmetric component(1X,1S) of this solution is then used as a search direction to
generate the next point. In what follows we give another short proof of the existence and
uniqueness of(1X, 1̃X,1S, 1̃S), which gives some intuition for the need to introduce
the subspaceL⊥.

Lemma 1. Let (X, S) ∈ Sn++× Sn++ andW be ann2 dimensional affine subspace
of <n×n × <n×n which is monotone, that is(U1 − U2) • (V1 − V2) ≥ 0 for every
(U1,V1), (U2,V2) ∈W. Then, the system

XV +US= H, (U,V) ∈W, (5)

has a unique solution for anyH ∈ <n×n.

Proof. Consider the map8 : W → <n×n defined by8(U,V) = XV + US for every
(U,V) ∈W.8 is an affine map between spaces of the same dimension since dim(W) =
n2 by assumption. Hence, it suffices to show that8 is one-to-one. Indeed, assume that
8(U1,V1) = 8(U2,V2) for some(U1,V1), (U2,V2) ∈ W. Letting1U ≡ U1 − U2
and1V ≡ V1 − V2, and using the monotonicity ofW, we see that1U •1V ≥ 0 and
X1V +1US= 0. Multiplying the last relation on the left byX−1/2 and on the right
by S−1/2, squaring both sides and using the fact that1U •1V ≥ 0, we obtain

0=
∥∥∥X1/21VS−1/2+ X−1/21US1/2

∥∥∥2

F
≥
∥∥∥X1/21VS−1/2

∥∥∥2

F
+
∥∥∥X−1/21US1/2

∥∥∥2

F
.

Hence,1U = 1V = 0, or equivalently(U1,V1) = (U2,V2).
ut

Lemma 1 provides the main reason for system (3) to not always have a solution,
namely: the solution(1̂X, 1̂S) is required to belong to the affine subspaceL− (X, S),
which only has dimensionn(n + 1)/2 < n2. Adding the subspaceL⊥ to L results in
an affine subspace of dimensionn2 as required by Lemma 1. This fact is exploited in
the proof of the following result which establishes the existence and uniqueness of the
solution of (4).

Theorem 1. System (4) has a unique solution.

Proof. It is easy to see that(1X, 1̃X,1S, 1̃S) is a solution of (4) if and only if
(U,V) ≡ (1X+ 1̃X,1S+ 1̃S) is a solution of (5) withW ≡ (L− (X,Y))+L⊥ and
H ≡ µ̂I − XS. SinceL andL⊥ are monotone and orthogonal, dim(L) = n(n+ 1)/2
and dim(L⊥) = n(n − 1)/2, we easily see thatW is a monotone affine subspace of
<n×n ×<n×n of dimensionn2. The result now follows from Lemma 1.

ut

3. Technical results

In this section we provide some technical results which will be used to establish the
polynomial convergence of the algorithms presented in Section 4.
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We assume throughout this section that(X, S) ∈ L++ and that(1X, 1̃X,1S, 1̃S)
is a solution of system (4) witĥµ = σµ for someµ > 0 andσ ∈ [0,1]. Moreover, we
define for everyα ∈ <,

X(α) ≡ X + α1X, S(α) ≡ S+ α1S, (6)

µ(α) ≡ (1− α+ σα)µ. (7)

Lemma 2. For everyα ∈ <, we have

X(α)S(α) − µ(α)I = (1− α) (XS− µI ) − α (X1̃S+ 1̃XS
)+ α21X1S. (8)

Proof. Follows immediately from (6), (7) and (4a) witĥµ = σµ.
ut

For a nonsingular matrixP ∈ <n×n, consider the following operatorHP : <n×n →
Sn defined as

HP(M) ≡ 1

2

[
PMP−1 + (PMP−1)T

]
, ∀M ∈ <n×n.

The operatorHP has been recently used by Zhang [26] to characterize the central path
of SDP problems.

Lemma 3. For everyθ ∈ < andα ∈ [0,1], we have

∥∥HX−1/2 [X(α)S(α) − µ(α)I ]
∥∥

F ≤ (1− α)
∥∥∥X1/2SX1/2− µI

∥∥∥
F
+ α2 δx δs

+ α δ̃x

∥∥∥X1/2SX1/2− θµI
∥∥∥ , (9)

where

δx ≡
∥∥∥X−1/21X X−1/2

∥∥∥
F
, δ̃x ≡

∥∥∥X−1/21̃X X−1/2
∥∥∥

F
, δs ≡

∥∥∥X1/21SX1/2
∥∥∥

F
.

(10)

Proof. Using the fact that̃1X, 1̃S∈ Sn⊥, and hence thatHI (1̃X) = HI (1̃S) = 0, we
obtain

HX−1/2
(
X1̃S+ 1̃XS

)
= HX−1/2

(
X1̃S+ θµ1̃XX−1

)
+ HX−1/2

[
1̃X

(
S− θµX−1

)]
= X1/2HI (1̃S)X1/2+ θµX−1/2HI (1̃X)X−1/2+ HX−1/2

[
1̃X

(
S− θµX−1

)]
= HI

[
X−1/21̃X X−1/2

(
X1/2SX1/2− θµI

)]
.
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Using (8), the last relation, (10) and the inequality‖HI (M)‖F ≤ ‖M‖F for M ∈ <n×n,
we obtain for everyα ∈ [0,1] that∥∥HX−1/2 [X(α)S(α) − µ(α)I ]

∥∥
F

≤ (1− α) ∥∥HX−1/2 (XS− µI )
∥∥

F + α
∥∥HX−1/2

(
X1̃S+ 1̃XS

)∥∥
F

+ α2
∥∥HX−1/2 (1X1S)

∥∥
F

≤ (1− α)
∥∥∥X1/2SX1/2− µI

∥∥∥
F
+ α δ̃x

∥∥∥X1/2SX1/2− θµI
∥∥∥

+ α2
∥∥∥X−1/21X1SX1/2

∥∥∥
F

≤ (1− α)
∥∥∥X1/2SX1/2− µI

∥∥∥
F
+ α δ̃x

∥∥∥X1/2SX1/2− θµI
∥∥∥+ α2δxδs.

ut
The proof of next lemma is straightforward and therefore we omit the details.

Lemma 4. If (X, S) ∈ NF(µ, γ) for someγ ∈ (0,1), then

‖X1/2S1/2‖2 ≤ (1+ γ)µ, (11)

‖X−1/2S−1/2‖2 ≤ [(1− γ)µ]−1, (12)

‖X1/2SX1/2− θµI‖F ≤
(
γ + (1− θ)√n

)
µ, for anyθ ∈ [0,1], (13)

(1− γ)nµ ≤ X • S ≤ (1+ γ)nµ. (14)

The next result gives bounds on the quantitiesδx, δ̃x andδs defined in (10).

Lemma 5. If (X, S) ∈ NF(µ, γ) for someγ ∈ (0,1), then

max{δx, δ̃x} ≤ γ + (1− σ)√n

1− γ ,

δs ≤ γ + (1− σ)√n

1− γ µ,

whereδx, δ̃x andδs are defined in (10).

Proof. Multiplying (4a) on the left byX−1/2 and on the right byS−1/2, squaring both
sides of the resulting equation and noting the fact that(1X + 1̃X) • (1S+ 1̃S) ≥ 0,
we obtain∥∥∥X−1/2(1X+ 1̃X)S1/2

∥∥∥2

F
+
∥∥∥X1/2(1S+ 1̃S)S−1/2

∥∥∥2

F

≤
∥∥∥X1/2S1/2− σµX−1/2S−1/2

∥∥∥2

F
.

(15)

Using the fact that1X,1S ∈ Sn, 1̃X, 1̃S ∈ Sn⊥ (and hence thatX1/21X X1/2,

X1/21SX1/2 ∈ Sn andX1/21̃X X1/2, X1/21̃SX1/2 ∈ Sn⊥), and

‖M + MT‖F

2
≤ ‖M‖F ,

‖M − MT‖F

2
≤ ‖M‖F ,
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for anyM ∈ <n×n, relations (10) and (15), and Lemma 4, we obtain

δs =
∥∥∥X1/21SX1/2

∥∥∥
F
≤
∥∥∥X1/2(1S+ 1̃S)X1/2

∥∥∥
F

≤
∥∥∥X1/2(1S+ 1̃S)S−1/2

∥∥∥
F

∥∥∥S1/2X1/2
∥∥∥

≤
∥∥∥X1/2S1/2− σµX−1/2S−1/2

∥∥∥
F

∥∥∥S1/2X1/2
∥∥∥

≤
∥∥∥X1/2SX1/2− σµI

∥∥∥
F

∥∥∥X−1/2S−1/2
∥∥∥ ∥∥∥X1/2S1/2

∥∥∥
≤
(

1+ γ
1− γ

)1/2 (
γ + (1− σ)√n

)
µ ≤ γ + (1− σ)√n

1− γ µ,

and

max{δx, δ̃x} ≤ max
{∥∥∥X−1/21X X−1/2

∥∥∥
F
,

∥∥∥X−1/21̃X X−1/2
∥∥∥

F

}
≤
∥∥∥X−1/2(1X + 1̃X)X−1/2

∥∥∥
F

≤
∥∥∥X−1/2(1X + 1̃X)S1/2

∥∥∥
F

∥∥∥S−1/2X−1/2
∥∥∥

≤
∥∥∥X1/2S1/2− σµX−1/2S−1/2

∥∥∥
F

∥∥∥X−1/2S−1/2
∥∥∥

≤
∥∥∥X1/2SX1/2− σµI

∥∥∥
F

∥∥∥X−1/2S−1/2
∥∥∥2

≤ γ + (1− σ)√n

1− γ .

ut
Now we are ready to state the main result of this section.

Lemma 6. Suppose that(X, S) ∈ NF(µ, γ) for someγ ∈ (0,1) and let(1X, 1̃X,1S,
1̃S) be the solution of (4). Then,∥∥HX−1/2 [X(α)S(α) − µ(α)I ]

∥∥
F

≤
{
(1− α) γ + α γ γ + (1− σ)

√
n

1− γ + α2
(
γ + (1− σ)√n

1− γ
)2
}
µ.

Proof. Follows immediately from (9) withθ = 1, the assumption that(X, S) ∈
NF(µ, γ) and Lemma 5.

ut

4. Algorithms

In this section, we establish polynomial iteration-complexitybounds for two primal-dual
feasible interior-point algorithms for SDLCP based on the KSH family of search direc-
tions given by (4). Both algorithms are extensions of well-known algorithms for linear
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programming: the first one is a short-step path-following method which generalizes the
algorithms presented in Kojima, Mizuno and Yoshise [28] and Monteiro and Adler [29,
30]; the second one is a predictor-corrector algorithm similar to the predictor-corrector
LP method of Mizuno, Todd and Ye [31].

We start by stating two technical results. The first one is due to Monteiro (see Lemma
2.1 of [15]) and plays a crucial role in our analysis.

Lemma 7. Suppose that(X, S) ∈ Sn++ ×Sn++ andQ ∈ <n×n is a nonsingular matrix.
Then, for everyµ ∈ <, we have

‖X1/2SX1/2− µI‖F ≤ ‖HQ(XS− µI)‖F ,

with equality holding ifQXSQ−1 ∈ Sn.

Lemma 8. Let V,Q ∈ <n×n be given. Suppose thatQ is nonsingular and that

‖HQ(V)− I‖ < 1. (16)

Then, the matrixV is nonsingular.

Proof. Define W ≡ QVQ−1/2. Condition (16) implies thatW + WT � 0, and this
clearly implies thatW is nonsingular. Hence,V is also nonsingular.

ut

4.1. Short-step path following algorithm

In this subsection, we analyze the polynomial convergence of a short-step path following
algorithm based on the KSH family of search directions.

We start by stating the algorithm that will be considered in this subsection.
Algorithm-I:

Choose constantsγ andδ in (0,1) satisfying the conditions of Theorem 2
below and letσ ≡ 1− δ/√n. Letµ0 > 0 and(X0, S0) ∈ L++ be such that
(X0, S0) ∈ NF(µ0, γ). Let ε ∈ (0,1).
Repeat untilµk ≤ εµ0, do

(1) Choose a linear subspaceLk⊥ satisfying [A3].

(2) Compute the solution(1Xk, 1̃X
k
,1Sk, 1̃S

k
) of system (4) with

(X, S) = (Xk, Sk), L⊥ = Lk⊥ andµ̂ = σµk;
(3) Set(Xk+1, Sk+1) ≡ (Xk, Sk)+ (1Xk,1Sk) andµk+1 = σµk;
(4) Incrementk by 1.

End
When the constant0 defined in (17) is such that0 ≤ γ , the lemma below implies

that the sequence{(Xk, Sk)} generated by Algorithm-I is contained in the neighborhood
NF(γ). This lemma is also used in the analysis of the corrector (or centering) steps of
the predictor-corrector algorithm presented in the next subsection.
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Lemma 9. Letγ ∈ (0,1) andδ ∈ [0,n1/2) be constants satisfying

0 ≡ 2

(
γ + δ
1− γ

)2(
1− δ√

n

)−1

< 1. (17)

Suppose that(X, S) ∈ NF(µ, γ) for someµ > 0, and(1X, 1̃X,1S, 1̃S) is the solution
of system (4) witĥµ = σµ andσ = 1− δ/√n. Then,(X+1X, S+1S) ∈ NF(σµ,0).

Proof. It follows from Lemma 6, the definition ofσ and (17) that for everyα ∈ [0,1],∥∥HX−1/2 [X(α)S(α)− µ(α)I ]
∥∥

F

≤
{
(1− α) γ + α γ γ + (1− σ)

√
n

1− γ + α2
(
γ + (1− σ)√n

1− γ
)2
}
µ

= (1− α)γµ+
{
α γ

γ + δ
1− γ + α

2
(
γ + δ
1− γ

)2
}
µ

≤ (1− α)γµ+ 2α

(
γ + δ
1− γ

)2

µ = (1− α)γµ+ α0
(

1− δ√
n

)
µ

= {(1− α)γ + σ0α}µ,
and hence, in view of (7) and (17), we have∥∥∥∥HX−1/2

[
X(α)S(α)

µ(α)

]
− I

∥∥∥∥
F
≤ (1− α)γ + σ0α

1− α+ σα ≤ max{γ, 0} < 1.

By Lemma 8, this implies thatX(α)S(α) is nonsingular for everyα ∈ (0,1]. Hence,X(α)
andS(α) are also nonsingular for everyα ∈ (0,1]. Using the fact that(X, S) ∈ L++,
(X+1X, S+1S) ∈ Land a simple continuity argument, we see(X(α), S(α)) ∈ L++ ⊆
Sn++ × Sn++ for everyα ∈ (0,1]. Applying Lemma 7 with(X, S) = (X(α), S(α)) and
Q = X−1/2, we conclude that for everyα ∈ [0,1],

‖X(α)1/2S(α)X(α)1/2 − µ(α)I‖F ≤ ‖HX−1/2(X(α)S(α) − µ(α)I)‖F

≤ ‖X−1/2X(α)S(α)X1/2 − µ(α)I‖F

≤ {(1− α)γ + σ0α}µ.
Settingα = 1 in the last relation and using the fact that(X(1), S(1)) ∈ L++ together
with (6) and (7), we conclude that(X(1), S(1)) ≡ (X+1X, S+1S) ∈ NF(σµ,0).

ut
As an immediate consequence of Lemma 9, we have the following convergence

result for Algorithm-I.

Theorem 2. Suppose thatγ andδ are constants in(0,1) such that0 defined by (17)
satisfies0 ≤ γ . Then, every iterate(Xk, Sk) generated by Algorithm-I is inNF(µk, γ) ⊆
NF(γ) and satisfies

Xk • Sk ≤ 1+ γ
1− γ

(
1− δ√

n

)k

(X0 • S0). (18)

Moreover, Algorithm-I terminates in at mostO(
√

n logε−1) iterations.
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Proof. The proof that every iterate(Xk, Sk) is inNF(µk, γ) follows immediately from
Lemma 9 and a simple induction argument. Relation (18) follows from the fact that
µk = σkµ0 and relation (14).

ut
Examples of constantsγ andδ satisfying the conditions of Theorem 2 areγ = δ =

1/25.

4.2. Predictor-corrector algorithm

In this subsection, we give the polynomial convergence analysis of a predictor-corrector
algorithm which is a direct extension of the LP predictor-corrector algorithm studied by
Mizuno, Todd and Ye [31].

The algorithm considered in this subsection is as follows.
Algorithm-II:

Choose a constant 0< τ < 1/2 satisfying the conditions of Theorem 3 below.
Let ε ∈ (0,1) and(X0, S0) ∈ L++ be such that(X0, S0) ∈ NF(µ0, τ),
Repeat untilµk ≤ εµ0, do

(1) Choose a linear subspaceLk⊥ satisfying [A3];

(2) Compute the solution(1Xk
P, 1̃X

k
P,1Sk

P, 1̃S
k
P) of system (4) with

(X, S) = (Xk, Sk), L⊥ = Lk
⊥ andµ̂ = 0;

(3) Letαk ≡ max{α ∈ [0,1] : (Xk(α′), Sk(α′)) ∈ NF((1− α′)µk,2τ),
∀α′ ∈ [0, α]}, where(Xk(α), Sk(α)) ≡ (Xk + α1Xk

P, Sk + α1Sk
P);

(4) Let (X̂k, Ŝk) ≡ (Xk, Sk)+ αk(1Xk
P,1Sk

P) andµk+1 ≡ (1− αk)µk;
(5) Choose a linear subspaceL̂k⊥ satisfying [A3];

(6) Compute the solution(1Xk
C, 1̃X

k
C,1Sk

C, 1̃S
k
C) of system (4) with

(X, S) = (X̂k, Ŝk), µ̂ = µk+1 andL⊥ = L̂k⊥;
(7) Set(Xk+1, Sk+1) ≡ (X̂k, Ŝk)+ (1Xk

C,1Sk
C);

(8) Incrementk by 1.
End

The following result provides the polynomial convergence analysis of the above
algorithm.

Theorem 3. Assume thatτ ∈ (0,1/30]. Then, Algorithm-II satisfies the following
statements:

a) for everyk ≥ 0, (Xk, Sk) ∈ NF(τ) and(X̂k, Ŝk) ∈ NF(2τ);

b) for everyk ≥ 0, Xk • Sk ≤ 1+ τ
1− τ (1− ᾱ)

kX0 • S0, whereᾱ = 1/O(
√

n);

c) the algorithm terminates in at mostO(
√

n logε−1) iterations.

Proof. Statement (c) and the well-definedness of Algorithm-II follow directly from (a)
and (b). In turn, these two statements follow by a simple induction argument, the two
lemmas below and relation (14).

ut



Primal-dual algorithms for semidefinite LCP 51

The following lemma analyzes the predictor step of Algorithm-II, namely the step
described in items (1)-(4) of Algorithm-II.

Lemma 10. Suppose that(X, S) ∈ NF(µ, τ) for someτ ∈ (0,1/2). For some subspace
L⊥ satisfying [A3], let(1XP, 1̃XP,1SP, 1̃SP) denote the solution of (4) witĥµ = 0.
Let ᾱ denote the unique positive root of the second-order polynomialp(α) defined as

p(α) =
(
τ +√n

1− τ
)2

α2+ τ
[(
τ +√n

1− τ
)
+ 1

]
α− τ (19)

Then, for anyα ∈ [0, ᾱ], we have:

(X(α), S(α)) ≡ (X+ α1XP, S+ α1SP) ∈ NF((1− α)µ,2τ). (20)

Moreover,ᾱ = 1/O(n1/2).

Proof. Using Lemma 6 withγ = τ andσ = 0, the fact thatp(α) ≤ 0 for α ∈ [0, ᾱ],
τ < 1/2 and (19), we obtain

∥∥HX−1/2[X(α)S(α)− µ(α)]∥∥F ≤
{
(1− α)τ + τ

(
τ +√n

1− τ
)
α+

(
τ +√n

1− τ
)2

α2

}
µ

= 2τµ(α)+ p(α)µ ≤ 2τµ(α).

An argument similar to the one used in Lemma 9 together with (7) and the fact that
2τ < 1 andµ̂ = 0 (or equivalently,σ = 0) can be used to show that (20) holds. The
assertion that̄α = 1/O(n1/2) follows by a straightforward verification.

ut

The following lemma analyzes the corrector step of Algorithm-II, namely the step
described in items (5)-(7) of Algorithm-II.

Lemma 11. Suppose(X̂, Ŝ) is inNF(µ,2τ) for someτ ∈ (0,1/30]. Let(1XC, 1̃XC,

1SC, 1̃SC) denote the solution of (4) with(X, S) = (X̂, Ŝ), µ̂ = µ andL⊥ satisfying
[A3]. Then,

(X̂, Ŝ)+ (1XC,1SC) ∈ NF(µ, τ).

Proof. Follows immediately from Lemma 9 withσ = 1 (or equivalently,δ = 0),
(X, S) = (X̂, Ŝ) andγ = 2τ, and noting that0 defined by (17) satisfies0 ≤ τ when
τ ≤ 1/30.

ut
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5. Concluding remarks

For simplicity, we have analyzed two algorithms whose sequence{µk} in general differs
from the sequence of normalized complementarity gaps{(Xk • Sk)/n}. At the expense
of a slightly more complicated analysis, it is possible to develop algorithms similar to
the ones presented here in whichµk = (Xk • Sk)/n for everyk.

The algorithms of this paper are based on the Frobenius neighborhoodNF(γ) of the
central path. An interesting topic for future research would be to establish polynomial
convergence of algorithms based on the KSH family of search directions which use one
of the following two wider neighborhoods of the central path:{

(X, S) ∈ L+ : ‖X1/2SX1/2− µI‖ ≤ γµ, for someµ > 0
}
,

{(X, S) ∈ L+ : λmin(XS− µI) ≥ −γµ, for someµ > 0} .
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