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Abstract

This paper analyzes the iteration-complexity of a class of linearized proximal multiblock al-
ternating direction method of multipliers (ADMM) for solving linearly constrained nonconvex
optimization problems. The subproblems of the linearized ADMM are obtained by partially or
fully linearizing the augmented Lagrangian with respect to the corresponding minimizing block
variable. The derived complexity bounds do not depend on the specific forms of the actual
linearizations but only on some Lipschitz constants which quantify the approximation errors.
Iteration-complexity is then established by showing that the linearized ADMM class is a subclass
of a general non-Euclidean ADMM for which a general iteration-complexity analysis is also ob-
tained. Both ADMM classes allow the choice of a relaxation parameter in the interval (0, 2) as
opposed to being equal to one as in many of the previous papers on this topic.
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1 Introduction

This paper considers the following linearly constrained problem

min

{
p∑
i=1

fi(xi) :

p∑
i=1

Aixi = b, xi ∈ Rni , i = 1, · · · , p

}
(1)

where fi : Rni → (−∞,∞], i = 1, · · · , p, are proper lower semicontinuous functions, Ai ∈ Rd×ni ,
i = 1, · · · , p, and b ∈ Rd.

Optimization problems such as (1) appear in many important applications such as distributed
matrix factorization, distributed clustering, sparse zero variance discriminant analysis, tensor de-
composition, matrix completion, and asset allocation (see, e.g., [1, 6, 23, 35, 36, 38]). Recently, some
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variants of the alternating direction method of multipliers (ADMM) have been successfully applied
to solve some instances of the previous problem despite the lack of convexity.

An important ADMM class for solving (1) is the proximal ADMM which recursively computes a
sequence {(xk1, · · · , xkp, λk)} as

xki = argminxi

{
Lβ(xk1, · · · , xki−1, xi, x

k−1
i+1 , · · · , x

k−1
p , λk−1) +

1

2
‖xi − xk−1

i ‖2Hi

}
(2)

for every i = 1, · · · , p, and

λk = λk−1 − θβ

(
p∑
i=1

Aix
k
i − b

)
(3)

where β > 0 is a penalty parameter, θ > 0 is an relaxation parameter, Hi ∈ Rni×ni , i = 1, · · · , p, are
symmetric and positive semidefinite matrices, and

Lβ(x1, · · · , xp, λ) :=

p∑
i=1

[fi(xi)− 〈λ,Aixi − b〉] +
β

2

∥∥∥∥∥
p∑
i=1

Aixi − b

∥∥∥∥∥
2

(4)

is the augmented Lagrangian function for problem (1). The above class of algorithms and some of its
variants have been studied in the context of convex optimization (see for example [27, 3, 9, 12, 16, 18])
and nonconvex optimization (see for example [13, 20, 21, 10, 32, 34, 37]).

Our goal in this paper is to study an extension of the above proximal ADMM class whose
subproblems are obtained by partially or entirely linearizing the partial augmented Lagrangian xi 7→
Lβ(xk1, · · · , xki−1, xi, x

k−1
i+1 , · · · , xk−1

p , λk−1) in (2) so as to make them easily solvable. Our analysis
is quite general in that it applies to a large class of linearizations without the need to know the
specific linearizations performed. Under the assumption that Ap is full row rank (actually, a weaker
condition on Ap is assumed) and fp : Rnp → R is a differentiable function whose gradient is Lipschitz
continuous, complexity bounds for the linearized ADMM class are obtained which, relative to the
approximation, depend on the Lipschitz constants of the gradients of the linearized components of
the partial augmented Lagrangian functions. By considering an extended notion of subdifferential for
nonconvex functions (see for example [29, 31]), we establish an O(ρ−2)-pointwise iteration-complexity
for the linearized ADMM to obtain (x1, · · · , xp, λ, r1, · · · , rp−1) satisfying

ri ∈ ∂fi(x1, · · · , xp)−A∗iλ, i = 1, · · · , p− 1, (5)

max

{∥∥∥∥∥
p∑
i=1

Aixi − b

∥∥∥∥∥ , ‖r1‖ , · · · , ‖rp−1‖,
∥∥∇fp(xp)−A∗pλ∥∥

}
≤ ρ. (6)

The above result applies for any arbitrary choice of θ ∈ (0, 2) as long as the Lipschitz constant of the
gradient of the linearized component of the p-th partial augmented Lagrangian is o(β). On the other
hand, when the latter condition does not hold, it is shown that the complexity result above also
holds if θ is chosen sufficiently small. The complexity analysis of the linearized ADMM is derived by
considering a more general class of non-Euclidean ADMMs whose subproblems consist of replacing
the proximal term in (2) with a suitable Bregman distance proximal term. By showing that the first
class is a special instance of the latter one and by studying the complexity of the latter one, we will

2



be able to obtain the complexity analysis of the linearized ADMM. We believe that this indirect
approach gives a meaningful illustration of the usefulness of non-Euclidean ADMMs.

Previous most related works. We split our discussion into the following two cases: (i) the
functions f1, . . . , fp are convex; and (ii) f1, . . . , fp and Ap satisfy the conditions following problem
(1) and the assumption mentioned in the previous paragraph.

Case (i): We first consider case (i) with two blocks, i.e., p = 2. The ADMM class (2) with p = 2 and
Hi = 0, i = 1, 2, corresponds to the standard ADMM which was introduced in [7, 8]. Complexity
analysis for the latter method was first carried out in [28] where its pointwise (resp., ergodic) iteration-
complexity is obtained for any θ ∈ (0, 1) (resp., θ ∈ (0, 1]). Subsequently, several papers have
obtained pointwise and/or ergodic complexity bounds for more general subclasses of the proximal
ADMM (see for example [3, 9, 12, 16, 18]). For arbitrary choices of penalty parameter β > 0 and
positive semidefinite matrices H1 and H2, the most general results in these papers establish pointwise
(resp., ergodic) complexity bounds for any θ ∈ (0, (1 +

√
5)/2) (resp., θ ∈ (0, (1 +

√
5)/2]). Moreover,

iteration-complexity results for other ADMM classes are studied for example in [4, 5, 11, 14, 24, 30]
and references therein.

We now consider case (i) with multiple blocks, i.e., p > 2. The proximal ADMM (2) with Hi = 0,
i = 1, · · · , p, is the multiblock version of the standard ADMM, which may not converge as shown
in [2]. Convergence of the latter method has been established under the assumption that all (or, all
but one) functions fi, i = 1, · · · , p, are strongly convex and β lies in a certain range (see for instance
[15, 19, 25, 26]). Variants of the multiblock proximal ADMM with established iteration-complexity
bound have been proposed in the literature (see for example [17, 27] and references cited therein).

Case (ii): In contrast to case (i), we discuss the two-block and multiblock versions of (2) at the same
time since their approach and analysis are quite similar. Recently, there have been a lot of interest
on the study of ADMM variants for nonconvex problems (see, e.g., [13, 20, 21, 22, 32, 33, 34, 37, 10]).
Papers [13, 22, 32, 33, 34, 37] establish convergence of the generated sequence to a stationary point of
(1) under conditions which guarantee that a certain potential function associated with the augmented
Lagrangian (4) satisfies the Kurdyka-Lojasiewicz property. However, these papers do not study the
iteration complexity of the proximal ADMM although their theoretical analysis are generally half-way
towards accomplishing such goal. Paper [20] analyzes the convergence of variants of the ADMM for
solving nonconvex consensus and sharing problems and establishes the iteration complexity of ADMM
for the consensus problem. Paper [21] studies the iteration-complexity of two linearized variants of
the multiblock proximal ADMM applied to a more general problem than (1) where a coupling term
is also present in its objective function. It is worth mentioning though that both linearizations
considered are with respect to the p-th block and, in contrast to this paper, linearizations with
respect to the other blocks are not discussed. Paper [10] studies the iteration-complexity of the
subclass of the proximal ADMM in which p = 2, H2 = τI for τ ≥ 0 sufficiently large, and the
relaxation parameter θ is arbitrarily chosen in the interval (0, 2).

Our paper is organized as follows. Subsection 1.1 contains some notation and basic results used in
the paper. Section 2 describes our assumptions, introduces the linearized proximal ADMM class and
states its corresponding convergence rate result (Theorem 2.3). Section 3 contains two subsections.
Subsection 3.1 presents a non-Euclidean proximal ADMM and states its main convergence rate result
(Theorem 3.3). Subsection 3.2 provides the proof of Theorem 2.3. Section 4 is dedicated to the proof
of Theorem 3.3. The appendix contains an auxiliary lemma and the proof of a technical result.

3



1.1 Notation and basic results

The domain of a function f : Rs → (−∞,∞] is the set dom f := {x ∈ Rs : f(x) < +∞}. Moreover,
f is said to be proper if f(x) <∞ for some x ∈ Rn2 .

Lemma 1.1. Let S ∈ Rn×p be a non-zero matrix and let σ+
S denote the smallest positive eigenvalue

of SS∗. Then, for every u ∈ Rp, there holds

‖PS∗(u)‖ ≤ 1√
σ+
S

‖Su‖.

We next recall some definitions and results of subdifferential calculus [29, 31].

Definition 1.2. Let h : Rs → (−∞,∞] be a proper lower semi-continuous function.

(i) The Fréchet subdifferential of h at x ∈ domh, denoted by ∂̂h(x), is the set of all elements
u ∈ Rs satisfying

lim inf
y 6=x y→x

h(y)− h(x)− 〈u, y − x〉
‖y − x‖

≥ 0.

When x /∈ domh, we set ∂̂h(x) = ∅.

(ii) The limiting subdifferential of h at x ∈ domh, denoted by ∂h(x), is defined as

∂h(x) = {u ∈ Rs : ∃xk → x, h(xk)→ h(x), uk ∈ ∂̂h(xk), with uk → u}.

(iii) A critical (or stationary) point of h is a point x ∈ domh satisfying 0 ∈ ∂h(x).

The following result gives some properties of the limiting subdifferential.

Proposition 1.3. Let h : Rs → (−∞,∞] be a proper lower semi-continuous function.

(a) If x ∈ Rs is a local minimizer of h, then 0 ∈ ∂h(x);

(b) If p : Rs → R is a continuously differentiable function, then ∂(h+ p)(x) = ∂h(x) +∇p(x).

2 Linearized proximal ADMM and its convergence rate

For the sake of simplicity, we describe and analyze the ADMM variants discussed in this paper in
the context of problem (1) with p = 3. Note that this clearly applies to the context in which p ≤ 2.
The generalization of our analysis to the context in which p > 3 is straightforward and follows by
using similar arguments. Hence, hereafter, we consider the linearly constrained problem

min{f1(x1) + f2(x2) + g(y) : A1x1 +A2x2 +By = b, x1 ∈ Rn1 , x2 ∈ Rn2 , y ∈ Rq} (7)

where f1 : Rn1 → (−∞,∞], f2 : Rn2 → (−∞,∞] and g : Rq → (−∞,∞] are proper lower semicon-
tinuous functions, A1 ∈ Rd×n1 , A2 ∈ Rd×n2 , B ∈ Rd×q and b ∈ Rd. Note that the above formulation
of (1) with p = 3 replaces the function f3 and matrix A3 by g and B, respectively, in order to clearly
distinguish the third block from the first two blocks.
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This section describes the assumptions made on problem (7), states a linearized proximal ADMM
for solving (7) and states its corresponding convergence rate result (Theorem 2.3). The proof of
Theorem 2.3 uses the fact that the linearized proximal ADMM is a special case of a non-Euclidean
proximal ADMM whose convergence analysis is studied in Subsection 3.1 and Section 4. Using this
fact, the proof of Theorem 2.3 is then given in Subsection 3.2.

We starting by recalling the definition of critical points of (7).

Definition 2.1. A quadruple (x∗1, x
∗
2, y
∗, λ∗) ∈ Rn1 ×Rn2 ×Rq×Rd is a critical point of problem (7)

if

0 ∈ ∂f1(x∗1)−A∗1λ∗, 0 ∈ ∂f2(x∗2)−A∗2λ∗, 0 = ∇g(y∗)−B∗λ∗, 0 = A1x
∗
1 +A2x

∗
2 +By∗ − b.

Under some mild conditions, it can be shown that if (x∗1, x
∗
2, y
∗) is a global minimum of (7), then

there exists λ∗ such that (x∗1, x
∗
2, y
∗, λ∗) is a critical point of (7).

The augmented Lagrangian associated with problem (7) and with penalty parameter β > 0 is
defined as

Lβ(x1, x2, y, λ) := f1(x1)+f2(x2)+g(y)−〈λ,A1x1 +A2x2 +By−b〉+ β

2
‖A1x1 +A2x2 +By−b‖2. (8)

We assume that problem (7) satisfies the following set of conditions:

(A0) The functions f1 and f2 are proper lower semicontinuous;

(A1) B 6= 0 and Im(B) ⊃ {b} ∪ Im(A1) ∪ Im(A2);

(A2) g : Rq → R is differentiable everywhere on Rq and there exists Lg ≥ 0 such that

‖PB∗(∇g(y′))− PB∗(∇g(y))‖ ≤ Lg‖y′ − y‖ ∀y, y′ ∈ Rq;

(A3) there exists µg ∈ R such that the function g(·)− µg‖ · ‖2/2 is convex, or equivalently,

g(y′)− g(y)− 〈∇g(y), y′ − y〉 ≥ µg
2
‖y′ − y‖2 ∀y, y′ ∈ Rq;

(A4) there exists β̄ ≥ 0 such that v(β̄) > −∞ where

v(β) := inf
(x1,x2,y)

{
f1(x1) + f2(x2) + g(y) +

β

2
‖A1x1 +A2x2 +By − b‖2

}
∀β ∈ R.

Some comments about the above assumptions are in order. First, due to the generality of (A0),
problem (7) may include an extra constraint of the form xi ∈ Xi for some i ∈ {1, 2} where Xi is a
closed set since this constraint can be incorporated into fi by adding to it the indicator function of
Xi. Second, (A1) implies that for every (x1, x2) ∈ Rn1×Rn2 , there exists y ∈ Rq such that (x1, x2, y)
satisfies the (linear) constraint of (7). Moreover, the extra condition that B 6= 0 is very mild since
otherwise (7) would be much simpler to solve. Third, if ∇g(·) is L-Lipschitz continuous, then (A2)
with Lg = L and (A3) with µg = −L obviously hold. However, conditions (A2) and (A3) combined
are generally weaker than the condition that ∇g(·) be L-Lipschitz continuous.

Next we introduce a general way of describing linearizations of the augmented Lagrangian function
in a unified manner. We believe that the definition below, although somewhat difficult to digest at
first, considerably simplifies the notation in our presentation and treats different linearizations in a
unified manner.
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Definition 2.2. Given a proper lower semi-continuous function φ : Rs → (−∞,∞], a pair of
functions (φl, φn) is said to be a τ̄–Lipschitz decomposition of φ if the following conditions hold:

(a) φl : Rs → R is differentiable on co(domφ);

(b) ∇φl is τ̄ -Lipchitz continuous on co(domφ);

(c) φn : Rs → (−∞,∞] is lower semi-continuous and φn(x) = φ(x)− φl(x) for every x ∈ domφ.

Moreover, for a given z ∈ domφ, the sum `φl(· ; z) +φn is then referred to as a τ̄ -Lipschitz lineariza-
tion of φ at z.

The algorithm stated below is a variant of the proximal ADMM where partial augmented La-
grangian functions are replaced by corresponding Lipschitz linearizations. To illustrate this, assume
that fi, i = 1, 2, in problem (7) is of the form fi = f̃i + δXi where f̃i : Rni → R is differentiable
with Lf̃i-Lipschitz continuous gradient and δXi is the indicator function of the set Xi. Then the par-
tial augmented Lagrangian functions φ1 = Lβ(·, x2, y, λ) and φ2 = Lβ(x1, ·, y, λ) have the following
natural Lipschitz linearizations `φi,l(·; x̃i) + φi,n, i = 1, 2, where:

(a) φi,l = f̃i leading to a Lf̃i-Lipschitz linearization of φi;

(b) φi,n = fi leading to a (β‖Ai‖2)-Lipschitz linearization of φi;

(c) φi,n = δXi leading to a (Lf̃i + β‖Ai‖2)-Lipschitz linearization of φi.

Clearly, similar Lipschitz linearizations can be described with respect to φ = Lβ(x1, x2, ·, λ) in which
fi, f̃i, δXi and Ai are replaced by g, g, δRq and B, respectively. Hence, since δRq is the zero function,
the linearization of type (c) in this case corresponds to linearizing the entire φ.

Linearized Proximal ADMM

(0) Let β̄ be as in (A4), an initial point (x0
1, x

0
2, y

0, λ0) ∈ Rn1 × Rn2 × Rq × Rd and scalars
τ̄1, τ̄2, τ̄ ≥ 0 be given and let τi > τ̄i, i = 1, 2. Choose scalars τ > τ̄ , β ≥ β̄ and a stepsize
parameter θ ∈ (0, 2) such that

δ̄1 :=
(τ − τ̄) + µg + βσB

4
−

3γθ[(τ + τ̄)2 + L2
g]

βσ+
B

> 0, (9)

where σB (resp., σ+
B) denotes the smallest eigenvalue (resp., positive eigenvalue) of B∗B, and

γθ is given by

γθ :=
θ

(1− |θ − 1|)2
. (10)

Set k=1;

(1) let (φk1,l, φ
k
1,n) be a τ̄1–Lipschitz decomposition of Lβ(·, xk−1

2 , yk−1, λk−1), and compute an op-

timal solution xk1 ∈ Rn1 of the subproblem

min
x1∈Rn1

{
`φk1,l

(x1;xk−1
1 ) + φk1,n(x1) +

τ1

2
‖x1 − xk−1

1 ‖2
}

; (11)
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let (φk2,l, φ
k
2,n) be a τ̄2–Lipschitz decomposition of Lβ(xk1, ·, yk−1, λk−1), and compute an optimal

solution xk2 ∈ Rn2 of the subproblem

min
x2∈Rn2

{
`φk2,l

(x2;xk−1
2 ) + φk2,n(x2) +

τ2

2
‖x2 − xk−1

2 ‖2
}

; (12)

let (φkl , φ
k
n) be a τ̄–Lipschitz decomposition of Lβ(xk1, x

k
2, ·, λk−1), and compute an optimal

solution yk ∈ Rq of the subproblem

min
y∈Rq

{
`φkl

(y; yk−1) + φkn(y) +
τ

2
‖y − yk−1‖2

}
; (13)

(2) set

λk = λk−1 − θβ
[
A1x

k
1 +A2x

k
2 +Byk − b

]
(14)

and k ← k + 1, and go to step (1).

end

We now make a few remarks about the linearized proximal ADMM. First, the difficulty of solving
(11)–(13) is clearly related to the choice of the Lipschitz linearizations of the partial augmented
Lagrangians. If a Lipschitz linearization of type (c) is used (see the discussion after Definition 2.2)
then solving (11)–(12) is equivalent to computing a projection of a point onto Xi while the solution of
(13) is trivial as long as the evaluation of the gradient of φkl is easy. Second, Lipschitz linearizations
of types (b) and (c) for the partial augmented Lagrangian Lβ(x1, x2, ·, λ) generally does not allow
us to choose an arbitrary θ ∈ (0, 2) due to restrictive nature of condition (9). Indeed, these two
Lipschitz linearizations have the property that their τ̄ constant satisfy τ̄ = O(β) and hence it is not
possible to make the second fraction in (9) small by choosing β large. We can however choose θ, and
hence γθ, small in order to make the second fraction in (9) small.

We now state the main convergence rate result for the linearized ADMM whose proof is post-
poned to Subsection 3.2. Its main conclusion is that the linearized ADMM generates a quadruple
(x̄1, x̄2, ȳ, λ̄) which satisfies the optimality conditions of Definition 2.1 within an error of O(1/

√
k).

Its statement uses the quantity η̄0 defined as

η̄0 :=
(τ − τ̄) + µg + βσB

4(τ + τ̄)2
‖B∗λ0 −∇g(y0)‖2. (15)

Note that η̄0 ≥ 0 due to (9).

Theorem 2.3. Let (x0
1, x

0
2, y

0, λ0) ∈ dom f1 × dom f2 × Rq × Rd be given and define

∆L̄0 := Lβ(x0
1, x

0
2, y

0, λ0)− v(β) + η̄0 (16)

δ̄2 :=

(
βθη̄0

∆L̄0
+

3θγθ[L
2
g + (τ + τ̄)2]

σ+
B δ̄1

)−1

(17)

where v(β), δ̄1 and η̄0 are as in (A4), (9) and (15), respectively. Also, for every k ≥ 1, define the
quantities R̄k1, R̄k2 and λ̂k as

R̄k1 := βA∗1A2∆xk2 + βA∗1B∆yk − τ1∆xk1 + ∆φk1,l, R̄k2 := βA∗2B∆yk − τ2∆xk2 + ∆φk2,l (18)
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and
λ̂k := λk−1 − β

(
A1x

k
1 +A2x

k
2 +Byk − b

)
(19)

where
∆xk1 := xk1 − xk−1

1 , ∆xk2 := xk2 − xk−1
2 , ∆yk := yk − yk−1 (20)

and
∆φk1,l := ∇φk1,l(xk1)−∇φk1,l(xk−1

1 ), ∆φk2,l := ∇φk2,l(xk2)−∇φk2,l(xk−1
2 ).

Then, the following statements hold:

a) ∆L̄0 ≥ 0;

b) for every k ≥ 1,
R̄ki ∈ ∂fi(xki )−A∗i λ̂k, i = 1, 2,

and there exists j ≤ k such that

‖R̄j1‖ ≤ 2

(
β‖A∗1A2‖√
τ2 − τ̄2

+
β‖A∗1B‖√

δ1
+

τ1 + τ̄1√
τ1 − τ̄1

)√
∆L̄0

k
,

‖R̄j2‖ ≤ 2

(
β‖A∗2B‖√

δ1
+

τ2 + τ̄2√
τ2 − τ̄2

)√
∆L̄0

k
,

‖∇g(yj)−B∗λ̂j‖ ≤ (τ + τ̄)

√
2∆L̄0

δ̄1k
,

‖A1x
j
1 +A2x

j
2 +Byj − b‖ ≤ 1

βθ

√
2∆L̄0

δ̄2k
.

3 Proximal ADMM with Bregman distances

This section contains two subsections. Subsection 3.1 presents the non-Euclidean proximal ADMM
(NEP-ADMM) studied in this paper and states its main convergence rate result (Theorem 3.3) whose
proof is given in Section 4. Subsection 3.2 provides the proof of Theorem 2.3 based on the fact that
the linearized proximal ADMM is a particular instance of the non-Euclidean proximal ADMM (see
Proposition 3.5).

3.1 The Non-Euclidean Proximal ADMM

The main goal of this subsection is to present the NEP-ADMM and its main convergence rate result.
We start by introducing a class of distance generating functions (and its corresponding Bregman

distances) which is suitable for our presentation in this paper.

Definition 3.1. For given set Z ⊂ Rs and scalars m ≤ M , we let DZ(m,M) denote the class of
real-valued functions w which are differentiable on Z and satisfy

w(z′)− w(z)− 〈∇w(z), z′ − z〉 ≥ m

2
‖z − z′‖2 ∀z, z′ ∈ Z, (21)

‖∇w(z)−∇w(z′)‖ ≤M‖z − z′‖ ∀z, z′ ∈ Z. (22)
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A function w ∈ DZ(m,M) with m ≥ 0 is referred to as a distance generating function and its
associated Bregman distance dw : Rs × Z → R is defined as

(dw)(z′; z) := w(z′)− w(z)− 〈∇w(z), z′ − z〉 ∀(z′, z) ∈ Rs × Z. (23)

For notation simplicity, for every z ∈ Z, the function (dw)( · ; z) will be denoted by (dw)z so that

(dw)z(z
′) = (dw)(z′; z) ∀(z′, z) ∈ Rs × Z.

Clearly,

∇(dw)z(z
′) = −∇(dw)z′(z) = ∇w(z′)−∇w(z) ∀z, z′ ∈ Z, (24)

We now state the non-Euclidean proximal ADMM based on the class of distance generating func-
tions introduced in Definition 3.1.

Non-Euclidean Proximal ADMM (NEP-ADMM)

(0) Define Zi := dom fi for i = 1, 2 and let β̄ be as in (A4). Let an initial point (x0
1, x

0
2, y

0, λ0) ∈
Z1 × Z2 × Rq × Rd and scalars Mi ≥ mi > 0, i = 1, 2, be given. Choose scalars M ≥ m > 0,
β ≥ β̄ and a stepsize parameter θ ∈ (0, 2) such that

δ1 :=
m+ µg + βσB

4
−

3γθ(M
2 + L2

g)

βσ+
B

> 0 (25)

where σB, σ+
B and γθ are as in step 0 of the linearized proximal ADMM. Set k = 1 and go to

step 1.

(1) Choose wk1 ∈ DZ1(m1,M1) and compute an optimal solution xk1 ∈ Rn1 of

min
x1∈Rn1

{
Lβ(x1, x

k−1
2 , yk−1, λk−1) + (dwk1)xk−1

1
(x1)

}
. (26)

Also, choose wk2 ∈ DZ2(m2,M2) and an optimal solution xk2 ∈ Rn2 of

min
x2∈Rn2

{
Lβ(xk1, x2, y

k−1, λk−1) + (dwk2)xk−1
2

(x2)
}
. (27)

(2) Choose wk ∈ DRq(m,M) and compute an optimal solution yk ∈ Rq of

min
y∈Rq

{
Lβ(xk1, x

k
2, y, λ

k−1) + (dwk)yk−1(y)
}
. (28)

(3) Set

λk = λk−1 − θβ
[
A1x

k
1 +A2x

k
2 +Byk − b

]
, (29)

k ← k + 1, and go to step (1).

9



end

Some comments about the NEP-ADMM stated above are in order. First, it follows from (25) that
m+ µg + βσB > 0 and hence that the objective function of (28) is (m+ µg + βσB)–strongly convex
which in turn implies that yk is uniquely determined. Second, it is always possible to choose m,
M , β and θ so that (25) is satisfied since the first fraction in (25) can be made positive by choosing
either m sufficiently large or β sufficiently large if σB > 0, while the second fraction in (25) can be
made smaller than the first one by choosing either β sufficiently large or θ > 0 sufficiently close to
zero. Third, as will be shown in Subsection 2.3, the linearized proximal ADMM can be viewed as
an instance of the NEP-ADMM when the distance generating functions wk1 , w

k
2 , and wk are properly

chosen. Fourth, the use of variable distance generating functions (or variable metrics) is not only
interesting in its own right but allows us to treat linearized ADMMs in a unified manner.

The next result describes a set of inclusions/equations satisfied by the sequence generated by the
NEP-ADMM.

Lemma 3.2. Consider the sequence {(xk1, xk2, yk, λk)} generated by the NEP-ADMM and let λ̂k be
as in (19). Moreover, for every k ≥ 1, define

Rk1 := βA∗1A2∆xk2 + βA∗1B∆yk −∆wk1 and Rk2 := βA∗2B∆yk −∆wk2 . (30)

where ∆xk2 and ∆yk are as in (20) and

∆wki := ∇wki (xki )−∇wki (xk−1
i ), i = 1, 2.

Then, for every k ≥ 1, we have:

Rki ∈ ∂fi(xki )−A∗i λ̂k i = 1, 2, (31)

0 =
[
∇g(yk)−B∗λ̂k

]
+ ∆wk, (32)

0 =
[
A1x

k
1 +A2x

k
2 +Byk − b

]
+

1

θβ
∆λk (33)

where ∆wk := ∇wk(yk)−∇wk(yk−1) and ∆λk := λk − λk−1.

Proof. The optimality conditions (see Proposition 1.3) for (26), (27) and (28) imply that

0 ∈ ∂f1(xk1)−A∗1[λk−1 − β(A1x
k
1 +A2x

k−1
2 +Byk−1 − b)] + ∆wk1 ,

0 ∈ ∂f2(xk2)−A∗2[λk−1 − β(A1x
k
1 +A2x

k
2 +Byk−1 − b)] + ∆wk2 ,

0 = ∇g(yk)−B∗[λk−1 − β(A1x
k
1 +A2x

k
2 +Byk − b)] + ∆wk,

respectively. These relations combined with (19) immediately yield (31) and (32). Relation (33)
follows immediately from (29).

The convergence rate bounds for the NEP-ADMM stated in Theorem 3.3 below are expressed in
terms of the following quantity. For a given (y0, λ0) ∈ Rq × Rd, define

η0 = η0(y0, λ0) := min
(∆y0,∆λ0)

c1

2
‖B∗∆λ0‖2 +

m+ µg + βσB
4

‖∆y0‖2

s.t. M∆y0 +
θ − 1

θ
B∗∆λ0 = B∗λ0 −∇g(y0) (34)
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where

c1 :=
2|θ − 1|

βθ(1− |θ − 1|)σ+
B

≥ 0. (35)

We now present the convergence rate result for the NEP-ADMM whose proof is given in Section 4.
Its main conclusion is that the NEP-ADMM generates a quadruple (x̄1, x̄2, ȳ, λ̄) which satisfies the
optimality conditions of Definition 2.1 within an error of O(1/

√
k).

Theorem 3.3. Let (x0
1, x

0
2, y

0, λ0) ∈ dom f1 × dom f2 × Rq × Rd be given and define

∆L0 = ∆L0(β) := Lβ(x0
1, x

0
2, y

0, λ0)− v(β) + η0 (36)

where η0 and v(β) are as in (34) and (A4), respectively. Consider δ1 as in (25) and define

δ2 =

(
βθη0

∆L0
+

3θγθ(L
2
g +M2)

σ+
Bδ1

)−1

. (37)

Moreover, let λ̂k and Rki , i = 1, 2, be as in (19) and (30), respectively. Then, the following statements
hold:

a) ∆L0 ≥ 0;

b) for every k ≥ 1, the inclusions (31)–(33) hold and there exists j ≤ k such that

‖Rj1‖ ≤2

(
β‖A∗1A2‖√

m2
+
β‖A∗1B‖√

δ1
+

M1√
m1

)√
∆L0

k
, ‖Rj2‖ ≤ 2

(
β‖A∗2B‖√

δ1
+

M2√
m2

)√
∆L0

k
,

‖∇g(yj)−B∗λ̂j‖ ≤M
√

2∆L0

δ1k
, ‖A1x

j
1 +A2x

j
2 +Byj − b‖ ≤ 1

βθ

√
2∆L0

δ2k
.

3.2 Proof of Theorem 2.3

The main goal of this subsection is to present the proof of Theorem 2.3 which is based on showing
that the linearized proximal ADMM is an instance of the NEP-ADMM and then using Theorem 3.3.

The next result shows how to obtain distance generating functions from Lipschitz decompositions
of a proper lower semi-continuous function.

Proposition 3.4. Let (φl, φn) be a τ̄ -Lipschitz decomposition of a proper lower semi-continuous
function φ where τ̄ ≥ 0 and, for some τ > τ̄ , define

wl :=
τ

2
‖ · ‖2 − φl.

Then, the following statements hold:

(a) wl ∈ DZ(ml,Ml) where Z := domφ and

ml = τ − τ̄ , Ml := τ + τ̄ ;

(b) for every z, z′ ∈ domφ, we have

φl(z) + (dwl)z′(z) = `φl(z; z
′) +

τ

2
‖z − z′‖2.

11



Proof. Definition 2.1 implies that ∇φl is τ̄ -Lipschitz continuous on co(Z) and hence

(dφl)z′(z) ≤
τ̄

2
‖z′ − z‖2 ∀z, z′ ∈ co(Z).

This inequality together with the definition of wl then imply that

(dwl)z′(z) =
τ

2
‖z′ − z‖2 − (dφl)z′(z) ≥

τ − τ̄
2
‖z′ − z‖2 =

ml

2
‖z′ − z‖2 ∀z, z′ ∈ co(Z).

Since ∇wl(z) = τz −∇φl(z), the τ̄–Lipschitz continuity of ∇φl on co(Z) also implies that

‖∇wl(z)−∇wl(z′)‖ ≤ τ‖z − z′‖+ ‖∇φl(z)−∇φl(z′)‖ ≤ (τ + τ̄)‖z − z′‖ ∀z, z′ ∈ co(Z).

Hence (a) follows. (b) follows immediately from the following relation:

(dwl)z′(z) =
τ

2
‖z − z′‖2 − (dφl)z′(z) =

τ

2
‖z − z′‖2 −

[
φl(z)− `φl(z; z

′)
]
.

The next result shows that the linearized proximal ADMM is an instance of the NEP-ADMM.

Proposition 3.5. The linearized proximal ADMM is an instance of the NEP-ADMM where mi =
τi − τ̄i,Mi = τi + τ̄i, i = 1, 2, m = τ − τ̄ ,M = τ + τ̄ and the distance generating functions are given
by

wi :=
τi
2
‖ · ‖2 − φi, i = 1, 2, and w :=

τ

2
‖ · ‖2 − φ.

Proof. From step 1 of the linearized proximal ADMM we see that, for each k ≥ 1, the pairs (φkl , φ
k
n)

and (φki,l, φ
k
i,n), i=1,2, are τ̄–Lipschitz and τ̄i–Lipschitz decomposition of the partial augmented La-

grangians Lky := Lβ(xk1, x
k
2, ·, λk−1), Lkx1 := Lβ(·, xk−1

2 , yk−1, λk−1) and Lkx2 := Lβ(xk1, ·, yk−1, λk−1),

respectively. Hence, using Proposition 3.4 consecutively with φ = Lky , τ and τ̄ as above, and

φ = Lkxi , τ̄ = τ̄i, τ = τi, i = 1, 2, we see that δ̄1 as in (9) corresponds exactly to δ1 given in
(25). Moreover, the subproblems (11), (12) and (13) correspond to (26), (27) and (28), respectively.
Hence, since (14) is the same as (29), the proof is concluded.

We end this subsection by presenting the proof of Theorem 2.3.
Proof of Theorem 2.3. Proposition 3.5 shows that the linearized proximal ADMM is an instance
of the NEP-ADMM. Moreover, by considering the scalars mi,Mi, i = 1, 2, and m,M as in Proposi-
tion 3.5, we see that δ̄1 as in (9) corresponds to δ1 given in (25). Also, from (15), (16), (34) and (36),
we see that η0 ≤ η̄0, ∆L0 ≤ ∆L̄0 and η̄0/∆L̄0 ≤ η0/∆L0 which in turn implies that δ̄2 ≥ δ2. Clearly
by choosing wi, i = 1, 2, as in Proposition 3.5, we also see that R̄ki as in (18) corresponds to Rki given
in (30), i = 1, 2, respectively. Hence, altogether show that Theorem 2.3 follows from Theorem 3.3.

4 Proof of Theorem 3.3

The main goal of this section is to provide the proof of Theorem 3.3. First we need some technical
lemmas. The first one provides a recursive relation for the sequence {∆λk}.
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Lemma 4.1. Let ∆y0 ∈ Rq and ∆λ0 ∈ Rd be such that

M∆y0 +
θ − 1

θ
B∗∆λ0 = B∗λ0 −∇g(y0) (38)

and define ∆w0 := M∆y0. Then, for every k ≥ 1, we have

B∗∆λk = (1− θ)B∗∆λk−1 + θuk, (39)

where
uk := ∆gk + (∆wk −∆wk−1), ∆gk := ∇gk(yk)−∇gk(yk−1) ∀k ≥ 1, (40)

∆λk and ∆wk are as in Lemma 3.2.

Proof. Using (19) and (33) we easily see that

θλ̂k := λk + (θ − 1)λk−1, ∀k ≥ 1.

This expression together with (32) then imply that

B∗λk = (1− θ)B∗λk−1 + θ[∇g(yk) + ∆wk], ∀k ≥ 1. (41)

Hence, in view of (40), relation (39) holds for every k ≥ 2. Now, note that (38) is equivalent to the
relation θ(∇g(y0) + ∆w0) = θB∗λ0 + (1 − θ)B∗∆λ0. Hence using this relation, (40) and (41) both
with k = 1, we have

B∗∆λ1 = −θB∗λ0 + θ
[
∇g(y1) + ∆w1

]
= −θB∗λ0 + θ

[
∇g(y0) + ∆w0 + u1

]
= −θB∗λ0 + θB∗λ0 + (1− θ)B∗∆λ0 + θu1.

Hence (39) also holds for k = 1.

The next lemma describes how the sequence {(xk1, xk2, yk, λk)} affects the value of the augmented
Lagrangian function defined in (8).

Lemma 4.2. For every k ≥ 1, we have

(a) Lβ(xk1, x
k−1
2 , yk−1, λk−1)− Lβ(xk−1

1 , xk−1
2 , yk−1, λk−1) ≤ −(dwk1)xk−1

1
(xk1);

(b) Lβ(xk1, x
k
2, y

k−1, λk−1)− Lβ(xk1, x
k−1
2 , yk−1, λk−1) ≤ −(dwk2)xk−1

2
(xk2);

(c) Lβ(xk1, x
k
2, y

k, λk−1)− Lβ(xk1, x
k
2, y

k−1, λk−1) ≤ − (2m+ µg + βσB) ‖∆yk‖2/2;

(d) Lβ(xk1, x
k
2, y

k, λk)− Lβ(xk1, x
k
2, y

k, λk−1) = ‖∆λk‖2/(θβ).

Proof. (a) and (b) follows directly from (26) and (27), respectively.
(c) Observe that the objective function of (28) can be written as

Lβ(xk1, x
k
2, ·, λk−1) + (dwk)yk−1(·) = g + ψ (42)
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where ψ = q+wk for some quadratic function q whose Hessian is βB∗B. Hence, µψ ≥ m+βσB > −µg
where the second inequality is due to (25). Since µg + µψ > 0, it follows from (42) and Lemma A.1
with µ = µg, y = yk−1 and ȳ = yk that

Lβ(xk1, x
k
2, y

k−1, λk−1) = (g + ψ)(yk−1) ≥ (g + ψ)(yk) + (dψ)yk−1(yk) +
µg
2
‖∆yk‖2

= Lβ(xk1, x
k
2, y

k, λk−1) + 2(dwk)yk−1(yk) +
β

2
‖B∆yk‖2 +

µg
2
‖∆yk‖2

≥ Lβ(xk1, x
k
2, y

k, λk−1) +
2m+ µg + βσB

2
‖∆yk‖2.

(d) This statement follows from (29), the identity ∆λk = λk − λk−1 and the fact that (8) implies
that

Lβ(xk1, x
k
2, y

k, λk) = Lβ(xk1, x
k
2, y

k, λk−1)− 〈λk − λk−1, A1x
k
1 +A2x

k
2 +Byk − b〉.

Our goal now is to show that a certain sequence associated with {Lβ(xk1, x
k
2, y

k, λk)} is monoton-

ically decreasing, namely, the sequence {L̂k} defined as

L̂k := Lβ(xk1, x
k
2, y

k, λk) + ηk ∀k ≥ 0, (43)

where

ηk :=
c1

2
‖B∗∆λk‖2 +

m+ µg + βσB
4

‖∆yk‖2 ∀k ≥ 1, (44)

η0 and c1 are as in (34) and (35), respectively. Before establishing the monotonicity property of the
sequence {L̂k}, we state some technical results. The first one describes an upper bound on L̂k−L̂k−1

in terms quantities related to {∆xk1}, {∆xk2}, {∆λk} and {∆yk}.

Lemma 4.3. For every k ≥ 1,

L̂k − L̂k−1 ≤ −(dwk1)xk−1
1

(xk1)− (dwk2)xk−1
2

(xk2) + Θk
λ + Θk

y , (45)

where

Θk
λ :=

1

βθ
‖∆λk‖2 +

c1

2

(
‖B∗∆λk‖2 − ‖B∗∆λk−1‖2

)
(46)

and

Θk
y := −

(
m+ µg + βσB

4

)(
‖∆yk‖2 + ‖∆yk−1‖2

)
, (47)

where c1 is defined in (35).

Proof. The lemma follows by adding the inequalities given in statements (a), (b), (c) and (d) of the
previous lemma and using the definition of L̂k in (43).

The next result provides an upper bound for Θk
λ in terms of the sequence {∆yk}.

Lemma 4.4. Consider Θk
λ as in (46) and uk as in (40). Then,

Θk
λ ≤

γθ

βσ+
B

‖uk‖2 ≤
γθ

βσ+
B

[
3(L2

g +M2)‖∆yk‖2 + 3M2‖∆yk−1‖2
]

∀k ≥ 1.

where γθ and ∆y0 are defined in (10) and Lemma 4.1, respectively.
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Proof. The proof of the first inequality is the same as the one given in Lemma 3.5 of [10]. We now
prove the second inequality. Note that due to the Lipschitz continuity of ∇wk, non-expansiveness of
the projection operator, and the fact that ∆w0 = M∆y0 (see Lemma 4.1), we obtain ‖P(∆wk)‖ ≤
M‖∆yk‖ for all k ≥ 0. The latter relation, assumption (A2), the fact that uk ∈ ImB∗ (see (39)),
and relation (40), imply that

‖uk‖2 = ‖PB∗(uk)‖2 = ‖PB∗
[
∆gk + (∆wk −∆wk−1)

]
‖2

≤
[
Lg‖∆yk‖+M(‖∆yk‖+ ‖∆yk−1‖)

]2
≤ 3

[
L2
g‖∆yk‖2 +M2

(
‖∆yk‖2 + ‖∆yk−1‖2

)]
where the last two inequalities follow from the triangle inequality for norms and the relation (s1 +
s2 + s3)2 ≤ 3(s2

1 + s2
2 + s3

3) for s1, s2, s3 ∈ R.

The next proposition shows that the sequence {L̂k} is decreasing and bounded below.

Proposition 4.5. The following statements hold:

(a) for every k ≥ 1,

L̂k − L̂k−1 ≤ −(dwk1)xk−1
1

(xk1)− (dwk2)xk−1
2

(xk2)− δ1(‖∆yk‖2 + ‖∆yk−1‖2);

(b) the sequence {L̂k} given in (43) satisfies L̂k ≥ v(β) for every k ≥ 1;

(c) for every k ≥ 1,

k∑
j=1

[
(dwj1)

xj−1
1

(xj1) + (dwj2)
xj−1
2

(xj2) + δ1(‖∆yj‖2 + ‖∆yj−1‖2)
]
≤ ∆L0

where v(β), δ1 and ∆L0 are as in (A4), (25) and (16), respectively.

Proof. (a) It follows from Lemma 4.4 that

Θk
λ ≤

3γθ
(
L2
g +M2

)
βσ+

B

(
‖∆yk‖2 + ‖∆yk−1‖2

)
and hence, in view of (25) and (47), we have

Θk
λ + Θk

y ≤ −

[
m+ µg + βσB

4
−

3γθ(L
2
g +M2)

βσ+
B

](
‖∆yk‖2 + ‖∆yk−1‖2

)
= −δ1(‖∆yk‖2 + ‖∆yk−1‖2).

Hence, (a) follows by combining the above estimate with (45). The proof of (b) is given in Ap-
pendix B, and the proof of (c) follows from (a), (b) and the definition of ∆L0 in (16).
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Proposition 4.6. Let ∆L0, δ1 and δ2 be as in (36), (25) and (37), respectively. Then, for every
k ≥ 1, we have

k∑
j=1

[
(dwj1)

xj−1
1

(xj1) + (dwj2)
xj−1
2

(xj2) + δ1‖∆yj‖2 + δ2‖∆λj‖2
]
≤ 2∆L0 (48)

and there exists j ≤ k such that

‖∆xj1‖ ≤
√

4∆L0

km1
, ‖∆xj2‖ ≤

√
4∆L0

km2
, ‖∆yj‖ ≤

√
2∆L0

kδ1
, ‖∆λj‖ ≤

√
2∆L0

kδ2
. (49)

Proof. It follows from Proposition 4.5(c) that

k∑
j=1

(‖∆yj‖2 + ‖∆yj−1‖2) ≤ ∆L0

δ1
(50)

and that in order to prove (48), it suffices to show that

k∑
j=1

‖∆λj‖2 ≤ ∆L0

δ2
. (51)

Then, in the remaining part of the proof we will show that (51) holds. By rewriting (46), we have

‖∆λk‖2 = βθ
[c1

2

(
‖B∗∆λk−1‖2 − ‖B∗∆λk‖2

)
+ Θk

λ

]
∀k ≥ 1,

where ∆λ0 is such that the pair (∆y0,∆λ0) is a solution of (34). Hence, using (34) and Lemma 4.4,
we obtain

k∑
j=1

‖∆λj‖2 ≤ βθ

c1

2
‖B∗∆λ0‖2 +

k∑
j=1

Θj
λ

 ≤ βθη0 +
θγθ

σ+
B

k∑
j=1

‖uj‖2

≤ βθη0 +

k∑
j=1

3θγθL
2
g

σ+
B

‖∆yj‖2 +
3θγθM

2

σ+
B

k∑
j=1

(‖∆yj‖2 + ‖∆yj−1‖2)

≤ βθη0∆L0

∆L0
+

3θγθL
2
g∆L0

δ1σ
+
B

+
3θγθM

2∆L0

δ1σ
+
B

=

[
βθη0

∆L0
+

3θγθ(L
2
g +M2)

δ1σ
+
B

]
∆L0 =

∆L0

δ2

where the fourth inequality is due to (50). Hence, (51) follows from the above estimate, proving (48).
To end the proof of the proposition, combine (48) with the fact that (dwki )(z; z′) ≥ mi‖z − z′‖/2,
i = 1, 2, due to wki ∈ DZi(mi,Mi), i = 1, 2 (see steps 1 and 2 of the NEP-ADMM).

We end this section by presenting the proof of Theorem 3.3.
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Proof of Theorem 3.3. (a) holds due to Proposition 4.5(c). Lemma 3.2 shows that the first
statement of (b) holds. Now, it follows from (30), (32), (33) and the fact that wki ∈ DZi(mi,Mi),
i = 1, 2, and wk ∈ DZ(m,M), that

‖Rk1‖ ≤ β‖A∗1A2‖‖∆xk2‖+ β‖A∗1B‖‖∆yk‖+M1‖∆xk1‖,
‖Rk2‖ ≤ β‖A∗2B‖‖∆yk‖+M2‖∆xk2‖,

‖∇g(yk)−B∗λ̂k‖ ≤M‖∆yk‖, ‖A1x
k
1 +A2x

k
2 +Byk − b‖ =

1

βθ
‖∆λk‖.

Hence, to end the proof, just combine the above relations with (49). �

A Auxiliary Result

This section presents an auxiliary result used in Lemma 4.2(c).

Lemma A.1. Assume that g, ψ : Rq → R are lower semicontinuous function such that for some
µ ∈ R, g(·)− µ‖ · ‖2/2 is convex and ψ(·) + µ‖ · ‖2/2 is strongly convex and differentiable. Then, the
problem

min{(g + ψ)(y) : y ∈ Rq} (52)

has a unique optimal solution ȳ and

(g + ψ)(y) ≥ (g + ψ)(ȳ) + (dψ)ȳ(y) +
µ

2
‖y − ȳ‖2 ∀y ∈ Rq. (53)

Proof. Define g̃ := g− µ‖ · ‖2/2 and ψ̃ := ψ+ µ‖ · ‖2/2. Clearly, g̃ is a proper lower semi-continuous
convex function and ψ̃ is a strongly convex function. Since g + ψ = g̃ + ψ̃, we conclude that the
objective function of (52) is strongly convex, and hence that the first statement of the lemma follows.
Moreover, we have

0 ∈ ∂(g + ψ)(ȳ) = ∂(g̃ + ψ̃)(ȳ) = ∂g̃(ȳ) +∇ψ̃(ȳ)

and hence
g̃(y) ≥ g̃(ȳ)− 〈∇ψ̃(ȳ), y − ȳ〉 ∀y ∈ Rq.

On the other hand, the definition of dw̃ implies that

ψ̃(y) = ψ̃(ȳ) + 〈∇ψ̃(ȳ), y − ȳ〉+ dψ̃ȳ(y) ∀y ∈ Rq.

Adding the above two relations, and using the fact that g + ψ = g̃ + ψ̃ and noting that

(dψ̃)ȳ(y) = (dψ)ȳ(y) +
µ

2
‖y − ȳ‖2,

we conclude that (53) holds.

Next we present the proof of Proposition 4.5(b).
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B Proof of Proposition 4.5(b)

We want to prove that L̂k ≥ v(β) for every k ≥ 1. Assume for contradiction that there exists an
index k0 ≥ 0 such that L̂k0+1 < v(β). Since {L̂k} is decreasing (see Proposition 4.5(a)), we obtain

j∑
k=1

(L̂k − v(β)) ≤
k0∑
k=1

(L̂k − v(β)) + (j − k0)(L̂k0+1 − v(β)) ∀j > k0

and hence

lim
j→∞

j∑
k=1

(L̂k − v(β)) = −∞.

On the other hand, it follows from (8), (29), (43) and (A4) that

L̂k = Lβ(xk1, x
k
2, y

k, λk) + ηk ≥ Lβ(xk1, x
k
2, y

k, λk)

= f1(xk1) + f2(xk2) + g(yk) +
β

2
‖A1x

k
1 +A2x

k
2 +Byk − b‖2 +

1

βθ
〈λk, λk − λk−1〉

≥ v(β) +
1

2βθ

(
‖λk‖2 − ‖λk−1‖2 + ‖λk − λk−1‖2

)
≥ v(β) +

1

2βθ

(
‖λk‖2 − ‖λk−1‖2

)
and hence that

j∑
k=1

(L̂k − v(β)) ≥ 1

2βθ

(
‖λj‖2 − ‖λ0‖2

)
≥ − 1

2βθ
‖λ0‖2 ∀j ≥ 1,

which yields the desired contradiction. �
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[11] M. L. N. Gonçalves, J. G. Melo, and R. D. C. Monteiro. Improved pointwise iteration-complexity
of a regularized ADMM and of a regularized non-euclidean HPE framework. SIAM J. Optim.,
27(1):379–407, 2017.

[12] Y. Gu, B. Jiang, and H. Deren. A semi-proximal-based strictly contractive Peaceman-Rachford
splitting method. Arxiv preprint: https://arxiv.org/abs/1506.02221, 2015.

[13] K. Guo, D. R. Han, and T. T. Wu. Convergence of alternating direction method for mini-
mizing sum of two nonconvex functions with linear constraints. Int. J. Comput. Math. “DOI:
10.1080/00207160.2016.1227432”, 2016.

[14] W. W. Hager, M. Yashtini, and H. Zhang. An O(1/k) convergence rate for the variable stepsize
Bregman operator splitting algorithm. SIAM J. Numer. Anal., 54(3):1535–1556, 2016.

[15] D. Han and X. Yuan. A note on the alternating direction method of multipliers. J. Optim.
Theory Appl., 155(1):227–238, 2012.

[16] B. He, F. Ma, and X. Yuan. On the step size of symmetric alternating directions method of
multipliers. Preprint: http://www.optimization-online.org, 2015.

[17] B. He, M. Tao, and X. Yuan. Convergence rate analysis for the alternating direction method of
multipliers with a substitution procedure for separable convex programming. Math. Oper. Res.
“DOI:10.1287/moor.2016.0822”, 2017.

[18] B. He and X. Yuan. On the O(1/n) convergence rate of the Douglas-Rachford alternating
direction method. SIAM Journal on Numer. Anal., 50(2):700–709, 2012.

[19] M. Hong and Z.-Q. Luo. On the linear convergence of the alternating direction method of
multipliers. Math. Programming, 162(1):165–199, 2017.

[20] M. Hong, Z.-Q. Luo, and M. Razaviyayn. Convergence analysis of alternating direction method
of multipliers for a family of nonconvex problems. SIAM J. Optim., 26(1):337–364, 2016.

[21] B. Jiang, T. Lin, S. Ma, and S. Zhang. Structured nonconvex and nonsmooth optimization:
algorithms and iteration complexity analysis. Arxiv Preprint: https://arxiv.org/abs/1605.02408,
2016.

19



[22] G. Li and T. K. Pong. Global convergence of splitting methods for nonconvex composite opti-
mization. SIAM J. Optim., 25(4):2434–2460, 2015.

[23] A.P. Liavas and N.D. Sidiropoulos. Parallel algorithms for constrained tensor fac-
torization via the alternating direction method of multipliers. Arxiv Preprint:
https://arxiv.org/abs/1409.2383, 2014.

[24] T. Lin, S. Ma, and S. Zhang. An extragradient-based alternating direction method for convex
minimization. Found. Comput. Math., pages 1–25, 2015.

[25] T. Lin, S. Ma, and S. Zhang. On the global linear convergence of the admm with multiblock
variables. SIAM J. Optim., 25(3):1478–1497, 2015.

[26] T. Lin, S. Ma, and S. Zhang. On the sublinear convergence rate of multi-block admm. J. Oper.
Res. China, 3(3):251–274, 2015.

[27] T. Lin, S. Ma, and S. Zhang. Iteration complexity analysis of multi-block admm for a family of
convex minimization without strong convexity. J. Sci. Comput., 69(1):52–81, 2016.

[28] R. D. C. Monteiro and B. F Svaiter. Iteration-complexity of block-decomposition algorithms
and the alternating direction method of multipliers. SIAM J. Optim., 23(1):475–507, 2013.

[29] B.S. Mordukhovich. Variational analysis and generalized differentiation I: basic theory.
Grundlehren der mathematischen Wissenschaften. Springer, Berlin,, 2006.

[30] Y. Ouyang, Y. Chen, G. Lan, and E. Pasiliao Jr. An accelerated linearized alternating direction
method of multipliers. SIAM J. Imaging Sci., 8(1):644–681, 2015.

[31] R. T. Rockafellar and R. J.-B. Wets. Variational analysis. Springer, Berlin, 1998.

[32] F. Wang, W. Cao, and Z. Xu. Convergence of multi-block Bregman ADMM for nonconvex
composite problems. Arxiv preprint: https://arxiv.org/abs/1505.03063, 2015.

[33] F. Wang, Z. Xu, and H. K. Xu. Convergence of Bregman alternating direction method with
multipliers for nonconvex composite problems. Arxiv preprint:https://arxiv.org/abs/1410.8625,
2014.

[34] W. Wang, Y. Yin and J. Zeng. Global convergence of ADMM in nonconvex nonsmooth opti-
mization. Arxiv preprint: https://arxiv.org/abs/1511.06324, 2015.

[35] Z. Wen, X. Peng, X. Liu, X. Sun, and X. Bais. Asset allocation under the Basel accord risk
measures. Arxiv preprint: https://arxiv.org/abs/1308.1321, 2013.

[36] Y. Xu, W. Yin, Z. Wen, and Y. Zhang. An alternating direction algorithm for matrix completion
with nonnegative factors. Frontiers Math. China, 7(2):365–384, 2012.

[37] L. Yang, T. K. Pong, and X. Chen. Alternating direction method of multipliers for a class
of nonconvex and nonsmooth problems with applications to background/foreground extraction.
SIAM J. Imaging Sci., 10(1):74–110, 2017.

[38] R. Zhang and J. T. Kwok. Asynchronous distributed admm for consensus optimization. Pro-
ceedings of the 31st International Conference on Machine Learning, 2014.

20


