
A Projected Gradient Algorithm for Solving the Maxcut SDP

Relaxation�

Samuel Burery Renato D.C. Monteiroz

December 22, 1998

Revised: July 5, 2000

Abstract

In this paper, we present a projected gradient algorithm for solving the semide�nite
programming (SDP) relaxation of the maximum cut (maxcut) problem. Coupled with a
randomized method, this gives a very eÆcient approximation algorithm for the maxcut
problem. We report computational results comparing our method with two earlier
successful methods on problems with dimension up to 7000.

Keywords: semide�nite program, maxcut, randomized algorithm, semide�nite re-
laxation, gradient projection method, approximation algorithm.

AMS 1991 subject classi�cation: 65K05, 90C25, 90C27, 90C30, 90C90.

1 Introduction

In this paper, we develop a specialized algorithm for solving the semide�nite programming
(SDP) relaxation of the maximum cut (maxcut) problem. The maxcut problem has many
applications, e.g., in VLSI design and statistical physics (see [2, 4, 5, 19, 21]). Several
algorithms have been proposed to �nd either exact or approximate solutions to this problem.
As for many combinatorial optimization problems, the maxcut problem can be formulated
as a quadratic programming (QP) problem in binary (or �1) variables. The idea that
such problems can be naturally relaxed to SDP problems was �rst observed in Lov�asz [16]
and Shor [22] and has been used by several authors (e.g., see [1, 6, 14, 17, 18, 20, 23]).
Goemans and Williamson [9] developed a randomized algorithm for the maxcut problem,
based on solving its SDP relaxation, which provides an approximate solution guaranteed
to be within a factor of 0:87856 of its optimal value whenever the associated edge weights
are nonnegative. In practice, their algorithm has been observed to �nd solutions which are
signi�cantly closer to the maxcut optimal value.

The major e�ort in Goemans and Williamson's method lies in the solution of the maxcut
SDP relaxation. A naive use of an algorithm designed for solving general SDP problems

�The work of these authors was based on research supported by the National Science Foundation under
grants INT-9600343, INT-9910084, CCR-9700448 and CCR-9902010.

ySchool of Mathematics, Georgia Tech, Atlanta, Georgia 30332, USA. (email: burer@math.gatech.edu).
zSchool of ISyE, Georgia Tech, Atlanta, Georgia 30332, USA. (email: monteiro@isye.gatech.edu).

1

drastically limits the size of the problem that can be solved. EÆcient algorithms for solving
the maxcut SDP relaxation have recently been developed which take into account its special
structure. One approach to solve these problems is with the use of interior-point methods
(see [3, 7, 8, 12, 15]). Among these implementations, the one by Benson et al. [3] based
on a potential-reduction dual-scaling interior-point method is the most eÆcient and the
best suited for taking advantage of the special structure of the maxcut SDP relaxation.
In addition to interior-point methods, other nonlinear programming methods have recently
been proposed to solve the maxcut SDP relaxation (see [11, 13]). The approach used in
Helmberg and Rendl [11] consists of solving a certain partial Lagrangian dual problem,
whose objective function is nondi�erentiable, using the usual bundle method for convex
programming. On the other hand, Homer and Peinado [13] use the change of variables
X = V V T , V 2 <n�n, where X is the primal matrix variable of the maxcut SDP relaxation,
to transform it into a constrained nonlinear programming problem in the new variable
V . Using the speci�c structure of the maxcut SDP relaxation, they then reformulate the
constrained problem as an unconstrained problem and use the standard steepest ascent
method on the latter problem. Their method tends to perform a large number of iterations
and to possess slow asymptotic convergence, but it has the advantage of having very cheap
iterations and thus can quickly obtain feasible solutions lying within, say, 0:2% (in relative
error) of the SDP optimal value.

The performance of Homer and Peinado's algorithm highlights an important di�erence
between the interior-point method of Benson et al. and such alternative methods as pro-
posed by Helmberg and Rendl and Homer and Peinado, namely that the former algorithm
computes search directions using Newton's method while the latter algorithms compute
search directions by employing only �rst-order information. Hence, on any given problem
instance, one would expect the interior-point method to perform a small number of rela-
tively expensive iterations, while a �rst-order method would be expected to converge in a
relatively large number of inexpensive iterations. Such behavior is in fact evident in the
computational results presented in Section 5, and a running theme of this paper is that
the speed of �rst-order methods make them attractive choices for solving the maxcut SDP
relaxation, particularly when one desires a solution of only moderate accuracy.

In this paper, we propose a variant of Homer and Peinado's method based on the con-
strained nonlinear programming reformulation of the maxcut SDP relaxation obtained by
using the change of variable X = LLT , where L is a lower triangular matrix (possibly hav-
ing negative diagonal elements). Our computational experience with our method indicates
that it has similar convergence properties as Homer and Peinado's method. This, together
with lower storage and computational requirements due to the triangular structure of L,
makes our method substantially faster than their method.

Our paper is organized as follows. In Section 2, we describe the maxcut problem, its
corresponding �1-QP reformulation, its SDP relaxation and the two constrained nonlinear
programming reformulations of this SDP. In Section 3, we describe our method from the
point of view that it, as well as Homer and Peinado's method, can be interpreted as a
projected gradient method applied to a constrained nonlinear programming reformulation
of the maxcut SDP relaxation. Even though our method can be derived in the same way
as Homer and Peinado's method, we believe that its interpretation as a projected gradient
method gives it a more intuitive appeal. In Section 4, we describe the basic steps of our

2

method from a computational point of view and discuss how the lower triangular structure
of L can be exploited to implement the steps of our algorithm eÆciently. We provide an
analysis of the computational complexity of each iteration of our method and observe that
this complexity depends on the ordering of the vertices of the graph. We then propose a
vertex reordering heuristic which improves the overall running time of the code. We also
discuss how to implement the Armijo line search used in our method in an eÆcient manner.
In Section 5, we present computational results comparing our method with Benson et al.'s
and Homer and Peinado's methods in order to demonstrate the advantages of our �rst-order
method over the second-order method of Benson et al. and also to exhibit the heightened
eÆciency of our method over the algorithm of Homer and Peinado from which it is derived.
Our main conclusions are: (i) our method is considerably faster than the two other methods
when the goal is to obtain approximate solutions that are within 0:2% (in relative error)
of the SDP optimal value; (ii) our method as well as Homer and Peinado's method exhibit
slow asymptotic convergence and hence should not always be used to obtain highly accurate
solutions; and (iii) our method requires less computer memory than the other two methods.

1.1 Notation and terminology

In this paper, <, <n, and <n�n denote the space of real numbers, real n-dimensional column
vectors, and real n � n matrices, respectively. By Sn we denote the space of real n � n
symmetric matrices, and we de�ne Sn+ and Sn++ to be the subsets of Sn consisting of the
positive semide�nite and positive de�nite matrices, respectively. We write A � 0 and
A � 0 to indicate that A 2 Sn+ and A 2 Sn++, respectively. We let tr (A) denote the
trace of a matrix A 2 <n�n, namely the sum of the diagonal elements of A. Moreover, for
A;B 2 <n�n, we de�ne A �B � tr (ATB), and the Frobenius norm of A 2 <n�n is de�ned
to be kAkF � (A �A)1=2.

We adopt the convention of denoting matrices by capital letters and matrix entries by
lowercase letters with double subscripts. For example, a matrix A 2 <n�n has entries aij
for i; j = 1; : : : ; n. In addition, we denote the rows of a matrix by lowercase letters with
single subscripts. For example, A 2 <n�n has rows ai for i = 1; : : : ; n. In this paper, we
will often �nd it necessary to compute the dot product of two row vectors ai and bj which
arise as rows of the matrices A and B. Instead of denoting this dot product as aib

T
j , we will

denote it as hai; bji.

2 The Maxcut Problem and Its Relaxations

In this section, we give an integer quadratic formulation of the maxcut problem and de-
scribe some of its relaxations. The �rst relaxation, originally introduced by Goemans and
Williamson, is an SDP problem, while the second, which is used as the basis of our im-
proved algorithm, is a quadratic maximization problem over the set of real lower triangular
matrices with unit-length rows.

Let G be an undirected, simple graph (i.e., a graph with no loops or parallel edges) with
vertex set V = f1; : : : ; ng and edge set E whose elements are unordered pairs of distinct
vertices denoted by fi; jg. Let W 2 Sn be a matrix of nonnegative weights such that
wij = wji = 0 whenever fi; jg 62 E. For S � V , the set Æ(S) = ffi; jg 2 E : i 2 S; j 62 Sg

3

is called the cut determined by S. (When S = fig we denote Æ(S) simply by Æ(i).) The
maximum cut (maxcut) problem on G is to �nd S � V such that

w(Æ(S)) �
X

fi;jg2Æ(S)

wij

is maximized. We refer to w(Æ(S)) as the weight of the cut Æ(S).
The maxcut problem can be formulated as the integer quadratic program

maximize
1

2

X
i<j

wij(1� yiyj)

subject to yi 2 f�1; 1g; i = 1; : : : ; n:

(Q)

For any feasible solution y = (y1; : : : ; yn) of (Q), the set S = fi 2 V : yi = 1g de�nes
a cut Æ(S) which has weight equal to the objective value at y. The key property of this
formulation is that 1

2(1 � yiyj) can take on only two values|either 0 or 1|allowing us to
model within the objective function the appearance of an edge in a cut. It is interesting to
note that, for any �xed unit-length vector u 2 <n, (Q) can be reformulated as the problem
of �nding the maximum of the set f12

P
i<j wij(1� vTi vj) : vi 2 f�u; ug; i = 1; : : : ; ng since

the key property that 1
2(1 � vTi vj) is either 0 or 1 still holds. In fact, this leads to the

following relaxation of (Q) introduced by Goemans and Williamson [9]:

maximize
1

2

X
i<j

wij(1� vTi vj)

subject to vi 2 Sn�1; i = 1; : : : ; n;

(P)

where Sn�1 denotes the (n� 1)-dimensional unit sphere in <n. It is the primary result of
Goemans and Williamson's paper that a solution of (P) used within a certain randomized
procedure yields a cut with expected weight at least 0.87856 times the weight of a maximum
cut. It is also worth mentioning that Homer and Peinado's method is based on the relaxation
(P).

Goemans and Williamson also showed how (P) can be recast as a semide�nite program.
Given v1; : : : ; vn 2 Sn�1, if we let V denote the n� n matrix whose i-th column is vi, then
X = V TV is positive semide�nite with xii = 1 for i = 1; : : : ; n. Conversely, a positive
semide�nite X with xii = 1 for i = 1; : : : ; n gives rise to unit-length vectors v1; : : : ; vn via
the decomposition X = V TV , V 2 <n�n. (Such a decomposition exists for each X � 0.)
The SDP reformulation is thus

maximize
1

2

X
i<j

wij(1� xij)

subject to xii = 1; i = 1; : : : ; n;
X � 0:

By using the symmetry of X and W along with the fact that wii = 0 for i = 1; : : : ; n, the
objective function 1

2

P
i<j wij(1� xij) can be rewritten as

1

4

X
i;j

wij(1� xij) =
1

4

X
i;j

wij �
1

4
W �X:

4

So, if we let C denote �1
4W and d denote 1

4

P
i;j wij, then the above formulation can be

rewritten as the following SDP problem:

maximize C �X + d
subject to (eie

T
i) �X = 1; i = 1; : : : ; n;

X � 0;
(SP)

where ei denotes the i-th standard basis vector.
We now state the nonlinear programming reformulation of (SP) which is the basis of our

algorithm for �nding an approximate solution of the maxcut problem. Let Ln denote the set
of real lower triangular n�n matrices, and let Ln

+ and Ln
++ denote the subsets of Ln whose

elements have nonnegative diagonal entries and positive diagonal entries, respectively. For
every X 2 Sn++, there exists a unique L 2 Ln

++ such that X = LLT , and L is called the
Cholesky factor of X. In addition, for every X 2 Sn+, there exists an L 2 Ln

+ such that
X = LLT , though L is not necessarily unique.

This triangular decomposition of positive semide�nite matrices motivates the following
reformulation of (SP):

maximize C � (LLT) + d
subject to (eie

T
i) � (LL

T) = 1; i = 1; : : : ; n;
L 2 Ln:

(LP)

Notice that we have replaced the requirement that X be positive semide�nite with the
condition that L be in Ln rather than L be in Ln

+. We prefer the reformulation with the
condition that L be in Ln since it avoids inequality constraints. In fact, limited computa-
tional testing has revealed that the method based on the reformulation (LP) is superior to
a variant for solving the reformulation with the constraint L 2 Ln

+.
In the following sections, we will sometimes �nd it more useful to describe (LP) in terms

of the rows of L. More precisely, if `i is the i-th row of L, then (LP) can also be stated as

maximize
nX
i=1

nX
j=1

cijh`i; `ji+ d

subject to h`i; `ii = 1; i = 1; : : : ; n;
`i(i+1) = � � � = `in = 0; i = 1; : : : ; n:

3 The Algorithm Based on the Lower Triangular Relaxation

In this section, we develop and discuss the projected gradient algorithm used to solve (LP).
Before giving the basic steps of the algorithm, however, we introduce a few de�nitions.
First, we de�ne ' : Ln ! < by '(L) = C � (LLT) + d. Second, let low : <n�n ! Ln be
the operator which maps A 2 <n�n into the matrix L 2 Ln such that `ij = aij if i � j,
and `ij = 0 if i < j. In addition, given a matrix L 2 Ln with rows `1; : : : ; `n, we de�ne the
operator U : Ln ! Ln entry-by-entry as

[U(L)]ij =
`ij
k`ik

;

5

i.e., U applied to L normalizes the rows of L.
Given a matrix Lk which is feasible for (LP), the k-th iteration of the projected gradient

algorithm consists of the following steps:

1. Compute the gradient eP k for the function ' at Lk.

2. Calculate P k, the projection of eP k onto the tangent subspace obtained by linearizing
the constraints (eie

T
i) � (LL

T) = 1, i = 1; : : : ; n, at Lk.

3. Choose a step-size �k > 0 such that '(U(Lk + �kP
k)) > '(Lk).

4. Set Lk+1 = U(Lk + �kP
k).

In the following paragraphs, we discuss the details of these steps.
In step 1 above, we compute the gradient eP k of the function '(L) = C � (LLT) + d at

the current iterate Lk. The formula for the gradient is

eP k = 2 low(CLk):

This formula shows that the computation of the gradient amounts to a single matrix multi-
plication, and in the event that C is sparse, the gradient can be computed taking advantage
of sparsity, thus speeding up the algorithm on large, sparse problems.

The gradient eP k is an ascent direction for ' at Lk, but moving along eP k does not
maintain feasibility due to the curvature of the feasible region. (In fact, feasibility is lost
by moving along any direction.) So, as a compromise, we project the gradient onto the
tangent subspace at the current iterate of the manifold de�ned by the feasibility constraints.
We denote this projection by P k. Linearizing the constraints, we see that P k must satisfy

(eie
T
i) �

�
P k(Lk)T

�
= 0; i = 1; : : : ; n:

This condition is easier to handle if we rewrite it in terms of the rows of P k and Lk. If pki
denotes the i-th row of P k, then the above condition is equivalent to

hpki ; `
k
i i = 0; i = 1; : : : ; n;

i.e., pki must be orthogonal to `
k
i . Thus, p

k
i is obtained by projecting epki onto the hyperplane

whose normal is `ki , that is,

pki = epki � hepki ; `ki i
h`ki ; `

k
i i
`ki = epki � hepki ; `ki i `ki ; i = 1; : : : ; n; (1)

where the second equality follows from the fact that k`ki k = 1.
When the projected gradient P k is nonzero, then it is an ascent direction for the function

'(L) at Lk, that is, '(Lk + �P k) > '(Lk) for all suÆciently small � > 0, due to the fact
that

d

d�

�
'(Lk + �P k)

� ����
�=0

= r'(Lk) � P k = eP k � P k = kP kk2F > 0:

6

Using the fact that Lk has unit-length rows, one can easily verify that

d

d�

�
U(Lk + �P k)

� ����
�=0

= P k;

and hence that

d

d�

�
'(U(Lk + �P k))

� ����
�=0

= r'(Lk) � P k = eP k � P k = kP kk2F > 0: (2)

This implies that P k is also an ascent direction for '(U(L)), that is, '(U(Lk+�P k)) > '(Lk)
for suÆciently small � > 0.

When P k = 0, the following simple result whose proof is left to the reader states that
Lk is a stationary point of (LP), that is, there exists �k 2 <n such that

2 low
�
CLk

�
= 2 low

nX
i=1

�ki (eie
T
i)L

k

!
; (3)

or equivalently,

epki = �ki `
k
i ; i = 1; : : : ; n:

Proposition 3.1 P k = 0 if and only if there exists �k 2 <n such that (3) holds, in which

case

�ki = hepki ; `ki i; i = 1; : : : ; n:

Not every stationary point of (LP) is a global solution of it. The following proposition
gives suÆcient conditions for a stationary point of (LP) to be a global solution.

Proposition 3.2 Assume that (Lk; �k) 2 Ln �<n satis�es (3) and de�ne

Sk �
nX
i=1

�ki (eie
T
i)� C:

If Sk � 0 then Lk is a global solution of (LP).

Proof. First observe that Lk is a global solution of (LP) if and only if Xk � Lk(Lk)T is an
optimal solution of the semide�nite program (SP). We will henceforth show that the latter
condition holds. For this, it is enough to show that XkSk = 0, since then Xk and (�k; Sk)
is a pair of primal and dual optimal solutions of (SP). By (3), we have that low(SkLk) = 0,
that is, SkLk is a strictly upper triangular matrix. This implies that SkXk = (SkLk)(Lk)T

is also a strictly upper triangular matrix, and hence that Xk � Sk = tr (SkXk) = 0. Using
the fact that Xk � 0 and Sk � 0, it is now easy to see that XkSk = 0.

After computing P k, the algorithm selects a step-size �k > 0 such that '(U(Lk+�kP
k))

is suÆciently larger than '(Lk). A line search along P k must be performed to �nd such
an �k, and for this, the algorithm uses the Armijo line search technique. Given constants

7

� 2 (0; 1) and �� > 0, the Armijo line search chooses �k as the largest scalar � from the set
f��=2j : j = 0; 1; 2; : : : g satisfying

'
�
U(Lk + �P k)

�
� '(Lk) � ��

� eP k � P k
�
= ��

nX
i=1

hpki ; epki i: (4)

In view of (2), such an � necessarily exists.
We are now ready to state the algorithm to solve (LP).

Algorithm:

Let L0 be a feasible point of (LP) and let �� > 0 and � 2 (0; 1) be given.
For k = 0; 1; 2; : : :

Compute eP k = 2 low(CLk).
Calculate P k by the formula pki = epki � hepki ; `ki i `ki for i = 1; : : : ; n.
Choose the step-size �k > 0 using the Armijo rule described above.
Set Lk+1 = U(Lk + �kP

k).

In view of Proposition 3.1, one possible termination criterion that can be used in the
above algorithm is the condition that kP kkF < ", for some prespeci�ed constant " > 0. It
is possible to show that every accumulation point of the sequence fLkg generated by the
above algorithm is a stationary point of (LP). Clearly, there is no guarantee that such
stationary points will be global solutions of (LP), but since (LP) does not have any local
solutions due to its equivalence with the convex program (SP), the possibility that fLkg
has accumulation points which are not global solutions is unlikely. In fact, in our numerical
experiments we have observed that fLkg always converges to the solution set of (LP).

3.1 Comparison with Homer and Peinado's Method

As mentioned in the introduction, the algorithm presented above can be seen as a variant
of the algorithm proposed by Homer and Peinado in [13] for solving the maxcut SDP
relaxation. We now compare the two methods in order to highlight the advantages of our
method.

First, recall that Homer and Peinado's method is based on solving the relaxation (P)
presented in Section 2. Although the variables v1; : : : ; vn of (P) were originally introduced
as column vectors, if one considers them instead as n-dimensional row vectors, then it is
easy to see that (P) can be restated as

maximize
nX
i=1

nX
j=1

cijhvi; vji+ d

subject to hvi; vii = 1; i = 1; : : : ; n;

(HPP)

which in turn is equivalent to

maximize C � (V V T) + d
subject to (eie

T
i) � (V V

T) = 1; i = 1; : : : ; n;
V 2 <n�n

8

after making the identi�cation of vi with the i-th row of V (for i = 1; : : : ; n). Hence, the
formulation solved by our method can be seen as a variation of the formulation used by
Homer and Peinado in that we simply restrict the variable V 2 <n�n to be lower triangular,
hence obtaining the variable L of (LP).

To actually solve (HPP), Homer and Peinado consider the variables v1; : : : ; vn to be
essentially unrestriced and use the standard steepest ascent method to maximize the func-
tion

nX
i=1

nX
j=1

cij
hvi; vji

kvik kvjk
+ d;

which clearly is equivalent to solving (HPP). (Of course, it is necessary that vi 6= 0 for
all i = 1; : : : ; n, but this does not truly represent an algorithmic complication.) Such
an approach could also be employed for solving (LP): consider `1; : : : ; `n as unrestriced
variables and maximize

P
i;j cijh`i; `ji=(k`ik k`jk) + d. Again, the only di�erence between

the two methods is the lower-triangular nature of the variables `i.
We have, however, chosen to solve (LP) in a di�erent manner than just suggested. In

particular, we maintain the constraints on the rows of L separately, and hence our method
can be viewed as a projected gradient method. Such an algorithm could of course be
developed for (HPP). This brings up the question of how the unconstrained method of
the previous paragraph and the projected gradient method given above di�er in solving
(LP) or (HPP). We claim that the two approaches are actually identical. In fact, it can
be easily veri�ed that the steepest ascent directions are the same as the projected gradient
directions. (We leave this veri�cation to the reader.) Hence, either approach describes both
the algorithm of Homer and Peinado and the algorithm presented in this paper.

It thus follows that the primary advantage our method has over the algorithm of Homer
and Peinado is the lower triangular structure of L, which is in contrast with the square
structure of V . This leads to fewer oating point operations for evaluating the objective
function and for computing the search direction in our method as well as to lower memory
requirements, which overall make our method more eÆcient.

4 Details of the Implementation

In this section, we provide the details of our implementation, including the procedures to
compute function values and gradients of '(L), the overall computational complexity of a
general iteration of our method, and the procedure for selecting the step-size.

4.1 Complexity per iteration

In this subsection we derive the overall complexity of an iteration of our method. We adopt
the same convention as in Golub and Van Loan [10] for counting ops, that is, a op is a
oating point operation (e.g., the inner product of two n-vectors involves 2n� 1 ops).

Useful in the derivation of the complexities will be the quantity

m(G) �
X

fi;jg2E

minfi; jg

9

de�ned on our input graph G. It is easy to see that, if G is connected, then m(G) is smallest
when G is a star with center vertex 1. In this case, m(G) = n�1. On most `random' graphs,
however, m(G) is on the order of n2 or higher. We adopt the convention of stating the �nal
complexities derived below in the form � m(G) + O(�) for some scalar � > 0, even though
the term inside the O operator can sometimes be of comparable order to � m(G).

The �rst basic step of an iteration of our method is the computation of the gradienteP k = 2 low(CLk) of the function '(L) = C � (LLT) + d at the point Lk. The last n � i
components of its i-th row epki are equal to zero since eP k 2 Ln and the �rst i components
are equal to the �rst i components of

2ciL
k = 2

nX
j=1

cij`
k
j = 2

X
fi;jg2Æ(i)

cij`
k
j ; (5)

where the second equality comes from the fact that cij = 0 whenever fi; jg 62 E. Note
that only the �rst minfi; jg components of the term cij`

k
j contribute to the computation of

the �rst i components of (5), since `kjh = 0 for h > j. Hence, each of the pairs (i; j) and

(j; i) with fi; jg 2 E contributes exactly 2minfi; jg ops in the computation of eP k. So the
overall cost of computing the gradient is 4m(G) +O(n2) ops.

The second basic step of an iteration of our method is the computation of the projected
gradient P k according to (1). An immediate veri�cation reveals that its computation takes
O(n2) ops.

The third basic step of an iteration of our method is the determination of the step-size
according to the Armijo rule. We �rst derive the number of ops to compute the term
'(U(Lk + �P k)), for a given scalar �, which appears in the left hand side of (4). Indeed,
let eL denote Lk + �P k. Then

'(U(Lk + �P k)) =

nX
i=1

nX
j=1

cij
hèi; èji
kèik kèjk = 2

X
fi;jg2E

cij
hèi; èji
kèik kèjk ; (6)

where èi denotes the i-th row of eL. Noting that each inner product hèi; èji can be computed

in 2minfi; jg ops and each norm kèjk can be computed in O(n) ops, we conclude that
the overall complexity to evaluate '(U(Lk + �P k)) is 2m(G) + O(n2) ops. Letting Ik
denote the number of trial step-sizes � generated by the Armijo rule in the k-th iteration of
our method and noting that the right hand side of (4) can be evaluated in O(n2) ops, we
easily see that the Armijo rule can be carried out in 2(Ik + 1)m(G) +O(Ikn

2) ops. (The
term Ik + 1 is the total number of times '(U(Lk + �P k)) needs to be evaluated including
for � = 0.)

A clever implementation of the Armijo rule allows us to reduce its complexity to either
2m(G) +O(IkjEj+ n2) or 4m(G) +O(IkjEj+ n2) ops depending upon whether � = �� is
accepted by the Armijo rule or not. In what follows we discuss how this can be accomplished.
First we discuss how the terms hèi; èji with fi; jg 2 E can be computed eÆciently for
di�erent values of �. We have

hèi; èji = h`ki + �pki ; `
k
j + �pkj i

= h`ki ; `
k
j i+ �

�
h`ki ; p

k
j i+ hpki ; `

k
j i
�
+ �2hpki ; p

k
j i: (7)

10

For � = 0, this term reduces to h`ki ; `
k
j i which we may assume has already been computed

in the previous iteration since

h`ki ; `
k
j i =

h`k�1i + �k�1p
k�1
i ; `k�1j + �k�1p

k�1
j i

k`k�1i + �k�1p
k�1
i k k`k�1j + �k�1p

k�1
j k

:

Hence evaluation of (7) for every fi; jg 2 E at � = 0 is free. Note that once we evaluate
(7) at � = �� and hpki ; p

k
j i for every fi; jg 2 E, then it is possible to determine the value

of h`ki ; p
k
j i + hpki ; `

k
j i for every fi; jg 2 E in O(jEj) ops. Hence the value of (7) for every

fi; jg 2 E can be computed for any other value of � in O(jEj) ops. Note also that hpki ; p
k
j i

does not need to be evaluated if � = �� is accepted by the Armijo rule. Hence the overall
contribution of the computation of the terms hèi; èkj i with fi; jg 2 E towards the complexity
of the Armijo rule is either 2m(G) +O(IkjEj) or 4m(G) +O(IkjEj) ops depending upon
whether � = �� is accepted or not.

We now discuss the contribution of the computation of the norms kèik that appear in
(6). Letting i = j in (7) and using the fact that `ki is orthogonal to p

k
i , we have

kèik2 = hèi; èii = h`ki ; `
k
i i+ �2hpki ; p

k
i i = 1 + �2kpki k

2:

Hence, once the norms kpki k, i = 1; : : : ; n, are obtained, computation of kèik, i = 1; : : : ; n,
takes O(n) for each �. Hence, the overall contribution of these terms towards the complexity
of the Armijo rule is O(Ikn+ n2). Since all other operations to compute '(U(Lk + �P k))
take O(jEj) ops for each � and since the term

eP k � P k = P k � P k =
nX
i=1

kpki k
2

that appears in right hand side of (4) takes O(n) ops to compute, the overall complexity
stated for the Armijo line search follows. (Here we are adopting the convention that jEj �
n.)

The fourth and last basic step of our algorithm is easily seen to take O(n2) ops. Hence,
the overall complexity of the k-th iteration of our method is either 6m(G) +O(IkjEj+ n2)
or 8m(G) +O(IkjEj+ n2) ops.

4.2 Complexity reduction by vertex reordering

From the previous subsection, we conclude that the computational complexity of the k-th
iteration of our algorithm is O(m(G)+IkjEj+n2) ops. Since m(G) clearly depends on the
way the vertices of G are labeled, a natural question is: can the vertices of G be reordered to
form a graph G0 such that m(G0) < m(G), thus speeding up the running time? This leads
to the optimization problem of minimizing

P
fi;jg2Eminf�(i); �(j)g over all permutations

� : V ! V for the graph G. We let M(G) denote its optimal value.
In what follows, we propose a greedy heuristic to approximate M(G) for a graph G.

The heuristic comes from the idea that a vertex with high degree should be labeled with a
small number. Before stating the heuristic, we give a de�nition: if H is a graph with vertex
v, then H n v denotes the graph obtained by removing v and all edges incident to v from
H. The reordering algorithm is as follows:

11

m(G) sec/iter m(G0) sec/iter

G1 5116819 4.96 4371073 4.32
G11 633764 1.05 320800 0.80
G14 667919 1.20 529547 1.09
G22 13334305 16.56 10210289 13.36
G48 8823650 16.60 4503000 12.05

Table 1: Improvement found by the vertex reordering.

Reorder:

Set G1 = G.
for k = 1; : : : ; n

Let i be a maximum-degree vertex of Gk.
Set �(i) = k.
Set Gk+1 = Gk n i.

end

For i = 1; : : : ; n, relabel the i-th vertex of G as vertex �(i) in the new graph.

Unfortunately, this greedy heuristic does not give an optimal solution in all cases. In
fact, for graphs G which are already nicely ordered, the heuristic may �nd a reordered
graph G0 such that m(G0) > m(G). The greedy heuristic is fast, however, and in all our test
problems, the ratio m(G0)=m(G) was between 0.51 and 0.86. This improvement translates
into a sizable decrease in the average time required for an iteration of our method as can
be seen in Table 1.

5 Summary of Computational Results

In this section we present computational results comparing our method with two earlier
methods to �nd approximate solutions to the maxcut problem based on solving its SDP
relaxation. These are Benson et al.'s method [3] which solves the SDP relaxation using a
potential-reduction dual scaling interior-point method and Homer and Peinado's method
[13] which is equivalent to solving the relaxation (P) using a projected gradient method
similar to ours. As stated in the introduction, the purpose of the results presented here
are to show that our �rst-order algorithm is considerably faster than both the second-order
interior-point algorithm of Benson et al. and the gradient-based algorithm of Homer and
Peinado from which our algorithm has been derived.

We implemented our projected gradient algorithm to solve the maxcut SDP relaxation
in ANSI C and ran all test problems on a Sparc 20 with 160 MB of RAM. In all our test
problems, we chose the initial iterate L0 to be the n�n identity matrix. We also chose the
Armijo line search constant � to be equal to 0:005, and our choice of �� in each iteration
was determined as follows: every ten iterations, �� was set to 4; otherwise, �� was set to
1:03 times the step-size used in the previous iteration. We found experimentally that this
scheme for choosing �� resulted in fewer and faster iterations than, say, setting �� equal to 1
in every iteration.

12

We also implemented the randomized cut generation scheme of Goemans andWilliamson.
Once our projected gradient algorithm �nds an (approximate) optimal solution L� of (LP),
we generate a random unit-length vector u 2 Sn�1 from a uniform distribution over Sn�1
and compute v = L�u. We then form the set S � fi 2 V : vi � 0g, which determines the
random cut Æ(S). We repeat this randomized procedure n times and save the best of the n
corresponding cuts.

Our test problems come from the same set of problems that Helmberg and Rendl [11]
and Benson et al. [3] used to test their own methods of solving the maxcut SDP relaxation.
The problems in this set are random weighted graphs generated by a machine-independent
graph generator, rudy, created by G. Rinaldi. We have selected problems from this set
varying in size from n = 800 to n = 7000 and in edge density from 0:08% to 6:12%.

Tables 2 and 3 compare the performance of Benson et al.'s method, Homer and Peinado's
method, and our method on 18 representative problems. For each of the 18 problems, we
list in the �rst column the problem name, its dimension, its sparsity and an upper bound
on the maxcut SDP optimal value. (The upper bounds for these problems were found by
running Benson et al.'s method on each problem and terminating once a relative duality
gap of 10�6 had been reached. We chose the �nal dual objective value given by Benson et
al.'s method as the upper bound.) We also give the the number of iterations and amount of
time (in seconds) each of the three methods took to �nd a feasible solution of the maxcut
SDP relaxation whose objective value is within 0:2% (in relative error) of the upper bound.
For each of the three methods, we stopped after obtaining a solution whose objective value
was within 0:2% of the upper bound, and used this solution to compute n random cuts,
the best of which we report under the heading `cval.' In Tables 2 and 3, we also repeat the
same procedures for the accuracy 0:02%. The last column, labeled `ctime,' gives the time
taken by each method to compute n random cuts.

Due to the amount of memory available in our test computer, problems above dimension
3000 were initially out of reach. After a preliminary version of this paper, however, we have
used an IBM RS/6000 R50 system operating at 200 MHz with 4 GB of memory to run
Benson et al.'s algorithm and our algorithm on problems of dimension 5000 and 7000. (We
were unable to run Homer and Peinado's algorithm on the IBM computer due to technical
diÆculties beyond our control.) Table 4 presents abbreviated information for problems G55,
G57, and G60; the structure of the table is the same as for Tables 2 and 3 except that the
information regarding the random cuts has been omitted.

Note that, in contrast to Benson et al.'s method, the number of iterations performed
by the other two methods increase drastically as the required relative error is reduced from
0:2% to 0:02%. (This is especially evident for those problems with negative edge weights,
such as G1 and G32; we believe that the presence of negative edge weights increases the ill
conditioning of our formulation.) Further reduction of the required relative error will make
this type of behavior even more evident. Such slow asymptotic convergence is not surprising
in view of the �rst-order nature of Homer and Peinado's method and our method.

Another di�erence between Benson et al.'s method and the other two methods that can
be seen from Tables 2 and 3 is that the quality of the random cuts produced by the former
algorithm is better than that of the latter two algorithms. We currently are unable to give
a reasonable explanation as to why this occurs, but we feel that, when employing one of
the two gradient-based methods instead of the interior-point method of Benson et al., the

13

0.2% 0.02%

iter time cval iter time cval ctime

G1 byz 16 1956 11440 18 2197 11439 164
800 6.12% hp 57 710 11332 99 1231 11373 118
12083.1975 bm 32 140 11370 89 383 11401 84

G2 byz 16 1975 11420 18 2218 11407 165
800 6.12% hp 56 696 11355 98 1215 11396 117
12089.43 bm 33 145 11360 81 351 11377 84

G11 byz 14 268 528 18 344 528 11
800 0.63% hp 73 172 528 583 1357 532 108
629.1652 bm 250 203 520 1715 1386 530 38

G12 byz 16 324 532 18 344 530 12
800 0.62% hp 81 193 530 511 1211 536 108
623.8745 bm 221 181 522 1191 980 526 39

G14 byz 23 779 2984 25 847 2985 35
800 1.59% hp 103 435 2954 298 1255 2960 110
3191.5675 bm 51 57 2940 181 201 2958 47

G15 byz 27 881 2975 29 948 2977 44
800 1.58% hp 109 456 2934 351 1465 2940 111
3171.5575 bm 62 70 2937 181 200 2964 46

Table 2: Comparison of the three methods: n = 800.

time gained in solving the SDP relaxation justi�es the modest loss in cut quality.
In Table 5, we give the memory usage (in MB) of the three methods on nine of the 18

problems presented in Tables 2 and 3. This table demonstrates that our method requires
less memory than the other two methods.

Tables 2 and 3 compare our method to Benson et al.'s and Homer and Peinado's methods
based on a stopping criterion which requires a good upper bound on the optimal value of
the maxcut SDP relaxation. Such an upper bound is of course not available in general,
and in Table 6 we present the results of our method on 27 problems when an alternate,
experimental stopping criterion is used. The stopping criterion that we have chosen is as
follows. For k � 1, let

rk =
'(Lk)� '(Lk�1)

'(Lk)
:

The method terminates once some k � 5 is found such that

rk�4 + rk�3 + rk�2 + rk�1 + rk < 10�4: (8)

Note that the motivation for this particular stopping criterion is experimental rather than
theoretical; our numerical tests indicate that it reliably terminates the algorithm once the
rate of progress towards the optimal value has signi�cantly decreased.

In Table 6, we present data pertaining to each of the three stages of our algorithm: the
vertex reordering, the projected gradient algorithm to solve the maxcut SDP relaxation, and

14

0.2% 0.02%

iter time cval iter time cval ctime

G43 byz 16 2720 6508 19 3234 6514 238
1000 2.10% hp 48 462 6449 81 777 6473 221
7032.2225 bm 41 135 6435 127 408 6477 141

G44 byz 16 2714 6505 18 3049 6506 217
1000 2.10% hp 48 463 6446 84 808 6466 222
7027.885 bm 41 132 6437 108 347 6466 139

G51 byz 24 1482 3754 26 1608 3738 63
1000 1.28% hp 123 827 3704 348 2335 3711 219
4006.255 bm 67 114 3698 209 354 3719 90

G52 byz 27 1686 3739 31 1936 3753 63
1000 1.28% hp 127 859 3701 392 2650 3721 218

4009.64 bm 61 107 3692 202 352 3721 90

G22 byz 22 30847 12990 24 33626 12978 1744
2000 1.05% hp 52 2160 12864 108 4468 12929 1986
14135.945 bm 41 558 12887 131 1758 12955 1065

G23 byz 22 31374 12967 24 34206 12984 1783
2000 1.05% hp 52 2149 12887 101 4154 12913 1994
14142.12 bm 41 556 12892 121 1644 12923 1070

G32 byz 24 6342 1316 27 7134 1314 90
2000 0.25% hp 98 1490 1302 641 9700 1318 1964
1567.63975 bm 235 1215 1286 1803 9453 1294 609

G33 byz 18 4806 1284 21 5605 1278 96
2000 0.25% hp 110 1654 1280 666 9988 1294 1971
1544.3125 bm 262 1381 1258 1760 9926 1274 633

G35 byz 31 14879 7442 34 16328 7452 442
2000 0.64% hp 186 5324 7357 562 16071 7388 1975

8014.74 bm 103 718 7363 254 1803 7434 705

G36 byz 38 18904 7440 40 19907 7440 457
2000 0.64% hp 224 6406 7336 729 20818 7386 1977
8005.965 bm 120 885 7372 552 3972 7393 716

G48 byz 12 10817 6000 14 12620 6000 270
3000 0.17% hp | | | | | | |
6000.000 bm 106 1315 6000 375 4547 6000 2179

G49 byz 12 10734 6000 14 12516 6000 257
3000 0.17% hp | | | | | | |
6000.000 bm 92 1125 6000 529 6517 6000 2220

Table 3: Comparison of the three methods: n = 1000 to n = 3000. (The symbol `|'
indicates that the problem was unable to run on the Sparc 20 due to memory constraints.)

15

0.2% 0.02%

iter time iter time

G55 byz 31 87099 33 92718
5000 0.12% hp | | | |
11039.46 bm 82 1973 302 7412

G57 byz 27 39776 30 44196
5000 0.10% hp | | | |
3885.489 bm 360 5920 1732 39980

G60 byz 58 483406 60 500075
7000 0.08% hp | | | |
15222.27 bm 81 3914 470 24009

Table 4: Comparison of two of the three methods on an IBM RS/6000 R50 system: n = 5000
to n = 7000. (The symbol `|' indicates that the problem was unable to run on the R50
due to technical diÆculties beyond our control.)

byz hp bm

G1 12 17 7
G11 7 17 6
G14 8 17 6
G43 16 24 9
G51 12 23 9
G22 58 78 32
G32 40 77 32
G35 44 77 32
G48 89 | 70

Table 5: Memory usage (in MB) of the three methods on nine problems. (The symbol `|'
indicates that the problem was unable to run on the Sparc 20 due to memory constraints.)

16

problem reordering sdp cut

name dim spars m(G) ratio time iter val time val ratio time ttime

G1 800 6.12% 5116819 0.85 4 69 12078.90 299 11392 0.94 83 386
G2 800 6.12% 5089021 0.86 4 60 12084.13 264 11368 0.94 84 352
G3 800 6.12% 5143322 0.84 4 59 12077.55 257 11419 0.94 84 345
G11 800 0.63% 633764 0.51 0 158 627.04 127 528 0.84 38 165
G12 800 0.63% 627506 0.51 0 130 621.61 106 522 0.84 40 145
G13 800 0.63% 615449 0.52 0 127 645.10 105 542 0.84 40 145
G14 800 1.59% 667919 0.79 1 73 3187.91 80 2957 0.93 57 138
G15 800 1.58% 636554 0.80 1 96 3169.11 106 2958 0.93 45 152
G16 800 1.59% 643689 0.80 1 95 3172.72 105 2961 0.93 55 161
G22 2000 1.05% 13334305 0.77 7 69 14123.70 924 12912 0.91 1066 1997
G23 2000 1.05% 13371095 0.77 7 59 14129.87 799 12888 0.91 1071 1877
G24 2000 1.05% 13317798 0.77 7 80 14131.32 1064 12968 0.92 1070 2141
G32 2000 0.25% 3960500 0.51 2 138 1560.75 709 1280 0.82 609 1318
G33 2000 0.25% 3950705 0.51 2 150 1537.60 781 1248 0.81 634 1417
G34 2000 0.25% 3921650 0.51 2 129 1541.66 672 1264 0.82 621 1295
G35 2000 0.64% 3891907 0.80 4 110 8000.21 760 7376 0.92 701 1465
G36 2000 0.64% 4023560 0.81 4 159 7996.19 1152 7363 0.92 717 1873
G37 2000 0.64% 3930797 0.81 4 110 8009.29 773 7387 0.92 710 1487
G43 1000 2.10% 3374697 0.76 2 68 7027.17 216 6480 0.92 140 358
G44 1000 2.10% 3301126 0.78 2 60 7022.80 191 6468 0.92 140 333
G45 1000 2.10% 3342631 0.77 2 66 7020.36 212 6475 0.92 139 353
G48 3000 0.17% 8823650 0.51 3 89 5983.75 1076 6000 1.00 2185 3264
G49 3000 0.17% 8710030 0.52 3 110 5990.68 1344 6000 1.00 2224 3571
G50 3000 0.17% 8654425 0.52 3 69 5974.22 851 5840 0.98 2200 3054
G51 1000 1.28% 974026 0.82 1 98 4002.28 167 3715 0.93 89 257
G52 1000 1.28% 1021972 0.80 1 87 4005.61 152 3698 0.92 89 242
G53 1000 1.28% 1020585 0.81 1 110 4006.90 190 3727 0.93 92 283

Table 6: Results of approximating 27 instances of Maxcut.

the generation of the random cuts which approximate the solution of the maxcut problem.
For the vertex reordering, we give the valuem(G) of the input graph G as well as the ratio by
whichm(G) is reduced via the vertex reordering. More precisely, the vertex reordering �nds
a graph G0, and we report the ratio m(G0)=m(G) under the heading `ratio.' In addition,
we give the time (in seconds) required by the vertex reordering. For the projected gradient
algorithm, we report the number of iterations, the objective value of the �nal iterate, and
the time required by the algorithm. For the generation of the random cuts, we report the
weight of the best of n randomly generated cuts as well as the time needed to compute the
n cuts. In order to illustrate the quality of the cuts produced by our algorithm, we also give
the ratio between the weight of the best cut and the upper bound of the SDP relaxation
for the problem. (These upper bounds were found by letting Benson et al.'s code run to a
relative duality gap of 10�6 just as above.) Notice that, for all problems except those with
negative edge weights, the ratio is well above the theoretical guarantee of 0:87856. Finally,
we report the total time required by all three stages under the heading `ttime.'

17

6 Final Remarks

In this paper, we have proposed a projected gradient variant of Homer and Peinado's method
for solving the maxcut SDP relaxation which, when used in conjunction with the randomized
cut procedure of Goemans and Williamson, gives a very eÆcient procedure for obtaining
an approximate solution to the maxcut problem. In our computational experiments, our
method with the stopping criterion (8) has performed considerably faster than Benson et
al.'s and Homer and Peinado's methods, while the quality of the cuts generated were slightly
inferior to the cuts obtained by Benson et al.'s method. In addition, we have observed that
our method requires less memory than these two methods.

In our opinion, the results of this paper also illustrate an important point regarding the
use of interior-point methods for SDPs which do not require high-accuracy solutions, namely
that �rst-order methods are often able to obtain moderately accurate solutions much more
quickly than interior-point methods. This paper has demonstrated the single case of the
maxcut SDP relaxation, but we believe that the same results are apt to hold elsewhere.

Another �rst-order method which can solve the maxcut SDP relaxation in a highly eÆ-
cient manner is the spectral bundle method of Helmberg and Rendl. Since their algorithm
and our algorithm are still relatively new and since they are certainly bound to undergo
numerous changes and improvements, it is currently unclear what advantages or disadvan-
tages the two �rst-order methods have in relation to one another. Our purpose in this paper
was to demonstrate an improvement over the second-order method of Benson et al. and the
�rst-order method of Homer and Peinado from which our method was derived.

There are many possible ways one can try to improve and/or extend our method. To
enable the solution of larger problems, one can parallelize our method in the same way as
Homer and Peinado did for their method. To speed up the method's asymptotic conver-
gence, one possibility is to incorporate second-order information. Another opportunity for
improvement is to modify the method so that it will be able to solve other SDP problems
in addition to the maxcut SDP relaxation.

Acknowledgment

The authors are grateful to Benson, Ye and Zhang, and Homer and Peinado for making
their code available to us. The authors are also in debt to Paulo Zanj�acomo for helping
write a preliminary MATLAB implementation of our method, and �nally, we would like to
thank the anonymous referees for many helpful comments and suggestions.

References

[1] F. Alizadeh. Interior point methods in semide�nite programming with applications to
combinatorial optimization. SIAM Journal on Optimization, 5(1):13{51, 1995.

[2] F. Barahona, M. Gr�otschel, M. J�unger, and G. Reinelt. An application of combinatorial
optimization to statistical optimization and circuit layout design. Operations Research,
36(3):493{513, 1988.

18

[3] S. Benson, Y. Ye, and X. Zhang. Solving large-scale sparse semide�nite programs for
combinatorial optimization. Research Report, Department of Management Science,
University of Iowa, Iowa, 1998. To appear in SIAM Journal on Optimization.

[4] K.C. Chang and D.H. Du. EÆcient algorithms for layer assignment problems. IEEE
Transactions on Computer-Aided Design, CAD-6(1):67{78, 1987.

[5] R. Chen, Y. Kajitani, and S. Chan. A graph-theoretic via minimization algorithm for
two-layer printed circuit boards. IEEE Transactions on Circuits and Systems, CAS-
30(5):284{299, 1983.

[6] T. Fujie and M. Kojima. Semide�nite programming relaxation for nonconvex quadratic
programs. J. Global Optim., 10:168{189, 1997.

[7] K. Fujisawa, M. Fukuda, M. Kojima, and K. Nakata. Numerical evaluation of SDPA
(Semide�nite Programming Algorithm). In H. Frenk, K. Roos, T. Terlaky, and
S. Zhang, editors, High Performance Optimization, pages 267{301. Kluwer Academic
Press, 1999.

[8] K. Fujisawa, M. Kojima, and K. Nakata. Exploiting sparsity in primal-dual interior-
point methods for semide�nite programming. Mathematical Programming, 79:235{253,
1997.

[9] M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maxi-
mum cut and satis�ability problems using semide�nite programming. Journal of ACM,
pages 1115{1145, 42 (1995).

[10] G. H. Golub and C. E. Van Loan. Matrix Computations: Second Edition. The John
Hopkins University Press, Baltimore, MA 21211, 1989.

[11] C. Helmberg and F. Rendl. A spectral bundle method for semide�nite programming.
SIAM Journal on Optimization, 10:673{696, 2000.

[12] C. Helmberg, F. Rendl, R. J. Vanderbei, and H. Wolkowicz. An interior-point method
for semide�nite programming. SIAM Journal on Optimization, 6:342{361, 1996.

[13] S. Homer and M. Peinado. Design and performance of parallel and distributed approx-
imation algorithms for maxcut. manuscript, Dept. of Computer Science and Center
for Computational Science, Boston University, 111 Cummington Street, Boston, MA,
02215, USA, 1995.

[14] S.E. Karisch, F. Rendl, and J. Clausen. Solving graph bisection problems with semidef-
inite programming. Technical Report DIKU-TR-97/9, Department of Computer Sci-
ences, University of Copenhagen, July 1997. To appear in INFORMS Journal on
Computing.

[15] C-J. Lin and R. Saigal. On solving large scale semide�nite programming problems -
a case study of quadratic assigment problem. Technical Report, Dept. of Industrial
and Operations Engineering, The University of Michigan, Ann Arbor, MI 48109-2177,
1997.

19

[16] L. Lov�asz. On the Shannon Capacity of a graph. IEEE Transactions of Information
Theory, IT-25(1):1{7, January 1979.

[17] L. Lov�asz and A. Schrijver. Cones of matrices and setfunctions, and 0-1 optimization.
SIAM Journal on Optimization, 1:166{190, 1991.

[18] Y. Nesterov. Semidenite relaxation and nonconvex quadratic optimization. Optimiza-
tion Methods and Software, 9:141{160, 1998.

[19] R.Y. Pinter. Optimal layer assignment for interconnect. J. VLSI Comput. Syst., 1:123{
137, 1984.

[20] S. Poljak, F. Rendl, and H. Wolkowicz. A recipe for semide�nite relaxation for 0-1
quadratic programming. Journal of Global Optimization, 7:51{73, 1995.

[21] S. Poljak and Z. Tuza. Maximum cuts and large bipartite subgraphs. In Combinatorial

optimization (New Brunswick, NJ, 1992{1993), pages 181{244. Amer. Math. Soc.,
Providence, RI, 1995.

[22] N.Z. Shor. Quadratic optimization problems. Soviet Journal of Computer and Systems

Science, 25:1{11, 1987. Originally published in Tekhnicheskaya Kibernetika, No. 1,
1987, pp. 128{139.

[23] Y. Ye. Approximating quadratic programming with quadratic constraints. Mathemat-

ical Programming, 84:219{226, 1999.

20

