
A VARIANT OF THE VAVASIS–YE LAYERED-STEP
INTERIOR-POINT ALGORITHM FOR LINEAR PROGRAMMING∗

RENATO D. C. MONTEIRO† AND TAKASHI TSUCHIYA‡

SIAM J. OPTIM. c© 2003 Society for Industrial and Applied Mathematics
Vol. 13, No. 4, pp. 1054–1079

Abstract. In this paper we present a variant of Vavasis and Ye’s layered-step path-following
primal-dual interior-point algorithm for linear programming. Our algorithm is a predictor–corrector-
type algorithm which uses from time to time the layered least squares (LLS) direction in place of
the affine scaling (AS) direction. It has the same iteration-complexity bound of Vavasis and Ye’s
algorithm, namely O(n3.5 log(χ̄A + n)), where n is the number of nonnegative variables and χ̄A is
a certain condition number associated with the constraint matrix A. Vavasis and Ye’s algorithm
requires explicit knowledge of χ̄A (which is very hard to compute or even estimate) in order to
compute the layers for the LLS direction. In contrast, our algorithm uses the AS direction at
the current iterate to determine the layers for the LLS direction, and hence does not require the
knowledge of χ̄A. A variant with similar properties and with the same complexity has been developed
by Megiddo, Mizuno, and Tsuchiya [Math. Programming, 82 (1998), pp. 339–355]. However, their
algorithm needs to compute n LLS directions on every iteration, while ours computes at most one
LLS direction on any given iteration.
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1. Introduction. We consider the linear programming (LP) problem

minimize x cTx

subject to Ax = b, x ≥ 0,
(1)

and its associated dual problem

maximize (y,s) bT y

subject to AT y + s = c, s ≥ 0,
(2)

where A ∈ �m×n, c ∈ �n, and b ∈ �m are given, and the vectors x, s ∈ �n, and
y ∈ �m are the unknown variables. This paper proposes a primal-dual layered-
step predictor-corrector interior-point algorithm that is a variant of the Vavasis–Ye
layered-step interior-point algorithm proposed in [26, 27].

Karmarkar in his seminal paper [5] proposed the first polynomially convergent
interior-point method with an O(nL) iteration-complexity bound, where L is the size
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of the LP instance (1). The first path-following interior-point algorithm was pro-
posed by Renegar in his breakthrough paper [16]. Renegar’s method closely follows
the primal central path and exhibits anO(

√
nL) iteration-complexity bound. The first

path-following algorithm which simultaneously generates iterates in both the primal
and dual spaces has been proposed by Kojima, Mizuno, and Yoshise [6] and Tanabe
[18], based on ideas suggested by Megiddo [9]. In contrast to Renegar’s algorithm,
Kojima, Mizuno, and Yoshise’s algorithm has an O(nL) iteration-complexity bound.
A primal-dual path-following with an O(

√
nL) iteration-complexity bound was subse-

quently obtained by Kojima, Mizuno, and Yoshise [7] and Monteiro and Adler [13, 14]
independently. Following these developments, many other primal-dual interior-point
algorithms for linear programming have been proposed.

An outstanding open problem in optimization is whether there exists a strongly
polynomial algorithm for linear programming, that is, one whose complexity is bounded
by a polynomial of m and n only. A major effort in this direction is due to Tardos
[19], who developed a polynomial-time algorithm whose complexity is bounded by a
polynomial of m, n, and LA, where LA denotes the size of A. Such an algorithm
gives a strongly polynomial method for the important class of LP problems where the
entries of A are either 1, −1, or 0, e.g., LP formulations of network flow problems.
Tardos’s algorithm consists of solving a sequence of “low-sized” LP problems by a
standard polynomially convergent LP method and using their solutions to obtain the
solution of the original LP problem.

The development of a method which works entirely in the context of the original
LP problem and whose complexity is also bounded by a polynomial of m, n, and LA is
due to Vavasis and Ye [26]. Their method is a primal-dual path-following interior-point
algorithm similar to the ones mentioned above except that it uses from time to time
a crucial step, namely the layered least squares (LLS) direction. They showed that
their method has an O(n3.5(log χ̄A + log n)) iteration-complexity bound, where χ̄A is
a condition number associated with A having the property that log χ̄A = O(LA). The
number χ̄A was first introduced implicitly by Dikin and Zorkalcev [1] in the study of
primal affine scaling algorithms and was later studied by several researchers including
Vanderbei and Lagarias [25], Todd [20], and Stewart [17]. Properties of χ̄A are studied
in [3, 23, 24].

The complexity analysis of Vavasis and Ye’s algorithm is based on the notion of
a crossover event, a combinatorial event concerning the central path. Intuitively, a
crossover event occurs between two variables when one of them is larger than the other
at a point in the central path and then becomes smaller asymptotically as the optimal
solution set is approached. Vavasis and Ye showed that there can be at most n(n−1)/2
crossover events and that a distinct crossover event occurs everyO(n1.5(log χ̄A+log n))
iterations, from which they deduced the overall O(n3.5(log χ̄A + log n)) iteration-
complexity bound. In [12], an LP instance is given where the number of crossover
events is Θ(n2).

One disadvantage of Vavasis and Ye’s method is that it requires the explicit
knowledge of χ̄A in order to determine a partition of the variables into layers used in
the computation of the LLS step. This difficulty was remedied in a variant proposed by
Megiddo, Mizuno, and Tsuchiya [10] which does not require the explicit knowledge
of the number χ̄A. They observed that at most n types of partitions arise as χ̄A

varies from 1 to ∞ and that one of these can be used to compute the LLS step.
Based on this idea, they developed a variant which computes the LLS steps for all
these partitions and picks the one that yields the greatest duality gap reduction at
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the current iteration. Moreover, using the argument that once the first LLS step is
computed the other ones can be cheaply computed by performing rank-one updates,
they show that the overall complexity of their algorithm is exactly the same as Vavasis
and Ye’s algorithm.

In this paper, we propose another variant of Vavasis and Ye’s algorithm which has
the same complexity as theirs and computes only one LLS step per iteration without
any explicit knowledge of χ̄A. Our algorithm is a predictor–corrector-type algorithm
like the one described in [11] except that at the predictor stage it takes a step along
either the primal-dual affine scaling (AS) step or the LLS step. More specifically,
first the AS direction is computed and a test involving this direction is performed
to determine whether the LLS step is needed. If the LLS direction is not needed, a
step along the AS direction is taken as usual. Otherwise, the AS direction is used
to determine a partition of the variables into layers, and the LLS step with respect
to this partition is computed. The algorithm then takes a step along the direction
(either the AS or the LLS) which yields the largest duality gap reduction.

It is worth noting that our algorithm computes the LLS step only when a step
along the AS direction has the potential to yield a significant duality gap decrease. In
such a case, the LLS direction seems to be even better suited and it is used whenever
the current iteration permits it. Another advantage of the LLS step is that it possesses
the ability to determine an exact primal-dual optimal solution, and hence imply finite
termination of the algorithm.

The organization of the paper is as follows. Section 2 consists of five subsections.
In subsection 2.1, we review the notion of the primal-dual central path and its associ-
ated two-norm neighborhoods. Subsection 2.2 introduces the notion of the condition
number χ̄A of a matrix A and describes the properties of χ̄A that will be useful in
our analysis. Subsection 2.3 reviews the AS step and the corrector (or centrality)
step which are the basic ingredients of several well-known interior-point algorithms.
Subsection 2.4 describes the LLS step. Subsection 2.5 describes our algorithm in de-
tail and states the main convergence result of this paper. Section 3, which consists
of three subsections, introduces some basic tools which are used in our convergence
analysis. Subsection 3.1 discusses the notion of crossover events. Subsection 3.2 states
an approximation result that provides an estimation of the closeness between the AS
direction and the LLS direction. Subsection 3.3 reviews from a different perspective
an important result from Vavasis and Ye [26], which basically provides sufficient con-
ditions for the occurrence of crossover events. Section 4 is dedicated to the proof of
the main result stated in subsection 2.5. Section 5 gives some concluding remarks.
Finally, the appendix gives the proof of the approximation result between the AS and
the LLS directions stated in subsection 3.2.

The following notation is used throughout our paper. We denote the vector of all
ones by e. Its dimension is always clear from the context. The symbols �n, �n

+, and
�n

++ denote the n-dimensional Euclidean space, the nonnegative orthant of �n, and
the positive orthant of �n, respectively. The set of all m×n matrices with real entries
is denoted by �m×n. If J is a finite index set, then |J | denotes its cardinality, that is,
the number of elements of J . For J ⊆ {1, . . . , n} and w ∈ �n, we let wJ denote the
subvector [wi]i∈J ; moreover, if E is an m × n matrix, then EJ denotes the m × |J |
submatrix of E corresponding to J . For a vector w ∈ �n, we let max(w) and min(w)
denote the largest and the smallest component of w, respectively, Diag(w) denote the
diagonal matrix whose ith diagonal element is wi for i = 1, . . . , n, and w−1 denote
the vector [Diag(w)]−1e whenever it is well-defined. For two vectors u, v ∈ �n, uv
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denotes their Hadamard product, i.e., the vector in �n whose ith component is uivi.
The Euclidean norm, the 1-norm, and the ∞-norm are denoted by ‖ · ‖, ‖ · ‖1, and
‖ · ‖∞, respectively. For a matrix E, Im(E) denotes the subspace generated by the
columns of E and Ker(E) denotes the subspace orthogonal to the rows of E. The
superscript T denotes transpose.

2. Problem and primal-dual predictor-corrector interior-point algo-
rithms. In this section we describe the proposed feasible interior-point primal-dual
predictor-corrector algorithm for solving the pair of LP problems (1) and (2). We
also present the main convergence result which establishes a polynomial iteration-
complexity bound for the algorithm that depends only on the constraint matrix A.

This section is divided into five subsections. In subsection 2.1, we describe the
primal-dual central path and its associated two-norm neighborhoods. In subsection
2.2, we describe the notion of the condition number of a matrix and describe the
properties of the condition number that will be useful in our analysis. In subsection
2.3, we review the AS step and the corrector (or centrality) step which are the basic
ingredients of several well-known interior-point algorithms. We also derive a lower
bound on the stepsize along the AS step. In subsection 2.4, we describe an alternative
step, namely the LLS step, which is sometimes used in place of the AS direction by
our algorithm. In subsection 2.5, we describe our algorithm in detail and state the
main convergence result of this paper.

2.1. The problem, the central path, and its associated neighborhoods.
In this subsection we introduce the pair of dual linear programs and the assumptions
used in our development. We also describe the associated primal-dual central path
and its corresponding two-norm neighborhoods.

Given A ∈ �m×n, c ∈ �n, and b ∈ �m, consider the pairs of linear programs (1)
and (2), where x ∈ �n and (y, s) ∈ �m × �n are their respective variables. The set
of strictly feasible solutions for these problems are

P++ ≡ {x ∈ �n : Ax = b, x > 0},
D++ ≡ {(y, s) ∈ �m×n : AT y + s = c, s > 0},

respectively. Throughout the paper we make the following assumptions on the pair
of problems (1) and (2).

A.1 P++ and D++ are nonempty.
A.2 The rows of A are linearly independent.

Under the above assumptions, it is well known that for any ν > 0 the system

xs = νe,(3)

Ax = b, x > 0,(4)

AT y + s = c, s > 0,(5)

has a unique solution (x, y, s), which we denote by (x(ν), y(ν), s(ν)). The central path
is the set consisting of all these solutions as ν varies in (0,∞). As ν converges to zero,
the path (x(ν), y(ν), s(ν)) converges to a primal-dual optimal solution (x∗, y∗, s∗) for
problems (1) and (2). Given a point w = (x, y, s) ∈ P++×D++, its duality gap and its
normalized duality gap are defined as xT s and µ = µ(x, s) ≡ xT s/n, respectively, and
the point (x(µ), y(µ), s(µ)) is said to be the central point associated with w. Note
that (x(µ), y(µ), s(µ)) also has normalized duality gap µ. We define the proximity
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measure of a point w = (x, y, s) ∈ P++ ×D++ with respect to the central path by

η(w) ≡ ‖xs/µ− e‖.
Clearly, η(w) = 0 if and only if w = (x(µ), y(µ), s(µ)) or, equivalently, w coincides
with its associated central point. The two-norm neighborhood of the central path
with opening β > 0 is defined as

N (β) ≡ {w = (x, y, s) ∈ P++ ×D++ : η(w) ≤ β}.
Finally, for any point w = (x, y, s) ∈ P++ ×D++ we define

δ(w) ≡ s1/2x−1/2 ∈ �n.(6)

The following proposition provides important estimates which are used through-
out our analysis.

Proposition 2.1. Let w = (x, y, s) ∈ N (β) for some β ∈ (0, 1) be given and
define δ ≡ δ(w). Let w(µ) = (x(µ), y(µ), s(µ)) be the central point associated with w.
Then

1− β

1 + β
s ≤ s(µ) ≤ 1

1− β
s,

1− β

1 + β
x ≤ x(µ) ≤ 1

1− β
x,(7)

1− β

(1 + β)1/2
δ ≤ s(µ)√

µ
≤ (1 + β)1/2

1− β
δ,(8)

(1− β)2

(1 + β)

δi
δj
≤ si(µ)

sj(µ)
≤ (1 + β)

(1− β)2
δi
δj

∀i, j ∈ {1, . . . , n}.(9)

Proof. The second and fourth inequalities in (7) follow from Lemma 2.4(ii) of
Gonzaga [2]. Using these two inequalities together with xs ≤ (1+β)µe and x(µ)s(µ) =
µe, we obtain the other two inequalities in (7). Using the definition of δ = δ(w) in
(6) together with the relations xs ≤ (1 + β)µe and x(µ)s(µ) = µe, we easily see that
the first and second inequalities of (8) follow from the fourth and second inequalities
of (7), respectively. Finally, (9) immediately follows from (8).

2.2. Condition number. In this subsection we define a certain condition num-
ber associated with the constraint matrix A and state the properties of χ̄A which will
play an important role in our analysis.

Let D denote the set of all positive definite n× n diagonal matrices and define

χ̄A ≡ sup{‖AT (AD̃AT )−1AD̃‖ : D̃ ∈ D}
= sup

{
‖AT y‖
‖c‖ : y = argmin

ỹ∈�n
‖D̃1/2(AT ỹ − c)‖ for some 0 �= c ∈ �n and D̃ ∈ D

}
.

(10)
The parameter χ̄A plays a fundamental role in the complexity analysis of algorithms
for linear programming and least squares problems (see [26] and references therein).
Its finiteness has been established first by Dikin and Zorkalcev [1]. Other authors have
also given alternative derivations of the finiteness of χ̄A (see, for example, Stewart
[17], Todd [20], and Vanderbei and Lagarias [25]).

We summarize in the next proposition a few important facts about the parame-
ter χ̄A.

Proposition 2.2. Let A ∈ �m×n with full row rank be given. Then the following
statements hold:
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(a) χ̄GA = χ̄A for any nonsingular matrix G ∈ �m×m.
(b) χ̄A = max{‖G−1A‖ : G ∈ G}, where G denote the set of all m×m nonsingular

submatrices of A.
(c) If the entries of A are all integers, then χ̄A is bounded by 2O(LA), where LA

is the input bit length of A.
(d) χ̄A = χ̄F for any F ∈ �(n−m)×n such that Ker(A) = Im(FT ).
(e) If the m×m identity matrix is a submatrix of A and Ã is an r×n submatrix

of A, then ‖G̃−1Ã‖ ≤ χ̄A for every r × r nonsingular submatrix G̃ of Ã.
Proof. Statement (a) readily follows from the definition (10). The inequality

χ̄A ≥ max{‖G−1A‖ : G ∈ G} is established in Lemma 3 of [26], while the proof of the
reverse inequality is given in [20] (see also Theorem 1 of [21]). Hence, (b) holds. The
proof of (c) can be found in Lemma 24 of [26]. A proof of (d) can be found in [3].

We now consider (e). Using the assumption that the m×m identity matrix is a
submatrix of A, we easily see that A has an m×m nonsingular submatrix G which,
after some symmetric permutation of its rows and columns, can be put into the form[

G̃ 0

Ẽ I

]

for some matrix Ẽ ∈ �(n−r)×r. Since the inverse of the above matrix is[
G̃−1 0

−ẼG̃−1 I

]
,

we easily see that G̃−1Ã is a submatrix of G−1A. Hence, ‖G̃−1Ã‖ ≤ ‖G−1A‖ ≤ χ̄A,
where the last inequality is due to (b).

We now state a Hoffman-type result for a system of linear equalities that will be
used in the proof of an approximation result given in the appendix.

Lemma 2.3. Let A ∈ �m×n with full row rank be given, and let (K,L) be an
arbitrary bipartition of the index set {1, . . . , n}. Assume that w̄ ∈ �|L| is an arbitrary
vector such that the system AKu = ALw̄ is feasible. Then this system has a feasible
solution ū such that ‖ū‖ ≤ χ̄A‖w̄‖.

Proof. Due to Proposition 2.2(a), it is sufficient to establish the lemma for a
matrix of the form GA, where G is an m ×m nonsingular matrix. Hence, we may
assume that A contains the m×m identity matrix. Eliminating some redundant rows
from AKu = ALw̄ and some variables from u, we obtain a nonsingular system

G̃ũ = H̃w̄,

where G̃ is a square submatrix of AK such that rank(G̃) = rank(AK), H̃ is the
corresponding submatrix of AL, and ũ is a subvector of u. Clearly, the solution ũ of
this system satisfies ‖ũ‖ ≤ ‖G̃−1H̃‖ ‖w̄‖ ≤ χ̄A‖w̄‖, where the last inequality follows
from Proposition 2.2(e). We can augment ũ to a solution ū of AKu = ALw̄ by setting
the components of u not in ũ to zero.

2.3. Predictor-corrector step and its properties. In this subsection we de-
scribe the well-known predictor-corrector (P-C) iteration which is used by several
interior-point algorithms (see, for example, Mizuno, Todd, and Ye [11]). We also
describe the properties of this iteration which will be used in our analysis.

The P-C iteration consists of two steps, namely the predictor (or AS) step and
the corrector (or centrality) step. The search direction used by either step from a
current point in (x, y, s) ∈ P++ ×D++ is the solution of the following linear system
of equations:
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S∆x + X∆s = σµe− xs,

A∆x = 0,(11)

AT ∆y + ∆s = 0,

where µ = µ(x, s) and σ ∈ � is a prespecified parameter, commonly referred to as the
centrality parameter. When σ = 0, we denote the solution of (11) by (∆xa,∆ya,∆sa)
and refer to it as the primal-dual AS direction at w; it is the direction used in the
predictor step of the P-C iteration. When σ = 1, we denote the solution of (11) by
(∆xc,∆yc,∆sc) and refer to it as the corrector direction at w; it is the direction used
in the corrector step of the P-C iteration.

We are now ready to describe the entire P-C iteration. Suppose that a constant
β ∈ (0, 1/4] and a point w = (x, y, s) ∈ N (β) is given. The P-C iteration generates
another point (x+, y+, s+) ∈ N (β) as follows. It first moves along the direction
(∆xa,∆ya,∆sa) until it hits the boundary of the enlarged neighborhoodN (2β). More
specifically, it computes the point wa = (xa, ya, sa) ≡ (x, y, s) + αa(∆xa,∆ya,∆sa),
where

αa ≡ sup {α ∈ [0, 1] : (x, y, s) + α(∆xa,∆ya,∆sa) ∈ N (2β)}.(12)

Next, the P-C iteration generates a point inside the smaller neighborhood N (β) by
taking a unit step along the corrector direction (∆xc,∆yc,∆sc) at the point wa; that
is, it computes the point (x+, y+, s+) ≡ (xa, ya, sa) + (∆xc,∆yc,∆sc) ∈ N (β). The
successive repetition of this iteration leads to the so-called Mizuno–Todd–Ye (MTY)
P-C algorithm (see [11]).

Our method is very similar to the algorithm of [11] except that it sometimes
replaces the AS step by the LLS step described in the next subsection. The inser-
tion of the LLS step in the above MTY P-C algorithm guarantees that the modified
method has the finite termination property. Hence, the LLS step can be viewed as
a termination procedure which is performed only when some “not-so-likely-to-occur”
conditions are met. Moreover, the LLS step is taken only when it yields a point with
a smaller duality gap than the one obtained from the AS step as described above.

In the remainder of this subsection, we discuss some properties of the P-C iteration
and the primal-dual AS direction. For a proof of the next two propositions, we refer
the reader to [11].

Proposition 2.4 (predictor step). Suppose that w = (x, y, s) ∈ N (β) for some
constant β ∈ (0, 1/2]. Let ∆wa = (∆xa,∆ya,∆sa) denote the AS direction at wa and
let αa be the stepsize computed according to (12). Then the following statements hold:

(a) the point w+α∆wa has normalized duality gap µ(α) = (1−α)µ for all α ∈ �;
(b) αa ≥

√
β/n, and hence µ(αa)/µ ≤ 1−√β/n.

Proposition 2.5 (corrector step). Suppose that w = (x, y, s) ∈ N (2β) for some
constant β ∈ (0, 1/4], and let (∆xc,∆yc,∆sc) denote the corrector step at w. Then
w + ∆wc ∈ N (β). Moreover, the (normalized) duality gap of w + ∆wc is the same as
that of w.

For the purpose of future comparison with the LLS step, we mention the follow-
ing alternative characterization of the primal-dual AS direction whose verification is
straightforward:

∆xa ≡ argmin
p∈�n

{‖δ(x + p)‖2 : Ap = 0
}
,(13)

(∆ya,∆sa) ≡ argmin
(r,q)∈�m×�n

{‖δ−1(s + q)‖2 : AT r + q = 0
}
,(14)
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where δ ≡ δ(w). For a search direction (∆x,∆y,∆s) at a point (x, y, s), the quantity

(Rx,Rs) ≡
(
δ(x + ∆x)√

µ
,
δ−1(s + ∆s)√

µ

)
=

(
x1/2s1/2 + δ∆x√

µ
,
x1/2s1/2 + δ−1∆s√

µ

)
(15)

appears quite often in our analysis. We refer to it as the residual of (∆x,∆y,∆s).
Note that if (Rxa, Rsa) is the residual of (∆xa,∆ya,∆sa), then

Rxa = − 1√
µ
δ−1∆sa, Rsa = − 1√

µ
δ∆xa,(16)

and

Rxa + Rsa =
x1/2s1/2

√
µ

,(17)

due to the fact that (∆xa,∆ya,∆sa) satisfies the first equation in (11) with σ = 0.
The following quantity is used in the test to determine when the LLS step should be
used in place of the AS step:

εa
∞ ≡ max

i
{min {|Rxa

i | , |Rsa
i |}} .(18)

We end this section by providing some estimates involving the residual of the AS
direction.

Lemma 2.6. Suppose that w = (x, y, s) ∈ N (β) for some β ∈ (0, 1/4]. Then, for
all i = 1, . . . , n, we have

max {|Rxa
i |, |Rsa

i |} ≥
√

1− β

2
≥ 1

4
.

Proof . Assume for contradiction that for some i ∈ {1, . . . , n}, max {|Rxa
i |, |Rsa

i |} <√
1− β/2. Then, using (17), we obtain the following contradiction:

x
1/2
i s

1/2
i√
µ

= Rxa
i + Rsa

i ≤ |Rxa
i |+ |Rsa

i | <
√

1− β ≤ x
1/2
i s

1/2
i√
µ

.

2.4. The LLS step. In this subsection we describe the other type of step used
in our algorithm, namely the LLS step. This step was first introduced by Vavasis and
Ye in [26].

Let w = (x, y, s) ∈ P++ ×D++ and a partition (J1, . . . , Jp) of the index set

{1, . . . , n} be given and define δ ≡ δ(w). The primal LLS direction ∆xll = (∆xll
J1

, . . . ,

∆xll
Jp

) at w with the respect to J is defined recursively according to the order

∆xll
Jp

, . . . ,∆xll
J1

as follows. Assume that the components ∆xll
Jp

, . . . ,∆xll
Jk+1

have been

determined. Let ΠJk
: �n → �Jk denote the projection map defined as ΠJk

(u) = uJk

for all u ∈ �n. Then ∆xll
Jk
≡ ΠJk

(Lx
k), where Lx

k is given by

Lx
k ≡ Argmin

p∈�n
{‖δJk

(xJk
+ pJk

)‖2 : p ∈ Lx
k−1}

= Argmin
p∈�n

{‖δJk
(xJk

+ pJk
)‖2 : p ∈ Ker(A), pJi = ∆xll

Ji
∀i = k + 1, . . . , p},(19)

with the convention that Lx
0 = Ker(A). The slack component ∆sll = (∆sll

J1
, . . . ,∆sll

Jp
)

of the dual LLS direction (∆yll,∆sll) at w with the respect to J is defined recursively
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as follows. Assume that the components ∆sll
J1

, . . . ,∆sll
Jk−1

have been determined.

Then ∆sll
Jk
≡ ΠJk

(Ls
k), where Ls

k is given by

Ls
k ≡ Argmin

q∈�n
{‖δ−1

Jk
(sJk

+ qJk
)‖2 : q ∈ Ls

k−1}
= Argmin

q∈�n
{‖δ−1

Jk
(sJk

+ qJk
)‖2 : q ∈ Im(AT ), qJi

= ∆sll
Ji

∀i = 1, . . . , k − 1},(20)

with the convention that Ls
0 = Im(AT ). Finally, once ∆sll has been determined, the

component ∆yll is determined from the relation AT ∆yll + ∆sll = 0.
Note that (13) and (14) imply that the AS direction is a special LLS direction,

namely the one with respect to the only partition in which p = 1. Clearly, the LLS
direction at a given w ∈ P++ ×D++ depends on the partition J = (J1, . . . , Jp) used.

A partition J = (J1, . . . , Jp) is said to be ordered at a point w = (x, y, s) ∈
P++ ×D++ if max(δJi) ≤ min(δJi+1) for all i = 1, . . . , p− 1. In this case, the gap of
J , denoted by gap(J), is defined as

gap(J) = min
1≤i≤p−1

{
min(δJi+1

)

max(δJi)

}
=

1

max1≤i≤p−1

(
‖δJi‖∞‖δ−1

Ji+1
‖∞
) ≥ 1,

with the convention that gap(J) = ∞ if p = 1.
The LLS step used by our algorithm is computed with respect to a specific par-

tition which is ordered at the current iterate w ∈ P++ ×D++. We now describe the
construction of this ordered partition. First, with the aid of the AS direction at w,
we compute the bipartition (B,N) of {1, . . . , n} according to

B ≡ {i : |Rsa
i | ≤ |Rxa

i | }, N ≡ {i : |Rsa
i | > |Rxa

i | }.(21)

Note that this definition and (18) imply that

εa
∞ = max {‖Rxa

N‖∞, ‖Rsa
B‖∞} .(22)

Next, an order (i1, . . . , in) of the index variables is chosen such that δi1 ≤ · · · ≤
δin . Then the first block of consecutive indices in the n-tuple (i1, . . . , in) lying in
the same set B or N are placed in the first layer J1, the next block of consecutive
indices lying in the other set is placed in J2, and so on. As an example, assume that
(i1, i2, i3, i4, i5, i6, i7) ∈ B×B×N×B×B×N×N . In this case, we have J1 = {i1, i2},
J2 = {i3}, J3 = {i4, i5}, and J4 = {i6, i7}. A partition obtained according to the
above construction is clearly ordered at w. We refer to it as an ordered (B,N)-
partition and denote it by J = J (w). The LLS step with respect to an ordered
(B,N)-partition is sometimes used as a replacement for the primal-dual AS direction
in the predictor step of our algorithm.

Note that an ordered (B,N)-partition is not uniquely determined since there
can be more than one n-tuple (i1, . . . , in) satisfying δi1 ≤ · · · ≤ δin . This situation
happens exactly when there are two or more indices i with the same value for δi. If
these tying indices do not all belong to the same set B or N , then there will be more
than one way to generate an ordered (B,N)-partition J .

We say that the bipartition (B,N) is regular if there do not exist i ∈ B and
j ∈ N such that δi = δj . Observe that there exists a unique ordered (B,N)-partition
if and only if (B,N) is regular. When (B,N) is not regular, our algorithm avoids
the computation of an ordered (B,N)-partition and hence of any LLS direction with
respect to such a partition. Thus, there is no ambiguity in our algorithm.
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2.5. Algorithm and the main convergence result. In this subsection, we
describe our algorithm and state the main result of this paper which guarantees
the convergence of the method in a strong sense. More specifically, we establish
an iteration-complexity bound for our method which depends only on the constraint
matrix A. This bound is exactly the same as the one obtained in Vavasis and Ye [26].

P-C Layered Algorithm.
Let 0 < β ≤ 1/4, ε0 > 0, and w0 ∈ N (β) be given. Set k = 0.

1. Set w = wk and compute the AS direction (∆xa,∆ya,∆sa) at w;
2. Compute the quantities εa

∞ and αa as in (18) and (12), and the biparti-
tion (B,N) according to (21);

3. If εa
∞ > ε0 or (B,N) is not regular, then set w ← w +αa∆wa and go to

step 7;
4. Otherwise, determine the ordered (B,N)-partition J = (J1, . . . ,Jr)

and compute the LLS step ∆wl = (∆xl,∆yl,∆sl) at w with respect
to J ;

5. Let wl = w + αl ∆wl, where αl ≡ sup {α ∈ [0, 1] : w + α∆wl ∈ N (2β)};
6. If µ(wl) < (1− αa)µ, then set w ← wl, else set w ← w + αa∆wa;
7. If µ(w) = 0, then stop; in this case w is an optimal solution;
8. Compute the corrector step ∆wc at w and set w ← w + ∆wc;
9. Set wk+1 = w, increment k by 1 and go to step 1.

End
We now make a few comments about the above algorithm. Step 2 followed by step

8 is a standard P-C iteration of the type described in subsection 2.3. This iteration
is always performed in those iterations for which εa

∞ > ε0 or (B,N) is not regular.
In the other iterations, the algorithm performs either a standard P-C iteration or a
layered-corrector iteration, depending on which of the two iterations gives the lowest
reduction of the duality gap. This test is performed in step 6 since the term (1−αa)µ
is the normalized duality gap obtained when the AS step is taken (see Proposition
2.4(a)).

The following convergence theorem is the main result of the paper.
Theorem 2.7. The P-C layered algorithm described above finds a primal-dual

optimal solution (x∞, s∞, y∞) of problems (1) and (2) satisfying strict complementar-
ity (i.e., x∞ + s∞ > 0) in at most O(n3.5 log(χ̄A +n+ ε−1

0 )) iterations. In particular,
if ε0 = Ω(1/nτ ) for some constant τ, then the iteration-complexity bound reduces to
O(n3.5 log(χ̄A + n)).

3. Basic tools. In this section we introduce the basic tools that will be used
in the proof of Theorem 2.7. The analysis heavily relies on the notion of crossover
events due to Vavasis and Ye [26]. Subsection 3.1 below gives the definition of a
crossover event which is slightly different than the one used in [26] and discusses some
of its properties. In subsection 3.2, we state an approximation result that provides an
estimation of the closeness between the LLS direction with respect to a partition J of
{1, . . . , n} and the AS direction. Subsection 3.3 reviews from a different perspective
an important result from [26], namely Lemma 17 of [26], that essentially guarantees
the occurrence of crossover events. Since this result is stated in terms of the residual
of an LLS step, the use of the approximation result of subsection 3.2 between the AS
and LLS steps allows us to obtain a similar result stated in terms of the residual of
the AS direction.

3.1. Crossover events. In this subsection we discuss the notion of crossover
event which plays a fundamental role in our convergence analysis.
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Definition. For two indices i, j ∈ {1, . . . , n} and a constant C ≥ 1, a C-crossover
event for the pair (i, j) is said to occur on the interval (ν′, ν] if

there exists ν0 ∈ (ν′, ν] such that
sj(ν0)

si(ν0)
≤ C

and
sj(ν̃)

si(ν̃)
> C ∀ν̃ ≤ ν′.

(23)

Moreover, the interval (ν′, ν] is said to contain a C-crossover event if (23) holds for
some pair (i, j).

Hence, the notion of a crossover event is independent of any algorithm and is a
property of the central path only. Note that in view of (3), condition (23) can be
reformulated into an equivalent condition involving only the primal variable. For our
purposes, we will use only (23).

We have the following simple but crucial result about crossover events.
Proposition 3.1. Let C > 0 be a given constant. There can be at most n(n−1)/2

disjoint intervals of the form (ν′, ν] containing C-crossover events.
The notion of C-crossover events can be used to define the notion of C-crossover

events between two iterates of the P-C layered algorithm as follows. We say that a
C-crossover event occurs between two iterates wk and wl, k < l, generated by the P-C
layered algorithm if the interval (µ(wl), µ(wk)] contains a C-crossover event. Note
that in view of Proposition 3.1, there can be at most n(n − 1)/2 intervals of this
type. We will show in the remainder of this paper that there exists a constant C > 0
with the following property: for any index k, there exists an index l > k such that
l− k = O(n1.5 log(χ̄A +n+ ε−1

0 )) and a C-crossover event occurs between the iterates
wk and wl of the P-C layered algorithm. Proposition 3.1 and a simple argument then
show that the P-C layered algorithm must terminate within O(n3.5 log(χ̄A +n+ε−1

0 ))
iterations.

3.2. Relation between the LLS and AS directions. In this subsection, we
describe how the LLS step provides a good approximation of the AS direction, a result
that will be important in our convergence analysis. Another result along this direction
has also been obtained by Vavasis and Ye [28]. However, our result is more general
and better suited for the development of this paper.

The approximation result below can be proved using the projection decomposition
techniques developed in [22]. However, we give a simpler proof using instead the
techniques developed in [15]. The result essentially states that the larger the gap of
J is, the closer the AS direction and the LLS direction with respect to J will be to
one another.

Theorem 3.2. Let w = (x, y, s) ∈ P++ ×D++ and an ordered partition J =
(J1, . . . , Jp) at w be given. Define δ ≡ δ(w), and let ∆wa = (∆xa,∆ya,∆sa) and
∆wll = (∆xll,∆yll,∆sll) denote the AS direction at w and the LLS direction at w
with respect to J , respectively. If the gap of J satisfies gap(J) ≥ 4 p χ̄A, then

max
{ ∥∥δ(∆xa −∆xll)

∥∥
∞ ,

∥∥δ−1(∆sa −∆sll)
∥∥
∞
} ≤ 12

√
nµ χ̄A

gap(J)
.

In particular, if (Rxll, Rsll) denote the residual for the LLS direction ∆wll, then

max
{ ∥∥∥Rxa −Rxll

∥∥∥
∞

,
∥∥∥Rsa −Rsll

∥∥∥
∞

}
≤ 12

√
n χ̄A

gap(J)
.
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Proof. Using the characterization (13) of ∆xa and the definition (19) of ∆xll, we
see that the vectors d0 = (d0

1, . . . , d
0
p) ≡ (δJp∆xa

Jp
, . . . , δJ1∆xa

J1
) and d̃0 = (d̃0

1, . . . , d̃
0
p)

≡ (δJp∆xll
Jp

, . . . , δJ1∆xll
J1

) satisfy the assumptions of Theorem 6.1 with g = 0, Fp+1−i

= AJi
, hp+1−i = (δx)Ji

= (x1/2s1/2)Ji
, and zp+1−i = δ−1

Ji
for all i = 1, . . . , p. Hence,

by the conclusion of Theorem 6.1, we conclude that

∥∥δ(∆xa −∆xll)
∥∥
∞ ≤ 12 χ̄F

∥∥x1/2s1/2
∥∥

gap(J)
=

12 χ̄A
√
nµ

gap(J)
.

Now let G be an (n − m) × n full row rank matrix such that AGT = 0. Clearly,
we have Ker(A) = Im(GT ), and hence χ̄A = χ̄G in view of Proposition 2.2(d). Us-
ing the characterization (14) of ∆sa and the definition (20) of ∆sll, we see that
the vectors d0 = (d0

1, . . . , d
0
p) ≡ (δ−1

J1
∆sa

J1
, . . . , δ−1

Jp
∆sa

Jp
) and d̃0 = (d̃0

1, . . . , d̃
0
p) ≡

(δ−1
J1

∆sll
J1

, . . . , δ−1
Jp

∆sll
Jp

) satisfy the assumptions of Theorem 6.1 with g = 0, Gi = FJi ,

hi = (δ−1s)Ji = (x1/2s1/2)Ji
, and zi = δJi

for all i = 1, . . . , p. Hence, by the conclu-
sion of Theorem 6.1, we conclude that

∥∥δ−1(∆sa −∆sll)
∥∥
∞ ≤ 12 χ̄F

∥∥x1/2s1/2
∥∥

gap(J)
=

12 χ̄A
√
nµ

gap(J)
.

Hence, the first inequality of the theorem follows. The second inequality follows
immediately from the first one and the definition of residual of a direction
(∆x,∆y,∆s).

In view of the above result, the AS direction can be well approximated by LLS
directions with respect to ordered partitions J which have large gaps. The LLS
direction with p = 1, which is the AS direction, provides the perfect approximation
to the AS direction itself. However, this kind of trivial approximation is not useful for
us due to the need of keeping the “spread” of some layers Jk under control. For an
ordered partition J at w, the spread of the layer Jk, denoted by spr(Jk), is defined as

spr(Jk) ≡ max(δJk
)

min(δJk
)

∀k = 1, . . . , p.

We now describe a special ordered partition introduced by Vavasis and Ye [26]
which plays a crucial role in our analysis. Given a point w ∈ P++ ×D++ and a
parameter ḡ ≥ 1, this partition, which we refer to as the VY ḡ-partition at w, is defined
as follows. Let (i1, . . . , in) be an ordering of {1, . . . , n} such that δi1 ≤ · · · ≤ δin , where
δ = δ(w). For k = 2, . . . , n, let rk ≡ δik/δik−1

and define r1 ≡ ∞. Let k1 < · · · < kp
be all the indices k such that rk > ḡ for all j = 1, . . . , p. The VY ḡ-partition J is then
defined as J = (J1, . . . , Jp), where Jq ≡ {ikq , ikq+1, . . . , ikq+1−1} for all q = 1, . . . , p.
More generally, given a subset I ⊂ {1, . . . , n}, we can similarly define the VY ḡ-
partition of I at w by taking an ordering (i1, . . . , im) of I satisfying δi1 ≤ · · · ≤ δim ,
where m = |I|, defining the ratios r1, . . . , rm as above, and proceeding exactly as in
the construction above to obtain the partition J = (J1, . . . , Jp) of I.

It is easy to see that the following result holds for the partition J described in
the previous paragraph.

Proposition 3.3. Given a subset I ⊆ {1, . . . , n}, a point w ∈ P++ ×D++, and
a constant ḡ ≥ 1, the VY ḡ-partition J = (J1, . . . , Jp) of I at w satisfies gap(J) > ḡ
and spr(Jq) ≤ ḡ|Jq| ≤ ḡn for all q = 1, . . . , p.
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3.3. Relation between crossover events and search directions. Using
Lemma 17 of [26], we derive in this section an upper bound on the number of it-
erations needed to guarantee the occurrence of a crossover event which depends on
the size of the residual of the LLS step and the stepsize at the initial iterate. Under
suitable conditions, we derive with the aid of Theorem 3.2 another upper bound on the
number of iterations needed to guarantee the occurrence of a crossover event which
depends only on the size of the residual of the AS direction at the initial iterate.

Even though Lemma 17 of Vavasis and Ye [26] is stated and proved in a very
advanced stage of their paper, one does not need to go through the whole material
preceding it. In order to fully understand this result, it is recommended that one read
only the material of section 4 of [26], followed by Lemma 16 and finally Lemma 17.

Lemma 3.4. Let w = (x, y, s) ∈ N (β) for some β ∈ (0, 1) and an ordered
partition J = (J1, . . . , Jp) at w be given. Let δ ≡ δ(w), µ = µ(w), and (Rxll, Rsll)

denote the residual of the LLS direction (∆xll,∆yll,∆sll) at w with respect to J . Then
the following statements hold for every q = 1, . . . , p:

(a) There exists i ∈ J1 ∪ · · · ∪ Jq such that

si(ν) ≥
√
µ ‖Rsll

Jq
‖∞ min(δJq )

n1.5χ̄A
∀ν ∈ (0, µ].

(b) There exists j ∈ Jq ∪ · · · ∪ Jp such that

xj(ν) ≥
√
µ ‖Rxll

Jq
‖∞

n1.5χ̄A max(δJq )
∀ν ∈ (0, µ].

(c) For any Cq ≥ (1 + β) spr(Jq)/(1− β)2 and for any µ′ ∈ (0, µ) such that

µ′

µ
≤ ‖Rxll

Jq
‖∞‖Rsll

Jq
‖∞

n3C2
q χ̄

2
A

,

the interval (µ′, µ] contains a Cq-crossover event.
Proof. Noting that our definition of δ is the one used in [26] divided by

√
µ, we

easily see that statements (a) and (b) follow directly from Lemma 17 of [26]. We now
prove (c). Let i and j be as in statements (a) and (b). First note that by Proposition
2.1 we have

si(µ)

sj(µ)
≤ 1 + β

(1− β)2
δi
δj
≤ 1 + β

(1− β)2
max(δJq )

min(δJq
)

=
1 + β

(1− β)2
spr(Jq) ≤ Cq.

Now, by (b) and (3), we have

1

sj(ν)
≥

√
µ ‖Rxll

Jq
‖∞

νn1.5χ̄A max(δJq )
∀ν ∈ (0, µ].

Using the last relation, the relation in (a), the fact that J is an ordered partition for
w, and the conditions on Cq and µ′, we obtain for every ν ∈ (0, µ′] that

si(ν)

sj(ν)
≥ µ ‖Rxll

Jq
‖∞‖Rsll

Jq
‖∞

ν n3χ̄2
A spr(Jq)

>
µ ‖Rxll

Jq
‖∞‖Rsll

Jq
‖∞

µ′ n3χ̄2
A Cq

≥ Cq.

We have thus shown that a crossover event for the pair (i, j) occurs in the interval
(ν′, ν].
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An immediate consequence of Lemma 3.4(c) which has implications in the analysis
of the P-C layered algorithm is as follows.

Lemma 3.5. Let w = (x, y, s) ∈ N (β) for some β ∈ (0, 1/4] and an ordered
partition J = (J1, . . . , Jp) at w be given. Define δ ≡ δ(w) and µ = µ(w), and

let (Rxll, Rsll) denote the residual of the LLS direction (∆xll,∆yll,∆sll) at w with
respect to J . Then, for every q ∈ {1, . . . , p} and every Cq ≥ (1 + β)spr(Jq)/(1− β)2,
the following statements hold:

(a) The P-C layered algorithm started from the point w will either generate an
iterate ŵ with a Cq-crossover event occurring between w and ŵ or terminate in

O
(
√
n

(
log(χ̄A + n) + log Cq + log

(
µ+/µ

‖Rxll
Jq
‖∞‖Rsll

Jq
‖∞

)))
(24)

iterations, where µ+ is the normalized duality gap attained immediately after
the first iteration.

(b) If, in addition,

gap(J) ≥ max

{
4nχ̄A ,

24
√
nχ̄A

εa
Jq

}
,(25)

where εa
Jq
≡ min{‖Rxa

Jq
‖∞ , ‖Rsa

Jq
‖∞}, then (24) is bounded above by

O
(√

n
(

log(χ̄A + n) + log Cq + log(εa
Jq

)−1
))

.(26)

Proof. To prove (a), it is sufficient to show that a Cq-crossover event will occur if
the algorithm does not terminate in a number of iterations bounded above by (24).
Lemma 3.4(c) guarantees that a Cq-crossover event occurs between w and another
iterate ŵ whenever

µ(ŵ)

µ(w)
≤ ‖Rxll

Jq
‖∞‖Rsll

Jq
‖∞

n3C2
q χ̄

2
A

.(27)

Observe that the duality gap is reduced by a factor of µ+/µ in the first iteration and
by a factor of at least 1 −√β/n in subsequent iterations due to Proposition 2.4(b).
Thus, an iterate ŵ satisfying (27) will be generated in at most N0+1 iterations, where
N0 is the smallest integer satisfying

log

(
µ+

µ

)
+ N0 log

(
1−

√
β

n

)
≤ log

[
‖Rxll

Jq
‖∞‖Rsll

Jq
‖∞

n3C2
q χ̄

2
A

]
.

The first part of the lemma now immediately follows by rearranging this inequality
and using the fact that log (1 + x) < x for any x > −1.

We now prove (b). We will show that (24) is bounded above by (26) when (25)
holds. By Theorem 3.2 and (25), it follows that

max
{ ∥∥∥Rxa −Rxll

∥∥∥
∞

,
∥∥∥Rsa −Rsll

∥∥∥
∞

}
≤ 12

√
n χ̄A

gap(J)
≤ εa

Jq

2
.

Hence, we have
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min
{
‖Rxll

Jq
‖∞, ‖Rsll

Jq
‖∞
}

≥ min
{ ∥∥∥Rxa

Jq

∥∥∥
∞
−
∥∥∥Rxa −Rxll

∥∥∥
∞

,
∥∥∥Rsa

Jq

∥∥∥
∞
−
∥∥∥Rsa −Rsll

∥∥∥
∞

}
≥ min

{∥∥∥Rxa
Jq

∥∥∥
∞

,
∥∥∥Rsa

Jq

∥∥∥
∞

}
− εa

Jq

2
= εa

Jq
− εa

Jq

2
=

εa
Jq

2
.

Using this estimate in (24) together with the fact that µ+/µ ≤ 1, we conclude that
(24) is bounded above by (26).

4. Convergence analysis of the P-C layered algorithm. In this section, we
give the proof of Theorem 2.7.

Lemma 3.5 gives a good idea of the effort which will be undertaken in this
section, namely, to show that for each w ∈ N (β) there exist an ordered partition
J = (J1, . . . , Jp) and an index q = 1, . . . , p such that the sum of two last logarithms
in (24) can be bounded above by O(n log(χ̄A +n+ ε0

−1)). The analysis of this claim
will be broken into two cases, namely (i) εa

∞ ≥ ε0 and (ii) εa
∞ ≤ ε0, where εa

∞ is
given by (18). The first result below considers the case εa

∞ ≥ ε0 for which the VY
ḡ-partition at w is quite suitable. We introduce the following global constants which
will be used in the remainder of this paper:

C ≡ (1 + β)

(1− β)2
ḡn, ḡ ≡ 24 χ̄A

√
n max

{
ε−1
0 ,

4(1 + 2β)
√
n

β − 2β2

}
.(28)

Lemma 4.1. Suppose that w = (x, y, s) ∈ N (β) for some β ∈ (0, 1/4] and that
εa
∞ ≥ ε0 for some constant ε0 > 0. Then the P-C layered algorithm started from the
point w will either generate an iterate ŵ with a C-crossover event occurring between
w and ŵ or terminate in O(n1.5 log(χ̄A + n + ε−1

0 )) iterations.
Proof. The assumption that εa

∞ ≥ ε0 and definition (18) imply the existence of
an index i = 1, . . . , n such that min{|Rxa

i |, |Rsa
i |} ≥ ε0. Now let J = (J1, . . . , Jp) be

a VY ḡ-partition at w, and let Jq be the layer containing the index i above. Clearly,
we have

εa
Jq
≡ min{‖Rxa

Jq
‖∞, ‖Rsa

Jq
‖∞} ≥ ε0.(29)

Using the above inequality, the fact that gap(J) ≥ ḡ, and (28), we easily see that
(25) holds. Since by Proposition 3.3 the spread of every layer of a VY ḡ-partition
at w is bounded above by ḡn, we conclude that spr(Jq) ≤ ḡn. Hence, we may set
Cq = C ≡ (1 + β)ḡn/(1− β)2 in Lemma 3.5, from which it follows that

log(Cq) = O(n log ḡ) = O(n log(χ̄A + n + ε−1
0 )),(30)

where the last equality is due to (28). The result now follows from Lemma 3.5(b) by
noting that (26) is O(n1.5 log(χ̄A + n + ε−1

0 )) in view of (29) and (30).
We now consider the case in which εa

∞ ≤ ε0 and show that a C-crossover also
happens within O(n1.5 log(χ̄A + n + ε−1

0 )) iterations of the P-C layered algorithm
(if it does not terminate). From now on, we let J = (J1, . . . ,Jr) denote an ordered
(B,N)-partition at w. We will split the analysis of this case into two subcases, namely
(i) gap(J ) ≤ ḡ and (ii) gap(J ) ≥ ḡ. The next result takes care of the case in which
gap(J ) ≤ ḡ, without assuming anything about εa

∞.
Lemma 4.2. Suppose that w = (x, y, s) ∈ N (β) for some β ∈ (0, 1/4]. Let ḡ and C

be the constants defined in (28). Let J = (J1, . . . ,Jr) be an ordered (B,N)-partition
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at w, where (B,N) is the bipartition defined in (21), and assume that gap(J ) <
ḡ. Then the P-C layered algorithm started from the point w will either generate
an iterate ŵ with a C-crossover event occurring between w and ŵ or terminate in
O (n1.5 log(χ̄A + n + ε−1

0 )
)
iterations.

Proof. Assume that gap(J ) < ḡ. Let J = (J1, . . . , Jp) be a VY ḡ-partition at w.
Using the assumption that gap(J ) < ḡ, it is easy to see that there exist two indices
i, j of different types, say i ∈ B and j ∈ N , both lying in some layer Jq of J . By
Lemma 2.6 and the definition of (B,N) given in (21), it follows that |Rxa

i | ≥ 1/4 and
|Rsa

j | ≥ 1/4, and hence that

εa
Jq
≡ min{‖Rxa

Jq
‖∞ , ‖Rsa

Jq
‖∞} ≥ 1

4
.(31)

Using this inequality and the fact that gap(J) ≥ ḡ ≥ 96χ̄An, where the last inequality
is due to (28), we easily see that (25) holds. Since by Proposition 3.3 the spread of
every layer of a VY ḡ-partition at w is bounded above by ḡn, we conclude that
spr(Jq) ≤ ḡn. Hence, we may set Cq = C ≡ (1 + β)ḡn/(1 − β)2 in Lemma 3.5, from
which it follows that (30) holds. The result now follows from Lemma 3.5(b) by noting
that (26) is O(n1.5 log(χ̄A + n + ε−1

0 )) in view of (30) and (31).
The next result considers the case in which gap(J ) ≥ ḡ and derives an upper

bound on the number of iterations for a C-crossover event to occur. As in Lemma 3.5,
nothing is assumed about εa

∞.
Lemma 4.3. Suppose that w = (x, y, s) ∈ N (β) for some β ∈ (0, 1/4]. Let ḡ and

C be the constants defined in (28). Let J = (J1, . . . ,Jr) be the (B,N)-partition at
w, where (B,N) is the bipartition defined in (21), and assume that gap(J ) ≥ ḡ. Let
(Rxl, Rsl) denote the residual of the LLS direction at w with respect to J . Then the
P-C layered algorithm started from the point w will either generate an iterate ŵ with
a C-crossover event occurring between w and ŵ or terminate in

O
(
n1.5 log

(
χ̄A + n + ε0

−1
)

+
√
n log

(
µ+/µ

εl∞

))
(32)

iterations, where µ+ is the normalized duality gap attained immediately after the first
iteration, and

εl
∞ ≡ max

{∥∥∥Rxl
N

∥∥∥
∞

,
∥∥∥Rsl

B

∥∥∥
∞

}
.

Proof. Assume without loss of generality that εl
∞ = ‖Rxl

N‖∞; the case in which
εl
∞ = ‖Rsl

B‖∞ can be proved similarly. Then εl
∞ = |Rxl

i| for some i ∈ N . Let Jt be
the layer of J containing the index i and note that

εl
∞ = |Rxl

i| = ‖Rxl
Jt
‖∞ ≤ ‖Rxl

Jt
‖.(33)

Now let I = (I1, . . . , Ip) be the VY ḡ-partition of Jt at w and consider the ordered
partition J ′ defined as

J ′ ≡ (J1, . . . ,Jt−1, I1, . . . , Ip,Jt+1, . . . ,Jr).

Let (Rxll, Rsll) denote the residual of the LLS direction at w with respect to J ′.
Using the definition of the LLS step, it is easy to see that Rxl

Jj
= Rxll

Jj
for all

j = t + 1, . . . , r. Moreover, we have ‖Rxl
Jt
‖ ≤ ‖Rxll

Jt
‖ since ‖Rxl

Jt
‖ is the optimal
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value of the least squares problem which determines the ∆xl
Jt

-component of the LLS

step with respect to J , whereas ‖Rxll
Jt
‖ is the objective value at a certain feasible

solution for the same least squares problem. Hence, for some q ∈ {1, . . . , p} we have

‖Rxll
Iq
‖∞ = ‖Rxll

Jt
‖∞ ≥ 1√|Jt|

‖Rxll
Jt
‖ ≥ 1√

n
‖Rxll

Jt
‖ ≥ 1√

n
‖Rxl

Jt
‖.(34)

Combining (33) and (34), we then obtain

‖Rxll
Iq
‖∞ ≥ 1√

n
εl
∞.(35)

Let us now bound the quantity ‖Rsll
Iq
‖∞ from below. Using triangle inequality for

norms, Lemma 2.6, Theorem 3.2, and the fact that gap(J ′) ≥ ḡ ≥ 96χ̄An, where the
second inequality is due to (28), we obtain

‖Rsll
Iq
‖∞ ≥ ‖Rsa

Iq
‖∞ − ‖Rsll

Iq
−Rsa

Iq
‖∞ ≥ 1

4
− 12

√
n χ̄A

gap(J ′)
≥ 1

4
− 1

8
≥ 1

8
.(36)

Also note that by (28) and Proposition 3.3 we have

C =
1 + β

(1− β)2
ḡn ≥ 1 + β

(1− β)2
spr(Iq)(37)

and

log C = O (n log
(
χ̄A + n + ε−1

0

))
.(38)

Hence, from Lemma 3.5(a) with J = J ′ and Cq = C and the estimates (35)–(38), it
follows that the P-C layered algorithm started from w will find an iterate ŵ with a
C-crossover event occurring between w and ŵ in

O
(
n1.5 log

(
χ̄A + n + ε−1

0

)
+
√
n log

(
µ+/µ

‖Rxl
Iq
‖∞‖Rsl

Iq
‖∞

))

= O
(
n1.5 log

(
χ̄A + n + ε−1

0

)
+
√
n log

(
µ+/µ

εl∞

))

iterations.
Our goal now will be to estimate the second logarithm that appears in the

iteration-complexity bound (32). It is exactly in this estimation process that we
will need to assume that εa

∞ ≤ ε0. Under this condition, we know that the duality
gap reduction µ+/µ obtained in the first iteration from w is the smaller between the
two duality gap reductions obtained by taking an AS step and an LLS step. Hence,
µ+/µ is majorized by the duality gap reduction obtained from an LLS step from w.
Lemma 4.6 below provides an estimation of the duality gap reduction obtained from
an LLS step. The two lemmas that precede it, namely Lemmas 4.4 and 4.5, are just
technical results which are used in its proof.

Lemma 4.4. Let w = (x, y, s) ∈ P++ ×D++ be given and assume that ‖xs −
νe‖ ≤ τν for some constants τ ∈ (0, 1) and ν > 0. Then (1 − τ/

√
n)ν ≤ µ(w) ≤

(1 + τ/
√
n)ν and w ∈ N (τ/(1− τ)).
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Proof. We have

|µ(w)− ν| =

∣∣∣∣xT s− nν

n

∣∣∣∣ =

∣∣∣∣eT (xs− νe)

n

∣∣∣∣ ≤ ‖e‖ ‖xs− νe‖
n

≤ τ√
n
ν,

from which the two inequalities of the lemma follow. Since ν̃ = µ(w) is the constant
which minimizes ‖xs− ν̃e‖, we have

‖xs− µ(w)e‖ ≤ ‖xs− νe‖ ≤ τν ≤ τ

1− τ/
√
n

µ(w) ≤ τ

1− τ
µ(w),

showing that w ∈ N (τ/(1− τ)).
The following lemma is well known (see [4] or [8], for example).
Lemma 4.5. Let {wk} = {(xk, yk, sk)} be a sequence of points in P++ ×D++

such that limk→∞ µk = 0 and, for some γ > 0, xksk ≥ γµke for all k, where µk ≡
µ(wk). Then every accumulation point w∞ = (x∞, y∞, s∞) of the sequence {wk} is
a primal-dual optimal solution of (1) and (2) satisfying the strict complementarity
condition, namely (x∞)T s∞ = 0 and x∞ + s∞ > 0.

The following lemma gives an estimate of the duality gap reduction obtained by
taking an LLS step.

Lemma 4.6. Suppose that w ∈ N (β) for some β ∈ (0, 1/2). Let J = (J1, . . . , Jp)
be an ordered partition at w, and let ∆wll = (∆xll,∆yll,∆sll) denote the LLS direction
at w with respect to J . Define

εll
∞ ≡ max

{∥∥∥Rxll
N

∥∥∥
∞

,
∥∥∥Rsll

B

∥∥∥
∞

}
,(39)

αll ≡ sup {α ∈ [0, 1] : w + α∆wll ∈ N (2β)},

where (Rxll, Rsll) is the residual of ∆wll. Then the following statements hold:
(a) If gap(J) > max{4pχ̄A , 24

√
nχ̄A}, then xT ∆sll + sT ∆xll < 0, and hence

µ(w + α∆wll) is a strictly decreasing affine function of α.
(b) If gap(J) ≥ 96nχ̄A/η, where η ≡ (β − 2β2)/(1 + 2β), then

µ(w + αll∆wll)

µ(w)
≤ 4

√
n εll

∞(εll
∞ + 4)

η
.

Proof. We first show (a). From the first equation in (11), we easily see that
sT ∆xa+xT ∆sa = −nµ, where µ ≡ µ(w). Using this fact, the definition of the residual
of a direction, Theorem 3.2, and the assumption that gap(J) > max{4 p χ̄A , 24

√
nχ̄A},

we obtain

sT ∆xll + xT ∆sll = sT ∆xa + xT ∆sa + sT
(
∆xll −∆xa

)
+ xT

(
∆sll −∆sa

)
= −nµ + µ

(
x1/2s1/2

√
µ

)T [(
Rxll −Rxa

)
+
(
Rsll −Rsa

)]

≤ −nµ + µ
√
n

∥∥∥∥x1/2s1/2

√
µ

∥∥∥∥ (∥∥Rxll −Rxa
∥∥
∞ +

∥∥Rsll −Rsa
∥∥
∞
)

≤ −nµ + µn
24
√
nχ̄A

gap(J)
= −nµ

(
1− 24

√
nχ̄A

gap(J)

)
< 0,

from which (a) follows.
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To prove (b), assume that gap(J) ≥ 96nχ̄A/η. Define v(α) ≡ (x + α∆xll)(s +
α∆sll) for all α ∈ �. We claim that

‖v(α)−(1−α)µe‖ ≤ 2β

1 + 2β
(1−α)µ for every 0 ≤ α ≤ 1− 2

√
nεll

∞(εll
∞ + 4)

η
.(40)

Using this claim, (b) can be proved as follows. By Lemma 4.4 with w = w + α∆wll,
ν = (1− α)µ, and τ = 2β/(1 + 2β) we conclude from the claim that for any 0 ≤ α ≤
1− 2

√
n εll

∞(εll
∞ + 4)/η, we have w + α∆wll ∈ N (2β) and

µ(w + α∆wll) ≤
(

1 +
2β√

n(1 + 2β)

)
(1− α)µ ≤ 2(1− α)µ.(41)

By the definition of αll, we then conclude that αll ≥ α∗ ≡ 1 − 2
√
n εll

∞(εll
∞ + 4)/η.

Setting α = α∗ in (41) and using the fact that αll ≥ α∗ and µ(w + α∆wll) is a
decreasing function of α, we obtain

µ(w + αll∆wll) ≤ µ(w + α∗∆wll) ≤ 2(1− α∗)µ =
4
√
n εll

∞(εll
∞ + 4)

η
µ;

that is, (b) holds. In the remainder of the proof, we show that (40) holds. It is easy
to see that

v(α)− (1− α)µe = (x + α∆xll)(s + α∆sll)− (1− α)µe

= (1− α)(xs− µe) + αh1 + α(1− α)h2 + α2h3,(42)

where h1, h2, and h3 are vectors in �n defined as(
h1
B

h1
N

)
≡
(

xB(sB + ∆sll
B)

sN (xN + ∆xll
N )

)
= µ

(
wBpB
wNpN

)
,(43)

(
h2
B

h2
N

)
≡
(

sB∆xll
B

xN∆sll
N

)
= µ

(
wBqB
wNqN

)
,(44)

(
h3
B

h3
N

)
≡
(

∆xll
B(sB + ∆sll

B)

∆sll
N (xN + ∆xll

N )

)
= µ

(
pBqB
pNqN

)
.(45)

Here the vectors p, q, and w appearing in the second alternative expressions for h1,
h2, and h3 are defined as

(
pB
pN

)
≡
(

Rsll
B

Rxll
N

)
,

(
qB
qN

)
≡
(

δB∆xll
B/
√
µ

δ−1
N ∆sll

N/
√
µ

)
, w ≡ x1/2s1/2

√
µ

.

Clearly, we have

‖p‖∞ = εll
∞, ‖w‖∞ ≤

√
1 + β ≤ 2, ‖w‖ =

√
n.(46)

We will now derive an upper bound for ‖q‖. Using the definition of (Rxll, Rsll) and
(17), we obtain

δB∆xll
B√

µ
= Rxll

B − wB = −Rsll
B + (Rxll

B −Rxa
B) + (Rsll

B −Rsa
B)
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and

δ−1
N ∆sll

N√
µ

= Rsll
N − wN = −Rxll

N + (Rsll
N −Rsa

N ) + (Rxll
N −Rxa

N ),

from which it follows that

q = −p + (Rxll −Rxa) + (Rsll −Rsa).

Hence, using the triangle inequality for norms, Theorem 3.2, and the assumption that
gap(J) ≥ 96nχ̄A/η ≥ 4 p χ̄A, we obtain

‖q‖ ≤ ‖p‖+ ‖Rxll −Rxa‖+ ‖Rsll −Rsa‖ ≤ √n εll
∞ +

24nχ̄A

gap(J)
≤ √n εll

∞ +
η

4
.(47)

Using (43), (44), (45), (46), and (47), we obtain

‖h1‖ ≤ µ‖w‖ ‖p‖∞ ≤ µ
√
n εll

∞,

‖h2‖ ≤ µ‖w‖∞ ‖q‖ ≤ 2µ
(√

n εll
∞ +

η

4

)
,

‖h3‖ ≤ µ‖p‖∞ ‖q‖ ≤ µεll
∞
(√

n εll
∞ +

η

4

)
≤ µ

√
n εll

∞
(
εll
∞ + 1

)
.

Using (42), the triangle inequality for norms, and the three estimates above, we then
obtain

‖v(α)− (1− α)µe‖ ≤ (1− α)‖xs− µe‖+ α‖h1‖+ α(1− α)‖h2‖+ α2‖h3‖
≤ (1− α)

(‖xs− µe‖+ ‖h2‖)+ ‖h1‖+ ‖h3‖
≤
[
(1− α)

(
β + 2

√
n εll

∞ +
η

2

)
+
√
n εll

∞ +
√
n εll

∞
(
εll
∞ + 1

)]
µ

≤
[(

β +
η

2

)
(1− α) +

√
n εll

∞
(
εll
∞ + 4

)]
µ

≤ (β + η)(1− α)µ =
2β

1 + 2β
(1− α)µ

for all 0 ≤ α ≤ 1− 2
√
n εll

∞(εll
∞ + 4)/η. Hence, the validity of the claim follows.

We are now ready to prove the main result of this paper, namely Theorem 2.7.
Proof of Theorem 2.7. Let C and ḡ be the constant defined in (28). We claim

that the P-C layered algorithm started from any w ∈ N (β) either terminates (at step
7) or generates an iterate ŵ with a C-crossover event occurring between w and ŵ in
O(n1.5 log(χ̄A + n + ε−1

0 )) iterations. Since by Proposition 3.1 there can be at most
n(n + 1)/2 C-crossover events of the above type, we conclude that the P-C layered
algorithm must ultimately terminate in O(n3.5 log(χ̄A +n+ε−1

0 )) iterations. To show
the above claim, let J = (J1, . . . ,Jr) denote an ordered (B,N)-partition at w, where
(B,N) is the bipartition defined in (21). We split the proof into three possible cases:
(1) εa

∞ > ε0, (2) gap(J ) ≤ ḡ, and (3) εa
∞ ≤ ε0 and gap(J ) > ḡ. The claim clearly

holds for the first two cases due to Lemmas 4.1 and 4.2. Moreover, Lemma 4.3 implies
that the claim also holds in the third case as long as we can show that the quantity
(µ+/µ)/εl

∞ appearing in (32) is O(
√
n). Indeed, let αl be defined as in step 5 of the

P-C layered algorithm. Since in case (3) the LLS step is computed and step 6 of
the P-C layered algorithm is performed, we must have µ+ ≤ µ(w + αl∆wl). Hence,
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the second statement of Lemma 4.6 applied to the partition J and the fact that
gap(J ) > ḡ ≥ 96nχ̄A/η, where the second inequality is due to (28), imply

µ+

µ
≤ µ(w + αl∆wl)

µ
≤ 4

√
n εl

∞(εl
∞ + 4)

η
.

Hence, we conclude that (µ+/µ)/εl
∞ = O(

√
n) whenever εl

∞ ≤ 1. If, on the other
hand, εl

∞ > 1, then we have (µ+/µ)/εl
∞ ≤ 1 since µ+/µ ≤ 1.

It remains to show that when the method terminates at step 7 of the P-C layered
algorithm it always finds a strictly complementary optimal solution. Indeed, let ŵ
be the iterate satisfying the stopping criterion of step 7. Clearly, µ(ŵ) = 0 and
ŵ = w + ᾱ∆w for some w ∈ N (β), primal-dual feasible direction ∆w, and stepsize
ᾱ > 0 satisfying the property that w + α∆w ∈ N (β) for all α ∈ [0, ᾱ). Using Lemma
4.5, we conclude that w̄ is a strictly complementary optimal solution.

5. Concluding remarks. We consider our algorithm from the point of view of
scaling-invariance. If one considers the change of variables x = Dx̃, where D is a
positive diagonal matrix, then the LP problem (1) is equivalent to

min{(Dc)T x̃ : ADx̃ = b, x̃ ≥ 0}.

It turns out that the sequence of points generated by the P-C layered algorithm when
applied to (1) does not necessarily correspond (under the transformation x = Dx̃)
to the one obtained by applying it to the above LP problem. Algorithms with this
desirable property are called scaling-invariant. The lack of scaling-invariance of the
P-C layered algorithm, as well as the algorithms of Megiddo, Mizuno, and Tsuchiya
[10] and Vavasis and Ye [26], is due to the fact that the choice of the layered partition
used in the LLS step is not scaling-invariant. The construction of this partition is
based on comparing the magnitudes of different components of δ, which per se is not
a scaling-invariant quantity.

An interesting open problem is whether there exists a scaling-invariant algorithm
whose complexity depends only on m, n, and χ̄A. Note that if such an algorithm exists,
its complexity will in fact depend only on m, n, and the quantity inf{χ̄AD : D ∈ D}.

As in [26] and [10], we developed our algorithm for LP problems in which a
well-centered interior feasible solution is given in advance. General LP problems can
also be solved by the same algorithm applied to a suitably constructed artificial LP
problem, and the resulting computational complexity can be shown to be the same as
the one obtained in this paper. We refer the reader to section 10 of [26] and section
5 of [10] for more details.

6. Appendix. In this section we give the proof of Theorem 3.2. We start by
stating the following result which yields Theorem 3.2 almost as an immediate conse-
quence.

Theorem 6.1. Let g ∈ �m, Fi ∈ �m×ni , hi ∈ �ni , zi ∈ �ni
++, i = 1, . . . , l, be

given and assume that g ∈ Im([F1, . . . , Fl]). Define d0 = (d0
1, . . . , d

0
l ) ∈ �n1 × · · · ×

�nl as

(d0
1, . . . , d

0
l ) ≡ argmin

(d1,...,dl)∈�n1×...×�nl

{
l∑

i=1

‖di − hi‖2 :

l∑
i=1

FiZidi = g

}
,(48)
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and define d̃0 = (d̃0
1, . . . , d̃

0
l ) ∈ �n1 × · · · × �nl recursively starting from k = 1 up-

wards as

d̃0
k ≡ argmin

d̃k∈�nk

{
‖d̃k − hk‖2 : FkZkd̃k = g −

k−1∑
i=1

FiZid̃
0
i + Im(F̃k+1)

}

for every k = 1, . . . , l−1, where Zk ≡ Diag(zk) and F̃k ≡ [Fk, . . . , Fl] ∈ �m×(nk+···+nl).
If the quantity ∆ ≡ max{∆i : i = 1, . . . , l − 1}, where ∆i ≡ ‖zi‖∞‖z−1

i+1‖∞ for all

i = 1, . . . , l − 1, satisfies χ̄F ∆ ≤ 1/
√

2, then

‖d0 − d̃0‖∞ ≤ 4χ̄F ∆(1 + 4χ̄F ∆)l−2‖d0 − h‖,(49)

where h ≡ (h1, . . . , hl) and F = F̃1. In particular, if g = 0 and 4χ̄F ∆ ≤ 1/l, then

‖d0 − d̃0‖∞ ≤ 12χ̄F ∆‖h‖.(50)

The proof of Theorem 6.1 will be given at the end of this section after some
preliminary results are derived. Note that when g = 0 in Theorem 6.1 the point d0 is
the projection of h onto the null space of the matrix [F1Z1, . . . , FlZl] ∈ �m×(n1+···+nl)

and the point d̃0 is the layered projection of h onto the null space of [F1Z1, . . . , FlZl]
according to the partition of variables (z1, . . . , zl).

The proof of Theorem 6.1 will be done by induction on the number l. A crucial
step in this induction proof is the validity of certain proximity bounds for the case in
which l = 2. Hence, as a preliminary step we will derive a special result for the case
in which l = 2.

Proposition 6.2. Let g ∈ �m, Fi ∈ �m×ni , hi ∈ �ni , zi ∈ �ni
++, i = 1, 2,

be given and assume that g ∈ Im([F1, F2]). Consider the points d0 = (d0
1, d

0
2) and

d̃0 = (d̃0
1, d̃

0
2) determined as

(d0
1, d

0
2) ≡ argmin

d
{ ‖d1 − h1‖2 + ‖d2 − h2‖2 : F1Z1d1 + F2Z2d2 = g },(51)

d̃0
1 ≡ argmin

d1

{ ‖d1 − h1‖2 : F1Z1d1 ∈ g + Im(F2) },(52)

d̃0
2 ≡ argmin

d2

{ ‖d2 − h2‖2 : F2Z2d2 = g − F1Z1d̃
0
1 },(53)

where Z1 ≡ Diag(z1) and Z2 ≡ Diag(z2). Let ∆ ≡ ‖z1‖∞‖(z2)−1‖∞ and assume that
χ̄F ∆ ≤ 1/

√
2, where F ≡ [F1, F2]. Then the following estimates of the proximity

between d0 and d̃0 hold:

‖d0
1 − d̃0

1‖ ≤ 4χ̄F ∆‖d0
2 − h2‖, ‖d0

2 − d̃0
2‖ ≤ 4χ̄2

F ∆2‖d0
2 − h2‖.

Before giving the proof of the above proposition, we first state and prove the
following result which characterizes the displacements δ0

1 ≡ d0
1 − d̃0

1 and δ0
2 ≡ d0

2 − d̃0
2

as optimal solutions of certain optimization problems.
Lemma 6.3. Let g, Fi, Zi, i = 1, 2, be as defined in Proposition 6.2. Then the

following statements hold:
(a) The vector δ0

2 ≡ d0
2 − d̃0

2 is the unique optimal solution of the problem

minimizeδ2
1
2‖δ2‖2

subject to F2Z2δ2 = −F1Z1δ
0
1 .

(54)



1076 RENATO D. C. MONTEIRO AND TAKASHI TSUCHIYA

(b) The pair (δ0
1 , d

0
2), where δ0

1 ≡ d0
1 − d̃0

1, is the unique optimal solution of the
problem

minimize(δ1,d2)
1
2‖δ1‖2 + 1

2‖d2 − h2‖2
subject to F1Z1δ1 + F2Z2d2 = g − F1Z1d̃

0
1.

(55)

Proof. We first show (a). Since d0 and d̃0
2 are optimal solutions of (51) and (53),

respectively, we have(
d0
1 − h1

d0
2 − h2

)
∈ Im

(
Z1F

T
1

Z2F
T
2

)
, F1Z1d

0
1 + F2Z2d

0
2 = g,(56)

d̃0
2 − h2 ∈ Im(Z2F

T
2 ), F1Z1d̃

0
1 + F2Z2d̃

0
2 = g,(57)

and hence

d0
2 − d̃0

2 ∈ Im(Z2F
T
2 ), F2Z2δ

0
2 = −F1Z1δ

0
1 .(58)

This shows that δ0
2 = d0

2 − d̃0
2 satisfies the optimality conditions for problem (54).

Since (54) is a strictly convex quadratic program, its optimal solution is unique and
hence (a) follows. We next show (b). Since d̃0

1 is the optimal solution of (52), we have(
d̃0
1 − h1

0

)
∈ Im(ZFT ),

which, together with (56) and the definition of δ0
1 , yields(

δ0
1

d0
2 − h2

)
∈ Im(ZFT ), F1Z1δ

0
1 + F2Z2d

0
2 = g − F1Z1d̃

0
1.(59)

This shows that (δ0
1 , d

0
2) satisfies the optimality conditions for (55). Since (55) is

a strictly convex quadratic program, its optimal solution is unique and hence (b)
holds.

Using the above lemma, we now give a proof of Proposition 6.2.
Proof of Proposition 6.2. By (58), we have that F1Z1δ

0
1 ∈ Range(F2). Hence, by

Lemma 2.3, there exists a vector v0
2 such that

F2v
0
2 = F1Z1δ

0
1 , ‖v0

2‖ ≤ χ̄F ‖Z1δ
0
1‖ ≤ χ̄F ‖z1‖∞ ‖δ0

1‖.(60)

Relation (59) and (60) imply that F2[Z2d
0
2 +v0

2 ] = g−F1Z1d̃
0
1, and hence that the pair

(d0
2 + Z−1

2 v0
2 , 0) is feasible for (55). This together with Lemma 6.3(b) implies that

‖d0
2 − h2‖2 + ‖δ0

1‖2 ≤ ‖d0
2 + Z−1

2 v0
2 − h2‖2.

Rearranging this expression and using relation (60) and the inequality ‖r‖2−‖u‖2 ≤
‖r − u‖ ‖r + u‖ for any r, u ∈ �p, we obtain

‖δ0
1‖2 ≤

{‖d0
2 + Z−1

2 v0
2 − h2‖2 − ‖d0

2 − h2‖2
}

≤ ‖Z−1
2 v0

2‖ ‖ 2 (d0
2 − h2) + Z−1

2 v0
2 ‖

≤ ‖z−1
2 ‖∞ ‖v0

2‖
{

2 ‖d0
2 − h2‖+ ‖z−1

2 ‖∞ ‖v0
2‖
}

≤ χ̄F ∆ ‖δ0
1‖
{

2 ‖d0
2 − h2‖+ χ̄F ∆ ‖δ0

1‖
}
,
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from which it follows that

‖δ0
1‖ ≤

2 χ̄F ∆ ‖d0
2 − h2‖

1− χ̄2
F ∆2

≤ 4χ̄F ∆ ‖d0
2 − h2‖,(61)

where the last inequality is due to the assumption that χ̄F ∆ ≤ 1/
√

2. The first
relation in (60) implies that −Z−1

2 v0
2 is a feasible solution of problem (54). Hence, by

Lemma 6.3(a), the second relation in (60), and relation (61), it follows that

‖δ0
2‖ ≤ ‖Z−1

2 v0
2‖ ≤ ‖z−1

2 ‖∞‖v0
2‖ ≤ χ̄F ∆‖δ0

1‖ ≤ 4χ̄2
F ∆2 ‖d0

2 − h2‖.
We are now ready to give the proof of Theorem 6.1.
Proof of Theorem 6.1. During the proof, we refer to d̃0 as the l-layer point

associated with problem (48). We prove the inequality (49) by induction on l. Using
Proposition 6.2 and noting that χ̄F ∆ ≤ 1/

√
2 by assumption, we obtain

‖d0 − d̃0‖∞ ≤ max{‖d0
1 − d̃0

1‖ , ‖d0
2 − d̃0

2‖} ≤ 4χ̄F ∆‖d0
2 − h2‖ ≤ 4χ̄F ∆‖d0 − h‖,

from which we conclude that (49) holds for l = 2. Assume now that l ≥ 3 and
inequality (49) holds for l − 1. Consider the solution (p0

2, . . . , p
0
l ) of the problem

(p0
2, . . . , p

0
l ) ≡ argmin

(p2,...,pl)

{
l∑

i=2

‖pi − hi‖2 :

l∑
i=2

FiZipi = g − F1Z1d̃
0
1

}
(62)

and note that d̃0
1 and (p0

2, . . . , p
0
l ) are the optimal solutions of problems (52) and (53)

in which F1, F2, z1, and z2 in Proposition 6.2 are identified with F1, F̃2, z1, and
(z2, . . . , zl), respectively. Hence, it follows from Proposition 6.2 that

‖d0
1 − d̃0

1‖ ≤ 4χ̄F ∆‖d0 − h‖,(63)

‖(d0
2 − p0

2, . . . , d
0
l − p0

l )‖ ≤ 4χ̄2
F ∆2‖d0 − h‖.(64)

Note also that (d̃0
2, . . . , d̃

0
l ) is the (l− 1)-layer point associated with the problem (62).

Hence, it follows from the induction hypothesis, i.e., that inequality (49) holds for
l − 1, that

‖(p0
2 − d̃0

2, . . . , p
0
l − d̃0

l )‖∞ ≤ 4χ̄F ∆(1 + 4χ̄F ∆)l−3‖(p0
2 − h2, . . . , p

0
l − hl)‖.

Using the triangle inequality for norms and (64), we obtain

‖(p0
2 − h2, . . . , p

0
l − hl)‖ ≤ ‖(d0

2 − p0
2, . . . , d

0
l − p0

l )‖+ ‖(d0
2 − h2, . . . , d

0
l − hl)‖

≤ 4χ̄2
F ∆2‖d0 − h‖+ ‖d0 − h‖ = (4χ̄2

F ∆2 + 1)‖d0 − h‖.
Combining the two last inequalities yields

‖(p0
2 − d̃0

2, . . . , p
0
l − d̃0

l )‖∞ ≤ 4χ̄F ∆(1 + 4χ̄F ∆)l−3(4χ̄2
F ∆2 + 1)‖d0 − h‖.

Using the triangle inequality for norms again, the last inequality, and (64), we obtain

‖(d0
2 − d̃0

2, . . . , d
0
l − d̃0

l )‖∞ ≤ ‖(d0
2 − p0

2, . . . , d
0
l − p0

l )‖∞ + ‖(p0
2 − d̃0

2, . . . , p
0
l − d̃0

l )‖∞
≤ [4χ̄2

F ∆2 + 4χ̄F ∆(1 + 4χ̄F ∆)l−3(4χ̄2
F ∆2 + 1)

] ‖d0 − h‖
≤ 4χ̄F ∆(1 + 4χ̄F ∆)l−3(χ̄F ∆ + 4χ̄2

F ∆2 + 1) ‖d0 − h‖
≤ 4χ̄F ∆(1 + 4χ̄F ∆)l−3(1 + (1 + 2

√
2)χ̄F ∆)‖d0 − h‖

≤ 4χ̄F ∆(1 + 4χ̄F ∆)l−2 ‖d0 − h‖.
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The last inequality together with (63) implies that inequality (49) holds for l. It then
follows by an induction argument that inequality (49) holds for any l.

We now prove that (50) holds when g = 0 and 4χ̄F ∆ ≤ 1/l. Indeed, when g = 0,
(48) implies that the vector d0 is the orthogonal projection of h onto a subspace.
Hence, ‖d0 − h‖ ≤ ‖h‖. Also, 4χ̄F ∆ ≤ 1/l implies that (1 + 4χ̄F ∆)l−2 ≤ (1 + 1/l)l ≤
e ≈ 2.718. Substituting these two bounds into (49), we obtain (50).
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