
SIAM J. OPTIM. c© 2004 Society for Industrial and Applied Mathematics
Vol. 15, No. 2, pp. 319–347

A NEW ITERATION-COMPLEXITY BOUND FOR THE MTY
PREDICTOR-CORRECTOR ALGORITHM∗

RENATO D. C. MONTEIRO† AND TAKASHI TSUCHIYA‡

Abstract. In this paper we present a new iteration-complexity bound for the Mizuno–Todd–Ye
predictor-corrector (MTY P-C) primal-dual interior-point algorithm for linear programming. The
analysis of the paper is based on the important notion of crossover events introduced by Vavasis and
Ye. For a standard form linear program min{cT x : Ax = b, x ≥ 0} with decision variable x ∈ �n, we
show that the MTY P-C algorithm, started from a well-centered interior-feasible solution with duality
gap nµ0, finds an interior-feasible solution with duality gap less than nη in O(T (µ0/η)+n3.5 log(χ̄∗

A))

iterations, where T (t) ≡ min{n2 log(log t), log t} for all t > 0 and χ̄∗
A is a scaling invariant condition

number associated with the matrix A. More specifically, χ̄∗
A is the infimum of all the conditions

numbers χ̄AD, where D varies over the set of positive diagonal matrices. Under the setting of the
Turing machine model, our analysis yields an O(n3.5LA + min{n2 logL,L}) iteration-complexity
bound for the MTY P-C algorithm to find a primal-dual optimal solution, where LA and L are the
input sizes of the matrix A and the data (A, b, c), respectively. This contrasts well with the classical
iteration-complexity bound for the MTY P-C algorithm, which depends linearly on L instead of
logL.

Key words. interior-point algorithms, primal-dual algorithms, path-following, central path, lay-
ered least squares steps, condition number, polynomial complexity, crossover events, scale-invariance,
predictor-corrector, affine scaling, strongly polynomial, linear programming

AMS subject classifications. 65K05, 68Q25, 90C05, 90C51, 90C60

DOI. 10.1137/S1052623402416803

1. Introduction. We consider the linear programming (LP) problem

minimizex cTx
subject to Ax = b, x ≥ 0,

(1.1)

and its associated dual problem

maximize(y,s) bT y

subject to AT y + s = c, s ≥ 0,
(1.2)

where A ∈ �m×n, c ∈ �n, and b ∈ �m are given, and the vectors x, s ∈ �n and
y ∈ �m are the unknown variables.

Karmarkar in his seminal paper [6] proposed the first polynomially convergent
interior-point method with an O(nL) iteration-complexity bound, where L is the
size of the LP instance (1.1). The first path-following interior-point algorithm was
proposed by Renegar in his breakthrough paper [20]. Renegar’s method closely fol-
lows the primal central path and exhibits an O(

√
nL) iteration-complexity bound.

∗Received by the editors October 31, 2002; accepted for publication (in revised form) July 2, 2004;
published electronically December 30, 2004.

http://www.siam.org/journals/siopt/15-2/41680.html
†School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA

30332 (monteiro@isye.gatech.edu). This author was supported in part by NSF grants CCR-9902010,
CCR-0203113, and INT-9910084 and by ONR grant N00014-03-1-0401.

‡The Institute of Statistical Mathematics, 4-6-7 Minami-Azabu, Minato-Ku, Tokyo, 106-8569,
Japan (tsuchiya@sun312.ism.ac.jp). This author was supported in part by Japan-U.S. Joint Re-
search Projects of Japan Society for the Promotion of Science “Algorithms for linear programs over
symmetric cones” and the Grants-in-Aid for Scientific Research (C) 08680478 and (C) 15510144 of
the Ministry of Science, Technology, Education and Culture of Japan.

319



320 RENATO D. C. MONTEIRO AND TAKASHI TSUCHIYA

The first path-following algorithm which simultaneously generates iterates in both
the primal and dual spaces was proposed by Kojima, Mizuno, and Yoshise [7] and
Tanabe [22], based on ideas suggested by Megiddo [10]. In contrast to Renegar’s
algorithm, Kojima et al.’s algorithm has an O(nL) iteration-complexity bound. A
primal-dual path-following algorithm with an O(

√
nL) iteration-complexity bound

was subsequently obtained by Kojima, Mizuno, and Yoshise [8] and Monteiro and
Adler [15, 16] independently. Following these developments, many other primal-dual
interior-point algorithms for LP have been proposed.

An outstanding open problem in optimization is whether there exists a strongly
polynomial algorithm for LP, that is, one whose complexity is bounded by a poly-
nomial of m and n only. A major effort in this direction is due to Tardos [23], who
developed a polynomial-time algorithm whose complexity is bounded by a polynomial
of m, n, and LA, where LA denotes the size of the (integral) matrix A. Such an al-
gorithm gives a strongly polynomial method for the important class of LP problems
where the entries of A are either 1, −1, or 0, e.g., LP formulations of network flow
problems. Tardos’s algorithm consists of solving a sequence of LP problems of small
sizes by a standard polynomially convergent LP method and using their solutions to
obtain the solution of the original LP problem.

The development of a method which works entirely in the context of the original
LP problem and whose complexity is also bounded by a polynomial of m, n, and LA is
due to Vavasis and Ye [30, 31]. Their method is a primal-dual path-following interior-
point algorithm similar to the ones mentioned above except that from time to time it
uses a crucial step, namely, the layered least squares (LLS) direction. They showed
that their method has an O(n3.5 log(χ̄A + n)) iteration-complexity bound, where χ̄A

is a condition number associated with A which has the property that log χ̄A = O(LA)
whenever A is integral. The number χ̄A was first introduced implicitly by Dikin
[1] in the study of primal affine scaling (AS) algorithms and was later studied by
several researchers including Vanderbei and Lagarias [29], Todd [24], and Stewart
[21]. Properties of χ̄A are studied in [4, 27, 28].

The complexity analysis of Vavasis and Ye’s algorithm is based on the notion of
a crossover event, a combinatorial event concerning the central path. Intuitively, a
crossover event occurs between two variables when one of them is larger than the
other at a point in the central path and then becomes smaller asymptotically as
the optimal solution set is approached. Vavasis and Ye showed that there can be
at most n(n− 1)/2 crossover events and that a distinct crossover event occurs every
O(n1.5 log(χ̄A+n)) iterations, from which they deduced the overall O(n3.5 log(χ̄A+n))
iteration-complexity bound. In [14], an LP instance is given in which the number of
crossover events is Θ(n2).

One disadvantage of Vavasis and Ye’s method is that it requires explicit knowl-
edge of χ̄A in order to determine a partition of the variables into layers used in the
computation of the LLS step. This difficulty was remedied in a variant proposed by
Megiddo, Mizuno, and Tsuchiya [11] which does not require explicit knowledge of
the number χ̄A. They observed that at most n types of partitions arise as χ̄A varies
from 1 to ∞, and that one of these can be used to compute the LLS step. Based on
this idea, they developed a variant which computes the LLS steps for all these parti-
tions and picks the one that yields the greatest duality gap reduction at the current
iteration. Moreover, using the argument that, once the first LLS step is computed,
the other ones can be cheaply computed by performing rank-one updates, they show
that the overall complexity of their algorithm is exactly the same as Vavasis and Ye’s
algorithm.



NEW ITERATION-COMPLEXITY BOUND FOR MTY ALGORITHM 321

Another approach that also remedies the above difficulty was proposed by Mon-
teiro and Tsuchiya [19], who developed a variant of Vavasis and Ye’s algorithm which
has the same complexity as theirs and computes only one LLS step per iteration
without any explicit knowledge of χ̄A. The method is a P-C type algorithm like the
one described in [13] except that at the predictor stage it takes a step along either
the primal-dual AS step or the LLS step. In contrast to the LLS step used in the
algorithm of Vavasis and Ye, the partition of variables used in the algorithm of [19]
for computing the LLS step is constructed from the information provided by the AS
direction and hence does not require any knowledge and/or guess on χ̄A.

In this paper we present a new iteration-complexity bound for the Mizuno–Todd–
Ye predictor-corrector (MTY P-C) primal-dual interior-point algorithm for LP. Using
the notion of crossover events and a few other nontrivial ideas, we show that the MTY
P-C algorithm started from a well-centered interior-feasible solution with duality gap
nµ0 finds an interior-feasible solution with duality gap less than nη in O(T (µ0/η) +
n3.5 log(χ̄∗

A + n)) iterations, where

T (t) ≡ min{n2 log(log t), log t} ∀t > 0,(1.3)

and χ̄∗
A is a scaling invariant condition number associated with the matrix A. More

specifically, χ̄∗
A is the infimum of all the conditions numbers χ̄AD, where D varies over

the set of positive diagonal matrices. Thus, the derived iteration-complexity bound
is scaling-invariant.

The iteration-complexity bound O(T (µ0/η) + n3.5 log(χ̄∗
A + n)) has the following

intuitive geometric interpretation. The term n3.5 log(χ̄∗
A + n) corresponds to the

complexity of tracing “the curved part” of the central trajectory, that is, the part of
the trajectory where the step-size along the AS direction can be as small as Θ(1/

√
n).

This complexity depends only on n and A and does not depend on the initial duality
gap and the tolerance η > 0. The other term, T (µ0/η) = min{O(n2 log(logµ0/η)),
O(logµ0/η)}, which corresponds to the complexity of tracing the “straight part” of
the trajectory, is the minimum of two bounds. The first bound is obtained by showing
that the duality gap reduces R-quadratically over O(n2) disjoint sets of consecutive
iterations of the algorithm. The second bound, which is independent of the dimension
of the problem, is due to the fact that the duality gap along the straight part of
the central trajectory is divided by a factor at least 2 at every iteration. To some
extent, the second bound gives a plausible explanation to why the number of iterations
performed by many interior-point algorithms grows very slowly with n.

Furthermore, using the above result, we show that the MTY algorithm endowed
with a certain scaling-invariant finite termination procedure terminates in at most
O(T (µ0/η

∗) + n3.5 log(χ̄∗
A + n)) iterations, where η∗ is a scaling invariant threshold

number determined by the data (A, b, c). In particular, our results imply that the
MTY P-C algorithm solves (1.1) and (1.2) in O(min{n2 logL,L}+n3.5LA) iterations
under the Turing machine model. This contrasts well with the classical iteration-
complexity bound for the MTY P-C algorithm, namely, O(

√
nL), which depends

linearly on the input size L of the data (A, b, c) instead of the logarithm of L.
The organization of the paper is as follows. Section 2 consists of four subsections.

In subsection 2.1, we review the notion of the primal-dual central path and its as-
sociated 2-norm neighborhoods. Subsection 2.2 introduces the condition number χ̄A

of a matrix A and describes the properties of χ̄A that will be useful in our analysis.
Subsection 2.3 reviews the MTY P-C algorithm and states the main result of this
paper, which establishes a new scaling-invariant iteration-complexity bound for the



322 RENATO D. C. MONTEIRO AND TAKASHI TSUCHIYA

MTY P-C algorithm to find a near primal-dual optimal solution of (1.1) and (1.2).
Subsection 2.4 describes a scaling-invariant finite termination procedure and gives an
alternative scaling-invariant iteration-complexity bound for the MTY P-C algorithm
to find a primal-dual optimal solution of (1.1) and (1.2). Section 3, which consists
of four subsections, introduces some basic tools which are used in our convergence
analysis. Subsection 3.1 discusses the notion of a crossover event. Subsection 3.2
describes the notion of an LLS direction and states a proximity result that gives suf-
ficient conditions under which the AS direction can be well approximated by an LLS
direction. Subsection 3.3 reviews, from a different perspective, an important result
from Vavasis and Ye [30], which basically provides sufficient conditions for the occur-
rence of crossover events. Subsection 3.4 describes two ordered partitions of the set of
variables which are frequently used in our analysis. Section 4 is dedicated to the proof
of the main result stated in subsection 2.3. Section 5 deals with a few implications of
our main result under the Turing machine model. Section 6 provides some concluding
remarks.

The following notation is used throughout our paper. We denote the vector of all
ones by e. Its dimension is always clear from the context. The symbols �n, �n

+, and
�n

++ denote n-dimensional Euclidean space, the nonnegative orthant of �n, and the
positive orthant of �n, respectively. The set of all m× n matrices with real entries is
denoted by �m×n. If J is a finite index set, then |J | denotes its cardinality, that is,
the number of elements of J . For J ⊆ {1, . . . , n} and w ∈ �n, we let wJ denote the
subvector [wi]i∈J ; moreover, if E is an m × n matrix, then EJ denotes the m × |J |
submatrix of E corresponding to J . For a vector w ∈ �n, we let max(w) and min(w)
denote the largest and the smallest component of w, respectively; Diag(w) denotes the
diagonal matrix whose ith diagonal element is wi for i = 1, . . . , n; and w−1 denotes
the vector [Diag(w)]−1e whenever it is well defined. For two vectors u, v ∈ �n, uv
denotes their Hadamard product, i.e., the vector in �n whose ith component is uivi.
The Euclidean norm, the 1-norm, and the ∞-norm are denoted by ‖ · ‖, ‖ · ‖1, and
‖ · ‖∞, respectively. For a matrix E, Im(E) denotes the subspace generated by the
columns of E, and Ker(E) denotes the subspace orthogonal to the rows of E. The
superscriptT denotes transpose.

2. Problem and primal-dual P-C interior-point algorithms. In this sec-
tion we review the MTY P-C algorithm [13] for solving the pair of LP problems
(1.1) and (1.2). We also present our main convergence result, which establishes a
new polynomial iteration-complexity bound for this algorithm, namely, O(T (µ0/η) +
n3.5 log(χ̄∗

A+n)), where T (µ0/η) is defined in (1.3) and χ̄∗
A is a certain scaling-invariant

condition number associated with the matrix A, nµ0 is the initial duality gap, and nη
is the required upper bound on the duality gap of the final iterate.

2.1. The problem, the central path, and its 2-norm neighborhood. In
this subsection we state our assumptions and describe the primal-dual central path
and its corresponding 2-norm neighborhoods.

Given A ∈ �m×n, c ∈ �n, and b ∈ �m, consider the pairs of linear programs (1.1)
and (1.2), where x ∈ �n and (y, s) ∈ �m ×�n are their respective variables. The set
of strictly feasible solutions for these problems are

P++ ≡ {x ∈ �n : Ax = b, x > 0},
D++ ≡ {(y, s) ∈ �m×n : AT y + s = c, s > 0}.

Throughout the paper we make the following assumptions on the pair of problems



NEW ITERATION-COMPLEXITY BOUND FOR MTY ALGORITHM 323

(1.1) and (1.2).
A.1. P++ and D++ are nonempty.
A.2. The rows of A are linearly independent.
Under the above assumptions, it is well known that for any ν > 0 the system

xs = νe,(2.1)

Ax = b, x > 0,(2.2)

AT y + s = c, s > 0,(2.3)

has a unique solution (x, y, s), which we denote by (x(ν), y(ν), s(ν)). The central path
is the set consisting of all these solutions as ν varies in (0,∞). As ν converges to zero,
the path (x(ν), y(ν), s(ν)) converges to a primal-dual optimal solution (x∗, y∗, s∗) for
problems (1.1) and (1.2). Given a point w = (x, y, s) ∈ P++ × D++, its duality
gap and its normalized duality gap are defined as xT s and µ = µ(x, s) ≡ xT s/n,
respectively, and the point (x(µ), y(µ), s(µ)) is said to be the central point associated
with w. Note that (x(µ), y(µ), s(µ)) also has normalized duality gap µ. We define the
proximity measure of a point w = (x, y, s) ∈ P++ ×D++ with respect to the central
path by

φ(w) = ‖xs/µ− e‖.

Clearly, φ(w) = 0 if and only if w = (x(µ), y(µ), s(µ)), or equivalently, w coincides
with its associated central point. The 2-norm neighborhood of the central path with
opening β > 0 is defined as

N (β) ≡ {w = (x, y, s) ∈ P++ ×D++ : φ(w) ≤ β}.

Finally, for any point w = (x, y, s) ∈ P++ ×D++, we define

δ(w) ≡ s1/2x−1/2 ∈ �n.(2.4)

2.2. Condition number. In this subsection we define the condition number χ̄A

associated with the constraint matrix A and state the properties of χ̄A, which will
play an important role in our analysis.

Let D denote the set of all positive definite n× n diagonal matrices and define

(2.5)

χ̄A ≡ sup{‖AT (AD̃AT )−1AD̃‖ : D̃ ∈D}

= sup

{
‖AT y‖
‖c‖ : y = argminỹ∈�n ‖D̃1/2(AT ỹ−c)‖ for some 0 �= c∈�n and D̃∈D

}
.

The parameter χ̄A plays a fundamental role in the complexity analysis of algorithms
for LP and LLS problems (see [30] and references therein). Its finiteness was first
established by Dikin [1]. Other authors have also given alternative derivations of the
finiteness of χ̄A (see, for example, Stewart [21], Todd [24], and Vanderbei and Lagarias
[29]).

We summarize in the next proposition a few important facts about the parameter
χ̄A.

Proposition 2.1. Let A ∈ �m×n with full row rank be given. Then, the following
statements hold:



324 RENATO D. C. MONTEIRO AND TAKASHI TSUCHIYA

(a) χ̄HA = χ̄A for any nonsingular matrix H ∈ �m×m;
(b) χ̄A = max{‖G−1A‖ : G ∈ G}, where G denotes the set of all m×m nonsin-

gular submatrices of A;
(c) if the entries of A are all integers, then χ̄A is bounded by 2O(LA), where LA

is the input bit length of A;
(d) χ̄A = χ̄F for any F ∈ �(n−m)×n such that Ker(A) = Im(FT ).
Proof. Statement (a) readily follows from the definition (2.5). The inequality

χ̄A ≥ max{‖G−1A‖ : G ∈ G} is established in Lemma 3 of [30] while the proof of
the reverse inequality is given in [24] (see also Theorem 1 of [25]). Hence, (b) holds.
The proof of (c) can be found in Lemma 24 of [30]. A proof of (d) can be found in
[4].

We now state a Hoffman-type result for a system of linear equalities whose proof
can be found in Lemma 2.3 of [19].

Lemma 2.2. Let A ∈ �m×n with full row rank be given and let (K,L) be an
arbitrary bipartition of the index set {1, . . . , n}. Assume that w̄ ∈ �|L| is an arbitrary
vector such that the system AKu = ALw̄ is feasible. Then, this system has a feasible
solution ū such that ‖ū‖ ≤ χ̄A‖w̄‖.

2.3. P-C step and its properties. In this subsection we review the well-known
MTY P-C algorithm [13] and its main properties. We also state the main result of
this paper, which establishes a new scaling-invariant iteration-complexity bound of
the MTY P-C algorithm for finding a near primal-dual optimal solution of (1.1) and
(1.2).

Each iteration of the MTY P-C algorithm consists of two steps, namely, the
predictor (or AS) step and the corrector (or centrality) step. The search direction
used by both steps at a given point in w = (x, y, s) ∈ P++ ×D++ is the unique
solution of the following linear system of equations:

S∆x + X∆s = σµe− xs,

A∆x = 0,(2.6)

AT∆y + ∆s = 0,

where µ = µ(x, s) and σ ∈ � is a prespecified parameter, commonly referred to as the
centrality parameter. When σ = 0, we denote the solution of (2.6) by (∆xa,∆ya,∆sa)
and refer to it as the (primal-dual) AS direction at w; it is the direction used in the
predictor step. When σ = 1, we denote the solution of (2.6) by (∆xc,∆yc,∆sc) and
refer to it as the centrality direction at w; it is the direction used in the corrector
step.

To describe an entire iteration of the MTY P-C algorithm, suppose that a constant
β ∈ (0, 1/4] is given. Given a point w = (x, y, s) ∈ N (β), this algorithm generates the
next point w+ = (x+, y+, s+) ∈ N (β) as follows. It first moves along the direction
(∆xa,∆ya,∆sa) until it hits the boundary of the enlarged neighborhood N (2β). More
specifically, it computes the point wa = (xa, ya, sa) ≡ (x, y, s) + αa(∆xa,∆ya,∆sa),
where

αa ≡ sup{α ∈ [0, 1] : (x, y, s) + α′(∆xa,∆ya,∆sa) ∈ N (2β) ∀α′ ∈ [0, α]}.(2.7)

Next, the point w+ = (x+, y+, s+) inside the smaller neighborhood N (β) is generated
by taking a unit step along the centrality direction (∆xc,∆yc,∆sc) at the point wa,
that is, (x+, y+, s+) ≡ (xa, ya, sa) + (∆xc,∆yc,∆sc) ∈ N (β). Starting from a point
w0 ∈ N (β) and successively performing iterations as described above, the MTY P-C



NEW ITERATION-COMPLEXITY BOUND FOR MTY ALGORITHM 325

algorithm generates a sequence of points {wk} ⊆ N (β), which converges to the primal-
dual optimal face of problems (1.1) and (1.2).

The convergence analysis of the sequence {wk}, as well as the finite termination
of the MTY P-C algorithm, has been the subject of study of several papers. In
what follows, we review the properties of the P-C iteration, which yields the classical
polynomial iteration-complexity bound for the MTY P-C algorithm. We also discuss
alternative properties of the P-C iteration, which will be used in our analysis to
derive a new polynomial iteration-complexity bound for the MTY P-C algorithm.
A scaling-invariant finite termination procedure for the MTY P-C algorithm and its
relationship with another well-known finite termination procedure will be discussed
in subsection 2.4. A detailed proof of the next two propositions can be found, for
example, in [34].

Proposition 2.3 (predictor step). Suppose that w = (x, y, s) ∈ N (β) for some
constant β ∈ (0, 1/4]. Let ∆wa = (∆xa,∆ya,∆sa) denote the AS direction at w and
let αa be the step-size computed according to (2.7). Then the following statements
hold:

(a) the point w+α∆wa has normalized duality gap µ(α) = (1−α)µ for all α ∈ �;
(b) αa ≥ max{1 − χ/β,

√
β/n}, where χ ≡ ‖∆xa∆sa‖/µ.

Proof. It is well known (see, for example, section 4.5.1 of [34]) that (a) holds,
χ ≤ n/2, and

αa ≥ 2

1 +
√

1 + 4χ/β
.

Using these two inequalities we see, after a simple verification, that (b) holds.
Proposition 2.4 (corrector step). Suppose that w = (x, y, s) ∈ N (2β) for some

constant β ∈ (0, 1/4] and let (∆xc,∆yc,∆sc) denote the corrector step at w. Then
w + ∆wc ∈ N (β). Moreover, the (normalized) duality gap of w + ∆wc is the same as
that of w.

For a search direction ∆w = (∆x,∆y,∆s) at a point w = (x, y, s) ∈ P++ ×D++,
the quantity

(Rx,Rs) ≡
(
δ(x + ∆x)

√
µ

,
δ−1(s + ∆s)

√
µ

)
=

(
x1/2s1/2 + δ∆x

√
µ

,
x1/2s1/2 + δ−1∆s

√
µ

)
,

(2.8)

where δ ≡ δ(w), appears quite often in our analysis. We refer to it as the resid-
ual of ∆w. Throughout this paper, we denote the residual of the AS direction
∆wa = (∆xa,∆ya,∆sa) at w as (Rxa(w), Rsa(w)). Note that if (Rxa, Rsa) ≡
(Rxa(w), Rsa(w)), then

Rxa = − 1
√
µ
δ−1∆sa, Rsa = − 1

√
µ
δ∆xa,(2.9)

and

Rxa + Rsa =
x1/2s1/2

√
µ

,(2.10)

due to the fact that (∆xa,∆ya,∆sa) satisfies the first equation in (2.6) with σ = 0.
The following quantity plays an important role in our analysis:

εa
∞(w) ≡ max

i
{min{|Rxa

i (w)|, |Rsa
i (w)|}}.(2.11)



326 RENATO D. C. MONTEIRO AND TAKASHI TSUCHIYA

In terms of this quantity, we have the following bound on the reduction on the duality
gap during an iteration of the MTY P-C algorithm.

Lemma 2.5. Suppose that w ∈ N (β) for some constant β ∈ (0, 1/4] and let w+ be
the point obtained after a single iteration of the MTY P-C algorithm with base point
w. Then, w+ ∈ N (β) and

µ(w+) ≤ min

{
1 −

√
β

n
,

√
nεa

∞(w)

β

}
µ(w).(2.12)

Proof. Using (2.6) and (2.9), we easily see that (Rxa)TRsa = 0. Using this obser-
vation together with (2.10), we easily see that max{‖Rxa‖, ‖Rsa‖} ≤

√
n. The result

now immediately follows from this conclusion, relation (2.11), and Propositions 2.3
and 2.4.

We end this section by stating the main result of this paper. This result establishes
a new iteration-complexity bound for the MTY P-C algorithm.

Theorem 2.6. Given a termination tolerance η > 0 for the normalized duality
gap and an initial point w0 ∈ N (β) with β ∈ (0, 1/4], the MTY P-C algorithm
generates an iterate wk ∈ N (β) satisfying µ(wk) ≤ η in at most

O(min{
√
n log(µ0/η), T (µ0/η) + n3.5 log(χ̄∗

A + n)})(2.13)

iterations, where µ0 ≡ µ(w0), T (·) is defined in (1.3), and

χ̄∗
A ≡ inf{χ̄AD : D ∈ D}.

A few observations are in order at this point. First, the first bound in (2.13) is
the classical one derived in [13] (see also [8, 15, 16, 17]), and follows as an immediate
consequence of the first bound on the duality gap reduction obtained in Lemma 2.5.
The second bound in (2.13) is the one which will be established in this paper. Observe
that, in contrast to the classical iteration-complexity bound which is proportional to
log(µ0/η), the new bound depends linearly on log(log(µ0/η)). Second, note that the
MTY P-C algorithm is scaling-invariant; i.e., if the change of variables (x, y, s) =
(Dx̃, ỹ,D−1s̃) for some D ∈ D is performed on the pair of problems (1.1) and (1.2)
and the MTY P-C algorithm is applied to the new dual pair of scaled problems, then
the sequence of iterates {w̃k} generated satisfies (xk, yk, sk) = (Dx̃k, ỹk, D−1s̃k) for
all k ≥ 1 as long as the initial iterate w̃0 ∈ N (β) in the w̃-space satisfies (x0, y0, s0) =
(Dx̃0, ỹ0, D−1s̃0). For this reason, the MTY P-C algorithm should have an iteration-
complexity bound which does not depend on the scaled space where the sequence
of iterates is generated. Note that the iteration-complexity bound (2.13) has this
property since µ0, χ̄

∗
A, and the inequality µ(wk) ≤ η are all scaling-invariant. Third,

to establish the iteration-complexity bound stated in Theorem 2.6, it is sufficient to
establish that, in the scaled space, the iteration-complexity bound is

O(min{
√
n log(µ0/η), T (µ0/η) + n3.5 log(χ̄AD + n)}).(2.14)

Indeed, since the number of iterations of the MTY P-C algorithm does not depend on
the underlying scaled space, it follows that this number is majorized by the infimum of
(2.14) over all D ∈ D, i.e., by the bound (2.13). Moreover, without loss of generality,
we will consider the MTY P-C algorithm applied to (1.1) and (1.2) without any scaling
and will establish the iteration-complexity bound (2.14) with D = I.



NEW ITERATION-COMPLEXITY BOUND FOR MTY ALGORITHM 327

Vavasis and Ye [30, 31] developed a primal-dual path-following interior-point al-
gorithm which solves the LP pair (1.1) and (1.2) in O(n3.5 log(χ̄A + n)) iterations.
In contrast to the other standard primal-dual path-following interior-point methods
developed in the literature, including the MTY P-C algorithm presented in this sub-
section, Vavasis and Ye’s algorithm uses from time to time a crucial step, namely, the
LLS step, which unfortunately is not scaling-invariant. Hence, the quantity χ̄A in its
complexity bound cannot be replaced by χ̄∗

A. For this reason, a definitive comparison
of the iteration-complexity bound corresponding to Vavasis and Ye’s algorithm and
the one stated in Theorem 2.6 is not apparent. While the one of Theorem 2.6 contains
the extra term T (µ0/η), which is not present in Vavasis and Ye’s iteration-complexity
bound, the iteration-complexity bound of Theorem 2.6 depends on χ̄∗

A instead of the
larger quantity χ̄A. The following simple example shows that the difference between
these two quantities can be substantial. It exhibits a family of matrices A such that
the ratio χ̄∗

A/χ̄A converges to 0.
Example. For ε > 0, define A(ε) := (εI | e1), where I is the m × m identity

matrix and e1 is the first unit vector. It is easy to see that χ̄A(ε) = Θ(ε−1) and that
χ∗
A(ε) = O(1) for every ε > 0.

2.4. A scaling-invariant finite termination procedure. In this section, we
describe a scaling-invariant finite termination procedure which, used in conjunction
with the MTY P-C algorithm, allows one to find an exact primal-dual optimal solution
of (1.1) and (1.2). We also derive an alternative scaling-invariant iteration-complexity
bound for the MTY P-C algorithm to find an exact primal-dual optimal solution of
(1.1) and (1.2).

The finite termination procedure described in this subsection is similar to the
one described in Mehrotra and Ye [12] (see also [34]) except that ours uses a scaling-
invariant scheme for guessing the optimal partition (B∗, N∗) associated with the pair of
LP problems (1.1) and (1.2). (Recall that, by definition, B∗ ≡ {i : xi > 0 for some x ∈
opt(1.1)} and N∗ ≡ {i : si > 0 for some (y, s) ∈ opt(1.2)}, where opt(·) denotes
the set of optimal solutions of problem (·).) Namely, given a point w = (x, y, s) ∈
P++ ×D++, we define the AS-bipartition (B(w), N(w)) at w as

B(w) ≡ {i : |Rsa
i (w)| ≤ |Rxa

i (w)|}, N(w) ≡ {i : |Rsa
i (w)| > |Rxa

i (w)|}.(2.15)

We now state the following finite termination procedure which uses the AS-bipartition
for guessing the optimal partition. Note that this partition is a primal-dual symmetric
variant of the indicators discussed in [2].

Finite termination (FT) procedure.

Given γ ∈ (0, 1) and w = (x, y, s) ∈ P++ ×D++ such that xs ≥ γµ(w).

(1) Find the AS-bipartition (B,N) = (B(w), N(w)) at w.

(2) Solve the following projection problems:

x∗ ≡ argminx̃{‖δ(x− x̃)‖2 : Ax̃ = b, x̃N = 0},(2.16)

(y∗, s∗) ≡ argmin(ỹ,s̃){‖δ−1(s− s̃)‖2 : AT ỹ + s̃ = c, s̃B = 0},(2.17)

where δ ≡ δ(w).

(3) If x∗
B > 0 and s∗N > 0, then w∗ = (x∗, y∗, s∗) is optimal; output w∗ and

declare success. Otherwise, exit the procedure and declare failure.



328 RENATO D. C. MONTEIRO AND TAKASHI TSUCHIYA

Our goal now will be to show that the FT procedure always finds a primal-
dual optimal solution of (1.1) and (1.2) whenever µ(w) is less than a certain positive
threshold constant defined in terms of additional condition measures associated with
the pair of LP problems (1.1) and (1.2). We start by defining these condition measures.
The first two condition measures are given by

ξP (A, b, c) ≡ min
i∈B∗

max{x̄i : x̄ ∈ opt(1.1)},

ξD(A, b, c) ≡ min
i∈N∗

max{s̄i : (ȳ, s̄) ∈ opt(1.2)}.

The third condition measure is defined as

ζ(A, (B∗, N∗)) ≡ max{ζ1, ζ2},(2.18)

where

ζ1 ≡ max
dN∗ �=0

{
min

{
‖dB∗‖
‖dN∗‖

: d = (dB∗ , dN∗) ∈ Ker(A)

}}
,

ζ2 ≡ max
dB∗ �=0

{
min

{
‖dN∗‖
‖dB∗‖

: d = (dB∗ , dN∗) ∈ Im(AT )

}}
.

Using Lemma 2.2 and Proposition 2.1(d), it is easy to see that ζ(A, (B∗, N∗)) ≤ χ̄A.
The following result states some well-known estimates on the size of the compo-

nents of a point w ∈ P++ ×D++.
Lemma 2.7. Let w = (x, y, s) ∈ P++ ×D++ be given and define µ ≡ µ(w),

δ ≡ δ(w), ξP ≡ ξP (A, b, c), and ξD ≡ ξD(A, b, c). Then

max(xN∗) ≤
nµ

ξD
, max(sB∗) ≤

nµ

ξP
.(2.19)

If we further assume that xs ≥ γµe for some γ ∈ (0, 1), then

min(xB∗) ≥
γξD

n
, min(sN∗) ≥

γξP

n
,(2.20)

‖δB∗‖∞‖δ−1
N∗

‖∞ ≤ n2µ

γξP ξD
.(2.21)

Proof. The inequality (2.19) follows immediately from the definitions of ξP (A, b, c)
and ξD(A, b, c) and the following identities: xT s = nµ, x̄T s̄ = 0, and (x−x̄)T (s−s̄) = 0
for all w̄ = (x̄, ȳ, s̄) ∈ opt(1.1)× opt(1.2) (see Ye [33] for details). Moreover, using the
assumption that xs ≥ γµe and (2.19), we obtain si ≥ γµ/xi ≥ γξD/n for every i ∈ N∗
and xi ≥ γµ/si ≥ γξP /n for every i ∈ B∗, from which (2.20) follows. Inequality (2.21)
follows immediately from (2.4), (2.19), and (2.20).

The following result shows not only that the AS-bipartition (B(w), N(w)) is a
correct guess for the optimal partition (B∗, N∗) but also that the FT procedure yields
a primal-dual optimal solution of (1.1) and (1.2) whenever the duality gap µ(w) is
less than a suitable threshold value defined in terms of the condition measures ξ and
ζ introduced above, the dimension n, and the degree of centrality γ of w.

Lemma 2.8. Suppose that γ ∈ (0, 1) and w = (x, y, s) ∈ P++ ×D++ are such
that

xs ≥ γµ and µ <
γ1.5ξP ξD

2ζn2.5
,(2.22)



NEW ITERATION-COMPLEXITY BOUND FOR MTY ALGORITHM 329

where µ = µ(w), ζ ≡ ζ(A, (B∗, N∗)), ξP ≡ ξP (A, b, c), and ξD ≡ ξD(A, b, c). Then
we have that

(a) (B(w), N(w)) = (B∗, N∗);
(b) the FT procedure yields a strictly complementary primal-dual optimal solu-

tion, that is, a triple w∗ = (x∗, y∗, s∗) ∈ opt(1.1) × opt(1.2) such that x∗ + s∗ > 0.
Proof. Suppose γ ∈ (0, 1) and w ∈ P++ ×D++ are such that (2.22) holds. We

will first prove (a). Let ∆wa = (∆xa,∆ya,∆sa) denote the AS direction at w. It is
well known that

max{‖δ∆xa‖, ‖δ−1∆sa‖} ≤ √
nµ,(2.23)

where δ ≡ δ(w). Moreover, it is easy to see that

∆xa = argmin

{
s̃T∆x +

1

2
‖δ∆x‖2 : A∆x = 0

}
for every s̃ ∈ c + Im(AT ). Now fix some (ȳ, s̄) ∈ opt(1.2) and let s̃ = s̄ in the above
optimization problem. Splitting the variable ∆xa according to the partition (B∗, N∗),
noting that s̄B∗ = 0, and fixing the component ∆xN∗ to be ∆xa

N∗
, we conclude that

∆xa
B∗ = argmin∆xB∗

{
1

2
‖δB∗∆xB∗‖2 : AB∗∆xB∗ = −AN∗∆xa

N∗

}
.(2.24)

Now, let ∆̃xB∗ denote the minimum norm solution of the system AB∗∆xB∗ = −AN∗∆xa
N∗

.
Using (2.21), (2.23), (2.24), and the definition of ζ = ζ(A, (B∗, N∗)), we obtain

‖δB∗∆xa
B∗‖ ≤ ‖δB∗∆̃xB∗‖ ≤ ‖δB∗‖∞‖∆̃xB∗‖ ≤ ζ‖δB∗‖∞‖∆xa

N∗‖
≤ ζ‖δB∗‖∞‖δ−1

N∗
‖∞‖δN∗∆xa

N∗‖ ≤ √
nµζ‖δB∗‖∞‖δ−1

N∗
‖∞

≤ n2.5ζµ1.5

γξP ξD
<

√
γµ

2
,

where the last inequality is due to (2.22). The last inequality, together with (2.22),
implies that for every i ∈ B∗, we have∣∣∣∣δ−1

i ∆sa
i√

µ

∣∣∣∣ =

∣∣∣∣∣x1/2
i s

1/2
i√
µ

+
δi∆xa

i√
µ

∣∣∣∣∣ ≥ x
1/2
i s

1/2
i√
µ

−
∣∣∣∣δi∆xa

i√
µ

∣∣∣∣ > √
γ −

√
γ

2
=

√
γ

2
≥

∣∣∣∣δi∆xa
i√

µ

∣∣∣∣ ,
or equivalently, |Rxa

i (w)| > |Rsa
i (w)| for every i ∈ B∗. Hence, B∗ ⊆ B(w) in view of

(2.15). Similarly, we can show that N∗ ⊆ N(w). Therefore, (B(w), N(w)) = (B∗, N∗).
We now prove (b). Let (x∗, y∗, s∗) denote the point determined by (2.16) and

(2.17). Observe that xB∗ − x∗
B∗

is a feasible solution of the system AB∗∆xB∗ =

−AN∗xN∗ . Now let ∆̂xB∗ denote the minimum norm solution of this system. Using
(2.21), (2.22), (2.16), and the definition of ζ = ζ(A, (B∗, N∗)), we obtain

‖x−1
B∗

(xB∗ − x∗
B∗)‖

≤
∥∥∥x−1/2

B∗
s
−1/2
B∗

∥∥∥
∞

‖δB∗(xB∗ − x∗
B∗)‖ ≤ 1

√
γµ

‖δB∗(xB∗ − x∗
B∗)‖

≤ 1
√
γµ

‖δB∗∆̂xB∗‖ ≤ 1
√
γµ

‖δB∗‖∞‖∆̂xB∗‖ ≤ ζ
√
γµ

‖δB∗‖∞‖xN∗‖

≤ ζ
√
γµ

‖δB∗‖∞‖δ−1
N∗

‖∞‖δN∗xN∗‖ =
ζ

√
γµ

‖δB∗‖∞‖δ−1
N∗

‖∞
∥∥∥x1/2

N∗
s
1/2
N∗

∥∥∥
≤ ζ

√
n

√
γ
‖δB∗‖∞‖δ−1

N∗
‖∞ ≤ n2.5ζµ

γ1.5ξP ξD
<

1

2
.



330 RENATO D. C. MONTEIRO AND TAKASHI TSUCHIYA

The above inequality clearly implies that x∗
B∗

> 0. In a similar way, we can prove
that s∗N∗

> 0. Hence, (b) follows.
The next result gives an iteration-complexity bound for the MTY P-C algorithm,

used in conjunction with the FT procedure to find a primal-dual optimal solution of
(1.1) and (1.2).

Theorem 2.9. Suppose that w0 ∈ N (β) with β ∈ (0, 1/4] is given. Then,
the version of the MTY P-C algorithm in which the FT procedure is invoked at every
iterate wk started from w0 finds a primal-dual strictly complementary optimal solution
w∗ in at most

O(min{
√
n log(nµ0/η∗), T (µ0/η

∗) + n3.5 log(χ̄∗
A + n)})(2.25)

iterations, where µ0 = µ(w0), the function T (·) is defined in (1.3), and

η∗ ≡ sup

{
ξP (AD, b,Dc)ξD(AD, b,Dc)

ζ(AD, (B∗, N∗))
: D ∈ D

}
.

Proof. This result follows immediately from Theorem 2.6, Lemma 2.8, and the
scaling-invariance of the algorithm under consideration.

A few implications of Theorem 2.9 under the Turing machine model will be dis-
cussed in section 5. For now, we mention that the complexity bound (2.25) remains
invariant not only under the transformation that changes the LP data from (A, c, b) to
(AD,Dc, b) for some D ∈ D, but also under the transformation that changes (A, c, b)
to (A,αc, βb) for some fixed positive scalars α and β.

3. Basic tools. In this section we introduce the basic tools that will be used in
the proof of Theorem 2.6. The analysis relies heavily on the notion of crossover events
due to Vavasis and Ye [30]. In subsection 3.1, we give a definition of crossover event,
which is slightly different than the one introduced in [30], and then discuss some of its
properties. In subsection 3.2, we describe the notion of an LLS direction introduced in
[30] and then state a proximity result that gives sufficient conditions under which the
AS direction can be well approximated by an LLS direction. Subsection 3.3 reviews
from a different perspective an important result from [30], namely, Lemma 17, that
essentially guarantees the occurrence of crossover events. Since this result is stated in
terms of the residual of an LLS step, the use of the proximity result of subsection 3.2
allows us to obtain a similar result stated in terms of the residual of the AS direction.
In subsection 3.4, we introduce two ordered partitions of the set of variables, which
play an important role in our analysis.

3.1. Crossover events. In this subsection we discuss the important notion of
a crossover event developed by Vavasis and Ye [30].

Definition. For two indices i, j ∈ {1, . . . , n} and a constant C ≥ 1, a C-crossover
event for the pair (i, j) is said to occur on the interval (ν′, ν] if

there exists ν0 ∈ (ν′, ν] such that
sj(ν0)

si(ν0)
≤ C,

and
sj(ν̃)

si(ν̃)
> C ∀ ν̃ ≤ ν′.

(3.1)

Moreover, the interval (ν′, ν] is said to contain a C-crossover event if (3.1) holds for
some pair (i, j).

Hence, the notion of a crossover event is independent of any algorithm and is a
property of the central path only. Note that in view of (2.1), condition (3.1) can be



NEW ITERATION-COMPLEXITY BOUND FOR MTY ALGORITHM 331

reformulated into an equivalent condition involving only the primal variable. For our
purposes, we will use only (3.1).

We have the following simple but crucial result about crossover events.
Proposition 3.1. Let C ≥ 1 be a given constant. There can be at most n(n−1)/2

disjoint intervals of the form (ν′, ν] containing C-crossover events.
The notion of C-crossover events can be used to define the notion of C-crossover

events between two iterates of the MTY P-C algorithm as follows. We say that a C-
crossover event occurs between two iterates wk and wl, k < l, generated by the MTY
P-C algorithm if the interval (µ(wl), µ(wk)] contains a C-crossover event. Note that in
view of Proposition 3.1, there can be at most n(n−1)/2 disjoint intervals of this type.
We will show in the remainder of this paper that there exists a constant C ≥ 1 with the
following property: for any index k, there exists an index l > k with the property l−
k = O(log(log(µ(w0)/η))+n1.5 log(χ̄A +n)) and, if the MTY P-C algorithm does not
terminate before or at the lth iteration, then a C-crossover event must occur between
the iterates wk and wl. Proposition 3.1 and a simple argument then show that the
MTY P-C algorithm must terminate within O(n2 log(log(µ(w0)/η))+n3.5 log(χ̄A+n))
iterations, yielding part of Theorem 2.6. The other part of Theorem 2.6 is obtained
using slightly different reasoning.

3.2. LLS directions and their relationship with the AS direction. In
this subsection we describe another type of direction, which plays an important role
on a criterion that guarantees the occurrence of crossover events (see Lemma 3.3),
namely, the LLS direction. We also state a proximity result, which describes how the
AS direction can be well approximated by suitable LLS directions.

The LLS direction was first introduced by Vavasis and Ye in [30] and is one of
two directions used in their algorithm. While the algorithm in this paper does not
rely on this direction, its analysis relies heavily on it by means of the implications of
Lemma 3.3.

Let w = (x, y, s) ∈ P++ ×D++ and a partition (J1, . . . , Jp) of the index set

{1, . . . , n} be given and define δ ≡ δ(w). The primal LLS direction ∆xll = (∆xll
J1
,

. . . ,∆xll
Jp

) at w with respect to J is defined recursively according to the order ∆xll
Jp
,

. . . ,∆xll
J1

as follows. Assume that the components ∆xll
Jp
, . . . ,∆xll

Jk+1
have been de-

termined. Let ΠJk
: �n → �Jk denote the projection map defined as ΠJk

(u) = uJk

for all u ∈ �n. Then ∆xll
Jk

≡ ΠJk
(Lx

k), where Lx
k is given by

Lx
k ≡ Argminp∈�n{‖δJk

(xJk
+ pJk

)‖2 : p ∈ Lx
k+1}(3.2)

= Argminp∈�n{‖δJk
(xJk

+ pJk
)‖2 : p ∈ Ker(A), pJi

= ∆xll
Ji

∀i = k + 1, . . . , p},
with the convention that Lx

p+1≡Ker(A). The slack component ∆sll =(∆sll
J1
, . . . ,∆sll

Jp
)

of the dual LLS direction (∆yll,∆sll) at w with respect to J is defined recursively as
follows. Assume that the components ∆sll

J1
, . . . ,∆sll

Jk−1
have been determined. Then

∆sll
Jk

≡ ΠJk
(Ls

k), where Ls
k is given by

Ls
k ≡ Argminq∈�n{‖δ−1

Jk
(sJk

+ qJk
)‖2 : q ∈ Ls

k−1}(3.3)

= Argminq∈�n{‖δ−1
Jk

(sJk
+ qJk

)‖2 : q ∈ Im(AT ), qJi = ∆sll
Ji

∀i = 1, . . . , k − 1},
with the convention that Ls

0 ≡ Im(AT ). Finally, once ∆sll has been determined, the
component ∆yll is determined from the relation AT∆yll + ∆sll = 0.



332 RENATO D. C. MONTEIRO AND TAKASHI TSUCHIYA

It is easy to verify that the AS direction is a special LLS direction, namely, the one
with respect to the only partition in which p = 1 (see section 5 of [30]). Clearly, the
LLS direction at a given w ∈ P++ ×D++ depends on the partition J = (J1, . . . , Jp)
used.

A partition J = (J1, . . . , Jp) is said to be ordered at a point w = (x, y, s) ∈
P++ ×D++ if max(δJi

) ≤ min(δJi+1
) for all i = 1, . . . , p− 1, where δ ≡ δ(w). In this

case, the gap of J , denoted by gap(J), is defined as

gap(J) = min
1≤i≤p−1

{
min(δJi+1

)

max(δJi)

}
=

1

max1≤i≤p−1(‖δJi
‖∞‖δ−1

Ji+1
‖∞)

≥ 1,

with the convention that gap(J) = ∞ if p = 1.
In the remainder of this subsection, we describe how the AS direction at a given

w ∈ P++ ×D++ can be well approximated by suitable LLS steps, a result that will
be important in our convergence analysis. Another result along this direction has also
been obtained by Vavasis and Ye [32]. However, our result is more general and better
suited for the development of this paper.

The proximity result below can be proved using the projection decomposition
techniques developed in [26]. Another proof, using instead the techniques developed
in [18], has been given in [19]. The result essentially states that the larger the gap of
J is, the closer the AS direction and the LLS direction with respect to J will be to
each other.

Proposition 3.2. Let w = (x, y, s) ∈ P++ ×D++ and an ordered partition
J = (J1, . . . , Jp) at w be given, and let (Rxa, Rsa) and (Rxll, Rsll), respectively, denote
the residuals of the AS direction at w and of the LLS direction at w with respect to
J . If gap(J) ≥ 4pχ̄A, then

max{‖Rxa −Rxll‖∞, ‖Rsa −Rsll‖∞} ≤ 12
√
nχ̄A

gap(J)
.

In view of the above result, the AS direction can be well approximated by the
LLS directions with respect to ordered partitions J , which have large gaps. The LLS
direction with p = 1, which is the AS direction, provides the perfect approximation
to the AS direction itself. However, this kind of trivial approximation is not useful
for us due to the need for keeping under control the “spread” of some layers Jk. For
an ordered partition J = (J1, . . . , Jp) at w, the spread of the layer Jk, denoted by
spr(Jk), is defined as

spr(Jk) ≡
max(δJk

)

min(δJk
)

∀k = 1, . . . , p.

3.3. Relation between crossover events, the AS step, and the LLS
directions. In this subsection we develop some variants of Lemma 17 of Vavasis
and Ye [30] which are particularly suitable for our analysis. Specifically, we develop
two estimates on the number of iterations that the MTY P-C algorithm needs to per-
form for some crossover event to occur. While the first estimate essentially depends
on the size of the residual of the LLS step and the step-size at the initial iterate, the
second one, derived with the aid of Proposition 3.2, depends only on the size of the
residual of the AS direction at the initial iterate.

We start by stating an immediate consequence of Lemma 17 of [30], whose proof
can be found in Lemma 3.4 of Monteiro and Tsuchiya [19].



NEW ITERATION-COMPLEXITY BOUND FOR MTY ALGORITHM 333

Lemma 3.3. Let w = (x, y, s) ∈ N (β) for some β ∈ (0, 1) and an ordered partition
J = (J1, . . . , Jp) at w be given. Let δ ≡ δ(w), µ = µ(w), and (Rxll, Rsll) denote the

residual of the LLS direction (∆xll,∆yll,∆sll) at w with respect to J . Then, for any
index q ∈ {1, . . . , p}, any constant

Cq ≥ (1 + β) spr(Jq)/(1 − β)2,

and any µ′ ∈ (0, µ) such that

µ′

µ
≤

‖Rxll
Jq
‖∞‖Rsll

Jq
‖∞

n3C2
q χ̄

2
A

,

the interval (µ′, µ] contains a Cq-crossover event.
Using the above result, we can now derive the main result of this subsection, which

provides two estimates on the number of iterations that the MTY P-C algorithm needs
to perform until some crossover event occurs. This result is a slight variation of Lemma
3.5 of Monteiro and Tsuchiya [19], which is more suitable for our analysis.

Lemma 3.4. Suppose β ∈ (0, 1/4] and that J = (J1, . . . , Jp) is an ordered partition
at w. Let w = (x, y, s) ∈ N (2β) be such that µ(wk+1) ≤ µ(w) ≤ µ(wk) for some
iteration index k of the MTY P-C algorithm. Let (Rxll, Rsll) denote the residual of the
LLS direction (∆xll,∆yll,∆sll) at w with respect to J . Then, for every q ∈ {1, . . . , p}
and every Cq ≥ (1 + 2β) spr(Jq)/(1 − 2β)2, the following statements hold:

(a) There exists an iteration index l > k such that

l − k = O
(
√
n

(
log(χ̄A + n) + log Cq + log

(
µ(wk+1)/µ(w)

‖Rxll
Jq
‖∞‖Rsll

Jq
‖∞

)))
(3.4)

and with the property that either a Cq-crossover event occurs between wk and wl or
the algorithm terminates at or before the lth iteration.

(b) If, in addition,

gap(J) ≥ max

{
4nχ̄A,

24
√
nχ̄A

εa
Jq

}
,(3.5)

where εa
Jq

≡ min{‖Rxa
Jq
‖∞, ‖Rsa

Jq
‖∞}, then the iteration index l above satisfies

l − k = O(
√
n(log(χ̄A + n) + log Cq + log[(εa

Jq
)−1])).(3.6)

Proof. To prove (a), assume that the MTY P-C algorithm does not terminate
at or before the lth iteration. Lemma 3.3 guarantees that the interval (µ(wl), µ(w)]
contains a Cq-crossover event, and hence that a Cq-crossover event occurs between wk

and wl whenever

µ(wl)

µ(w)
=

µ(wl)

µ(wk+1)

µ(wk+1)

µ(w)
≤

‖Rxll
Jq
‖∞‖Rsll

Jq
‖∞

n3C2
q χ̄

2
A

.(3.7)

Since, by Lemma 2.5, µ(wj+1)/µ(wj) ≤ 1 −
√
β/n for all j ≥ 0, we conclude that

(3.7) holds for any l satisfying

log

(
µ(wk+1)

µ(w)

)
+ (l − k − 1) log

(
1 −

√
β

n

)
≤ log

[
‖Rxll

Jq
‖∞‖Rsll

Jq
‖∞

n3C2
q χ̄

2
A

]
.



334 RENATO D. C. MONTEIRO AND TAKASHI TSUCHIYA

Now, using the fact that log(1 + x) < x for any x > −1, it is easy to see that (3.4)
holds for the smallest l satisfying the above inequality. Hence, (a) follows.

To prove (b), it is sufficient to show that the bound in (3.4) is bounded above by
the one in (3.6) when (3.5) holds. Indeed, by Proposition 3.2 and (3.5), it follows that

max{‖Rxa −Rxll‖∞, ‖Rsa −Rsll‖∞} ≤ 12
√
nχ̄A

gap(J)
≤

εa
Jq

2
.

Hence, we have

min{‖Rxll
Jq
‖∞, ‖Rsll

Jq
‖∞}

≥ min{‖Rxa
Jq
‖∞ − ‖Rxa −Rxll‖∞, ‖Rsa

Jq
‖∞ − ‖Rsa −Rsll‖∞}

≥ min{‖Rxa
Jq
‖∞, ‖Rsa

Jq
‖∞} −

εa
Jq

2
= εa

Jq
−

εa
Jq

2
=

εa
Jq

2
.

Using this estimate in (3.4) together with the fact that µ(wk+1)/µ(w) ≤ 1, we con-
clude that the right-hand side of (3.4) is bounded above by the right-hand side of
(3.6).

3.4. Two important ordered partitions. In this subsection we describe two
ordered partitions which are crucial in the analysis of this paper.

The first ordered partition is due to Vavasis and Ye [30]. Given a point w ∈
P++ ×D++ and a parameter ḡ ≥ 1, this partition, which we refer to as the VY
ḡ-partition at w, is defined as follows. Let (i1, . . . , in) be an ordering of {1, . . . , n}
such that δi1 ≤ · · · ≤ δin , where δ = δ(w). For k = 2, . . . , n, let rk ≡ δik/δik−1

and define r1 ≡ ∞. Let k1 < · · · < kp be all the indices k such that rk > ḡ for
all j = 1, . . . , p. The VY ḡ-partition J is then defined as J = (J1, . . . , Jp), where
Jq ≡ {ikq

, ikq+1, . . . , ikq+1−1} for all q = 1, . . . , p. (Here, by convention, kp+1 ≡ n+1.)
More generally, given a subset I ⊆ {1, . . . , n}, we can similarly define the VY ḡ-
partition of I at w by taking an ordering (i1, . . . , im) of I satisfying δi1 ≤ · · · ≤ δim
where m = |I|, defining the ratios r1, . . . , rm as above, and proceeding exactly as in
the construction above to obtain an ordered partition J = (J1, . . . , Jp) of I.

It is easy to see that the following result holds for the partition J described in
the previous paragraph (see section 5 of [30]).

Proposition 3.5. Given a subset I ⊆ {1, . . . , n}, a point w ∈ P++ ×D++, and
a constant ḡ ≥ 1, the VY ḡ-partition J = (J1, . . . , Jp) of I at w satisfies gap(J) > ḡ
and spr(Jq) ≤ ḡ|Jq| ≤ ḡn for all q = 1, . . . , p.

The second ordered partition, which is used heavily in our analysis, is obtained
as follows. Given a point w ∈ P++ ×D++, we first use (2.15) to compute the AS-
bipartition (B,N) = (B(w), N(w)) at w. Next, an order (i1, . . . , in) of the index
variables is chosen such that δi1 ≤ · · · ≤ δin . Then, the first block of consecutive
indices in the n-tuple (i1, . . . , in) lying in the same set B or N are placed in the first
layer J1, the next block of consecutive indices lying in the other set is placed in J2, and
so on. As an example assume that (i1, i2, i3, i4, i5, i6, i7) ∈ B×B×N×B×B×N×N .
In this case, we have J1 = {i1, i2}, J2 = {i3}, J3 = {i4, i5}, and J4 = {i6, i7}. A
partition obtained according to the above construction is clearly ordered at w. We
refer to it as an ordered AS-partition and denote it by J (w).

Note that an ordered AS-partition is not uniquely determined since there can be
more than one n-tuple (i1, . . . , in) satisfying δi1 ≤ · · · ≤ δin . This situation occurs
exactly when there are two or more indices i with the same value for δi. It can be



NEW ITERATION-COMPLEXITY BOUND FOR MTY ALGORITHM 335

easily seen that there exists a unique ordered AS-partition at w if and only if there
do not exist i ∈ B(w) and j ∈ N(w) such that δi = δj . Hence, if the AS-bipartition
(B(w), N(w)) does not have the latter property, there can be multiple ordered AS-
partitions at w. In spite of this ambiguity, our analysis in this paper is valid for
any chosen ordered AS-partition. So there is no need to have the notion of ordered
AS-partition uniquely defined although this can be easily accomplished.

4. Convergence analysis of the MTY P-C algorithm. In this section, we
provide the proof of Theorem 2.6.

We first introduce some global constants which will be used in the convergence
analysis of this section. Let

C ≡ (1 + 2β)

(1 − 2β)2
(2ḡ)n and ḡ ≡ 24χ̄An

τ
,(4.1)

where

τ = τ(β) ≡ β(1 − β)3(1 − 2β)2

4(1 + β)2(1 + 2β)
.(4.2)

Note that, for a point w ∈ P++ ×D++, we have in view of (2.11) and (2.15) that

εa
∞(w) = max{‖Rxa

N (w)‖∞, ‖Rsa
B(w)‖∞},(4.3)

where B ≡ B(w) and N ≡ N(w). Clearly, εa
∞(w) is an upper bound on the absolute

value of the small components of the residual (Rxa(w), Rsa(w)). The next result
gives a lower bound on the absolute value of the large components of the residual
(Rxa(w), Rsa(w)). For a proof of this result, we refer the reader to Lemma 2.6 of
Monteiro and Tsuchiya [19].

Lemma 4.1. Suppose that w = (x, y, s) ∈ N (β) for some β ∈ (0, 1). Then, we
have

max{|Rxa
i (w)|, |Rsa

i (w)|} ≥
√

1 − β

2

for all i = 1, . . . , n, or equivalently, in view of the definition of (B,N)≡ (B(w), N(w)),
we have

min

{
min
i∈B

|Rxa
i (w)|,min

i∈N
|Rsa

i (w)|
}

≥
√

1 − β

2
.

Lemma 3.4 gives a good idea of part of the effort that will be undertaken in this
section, namely, to find conditions under which the bounds (3.4) or (3.6) obtained in
this result can be majorized by the quantity O(n log(χ̄A + n) + log(log(µ(w0)/η))).
We will break our analysis into the following three cases:

(i) gap(J (w)) ≤ 2ḡ (Lemma 4.2);
(ii) gap(J (w)) ≥ ḡ and εa

∞(w) ≥ τ ḡ/(
√
n gap(J (w))) (Lemma 4.5);

(iii) neither (i) nor (ii) holds (Lemma 4.11).
We will now give an outline of the approaches used to tackle each of the above

three cases. In case (i), it is easy to see that at least one variable in N and one variable
in B are in the same layer Jq of a VY 2ḡ-partition J = (J1, . . . , Jp) at w. We call
a layer of this type a “mixed VY-layer.” The proof of Lemma 4.2 essentially shows
that the existence of a mixed layer implies that the quantity εa

Jq
in Lemma 3.4(b)



336 RENATO D. C. MONTEIRO AND TAKASHI TSUCHIYA

is not too small and that a C-crossover event must occur within O(n1.5 log(χ̄A + n))
iterations of the MTY P-C algorithm.

In case (ii), the quantity gap(J (w)) is sufficiently large to guarantee that the AS-
direction can be well approximated by an LLS direction at w with respect to a suitable
ordered partition at w obtained from an ordered AS-partition at w by breaking one
of its layers into smaller layers. Using the close proximity of these two directions and
the fact that a step along this LLS direction followed by at most O(n1.5 log(χ̄A + n))
regular MTY P-C steps yields a C-crossover event, we show that case (ii) also implies
that a C-crossover event must occur within O(n1.5 log(χ̄A +n)) iterations of the MTY
P-C algorithm.

In case (iii), the proximity between the AS direction and the LLS direction men-
tioned above is not small enough to guarantee that the reduction of the duality gap
along these two directions are of the same order of magnitude. However, in this case
we manage to show that within O(log(log(µ(w0)/η))) iterations of the MTY P-C
algorithm we return to a situation in which either a mixed layer arises, or case (ii)
above holds, or an index changes status (moves from B to N or vice versa) from one
iteration to the next. The same kind of techniques used to handle case (i) can be
used to show that the latter possibility also implies that a C-crossover event must
occur within O(n1.5 log(χ̄A + n)) iterations of the MTY P-C algorithm. Overall,
we conclude that case (iii) also implies that a C-crossover event must occur within
O(n1.5 log(χ̄A + n) + log(log(µ(w0)/η))) iterations of the MTY P-C algorithm.

The first result below is a slight variation of Lemma 4.2 of [19]. It considers case
(i) above, which can be handled by applying Lemma 3.4(b) with the ordered partition
J = (J1, . . . , Jp) chosen to be the VY 2ḡ-partition at w.

Lemma 4.2. Suppose β ∈ (0, 1/4] and w = (x, y, s) ∈ N (2β) is such that
µ(wk+1) ≤ µ(w) ≤ µ(wk) for some iteration index k of the MTY P-C algorithm.
Assume that gap(J ) ≤ 2ḡ, where J = (J1, . . . ,Jr) is an ordered AS-partition at w.
Then there exists an iteration index l > k such that l − k = O(n1.5 log(χ̄A + n)) and
with the property that either a C-crossover event occurs between wk and wl or the
algorithm terminates at or before the lth iteration.

Proof. The proof that the required iteration index l exists is based on Lemma
3.4(b). Indeed, let J = (J1, . . . , Jp) be a VY 2ḡ-partition at w. The assumption
gap(J ) ≤ 2ḡ implies the existence of two indices i, j lying in some layer Jq of J ,
with one in B(w) and the other in N(w). Without loss of generality, assume that
i ∈ B(w) and j ∈ N(w). By Lemma 4.1, we then have |Rxa

i (w)| ≥
√

1 − 2β/2 and
|Rsa

j (w)| ≥
√

1 − 2β/2. Since i, j ∈ Jq, this implies that

εa
Jq

≡ min{‖Rxa
Jq

(w)‖∞, ‖Rsa
Jq

(w)‖∞} ≥
√

1 − 2β

2
.(4.4)

Using the above inequality, the fact that gap(J) ≥ 2ḡ, and relations (4.1) and (4.2),
we easily see that (3.5) holds. Since by Proposition 3.5 the spread of every layer of a
VY 2ḡ-partition at w is bounded above by (2ḡ)n, we conclude that spr(Jq) ≤ (2ḡ)n.
Hence, we may set Cq = C ≡ (1 + 2β)(2ḡ)n/(1 − 2β)2 in Lemma 3.4, from which it
follows that

log(Cq) = O(n log ḡ) = O(n log(χ̄A + n)),(4.5)

where the last equality is due to (4.1). The result now follows from Lemma 3.4(b) by
noting that the bound in (3.6) is O(n1.5 log(χ̄A+n)) in view of (4.4) and (4.5).



NEW ITERATION-COMPLEXITY BOUND FOR MTY ALGORITHM 337

From now on we consider cases (ii) and (iii), i.e., the situation in which gap(J (w))
≥ ḡ. For the sake of future reference, we note that the condition gap(J (w)) ≥ ḡ
implies

τ ḡ√
n gap(J (w))

≤ τ ≤
√

1 − 2β

4
,(4.6)

due to (4.2). The following lemma is a slight variation of Lemma 4.3 of [19]. For
some suitably chosen ordered partition J at w, it provides an upper bound on the
right-hand side of (3.4) in terms of the residual of the LLS step with respect to J (w).
Note that for this result we assume only that gap(J (w)) ≥ ḡ.

Lemma 4.3. Suppose β ∈ (0, 1/4] and w = (x, y, s) ∈ N (2β) is such that
µ(wk+1) ≤ µ(w) ≤ µ(wk) for some iteration index k of the MTY P-C algorithm.
Assume that gap(J ) ≥ ḡ, where J = (J1, . . . ,Jr) is an ordered AS-partition at w.
Let (Rxl(w), Rsl(w)) denote the residual of the LLS direction at w with respect to J
and define

εl
∞(w) ≡ max{‖Rxl

N (w)‖∞, ‖Rsl
B(w)‖∞}.(4.7)

Then, there exists an iteration index l > k such that

l − k = O
(
n1.5 log (χ̄A + n) +

√
n log

(
µ(wk+1)/µ(w)

εl
∞(w)

))
(4.8)

and with the property that either a C-crossover event occurs between wk and wl or the
algorithm terminates at or before the lth iteration.

Proof. To simplify notation, let (Rxl, Rsl) ≡ (Rxl(w), Rsl(w)) and εl
∞ ≡ εl

∞(w).
Assume without loss of generality that εl

∞ = ‖Rxl
N‖∞; the case in which εl

∞ =
‖Rsl

B‖∞ can be proved similarly. Then, εl
∞ = |Rxl

i| for some i ∈ N . Let Jt be the
layer of J containing the index i and note that

εl
∞ = |Rxl

i| = ‖Rxl
Jt
‖∞ ≤ ‖Rxl

Jt
‖.(4.9)

Now, let I = (I1, . . . , Ip) be the VY ḡ-partition of Jt at w and consider the ordered
partition J ′ defined as

J ′ ≡ (J1, . . . ,Jt−1, I1, . . . , Ip,Jt+1, . . . ,Jr).

Let (Rxll, Rsll) denote the residual of the LLS direction at w with respect to J ′.
Using the definition of the LLS step, it is easy to see that Rxl

Jj
= Rxll

Jj
for all

j = t + 1, . . . , r. Moreover, we have ‖Rxl
Jt
‖ ≤ ‖Rxll

Jt
‖ since ‖Rxl

Jt
‖ is the optimal

value of the least squares problem which determines the ∆xl
Jt

-component of the LLS

step with respect to J , whereas ‖Rxll
Jt
‖ is the objective value at a certain feasible

solution for the same least squares problem. Hence, for some q ∈ {1, . . . , p}, we have

‖Rxll
Iq
‖∞ = ‖Rxll

Jt
‖∞ ≥ 1√

|Jt|
‖Rxll

Jt
‖ ≥ 1√

n
‖Rxll

Jt
‖ ≥ 1√

n
‖Rxl

Jt
‖.(4.10)

Combining (4.9) and (4.10), we then obtain

‖Rxll
Iq
‖∞ ≥ 1√

n
εl
∞.(4.11)



338 RENATO D. C. MONTEIRO AND TAKASHI TSUCHIYA

Let us now bound the quantity ‖Rsll
Iq
‖∞ from below. Using the triangle inequality for

norms, Lemma 4.1 together with the fact that Iq ⊆ N , and Proposition 3.2 together
with the fact that gap(J ′) ≥ ḡ = 24χ̄An/τ ≥ 96χ̄A

√
n, where the last inequality is

due to (4.2), we obtain

‖Rsll
Iq
‖∞ ≥ ‖Rsa

Iq
‖∞ − ‖Rsll

Iq
−Rsa

Iq
‖∞ ≥ 1

4
− 12

√
nχ̄A

gap(J ′)
≥ 1

4
− 1

8
=

1

8
,(4.12)

where Rsa ≡ Rsa(w). Also, note that by (4.1) we have

log C = O(n log(χ̄A + n)).(4.13)

The result now follows from Lemma 3.4(a) with J = J ′ and Cq = C, the ob-
servation that Proposition 3.5 and (4.1) imply that C ≥ (1 + 2β)ḡn/(1 − 2β)2 ≥
(1 + 2β) spr(Iq)/(1 − 2β)2, and the fact that the estimates (4.11)–(4.13) imply that
the bound in (3.4) is majorized by the one in (4.8).

Our goal now will be to estimate the second logarithm that appears in the
iteration-complexity bound (4.8). The next result gives a condition under which
εa
∞(w) = O(εl

∞(w)).
Lemma 4.4. Let w = (x, y, s) ∈ P++ ×D++ be given and let J = (J1, . . . ,Jr)

denote an ordered AS-partition at w. If

gap(J ) ≥ max

{
4nχ̄A,

24
√
nχ̄A

εa
∞(w)

}
,(4.14)

then εl
∞(w) ≥ εa

∞(w)/2, where εl
∞(w) is defined in (4.7).

Proof. Let (Rxa, Rsa) and (Rxl, Rsl), respectively, denote the residuals of the AS
direction at w and the LLS direction at w with respect to J (w). By Proposition 3.2
and condition (4.14), we have

max{‖Rxa −Rxl‖∞, ‖Rsa −Rsl‖∞} ≤ 12
√
nχ̄A

gap(J )
≤ εa

∞(w)

2
.

Hence, we have

εl
∞(w) ≡ max{‖Rxl

N‖∞, ‖Rsl
B‖∞}

≥ max{‖Rxa
N‖∞ − ‖Rxa

N −Rxl
N‖∞, ‖Rsa

B‖∞ − ‖Rsa
B −Rsl

B‖∞}

≥ max{‖Rxa
N‖∞, ‖Rsa

B‖∞} − εa
∞(w)

2
= εa

∞(w) − εa
∞(w)

2
=

εa
∞(w)

2
.

We are now ready to state and prove the result which takes care of case (ii).
Lemma 4.5. Suppose β ∈ (0, 1/4] and w = (x, y, s) ∈ N (2β) is such that

µ(wk+1) ≤ µ(w) ≤ µ(wk) for some iteration index k of the MTY P-C algorithm.
Assume that gap(J ) ≥ ḡ and εa

∞(w) ≥ τ ḡ/(
√
n gap(J )), where J = (J1, . . . ,Jr) is

an ordered AS-partition at w. Then, there exists an iteration index l > k such that
l − k = O(n1.5 log(χ̄A + n) +

√
n log(εa

∞(w))−1) and with the property that either a
C-crossover event occurs between wk and wl or the algorithm terminates at or before
the lth iteration. Furthermore, if w = wk, then l − k = O(n1.5 log(χ̄A + n)).

Proof. The proof is based on Lemma 4.3 and essentially consists of showing
that the term inside the second logarithm that appears in the bound (4.8) can al-
ways be bounded by O((εa

∞(w))−1) and that, when w = wk, this term can also



NEW ITERATION-COMPLEXITY BOUND FOR MTY ALGORITHM 339

be bounded by O(
√
n). Indeed, first note that the conditions gap(J ) ≥ ḡ and

εa
∞(w) ≥ τ ḡ/

√
n gap(J ) and relations (4.1) and (4.2) clearly imply (4.14). Hence,

by Lemma 4.4, it follows that εl
∞(w) ≥ εa

∞(w)/2. Thus, we have

µ(wk+1)/µ(w)

εl
∞(w)

≤ 2µ(wk+1)/µ(w)

εa
∞(w)

≤ 2

εa
∞(w)

= O((εa
∞(w))−1),

where in the second inequality we used the fact that µ(w) ≥ µ(wk+1). When w = wk,
it follows from the first inequality above and Lemma 2.5 that

µ(wk+1)/µ(w)

εl
∞(w)

≤ 2µ(wk+1)/µ(w)

εa
∞(w)

≤ 2
√
n

β
= O(

√
n).

The result now follows from Lemma 4.3 and the bounds obtained above.
From now on, we will consider the case in which an iterate w = wk of the MTY

P-C algorithm satisfies gap(J (w)) ≥ ḡ and εa
∞(w) ≤ τ ḡ/(

√
n gap(J (w))). Before

tackling this case, we first need to establish two technical lemmas, namely, Lemmas 4.6
and 4.9, which give other sufficient conditions for the occurrence of C-crossover events.
Lemma 4.7 is used only in the proof of Lemma 4.8, which in turn is used only in the
proof of Lemma 4.9.

Lemma 4.6. Suppose that β ∈ (0, 1/4] and that w = wk ∈ N (β) is an iterate of
the MTY P-C algorithm and let w+ ≡ wk+1. Assume that either one of the following
conditions holds:

(a) either B(w) ∩N(w+) �= ∅ or N(w) ∩B(w+) �= ∅;
(b) there exist indices i and j, one lying in B(w) and the other in N(w), such

that δi(w)/δj(w) ≥ ḡ and δi(w
+)/δj(w

+) ≤ ḡ.
Then, there exists an iteration index l > k such that l − k = O(n1.5 log(χ̄A + n))

and with the property that either a C-crossover event occurs between wk and wl or the
algorithm terminates at or before the lth iteration.

Proof. Let J ≡ J (w). If either one of the conditions gap(J ) ≥ ḡ or εa
∞(w) ≤

τ ḡ/(
√
n gap(J )) does not hold, then the conclusion of the lemma follows immediately

from Lemmas 4.2 and 4.5, regardless of whether one of conditions (a) or (b) holds.
Assume then that gap(J ) ≥ ḡ and εa

∞(w) ≤ τ ḡ/(
√
n gap(J )). This together with

(4.6) imply that εa
∞(w) ≤

√
1 − 2β/4. We will first show that the conclusion of the

lemma holds under condition (a). Let w : [0, 1] → N (2β) be a continuous path such
that w(0) = w, w(1) = w+, and µ(w+) ≤ µ(w(t)) ≤ µ(w) for all t ∈ [0, 1]; e.g.,
consider the path that traces the line segment from w to w + αa∆wa and then the
line segment from w + αa∆wa to w+. (It is straightforward to verify that these two
segments lie in N (2β).) We will show more generally that if there exists 0 < t ≤ 1 such
that either B(w)∩N(w(t)) �= ∅ or N(w)∩B(w(t)) �= ∅ (for t = 1 this is condition (a)),
then the conclusion of the lemma follows. Indeed, assume that for some 0 < t ≤ 1
there exists an index j in the set B(w) ∩ N(w(t)). (The proof is similar for the
case in which j ∈ N(w) ∩ B(w(t)).) Since j ∈ B(w) and εa

∞(w) ≤
√

1 − 2β/4, we
have |Rsa

j (w(0))| = |Rsa
j (w)| ≤ εa

∞(w) ≤
√

1 − 2β/4. Moreover, since j ∈ N(w(t)),

we have |Rsa
j (w(t))| ≥

√
1 − 2β/2 in view of Lemma 4.1. The intermediate value

theorem applied to the continuous function t → |Rsa
j (w(t))| implies the existence

of some t̄ ∈ [0, t] such that |Rsa
j (w(t̄))| =

√
1 − 2β/4. Letting w̄ ≡ w(t̄), we have

w̄ ∈ N (2β) and |Rsa
j (w̄)| =

√
1 − 2β/4. By Lemma 4.1 with β replaced by 2β we

have that max{|Rxa
j (w̄)|, |Rsa

j (w̄)|} ≥
√

1 − 2β/2. Since |Rsa
j (w̄)| =

√
1 − 2β/4 <√

1 − 2β/2, we must have |Rxa
j (w̄)| ≥

√
1 − 2β/2. We thus proved that εa

∞(w̄) ≥



340 RENATO D. C. MONTEIRO AND TAKASHI TSUCHIYA

min{|Rxa
j (w̄)|, |Rsa

j (w̄)|} ≥
√

1 − 2β/4. If gap(J (w̄)) ≥ ḡ, then by (4.6) and the fact

that εa
∞(w̄) ≥

√
1 − 2β/4, the conclusion of the lemma follows from Lemma 4.5 with

w = w̄. If, on the other hand, gap(J (w̄)) < ḡ, then the conclusion of the lemma
follows from Lemma 4.2 with w = w̄.

We will now show that the conclusion of the lemma holds under condition (b).
Without loss of generality, assume that i ∈ B(w) and j ∈ N(w) is such that δi(w)/δj(w)
≥ ḡ and δi(w

+)/δj(w
+) ≤ ḡ. The intermediate value theorem applied to the contin-

uous function t → δi(w(t))/δj(w(t)) implies the existence of some t̄ ∈ [0, 1] such that
δi(w(t̄))/δj(w(t̄)) = ḡ. If either i ∈ N(w(t̄)) or j ∈ B(w(t̄)), then the conclusion of the
lemma holds in view of what we have already shown in the previous paragraph. Con-
sider now the case in which i ∈ B(w(t̄)) and j ∈ N(w(t̄)). Since δi(w(t̄))/δj(w(t̄)) = ḡ,
this case implies that gap(J (w(t̄))) ≤ ḡ. Thus, the conclusion of the lemma follows
from Lemma 4.2 with w = w(t̄).

It is worth noting that Lemma 4.6(a) gives a simple and intuitive scaling-invariant
sufficient condition for a crossover event to occur within a reasonable number of
iterations, namely, that an index changes its status from the iterate w to the next
iterate w+.

We now make an important observation that will be used in the proof of Lemma
4.11 below. Namely, if gapJ (w) ≥ ḡ and neither condition (a) nor (b) of Lemma 4.6
holds, then we must have (B(w+), N(w+)) = (B(w), N(w)) and J (w) = J (w+); i.e.,
the AS-bipartition and the ordered AS-partition do not change during the iteration
from w to w+. Indeed, assume that i, j ∈ {1, . . . , n} are indices such that δi(w) >
δj(w) and one of them lies in B(w) while the other lies in N(w). Since gapJ (w) ≥ ḡ,
this implies that δi(w)/δj(w) ≥ ḡ. Moreover, since we are assuming that (b) of Lemma
4.6 does not hold, we must have δi(w

+)/δj(w
+) ≥ ḡ, and hence that δi(w

+) > δj(w
+).

We have thus shown that the order of the δi’s for indices of different types are preserved
while moving from w to w+. Moreover, since we are assuming that (a) of Lemma 4.6
does not hold, it follows that indices do not change status while moving from w to
w+. Using these two conclusions together, we easily see that (B(w+), N(w+)) =
(B(w), N(w)) and J (w) = J (w+).

The next lemma describes how the ratio between any pair of dual slacks varies as
we move from one primal-dual feasible point to another one.

Lemma 4.7. For some β, β′ ∈ (0, 1), let w = (x, s, y) ∈ N (β) and w′ =
(x′, s′, y′) ∈ N (β′) be points such that µ(w) = µ(w′). Then, for every i, j ∈ {1, . . . , n},
we have

si
sj

≤ (1 + β)(1 + β′)

(1 − β)2(1 − β′)2
s′i
s′j

.(4.15)

Proof. Let µ ≡ µ(w) = µ(w′). It is well known that

1 − β

1 + β
s ≤ s(µ) ≤ 1

1 − β
s,

1 − β′

1 + β′ s
′ ≤ s(µ) ≤ 1

1 − β′ s
′

(see, for example, Lemma 2.4(ii) of Gonzaga [3] and Proposition 2.1 of Monteiro and
Tsuchiya [19]). For i, j ∈ {1, . . . , n}, these relations then imply that

si ≤
1 + β

1 − β
si(µ) ≤ 1 + β

(1 − β)(1 − β′)
s′i,

sj ≥ (1 − β)sj(µ) ≥ (1 − β)(1 − β′)

1 + β′ s′j ,



NEW ITERATION-COMPLEXITY BOUND FOR MTY ALGORITHM 341

from which (4.15) immediately follows.
The following technical lemma describes how the ratio function δi(·)/δj(·), for a

fixed pair (i, j) ∈ B(w) ×N(w), varies from w = wk to w+ = wk+1.
Lemma 4.8. Suppose β ∈ (0, 1/4] and assume that w = (x, s, y) and w+ =

(x+, s+, y+) are two consecutive iterates of the MTY P-C algorithm. Assume also
that εa

∞(w) ≤
√

1 − β/2. Then, for every i ∈ B(w) and j ∈ N(w), we have

δi(w
+)

δj(w+)
≤

√
n

τ

δi(w)

δj(w)
εa
∞(w),(4.16)

where τ = τ(β) is the constant defined in (4.2).
Proof. To simplify notation, let εa

∞ ≡ εa
∞(w), δ+ ≡ δi(w

+), and δ ≡ δ(w). Also,
let ∆wa ≡ (∆xa,∆sa,∆ya) denote the AS direction at w and define w̃ = (x̃, s̃, ỹ) ≡
w+αa∆wa. Using (2.4), the fact that w+ ∈ N (β), and Lemma 4.7 with w = w+ and
w′ = w̃, we obtain

δ+
i

δ+
j

=
(x+

j s
+
j )1/2

(x+
i s

+
i )1/2

s+
i

s+
j

≤
√

1 + β√
1 − β

s+
i

s+
j

≤ (1 + β)3/2(1 + 2β)

(1 − β)5/2(1 − 2β)2
s̃i
s̃j

.(4.17)

Now, letting (Rxa, Rsa) ≡ (Rxa(w), Rsa(w)) and using Lemma 2.5, (2.11), and the
fact that i ∈ B(w), we obtain

s̃i = si + αa∆sa
i = (1 − αa)si + αa(si + ∆sa

i )

=
√
µδi

[
(1 − αa)

x
1/2
i s

1/2
i√
µ

+ αaRsa
i

]

≤ √
µδi

[√
nεa

∞
β

√
1 + β + εa

∞

]
≤ √

µδiε
a
∞

2
√

(1 + β)n

β
.(4.18)

Now, using relations (2.4), (2.9), and (4.3), the fact that j ∈ N(w) and αa ≤ 1, and
the assumption that εa

∞ ≤
√

1 − β/2, we obtain

s̃j = sj + αa∆sa
j =

√
µδj

[
x

1/2
j s

1/2
j√
µ

+ αa

δ−1
j ∆sa

j√
µ

]

=
√
µδj

[
x

1/2
j s

1/2
j√
µ

− αaRxa
j

]
≥ √

µδj [
√

1 − β − εa
∞] ≥ √

µδj

√
1 − β

2
.(4.19)

Merging (4.18) and (4.19) into (4.17) and noting (4.2), we obtain

δ+
i

δ+
j

=
(1 + β)3/2(1 + 2β)

(1 − β)5/2(1 − 2β)2
s̃i
s̃j

≤
√
n

4(1 + β)2(1 + 2β)

β(1 − β)3(1 − 2β)2
δi
δj
εa
∞ =

√
n

τ

δi
δj
εa
∞.

The next result gives another alternative sufficient condition for the occurrence
of C-crossover events. By the definition of the quantity gap(J (w)), there exists two
indices i and j, one lying in B(w) and the other in N(w), such that gap(J (w)) =
δi(w)/δj(w). The lemma below considers the situation where gap(J (w))=δi(w)/δj(w)
for some i ∈ B(w) and j ∈ N(w).

Lemma 4.9. Suppose β ∈ (0, 1/4] and w = wk ∈ N (β) is an iterate of the MTY
P-C algorithm. Assume that gap(J (w)) = δi(w)/δj(w) for some i ∈ B(w) and j ∈



342 RENATO D. C. MONTEIRO AND TAKASHI TSUCHIYA

N(w). Then there exists an iteration index l > k such that l−k = O(n1.5 log(χ̄A+n))
and with the property that either a C-crossover event occurs between wk and wl or the
algorithm terminates at or before the lth iteration.

Proof. Let J ≡ J (w). If either condition gap(J ) ≥ ḡ or εa
∞(w) ≤ τ ḡ/(

√
n gap(J ))

does not hold, then the conclusion of the lemma follows immediately from Lemmas
4.2 and 4.5. Assume then that gap(J ) ≥ ḡ and εa

∞(w) ≤ τ ḡ/(
√
n gap(J )). By as-

sumption, there exist i ∈ B(w) and j ∈ N(w) such that δi(w)/δj(w) = gap(J ) ≥ ḡ.
The assumptions on gap(J ) and εa

∞(w) together with (4.6) imply that εa
∞(w) ≤√

1 − 2β/4 ≤
√

1 − β/2. Hence, by Lemma 4.8 and the assumption on εa
∞(w), we

have

δi(w
+)

δj(w+)
≤

√
n

τ

δi(w)

δj(w)
εa
∞(w) =

√
n

τ
gap(J )εa

∞(w) ≤ ḡ,(4.20)

where w+ ≡ wk+1. The conclusion of the lemma now follows from Lemma 4.6(b).
In order to prove our main lemma, namely Lemma 4.11, followed by the proof of

Theorem 2.6, we introduce the set K consisting of those indices k such that the iterates
wk and wk+1 of the MTY P-C algorithm satisfy the following set of conditions, where
Jl ≡ J (wl) for all l ≥ 0:

(C1) gap(Jk) > 2ḡ and εa
∞(wk) < τḡ/(

√
n gap(Jk)). (Note that if (C1) does not

hold, then w = wk satisfies the hypotheses of either Lemma 4.2 or 4.5.)
(C2) gap(Jk+1) = δi(w

k+1)/δj(w
k+1) for some i ∈ N(wk+1) and j ∈ B(wk+1).

(Note that if (C2) does not hold, then w = wk+1 satisfies the hypotheses of
Lemma 4.9.)

(C3) (B(wk+1), N(wk+1)) = (B(wk), N(wk)) and Jk+1 = Jk. (Note that if (C3)
does not hold, then the observation made in the second paragraph after
Lemma 4.6 implies that w = wk satisfies the hypotheses of either Lemma
4.2 or 4.6.)

Note that if k /∈ K, then a C-crossover event must occur after O(log(χ̄A + n))
iterations, since w = wk satisfies the hypotheses of either Lemma 4.2, 4.5, or 4.6,
or wk+1 satisfies the hypotheses of Lemma 4.9. The following result establishes a
number of interesting properties regarding the above set K.

Lemma 4.10. For every k ∈ K, we have

gap(Jk+1)

ḡ
≥

(
gap(Jk)

ḡ

)2

,
µ(wk)

µ(wk+1)
≥

(
gap(Jk)

ḡ

)
≥ 2.(4.21)

Moreover, for some given constant η > 0, if l, l+1, . . . , l̂− 1, l̂ are consecutive indices
in the set K(η) ≡ {k ∈ K : µ(wk+1) > η}, then l̂ − l = O(log(log(µ(w0)/η))).

Proof. Fix some k ∈ K. Then, conditions (C1), (C2), and (C3) above hold for this
k. In particular, by conditions (C2) and (C3), we know that there exist i ∈ N(wk)
and j ∈ B(wk) such that

gap(Jk+1) =
δi(w

k+1)

δj(wk+1)
.

Using (4.6) and condition (C1), we easily see that wk satisfies the hypothesis of
Lemma 4.8. Hence, it follows from the above identity, Lemma 4.8, and condition
(C1) that

gap(Jk+1) ≥
τ√

nεa
∞(wk)

δi(w
k)

δj(wk)
≥ τ√

nεa
∞(wk)

gap(Jk) ≥
1

ḡ
[gap(Jk)]

2,



NEW ITERATION-COMPLEXITY BOUND FOR MTY ALGORITHM 343

where the second inequality uses the fact that Jk = Jk+1, which holds in view of
(C3). The first inequality in (4.21) follows by dividing the above inequality by ḡ.
Using Lemma 2.5, condition (C1), and the fact that τ ≤ β, we obtain

µ(wk)

µ(wk+1)
≥ β√

nεa
∞(wk)

≥ β gap(Jk)

τ ḡ
≥ gap(Jk)

ḡ
> 2 ∀k ∈ K,(4.22)

showing that the second relation in (4.21) also holds. To show the last statement of

the lemma, assume now that l, l + 1, . . . , l̂ are consecutive indices in K(η). In view of
the first relation in (4.21), we have

log

(
gap(Jk+1)

ḡ

)
≥ 2 log

(
gap(Jk)

ḡ

)
∀k = l, l + 1, . . . , l̂,

from where it follows that

log

(
gap(Jl̂)

ḡ

)
≥ 2l̂−l log

(
gap(Jl)

ḡ

)
≥ 2l̂−l log 2.

Using the fact that l̂ ∈ K(η), relation (4.22) with k = l̂, and the previous inequality,
we obtain

log
µ(w0)

η
≥ log

µ(wl̂)

µ(wl̂+1)
≥ log

(
gap(Jl̂)

ḡ

)
≥ 2l̂−l log 2,

from which the last statement of the lemma immediately follows.
We are now in a position to establish the main lemma of this section. Even though

the main goal of this lemma is to cover the case where the hypotheses of neither
Lemma 4.2 nor Lemma 4.5 hold, this result imposes no condition on the iterate w of
the MTY P-C algorithm. Moreover, in contrast to the bounds of Lemmas 4.2 and 4.5,
the bound derived in this lemma on the number of iterations needed to guarantee the
occurrence of a C-crossover event depends not only on the quantity n1.5 log(χ̄A + n)
but also on the term log(log(µ(w0)/η)).

Lemma 4.11. Suppose β ∈ (0, 1/4] and w = wk ∈ N (β) is an iterate of the MTY
P-C algorithm. Then, there exists an iteration index l > k such that

l − k = O(n1.5 log(χ̄A + n) + log(log(µ(w0)/η)))(4.23)

and with the property that either a C-crossover event occurs between wk and wl or the
algorithm terminates at or before the lth iteration. Furthermore, we have

l − k = O(n1.5 log(χ̄A + n) + log(µ(wk)/µ(wl))).(4.24)

Proof. Consider the set K(η) defined in Lemma 4.10 and let k̂ be the first index
greater than or equal to k such that k /∈ K(η). Note that by Lemma 4.10, such an index

k̂ exists and satisfies k̂ − k = O(log(log(µ(w0)/η))). The condition k̂ /∈ K(η) means

that either µ(wk̂+1) ≤ η or k̂ /∈ K. If the first condition holds, then the conclusion

of the lemma obviously holds with l = k̂ + 1. (The algorithm terminates at the lth

iteration in this case.) If the latter condition holds, it follows that w = wk̂ satisfies the

hypotheses of either Lemma 4.2, 4.5, or 4.6, or that wk̂+1 satisfies the hypotheses of
Lemma 4.9. In any of these cases, we know that there exists an iteration index l > k̂



344 RENATO D. C. MONTEIRO AND TAKASHI TSUCHIYA

such that l− k̂ = O(n1.5 log(χ̄A +n)) and with the property that either a C-crossover

event occurs between wk̂ and wl or the algorithm terminates at or before the lth
iteration. Clearly, such an iteration index l satisfies the first conclusion of the lemma.
To show that (4.24) also holds, it suffices to show that k̂− k = O(log(µ(wk)/µ(wl))).

Indeed, since this conclusion obviously holds when k̂ = k, we may assume that k̂ > k.
This implies that the indices k, k + 1, . . . , k̂ − 1 are in K, and hence, by the second
relation in (4.22), we conclude that

log
µ(wk)

µ(wl)
≥ log

µ(wk)

µ(wk̂)
=

k̂−1∑
j=k

log
µ(wj)

µ(wj+1)
≥ (k̂ − k) log 2,

which clearly implies our claim above.
We are now ready to give the proof of Theorem 2.6.
Proof of Theorem 2.6. Let k∗ be the first index such that µ(wk∗

) ≤ η. Using
Lemma 4.11 inductively starting from w0, we can partition the set {0, 1, . . . , k∗} into
disjoint subset of consecutive indices K1 := {k0, k0 + 1, . . . , k1 − 1}, K2 := {k1, k1 +
1, . . . , k2 − 1}, . . . ,Kr := {kr−1, kr−1 + 1, . . . , kr − 1} such that k0 = 0, kr = k∗, and
satisfying the following: (i) a C-crossover event occurs between wki−1 and wki−1 for
i = 1, . . . , r − 1; and (ii) the cardinality of Ki satisfies

|Ki| = O
(

min

{
log

(
log

µ0

η

)
, log

(
µki−1

µki

)}
+ n1.5 log(χ̄A + n)

)
∀i = 1, . . . , r.

Since the number of crossover event is O(n2), it follows that r = O(n2). These obser-
vations, (1.3), and the fact that k∗ =

∑r
i=1 |Ki| clearly imply that k∗ = O(T (µ0/η)+

n3.5 log(χ̄A + n)).

5. Implications of the main result under the Turing machine model.
In section 2, we have presented two iteration-complexity results for the MTY P-C
algorithm under the real number computational model. In this section, we discuss
a few implications of these results under the Turing machine model. In this model,
the entries of the data (A, b, c) are rational numbers of finite bit length and the
arithmetic operations on these types of numbers are carried out approximately, i.e.,
in finite precision. For the sake of simplicity, here we just focus on the number of
arithmetic operations and do not deal with the issue of finite precision. However,
we observe that the issue of finite precision in the context of the MTY interior-point
algorithm can be dealt with using standard and well-known techniques developed in
the context of other interior-point methods (e.g., see [20]).

Let L and LA be the input size of (A, b, c) and A, respectively. It is well known
that χ̄∗

A ≤ χ̄A ≤ 2O(LA) and ξ(A, b, c) ≥ 2−O(L). As was mentioned before, we have
ζ(A, (B∗, N∗)) ≤ χ̄A. Therefore, we have the following corollary which immediately
follows from Theorem 2.9.

Corollary 5.1. Assume that the data (A, b, c) is integral, and let L and LA

be defined as in the paragraph above. For some β ∈ (0, 1/4], suppose that a point
w0 ∈ N (β) such that µ(w0) = 2O(L) is given. Then, the version of the MTY P-C
algorithm, in which the FT procedure is invoked at every iterate wk, started from w0

finds a primal-dual strictly complementary optimal solution w∗ in at most

O(min{
√
nL,min{L, n2 logL} + n3.5(LA + log n)})(5.1)

iterations.



NEW ITERATION-COMPLEXITY BOUND FOR MTY ALGORITHM 345

Corollary 5.1 assumes that the initial iterate of the MTY P-C algorithm is a
well-centered strictly feasible point whose duality gap is not too large. For a general
dual pair of linear programs, even if such a point exists, computing this point is as
hard as solving the pair of LP problems. In such a case, an auxiliary pair of dual LP
problems is constructed whose optimal solution yields that of the original pair of LP
problems. Using the big M idea, Vavasis and Ye [30] construct an auxiliary pair of
LP problems, which we refer to as the VY auxiliary LP pair, associated with the pair
of problems (1.1) and (1.2) in order to resolve the initialization issue for their LLS
step algorithm. The VY auxiliary LP pair has the following properties: (i) the input
size of its coefficient matrix is bounded by O(LA); (ii) the sizes of its cost and right-
hand coefficients are bounded by O(L); (iii) it admits a readily available well-centered
initial point whose duality gap is n2O(L); and (iv) if (1.1) and (1.2) have a primal-dual
optimal solution, then this solution can be easily obtained from an optimal solution
of the VY auxiliary LP pair. Therefore, we obtain the following theorem for solving
a general pair of LP problems under the Turing machine model.

Theorem 5.2. Assume that the data (A, b, c) is integral, and suppose that (1.1)
and (1.2) have a primal-dual optimal solution. Then, the MTY P-C algorithm, with
the FT procedure invoked at every iteration, applied to the VY auxiliary LP pair, finds
a strict complementary primal-dual optimal solution of (1.1) and (1.2) in a number
of iterations bounded by (5.1).

6. Concluding remarks. In this paper, we have developed a new iteration-
complexity bound for the MTY P-C algorithm using the notion of crossover events
due to Vavasis and Ye [30]. In contrast to the iteration-complexity bound developed
in [30], ours is scaling-invariant and has an extra but relatively small term, namely,
the term T (µ0/η), where T (·) is defined in (1.3).

Note that the second bound in (2.12), i.e., the inequality µ(w+)/µ(w) ≤ εa
∞(w)

√
n/β,

plays an important role in our analysis. This is also the inequality which plays an
important role in establishing that the sequence {µ(wk)} generated by the MTY P-C
algorithm is quadratically convergent. Observe also that if the sequence {µ(wk)}
generated by a fictitious algorithm satisfied µ(wk+1) ≤ C1µ(wk)2 for all k, where
C1 = O(1), then its iteration-complexity bound would be O(log(log(µ(w0)/η))). The
term n2 log(log(µ(w0)/η)) which appears in our iteration-complexity bound is due to
the fact that this type of quadratic convergence happens over O(n2) disjoint finite
sets of consecutive iteration indices. A natural conjecture is that any primal-dual
interior-point algorithm which achieves the duality gap reduction given by (2.12) at
every iteration has the same iteration-complexity bound as the one obtained in this
paper. More generally, we conjecture that all interior-point algorithms whose corre-
sponding sequence {µ(wk)} converges superlinearly or quadratically are suitable for
the same type of analysis performed in this paper.

Note that the iteration-complexity bound obtained in this paper under the real-
computation model is with respect to a pair of dual LP problems satisfying Assump-
tions A.1 and A.2. For a pair of dual LP problems which does not satisfy A.1 or A.2,
a natural open question is whether one can develop the same type of scaling-invariant
iteration-complexity bound under the real-computation model obtained in this paper.
Observe that one of the difficulties in this context is the proper choice of the big M
constant in the VY auxiliary LP pair.

Our work was strongly motivated by the work of Vavasis and Ye [30]. Therefore,
we wonder whether the MTY P-C algorithm with the FT procedure has the iteration-
complexity bound O(n3.5 log(χ̄∗

A +n)), i.e., the iteration-complexity bound of Vavasis



346 RENATO D. C. MONTEIRO AND TAKASHI TSUCHIYA

and Ye’s algorithm but with χ̄A replaced by χ̄∗
A. The term involving the two log opera-

tors in our iteration-complexity bound is due to the possibility that the assumption of
Lemma 4.9 is violated. When this assumption is violated, we have shown that the gap
reduces quadratically until some suitable conditions are met in O(log(log(µ(w0)/η)))
iterations which guarantee the occurrence of a C-crossover event. A very challeng-
ing open question is whether these conditions are met in O(p(n, log χ̄A)) iterations,
where p(x1, x2) is a polynomial in �2. Note that this would provide a scaling-invariant
iteration-complexity bound for the MTY P-C algorithm depending on n and χ̄∗

A only.
Finally, another interesting topic for future research is whether the results ob-

tained in this paper can be extended, possibly under some extra assumptions, to
more general classes of problems such as convex quadratic programming or semidefi-
nite programming.

Acknowledgments. The authors would like to thank the two anonymous ref-
erees and the associate editor for their constructive comments which have helped to
improve the presentation of the paper. In particular, one of the referees found a few
minor errors in the original proofs of Lemmas 4.6 and 4.8, which have been corrected
in this present version.

This work was done while the first author was visiting Professor Cornelis Roos at
the Department of Information Systems and Algorithms of Delft University of Tech-
nology during the summer of 2001; while visiting the second author at the Institute of
Statistical Mathematics in August of 2002 and October of 2003; and while the second
author was visiting the first author at the School of Industrial and Systems Engineer-
ing in June and September of 2002. They are grateful to their host institutions for
the financial support and congenial scientific atmosphere provided during these visits.

REFERENCES

[1] I. I. Dikin, On the speed of an iterative process, Upr. Sist., 12 (1974), pp. 54–60 (in Russian).
[2] A. S. El-Bakry, R. A. Tapia, and Y. Zhang, A study of indicators for identifying zero

variables in interior-point methods, SIAM Rev., 36 (1994), pp. 45–72.
[3] C. C. Gonzaga, Path-following methods for linear programming, SIAM Rev., 34 (1992),

pp. 167–224.
[4] C. C. Gonzaga and H. J. Lara, A note on properties of condition numbers, Linear Algebra

Appl., 261 (1997), pp. 269–273.
[5] O. Güler and Y. Ye, Convergence behavior of interior-point algorithms, Math. Program., 60

(1993), pp. 215–228.
[6] N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica, 4

(1984), pp. 373–395.
[7] M. Kojima, S. Mizuno, and A. Yoshise, A primal-dual interior point algorithm for lin-

ear programming, in Progress in Mathematical Programming, Interior-Point and Related
Methods, N. Megiddo, ed., Springer-Verlag, New York, 1989, pp. 29–47.

[8] M. Kojima, S. Mizuno, and A. Yoshise, A polynomial-time algorithm for a class of linear
complementarity problems, Math. Program., 44 (1989), pp. 1–26.

[9] L. McLinden, The complementarity problem for maximal monotone multifunction, in Varia-
tional Inequalities and Complementarity Problems, R. W. Cottle, F. Giannessi, and J. L.
Lions, eds., John Wiley, New York, 1980, pp. 251–270.

[10] N. Megiddo, Pathways to the optimal set in linear programming, in Progress in Mathematical
Programming (Pacific Grove, CA, 1987), Springer, New York, Berlin, 1989, pp. 131–158.

[11] N. Megiddo, S. Mizuno, and T. Tsuchiya, A modified layered-step interior-point algorithm
for linear programming, Math. Program., 82 (1998), pp. 339–355.

[12] S. Mehrotra and Y. Ye, Finding an interior point in the optimal face of linear programs,
Math. Program., 62 (1993), pp. 497–515.

[13] S. Mizuno, M. J. Todd, and Y. Ye, On adaptive-step primal-dual interior-point algorithms
for linear programming, Math. Oper. Res., 18 (1993), pp. 964–981.

[14] S. Mizuno, N. Megiddo, and T. Tsuchiya, A linear programming instance with many
crossover events, J. Complexity, 12 (1996), pp. 474–479.



NEW ITERATION-COMPLEXITY BOUND FOR MTY ALGORITHM 347

[15] R. D. C. Monteiro and I. Adler, Interior path following primal-dual algorithms. Part I:
Linear programming, Math. Program., 44 (1989), pp. 27–41.

[16] R. D. C. Monteiro and I. Adler, Interior path-following primal-dual algorithms. Part II:
Convex quadratic programming, Math. Program., 44 (1989), pp. 43–66.

[17] R. D. C. Monteiro, I. Adler, and M. G. C. Resende, A polynomial-time primal-dual affine
scaling algorithm for linear and convex quadratic programming and its power series exten-
sion, Math. Oper. Res., 15 (1990), pp. 191–214.

[18] R. D. C. Monteiro and T. Tsuchiya, Global convergence of the affine scaling algorithm for
convex quadratic programming, SIAM J. Optim., 8 (1998), pp. 26–58.

[19] R. D. C. Monteiro and T. Tsuchiya, A variant of the Vavasis–Ye layered-step interior-point
algorithm for linear programming, SIAM J. Optim., 13 (2003), pp. 1054–1079.

[20] J. Renegar, A polynomial-time algorithm, based on Newton’s method, for linear programming,
Math. Program., 40 (1988), pp. 59–93.

[21] G. W. Stewart, On scaled projections and pseudoinverses, Linear Algebra Appl., 112 (1989),
pp. 189–193.

[22] K. Tanabe, Centered Newton method for mathematical programming, in System Modeling and
Optimization, M. Iri and K. Yajima, eds., Springer-Verlag, Berlin, 1988, pp. 197–206.

[23] É. Tardos, A strongly polynomial algorithm to solve combinatorial linear programs, Oper.
Res., 34 (1986), pp. 250–256.

[24] M. J. Todd, A Dantzig-Wolfe-like variant of Karmarkar’s interior-point linear programming
algorithm, Oper. Res., 38 (1990), pp. 1006–1018.

[25] M. J. Todd, L. Tunçel, and Y. Ye, Characterizations, bounds, and probabilistic analysis
of two complexity measures for linear programming problems, Math. Program., 90 (2001),
pp. 59–70.

[26] T. Tsuchiya, Global convergence property of the affine scaling method for primal degenerate
linear programming problems, Math. Oper. Res., 17 (1992), pp. 527–557.

[27] L. Tunçel, Approximating the complexity measure of Vavasis-Ye algorithm is NP-hard, Math.
Program., 86 (1999), pp. 219–223.

[28] L. Tunçel, On the condition numbers for polyhedra in Karmarkar’s form, Oper. Res. Lett.,
24 (1999), pp. 149–155.

[29] R. J. Vanderbei and J. C. Lagarias, I. I. Dikin’s convergence result for the affine-scaling
algorithm, in Mathematical Developments Arising from Linear Programming, Contemp.
Math. 114, AMS, Providence, RI, 1990, pp. 109–119.

[30] S. Vavasis and Y. Ye, A primal-dual accelerated interior point method whose running time
depends only on A, Math. Program., 74 (1996), pp. 79–120.

[31] S. Vavasis and Y. Ye, A simplification to “a primal-dual interior point method whose running
time depends only on the constraint matrix,” in High Performance Optimization, Appl.
Optim. 33, Kluwer, Dordrecht, 2000, pp. 233–243.

[32] S. Vavasis and Y. Ye, On the relationship between layered least squares and affine scaling steps,
in The Mathematics of Numerical Analysis, Lectures in Appl. Math. 32, AMS, Providence,
RI, 1996, pp. 857–865.

[33] Y. Ye, On the finite convergence of interior-point algorithms for linear programming, Math.
Program., 57 (1992), pp. 325–335.

[34] Y. Ye, Interior-Point Algorithms: Theory and Analysis, John Wiley and Sons, New York,
1997.


