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This paper describes an accelerated HPE-type method based on general Bregman distances for solv-
ing convex–concave saddle-point (SP) problems. The algorithm is a special instance of a non-Euclidean
hybrid proximal extragradient framework introduced by Svaiter and Solodov [An inexact hybrid gener-
alized proximal point algorithm and some new results on the theory of Bregman functions, Math. Oper.
Res. 25(2) (2000), pp. 214–230] where the prox sub-inclusions are solved using an accelerated gradi-
ent method. It generalizes the accelerated HPE algorithm presented in He and Monteiro [An accelerated
HPE-type algorithm for a class of composite convex–concave saddle-point problems, SIAM J. Optim.
26 (2016), pp. 29–56] in two ways, namely: (a) it deals with general monotone SP problems instead of
bilinear structured SPs and (b) it is based on general Bregman distances instead of the Euclidean one.
Similar to the algorithm of He and Monteiro [An accelerated HPE-type algorithm for a class of compos-
ite convex–concave saddle-point problems, SIAM J. Optim. 26 (2016), pp. 29–56], it has the advantage
that it works for any constant choice of proximal stepsize. Moreover, a suitable choice of the stepsize
yields a method with the best known iteration-complexity for solving monotone SP problems. Compu-
tational results show that the new method is superior to Nesterov’s [Smooth minimization of non-smooth
functions, Math. Program. 103(1) (2005), pp. 127–152] smoothing scheme.

Keywords: convex programming; complexity; ergodic convergence; maximal monotone operator;
hybrid proximal extragradient method; accelerated gradient method; inexact proximal method; saddle-
point problem; Bregman distances

2010 Mathematics Subject Classification: 90C25; 90C30; 47H05

1. Introduction

Given nonempty closed convex sets X ⊂ X and Y ⊂ Y , where X and Y are two inner prod-
uct spaces, and a convex–concave map �̂ : X × Y → R, our goal in this paper is to develop
algorithms for finding (approximate) saddle-points of �̂, i.e. pairs (x̄, ȳ) ∈ X × Y such that

�̂(x̄, y) ≤ �̂(x̄, ȳ) ≤ �̂(x, ȳ), ∀(x, y) ∈ X × Y , (1)
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Optimization Methods & Software 1245

or equivalently, a zero of the operator T : X × Y ⇒ X × Y defined as

T(x, y) =
⎧⎨
⎩
∂[�̂(·, y)− �̂(x, ·)](x, y) if (x, y) ∈ X × Y ,

∅ otherwise.
(2)

Under mild assumptions on � (see Proposition 2.4), the operator T is maximal monotone, and
hence an approximate zero of T can be computed by using an inexact proximal-type algorithm
such as one of the algorithms presented in [13,16, 18–21,27–31].

In particular, He and Monteiro [13] presented an inexact proximal-point method for solving
the special case of the saddle-point problem in which �̂ is of the form

�̂(x, y) = f (x)+ 〈Ax, y〉 + g1(x)− g2(y), (3)

where A : X → Y is a linear operator, g1 and g2 are proper closed convex functions, X × Y =
dom g1 × dom g2, and f is a differentiable convex function with Lipschitz continuous gradient
on X. The method is a special instance of the hybrid proximal extragradient (HPE) framework
introduced in [27]. Any instance of the HPE framework is essentially an inexact proximal point
method which allows for a relative error in the prox sub-inclusions. More specifically, given a
maximal monotone operator T : Z ⇒ Z , where Z is a finite dimensional inner product space,
consider the problem of finding z such that

0 ∈ T(z). (4)

Recall that for a given z− ∈ Z , the exact proximal point method determines a stepsize λ > 0 and
then computes the next iterate z as z = (λT + I)−1(z−), or equivalently, as the (unique) solution
of

z− − z

λ
∈ T(z). (5)

An instance of the HPE framework on the other hand allows an approximate solution of (4)
satisfying the (relative) HPE error criterion, namely, for some tolerance σ ∈ [0, 1], a stepsize
λ > 0 and a triple (z̃, z, ε) are computed in such a way as to satisfy

z− − z

λ
∈ Tε(z̃),

1

2
‖z̃− z‖2 + λε ≤ 1

2
σ‖z̃− z−‖2, (6)

where Tε denotes the ε-enlargement [2] of T. (It has the property that Tε(u) ⊃ T(u) for each u
with equality holding when ε = 0.) Clearly, when σ = 0 in (6), then z = z̃ and ε = 0, and the
inclusion in (6) reduces to (5). As opposed to other HPE-type methods in the literature (see for
instance [12,20]) which have to choose λ relatively small, the HPE method of [13] for solving (4)
with T as in (2) can choose an arbitrarily sized λ > 0 and computes the triple (z̃, z, ε) satisfying
the HPE error condition (6) with the aid of an accelerated gradient method (e.g. see [22,32])
applied to a certain regularized convex–concave min–max problem related to �̂ in (3).

The main goal of this paper is to develop a non-Euclidean HPE (NE-HPE) method which
extends the one of [13] in two relevant ways. First, it solves saddle-point problems with gen-
eral convex–concave functions �̂ such that ∇x�̂ is Lipschitz continuous instead of those with
�̂ given in (3). Second, the method is a special instance of a more general non-Euclidean HPE
framework which is based on a general Bregman distance instead of the specific Euclidean one.
More specifically, let dwz(z′) = w(z′)− w(z)− 〈∇w(z), z′ − z〉 for every z, z′, where w is a dif-
ferentiable convex function. Then, the Euclidean distance is obtained by setting w(·) = ‖ · ‖2/2
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1246 O. Kolossoski and R.D.C. Monteiro

in which case dwz(z′) = ‖z′ − z‖2/2 for all z′, z and (6) can be written as follows:

1

λ
∇(dw)z(z−) ∈ Tε(z̃), (dw)z(z̃)+ λε ≤ σ(dw)z−(z̃). (7)

The non-Euclidean HPE framework generalizes the HPE one in that it allows an approximate
solution of (4) satisfying the more general NE-HPE error condition (7) where w is an arbitrary
convex function. As an important step towards analysing the new NE-HPE method, we establish
the ergodic iteration-complexity of the NE-HPE framework for solving inclusion (4) where T is
a maximal monotone operator. Similar to the method in [13], the new NE-HPE method chooses
an arbitrary λ > 0 and computes a triple (z̃, z, ε) satisfying the HPE error condition (7) with the
aid of an accelerated gradient method applied to a certain regularized convex–concave min–max
problem. Under the assumption that the feasible set of the saddle-point problem is bounded, an
ergodic iteration-complexity bound is developed for the total number of inner (accelerated gra-
dient) iterations performed by the new NE-HPE method. Finally, it is shown that if the stepsize λ
and Bregman distance are properly chosen, then the derived ergodic iteration-complexity reduces
to the one obtained in [22] for Nesterov’s smoothing scheme which finds approximate solutions
of a bilinear structured convex–concave saddle-point problem. Such complexity bound is known
to be optimal (see, for example, the discussion in paragraph (1) of Section 1.1 of [7]).

Our paper is organized as follows. Section 2 contains two subsections which provide the nec-
essary background material for our presentation. Section 2.1 introduces some notation, presents
basic definitions and properties of operators and convex functions, and discusses the saddle-point
problem and some of its basic properties. Section 2.2 reviews an accelerated gradient method
for solving composite convex optimization problems. Section 3 reviews the notion of distance
generating functions, then presents the NE-HPE framework for solving (4) and establishes its
ergodic iteration-complexity. Section 4 describes the new accelerated NE-HPE method for solv-
ing the saddle-point problem, i.e. inclusion (4) with the operator given in (2). It contains three
subsections as follows. Section 4.1 presents a scheme based on the accelerated gradient method
of Section 2.2 for finding an approximate solution of the prox sub-inclusion according to the NE-
HPE error criterion (7) and states its iteration-complexity result. Section 4.2 completely describes
the new accelerated NE-HPE method for solving the saddle-point problem and establishes its
overall ergodic inner iteration-complexity. It also discusses a way of choosing the prox stepsize
λ so that the overall ergodic inner iteration-complexity bound reduces to the one obtained for
Nesterov’s smoothing scheme [22]. Section 4.3 provides the proof of the iteration-complexity
result stated in Section 4.1. Finally, numerical results are presented in Section 5 showing that the
new method outperforms the scheme of [22] on three classes of convex–concave saddle-point
problems and that it can handle problems which are not of the form (3).

1.1 Previous related works

In the context of variational inequalities, Nemirovski [21] established the ergodic iteration-
complexity of an extension of Korpelevich’s method [16], namely, the mirror-prox algorithm,
under the assumption that the feasible set of the problem is bounded. More recently, Dang and
Lan [8] established the iteration-complexity of a class of non-Euclidean extragradient methods
for solving variational inequalities when the operators are not necessarily monotone. Also, Lan
et al. [6] established the iteration-complexity of an accelerated mirror-prox method which finds
weak solutions of a class of variational inequalities. They obtained optimal complexity for the
case where the feasible set of the problem is bounded.

Nesterov [22] developed a smoothing scheme for solving bilinear structured saddle-point
problems under the assumption that X and Y are compact convex sets. It consists of first
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Optimization Methods & Software 1247

approximating the objective function of the associated convex–concave saddle-point problem
by a convex differentiable function with Lipschitz continuous gradient and then applying an
accelerated gradient-type method (see e.g. [22, 32]) to the resulting approximation problem.

The HPE framework and its convergence results are studied in [27] and its iteration-
complexity is established in [18] (see also [19,20]). The complexity results in [18] depend on
the distance of the initial iterate to the solution set instead of the diameter of the feasible set.
Applications of the HPE framework to the iteration-complexity analysis of several zero-order
(resp., first-order) methods for solving monotone variational inequalities and monotone inclu-
sions (resp., saddle-point problems) are discussed in [18] and in the subsequent papers [19,20].
More specifically, by viewing Korpelevich’s method [16] as well as Tseng’s modified forward–
backward splitting (MF-BS) method [31] as special cases of the HPE framework, the authors
have established in [18,19] the pointwise and ergodic iteration complexities of these meth-
ods applied to either: monotone variational inequalities, monotone inclusions consisting of the
sum of a Lipschitz continuous monotone map and a maximal monotone operator with an easily
computable resolvent, and convex–concave saddle-point problems.

Solodov and Svaiter [29] has studied a more specialized version of the NE-HPE framework
which allows approximate solutions of (4) according to (7) but with ε = 0. Finally, extensions of
the proximal method to the context of Bregman distances have been studied in [4,5,10,11,14,15].
However, none of the works cited in this paragraph deal with iteration-complexity results.

2. Background material

This section provides background material necessary for the paper presentation. Section 2.1
presents the notation and basic definitions that will be used in the paper. Section 2.2 reviews
a variant of Nesterov’s accelerated method for the composite convex optimization problem.

2.1 Basic notation, definitions and results

This subsection establishes notation and gives basic results that will be used throughout the paper.
The set of real numbers is denoted by R. The set of non-negative real numbers and the set

of positive real numbers are denoted, respectively, as R+ and R++. Let �z� denote the smallest
integer not less than z ∈ R.

2.1.1 Convex functions, monotone operators and their enlargements.

Let Z denote a finite dimensional inner product space with inner product denoted by 〈·, ·〉. For a
set Z ⊂ Z , its relative interior is denoted by ri(Z) and its closure as cl(Z). A relation T ⊆ Z × Z
can be identified with an operator T : Z ⇒ Z in which

T(z) := {v ∈ Z : (z, v) ∈ T}, ∀z ∈ Z .

Note that the relation T is then the same as the graph of the operator T defined as

Gr(T) := {(z, v) ∈ Z × Z : v ∈ T(z)}.

The domain of T is defined as

Dom T := {z ∈ Z : T(z) �= ∅}.
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1248 O. Kolossoski and R.D.C. Monteiro

The domain of definition of a point-to-point map F is also denoted by Dom F. An operator
T : Z ⇒ Z is monotone if

〈v− ṽ, z− z̃〉 ≥ 0, ∀(z, v), (z̃, ṽ) ∈ Gr(T).

Moreover, T is maximal monotone if it is monotone and maximal in the family of monotone
operators with respect to the partial order of inclusion, i.e. S : Z ⇒ Z monotone and Gr(S) ⊃
Gr(T) implies that S=T.

Given a scalar ε, the ε-enlargement of an operator T : Z ⇒ Z is the point-to-set operator
Tε : Z ⇒ Z defined as

Tε(z) := {v ∈ Z : 〈z− z̃, v− ṽ〉 ≥ −ε, ∀z̃ ∈ Z , ∀ṽ ∈ T(z̃)}, ∀z ∈ Z . (8)

The following result gives some useful properties of ε-enlargements.

Proposition 2.1 Let T , T ′ : Z ⇒ Z be given. Then, the following statement holds:

(a) Tε1(z)+ (T ′)ε2(z) ⊂ (T + T ′)ε1+ε2(z) for every z ∈ Z and ε1, ε2 ∈ R.
(b) If T is maximal monotone and ε ≥ 0, then Dom Tε ⊂ cl(Dom T).

Proof The proof of (a) follows directly from definition (8). For a proof of (b), see Corollary 2.2
of [3]. �

Let f : Z → [−∞,∞] be given. The effective domain of f is defined as

dom f := {z ∈ Z : f (z) <∞}.
Given a scalar ε ≥ 0, the ε-subdifferential of f is the operator ∂εf : Z ⇒ Z defined as

∂εf (z) := {v : f (z̃) ≥ f (z)+ 〈z̃− z, v〉 − ε, ∀z̃ ∈ Z}, ∀z ∈ Z . (9)

When ε = 0, the operator ∂εf is simply denoted by ∂f and is referred to as the subdifferential of
f. The operator ∂f is trivially monotone if f is proper. If f is a proper closed convex function,
then ∂f is maximal monotone [24].

For a given set � ⊂ Z , the indicator function I� : Z → (−∞,∞] of � is defined as

I�(z) :=
⎧⎨
⎩

0, z ∈ �,

∞, z /∈ �.
(10)

The following simple but useful result shows that adding a maximal monotone operator T
to the subdifferential of the indicator function of a convex set containing Dom T does not
change T.

Proposition 2.2 Assume that T is a maximal monotone operator and � ⊂ Z is a convex set
containing Dom T. Then, T + ∂I� = T.

Proof Clearly, ∂I� is monotone since, by assumption, the set �, and hence the indicator
function I�, is convex. Since T is also monotone by assumption, it follows that T + ∂I� is
monotone in view of Proposition 6.1.1(b) of [1]). Clearly, T ⊂ T + ∂I� due to the assumption
that Dom T ⊂ � and the fact that 0 ∈ ∂I�(x) for every x ∈ �. The conclusion of the propo-
sition now follows from the above two observations and the assumption that T is maximal
monotone. �
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Optimization Methods & Software 1249

2.1.2 The saddle-point problem.

Let X and Y be finite dimensional inner product spaces with inner products denoted, respec-
tively, by 〈·, ·〉X and 〈·, ·〉Y and endow the product space X × Y with the canonical inner product
defined as

〈(x, y), (x′, y′)〉 = 〈x, x′〉X + 〈y, y′〉Y , ∀(x, y), (x′, y′) ∈ X × Y . (11)

Let X ⊆ X and Y ⊆ Y be nonempty sets and define

Z := X × Y , Z := X × Y .

For a given function �̂ : Z → R, a pair (x̄, ȳ) ∈ Z is called a saddle-point of �̂ if it satisfies (1).
The problem of determining such a pair is called the saddle-point problem determined by �̂ and
is denoted by SP(�̂).

Define T�̂ : Z ⇒ Z as

T�̂(z) :=
⎧⎨
⎩
∂(�̂z)(z) if z ∈ Z,

∅ otherwise,
(12)

where, for every z = (x, y) ∈ Z, the function �̂z : Z → (−∞,+∞] is defined as

�̂z(z
′) =

⎧⎨
⎩
�̂(x′, y)− �̂(x, y′), ∀z′ = (x′, y′) ∈ Z,

+∞ otherwise.
(13)

Clearly, z = (x, y) is a saddle-point of �̂ if and only if z is a solution of the inclusion

0 ∈ T�̂(z). (14)

The operator T�̂ admits the ε-enlargement as in (8). It also admits an ε-saddle-point enlarge-
ment which exploits its natural saddle-point nature, namely, ∂ε(�̂z)(z) for z ∈ Z. The following
result whose proof can be found for example in Lemma 3.2 of [13] follows straightforwardly
from definitions (8) and (9).

Proposition 2.3 For every z ∈ Z and ε ≥ 0, the inclusion ∂ε(�̂z)(z) ⊂ [T�̂]ε(z) holds.

The following result (see for example Theorem 6.3.2 in [1]) gives sufficient conditions for the
operator T�̂ in (12) to be maximal monotone.

Proposition 2.4 The following statements hold:

(a) T�̂ is monotone;
(b) if the function �̂z : Z → (−∞,+∞] is closed convex for every z ∈ Z, then Z is convex and

T�̂ is maximal monotone.

Note that, due to the definition of Tε, the verification of the inclusion v ∈ Tε(x) requires check-
ing an infinite number of inequalities. This verification is feasible only for specially structured
instances of operators T. However, it is possible to compute points in the graph of Tε using the
following weak transportation formula [3].
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1250 O. Kolossoski and R.D.C. Monteiro

Proposition 2.5 Suppose that T : Z ⇒ Z is maximal monotone. Moreover, for i = 1, . . . , k,
let zi, ri ∈ Z and εi,αi ∈ R+ satisfying

∑k
i=1 αi = 1 be given and define

za =
k∑

i=1

αizi, ra =
k∑

i=1

αiri, εa =
k∑

i=1

αi[εi + 〈zi − za, ri − ra〉].

Then, the following statements hold:

(a) if ri ∈ Tεi(zi) for every i = 1, . . . , k, then εa ≥ 0 and ra ∈ Tε
a
(za);

(b) if T = T�̂, where �̂ is a saddle function satisfying the assumptions of Proposition 2.4(b) and
the stronger inclusion ri ∈ ∂εi(�̂zi)(zi) holds for every i = 1, . . . , k, then

ra ∈ ∂εa(�̂za)(za).

2.2 Accelerated method for composite convex optimization

This subsection reviews a variant of Nesterov’s accelerated first-order method [22,32] for min-
imizing a (possibly strongly) convex composite function. In what follows, we refer to convex
functions as 0-strongly convex functions. This terminology has the benefit of allowing us to treat
both the convex and strongly convex cases simultaneously.

Let X denote a finite dimensional inner product space with an inner product denoted by 〈·, ·〉X
and a norm denoted by ‖ · ‖X which is not necessarily the one induced by the inner product.
Consider the following composite optimization problem:

inf{f (x)+ g(x) : x ∈ X }, (15)

where f : X ⊂ X → R and g : X → [−∞,+∞] satisfy the following conditions:

(A.1) g is a proper closed μ-strongly convex function;
(A.2) X is a convex set such that X ⊃ dom g;
(A.3) there exist a constant L>0 and a function ∇f : X → X such that for every x, x′ ∈ X ,

f (x′)+ 〈∇f (x′), x− x′〉X ≤ f (x) ≤ f (x′)+ 〈∇f (x′), x− x′〉X + L

2
‖x− x′‖2

X .

Even though the map ∇f is not necessarily the gradient of f, it plays a similar role to it and
hence our notation.

The accelerated method for solving problem (15) stated below requires the specification of a
point x0 ∈ dom g and a function h : X → (−∞,∞] satisfying

(A.4) h is a proper closed convex function such that dom h ⊃ dom g;
(A.5) h is 1-strongly convex on dom g;
(A.6) x0 = argmin{h(x) : x ∈ dom g}.

Clearly, if dom g is closed then the above optimization problem always has an unique global
minimum which can be taken to be the point x0. The special case of the method below with
μ = 0 is the same as the accelerated variant stated in Algorithm 3 of [32]. Its proof for μ > 0
is not given in [32] but follows along the same line as the one for Algorithm 3 of [32] (see also
Section 2.2 of [13] for the proof of the case where μ > 0, X is closed and h(·) = ‖ · −u0‖2/2 for
some u0 ∈ X ).
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Optimization Methods & Software 1251

Algorithm 1 A variant of Nesterov’s accelerated method:

(0) Set A0 := 0, 	0 :≡ 0, k=1 and x̃0 = x0 where x0 is as in A.6;
(1) compute

Ak := Ak−1 + (1+ μAk−1)+
√
(1+ μAk−1)2 + 4L(1+ μAk−1)Ak−1

2L
, (16)

x̆k := Ak−1

Ak
x̃k−1 + Ak − Ak−1

Ak
xk−1, (17)

	k := Ak−1

Ak
	k−1 + Ak − Ak−1

Ak
[f (x̆k)+ 〈∇f (x̆k), · − x̆k〉X ]; (18)

(2) iterate xk and x̃k as

xk := argmin

{
	k(x)+ g(x)+ 1

Ak
h(x)

}
, (19)

x̃k := Ak−1

Ak
x̃k−1 + Ak − Ak−1

Ak
xk; (20)

(3) set k← k + 1 and go to step 1.

end

The main technical result which yields the convergence rate of the above accelerated method
is as follows.

Proposition 2.6 The sequences {Ak}, {x̃k} and {	k} generated by Algorithm 1 satisfy the
following inequalities for any k ≥ 1 :

Ak ≥ 1

L
max

{
k2

4
,

(
1+

√
μ

4L

)2(k−1)
}

, (21)

	k ≤ f , (f + g)(x̃k) ≤ 	k(x)+ g(x)+ 1

Ak
[h(x)− h(x0)], ∀x ∈ dom g. (22)

3. The NE-HPE framework

This section describes an extension of the non-Euclidean HPE framework introduced in [27] for
finding an approximate solution of the monotone inclusion problem (4), and establishes ergodic
convergence rate bounds for it. It also presents a specialization of the latter result in the context
of the saddle-point SP(�̂).

It is assumed throughout this section that Z is an inner product space with inner product 〈·, ·〉
and that ‖ · ‖ is a (general) norm in Z which is not necessarily the inner product induced norm.

Before presenting the framework, we introduce the notions of distance generating functions
and Bregman distances used in our presentation.

Definition 3.1 A proper closed convex function w : Z → [−∞,∞] is called a distance
generating function if it satisfies the following conditions:

(i) W := dom w is closed and W 0 := int(W) = {z ∈ Z : ∂w(z) �= ∅};
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1252 O. Kolossoski and R.D.C. Monteiro

(ii) w restricted to W is continuous and w is continuously differentiable on W 0.

Moreover, w induces the Bregman distance dw : Z ×W 0 → R defined as

(dw)(z′; z) := w(z′)− w(z)− 〈∇w(z), z′ − z〉, ∀(z′, z) ∈ Z ×W 0. (23)

Clearly, W 0 �= ∅ due to Definition 3.1(i) and Theorem 23.4 of [23]. For simplicity, for every
z ∈ W 0, the function (dw)(·; z) will be denoted by (dw)z so that

(dw)z(z
′) = (dw)(z′; z), ∀z′ ∈ Z .

The following useful identities follow straightforwardly from (20):

∇(dw)z(z
′) = −∇(dw)z′(z) = ∇w(z′)−∇w(z), ∀z, z′ ∈ W 0, (24)

(dw)v(z
′)− (dw)v(z) = 〈∇(dw)v(z), z′ − z〉 + (dw)z(z

′), ∀z′ ∈ Z , ∀v, z ∈ W 0. (25)

We next describe the NE-HPE framework for solving (4) under the assumption that T : Z ⇒
Z is a maximal monotone operator. Its description is based on a distance generating function w
whose domain W satisfies the following condition:

(B.1) ri(Dom T) ⊂ W 0.

Clearly, cl(Dom T) ⊂ W due to B.1 and the fact that, by Definition 3.1, W is closed.
NE-HPE framework:

(0) Let z0 ∈ W 0 be given and set j=1;
(1) choose σj ∈ [0, 1], and find λj > 0 and (z̃j, zj, εj) ∈ W ×W 0 × R+ such that

rj := 1

λj
∇(dw)zj(zj−1) ∈ Tεj(z̃j), (26)

(dw)zj(z̃j)+ λjεj ≤ σj(dw)zj−1(z̃j); (27)

(2) set j← j+ 1 and go to step 1.

end
We now make several remarks about the NE-HPE framework. First, the NE-HPE framework

does not specify how to find λj and (z̃j, zj, εj) satisfying (26) and (27). The particular scheme for
computing λj and (z̃j, zj, εj) depends on the instance of the framework under consideration and
the properties of the operator T. Second, if σj = 0 and the Bregman distance is nondegenerate in
sense that (dw)z(z̃) = 0 implies that z = z̃, then (27) implies that εj = 0 and zj = z̃j, and hence
that rj ∈ T(zj) in view of (26). Therefore, the HPE error conditions (26) and (27) can be viewed
as a relaxation of an iteration of the exact non-Euclidean proximal point method [10], namely,

1

λ j
∇(dw)zj(zj−1) ∈ T(zj).

Third, if w is strongly convex on ri(Dom T), then it follows from Proposition A.2 of Appendix
that the above inclusion has a unique solution zj. Hence, for any given λj > 0, there always
exists a triple (z̃j, zj, εj) of the form (zj, zj, 0) satisfying (26) and (27) with σj = 0. Clearly, the
computation of such (exact) triple is usually not possible, and the use of (inexact) triples (z̃j, zj, εj)

satisfying the HPE (relative) error conditions with σj > 0 provide much greater coverage and
computational flexibility.
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Optimization Methods & Software 1253

It is possible to show that some methods such as the ones in [12,13,16,18–21, 27,31] can be
viewed as special instances of the NE-HPE framework. Section 4 presents another instance of
the above framework in the context of the saddle-point problem (and hence with T = T�̂) in
which the stepsize λj is chosen in an interval of the form [τλ, λ] for arbitrary constants λ > 0
and τ ∈ (0, 1), and the triple (z̃j, zj, εj) is obtained by means of the accelerated gradient method
of Section 2.2 applied to a certain optimization problem.

In the remaining part of this subsection, we focus our attention on establishing ergodic conver-
gence rate bounds for the NE-HPE framework. We start by deriving some preliminary technical
results.

Lemma 3.2 For every j ≥ 1, the following statements hold:

(a) for every z ∈ W , we have

(dw)zj−1(z)− (dw)zj(z) = (dw)zj−1(z̃j)− (dw)zj(z̃j)+ λj〈rj, z̃j − z〉;

(b) for every z ∈ W , we have

(dw)zj−1(z)− (dw)zj(z) ≥ (1− σj)(dw)zj−1(z̃j)+ λj(〈rj, z̃j − z〉 + εj).

Proof (a) Using (25) twice and using the definition of rj given in (26), we have that

(dw)zj−1(z)− (dw)zj(z) = (dw)zj−1(zj)+ 〈∇(dw)zj−1(zj), z− zj〉
= (dw)zj−1(zj)+ 〈∇(dw)zj−1(zj), z̃j − zj〉 + 〈∇(dw)zj−1(zj), z− z̃j〉
= (dw)zj−1(z̃j)− (dw)zj(z̃j)+ 〈∇(dw)zj−1(zj), z− z̃j〉
= (dw)zj−1(z̃j)− (dw)zj(z̃j)+ λj〈rj, z̃j − z〉.

(b) This statement follows as an immediate consequence of (a) and (27). �

The following result follows as an immediate consequence of Lemma 3.2(b).

Lemma 3.3 For every j ≥ 1 and z ∈ W , we have that

(dw)z0(z)− (dw)zj(z) ≥
j∑

i=1

(1− σi)(dw)zi−1(z̃i)+
j∑

i=1

λi[εi + 〈ri, z̃i − z〉].

Proof The lemma follows by adding the inequality in Lemma 3.2(b) from 1 to j. �

Lemma 3.4 For every j ≥ 1, define �j :=∑j
i=1 λi,

z̃a
j := 1

�j

j∑
i=1

λiz̃i, ra
j := 1

�j

j∑
i=1

λiri, εa
j := 1

�j

j∑
i=1

λi[εi + 〈ri, z̃i − z̃a
j 〉].

where ri is defined in (26). Then, we have

εa
j ≥ 0, ra

j ∈ Tε
a
j (z̃a

j ), (28)

εa
j + 〈ra

j , z̃a
j − z〉 ≤ (dw)z0(z)

�j
, ∀z ∈ W . (29)
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1254 O. Kolossoski and R.D.C. Monteiro

Proof The relations on (28) follow from (26) and Proposition 2.5(a). Moreover, Lemma 3.3,
the assumption that σj ∈ [0, 1], and the definitions of εa

j and ra
j , imply that for every z ∈ W ,

(dw)z0(z)− (dw)zj(z) ≥
j∑

i=1

λi[εi + 〈ri, z̃i − z〉]

=
j∑

i=1

λi[εi + 〈ri, z̃i − z̃a
j 〉 + 〈ri, z̃a

j − z〉] = �j[ε
a
j + 〈ra

j , z̃a
j − z〉],

and hence that (29) holds. �

For any nonempty compact convex set � ⊂ W , define

R(z0;�) := max{(dw)z0(z) : z ∈ �}. (30)

Clearly, R(z0;�) is finite due to the fact that (dw)z0(·) is a continuous function on W (see
Definition 3.1(ii)).

We are now ready to state the main result of this subsection which establishes an ergodic
convergence rate bound for the NE-HPE framework.

Theorem 3.5 For every j ≥ 1, define �j, z̃a
j , ra

j and εa
j as in Lemma 3.4, and also

ε̃j := εa
j +max{〈ra

j , z̃a
j − z〉 : z ∈ �}, (31)

where � ⊂ W is a nonempty compact convex set. Then, for every j ≥ 1, we have

ε̃j ≤ R

�j
, (32)

z̃a
j ∈ � =⇒ 0 ∈ (T�)ε̃j(z̃a

j ), (33)

where T� := T + ∂I� and R := R(z0;�). Moreover, if Dom T is bounded and � = cl(Dom T),
then 0 ∈ T ε̃j(z̃a

j ) for every j ≥ 1.

Proof Inequality (29), the definition of R = R(z0;�) in (30) and the definition of ε̃j in (31)
clearly imply (32). Now, assume that z̃a

j ∈ � and let δj := ε̃j − εa
j . Then, (31), the inclusion

z̃a
j ∈ �, and the definitions of the ε-subdiffential and the indicator function in (9) and (10), respec-

tively, imply that−ra
j ∈ ∂δj(I�)(z̃a

j ). This inclusion, the inclusion in (28), and Proposition 2.1(a),
then imply that

0 ∈ Tε
a
j (z̃a

j )+ (∂I�)δj(z̃a
j ) ⊂ (T + ∂I�)ε

a
j +δj(z̃a

j ) = (T�)ε̃j(z̃a
j ),

where the last equality is due to the definitions of δj and T�.
To prove the last assertion of the theorem, assume that � = cl(Dom T) and note that � is

convex due to Theorem 1 of [25]. Also, in view of Proposition 2.1(b) and the fact that z̃j ∈
Dom Tεj (see (26)), we conclude that z̃j ∈ cl(Dom T) = � for every j ≥ 1. Hence, the convexity
of � and the definition of z̃a

j in Lemma 3.4 imply that z̃a
j ∈ �, and hence that 0 ∈ (T�)ε̃j(z̃a

j ) due
to (33). The assertion now follows from Proposition 2.2. �

We now make a few remarks about Theorem 3.5. First, ε̃j in (31) can be easily computed for
those instances of (31) for which the minimization of a linear function on � can be trivially
performed. Second, if�j grows to∞, relation (32) implies that any limit point of z̃a

j is a solution
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Optimization Methods & Software 1255

of (4). Third, relation (32) implies that the convergence rate of z̃a
j , measured in terms of the size

of ε̃j, is on the order of O(1/�j). Clearly, this convergence rate reduces to O(1/j) for the case in
which the sequence of stepsizes {λj} is constant.

To state a variation of Theorem 3.5 in the context of the saddle-point problem, consider the
following notion of an approximate solution of the saddle-point inclusion (14).

Definition 3.6 A pair (z, ε) ∈ Z × R+ is called a near-saddle-point of �̂ if 0 ∈ ∂ε(�̂z)(z).
Moreover, for a given ε̄ ≥ 0, (z, ε) is called an ε̄-saddle-point of �̂ if 0 ∈ ∂ε(�̂z)(z) and ε ≤ ε̄.

Clearly, z is a saddle-point of �̂ if and only if (z, 0) is a near-saddle-point of �̂.

Corollary 3.7 Assume now that T = T�̂, where �̂ is a saddle function satisfying the assump-
tions of Proposition 2.4(b) and consider an instance of the NE-HPE framework in which every
(z̃j, zj, εj) satisfies the stronger inclusion

rj ∈ ∂εj(�̂z̃j)(z̃j), ∀j ≥ 1, (34)

where rj is defined in (26). Also, for every j ≥ 1, define �j, z̃a
j , ra

j and εa
j as in Lemma 3.4 and

ε̃j as in (31) where � := �X ×�Y ⊂ W is a nonempty convex compact set. Then, the following
statements hold:

(a) every pair (z̃a
j , ε̃j) such that z̃a

j ∈ � is a near-saddle-point of the map �̂ restricted to � ∩
(X × Y ) and ε̃j is bounded according to (32) where R := R(z0;�);

(b) if X × Y is bounded, � = cl(X × Y ) and {λj} ⊂ [λ̄,∞) for some λ̄ > 0, then for any given
ε̄ ≥ 0, there exists j0 = O(�R/(λ̄ε̄)�) such that (z̃a

j , ε̃j) is an ε̄-saddle-point of �̂ for every
j ≥ j0.

Proof (a) The justification of the bound on ε̃j is similar to that given in the proof of Theorem 3.5.
By (34) and Proposition 2.5(b), we have that ra

j ∈ ∂εa
j
(�z̃a

j
)(z̃a

j ). Now using this inclusion, the
assumption that z̃a

j ∈ �, and similar arguments as in the proof of Theorem 3.5, we conclude that

0 ∈ (∂εa
j
�̂z̃a

j
+ ∂δjI�)(z̃a

j ) ⊂ ∂ε̃j(�̂z̃a
j
+ I�)(z̃a

j ),

and hence that (z̃a
j , ε̃j) is a near-saddle-point of the map �̂ restricted to � ∩ (X × Y ).

(b) Note that the assumption that � = cl(X × Y ) easily implies that �̂z̃a
j
+ I� = �̂z̃a

j
and z̃a

j ∈
� for every j ≥ 1. Thus, this statement follows directly from statement (a), bound (32) and the
assumption that {λj} ⊂ [λ̄,∞). �

We end this section by noting that the validity of the conclusion of Corollary 3.7(a) requires
the condition z̃a

j ∈ � which is generally not guaranteed to hold. Statement (b) guarantees the
latter condition by taking � = cl(X × Y ) but this choice requires us to assume that X × Y is
bounded. Hence, the most polished form of Corollary 3.7 (in the sense that the conclusion of (b)
holds) can only be guaranteed when the feasible region of the saddle-point SP(�̂) is bounded.

4. An accelerated instance of the NE-HPE framework

This section presents and establishes the (inner) iteration-complexity of a particular instance of
the NE-HPE framework for solving the saddle-point problem where the triple (z̃j, zj, εj) in step 1
of the framework is computed with the aid of the accelerated gradient method of Section 2.2.
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1256 O. Kolossoski and R.D.C. Monteiro

Throughout this section, we assume that X , Y , Z , X, Y , Z, 〈·, ·〉X , 〈·, ·〉Y , 〈·, ·〉 and �̂ are as
in Section 2.1.2. Moreover, let ‖ · ‖X and ‖ · ‖Y be norms in X and Y , respectively, which are
not necessarily the ones induced by their corresponding inner products. Our problem of interest
is the saddle-point problem SP(�̂) endowed with a certain composite structure on the space X
which consists of the existence of a proper closed convex function φ : X → (−∞,+∞] and a
function � : dom � ⊃ Z → R satisfying

dom φ = X , (35)

�̂(x, y) = �(x, y)+ φ(x), ∀(x, y) ∈ Z, (36)

and the following additional conditions:

(C.1) Z is a nonempty bounded convex set;
(C.2) for every z ∈ Z, the function �̂z given in (13) is closed and convex;
(C.3) for every y ∈ Y , the function �(·, y) is differentiable on X and there exist nonnegative

constants Lxx and Lxy such that

‖∇x�(x
′, y′)− ∇x�(x, y)‖∗X ≤ Lxx‖x− x′‖X + Lxy‖y− y′‖Y , ∀(x, y), (x′, y′) ∈ X × Y ,

where ‖ · ‖∗X denotes the dual norm of ‖ · ‖X defined as

‖x‖∗X := max
‖x′‖X=1

{〈x, x′〉X : x′ ∈ X }, ∀x ∈ X .

We now make two remarks about the above conditions. First, condition C.2 and Proposi-
tion 2.4(b) imply that the operator T�̂ given by (12) is maximal monotone. Second, problem (3)
with the condition that ∇f is Lipschitz continuous on X, i.e. ‖∇f (x)− ∇f (x′)‖∗X ≤ L‖x− x′‖X
for every x, x′ ∈ X , is a special case of the saddle-point problem considered in this section in
which X × Y = dom g1 × dom g2, φ = g1, �(x, y) = f (x)+ 〈y, Ax〉 − g2(y) for every (x, y) ∈
dom f × dom g2, Lxx = L and Lxy = max{‖Ax‖∗Y : ‖x‖X ≤ 1}.

Our goal in this section is to develop an accelerated instance of the NE-HPE framework
for (approximately) solving (in the sense of Definition 3.6) the saddle-point problem SP(�̂),
or equivalently, inclusion (14), under the above assumptions.

We start by describing the structure of the distance generating function used by our instance.
Let w1 : X → [−∞,∞] and w2 : Y → [−∞,∞] be distance generating functions with domain
W1 ⊂ X and W2 ⊂ Y , respectively. Letting W = W1 ×W2 and W 0 = int(W), the function w :
Z → [−∞,∞] defined as

w(z) := w1(x)+ w2(y), ∀z = (x, y) ∈ Z , (37)

is a distance generating function whose domain is W and which induces the Bregman distance

(dw)z(z
′) := (dw1)x(x

′)+ (dw2)y(y
′), ∀z = (x, y) ∈ W 0, ∀z′ = (x′, y′) ∈ Z . (38)

We further assume that the following conditions hold throughout this section:

(C.4) ri(Z) ⊂ W 0;
(C.5) w1 (resp., w2) is η1-strongly (resp., η2-strongly) convex on X (resp., Y ) for some η1 > 0

(resp., η2 > 0).

A few remarks are in order. First, C.4 and the closeness of Z guarantee that X × Y = Z ⊂ W
so that X × Y ⊂ dom w1 × dom w2. Second, C.5 requires that w restricted to X × Y is strongly
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Optimization Methods & Software 1257

convex. Third, C.4 ensures that the operator T = T�̂ given in (12) satisfies condition B.1, and
hence that the results of Section 3 carry over to the present context.

To describe our instance, it suffices to explain how step 1 of the NE-HPE framework is imple-
mented. This will be the subject of Section 4.1 below which describes a scheme for implementing
this step based on the acceleration gradient method of Section 2.2. For now, we just mention that
the stepsize λj is not chosen to be constant but rather is computed within an interval of the form
[τλ, λ], where λ > 0 and τ ∈ (0, 1) are fixed throughout our instance. In addition, the scheme of
Section 4.1 also describes how to compute a triple (z̃j, zj, εj) satisfying condition (27) with dw
given in (38), and the stronger inclusion (34).

More specifically, Section 4.1 describes a scheme for solving the following problem.

(P1) Given a pair z− = (x−, y−) ∈ W 0, and scalars σ ∈ (0, 1], λ > 0 and τ ∈ (0, 1), the
problem is to find λ̃ ∈ [τλ, λ] and a triple (z̃, z, ε) ∈ W ×W 0 × R+ such that

r := 1

λ̃
∇(dw)z(z−) ∈ ∂ε(�̂z̃)(z̃), (39)

(dw)z(z̃)+ λ̃ε ≤ σ(dw)z−(z̃). (40)

with �̂z̃ given in (13).

Note that problem (P1) is based on condition (34) instead of (26) with T = T�̂. Recall that the
first condition implies the latter one in view of Proposition 2.3.

In addition to Section 4.1, this section contains two other subsections. Section 4.2 completely
describes the accelerated instance of the NE-HPE framework for solving SP(�̂) and its corre-
sponding iteration-complexity result. It also discusses optimal ways of choosing the prox stepsize
in order to minimize the overall inner iteration-complexity of the instance. Finally, Section 4.3
gives the proof of the inner iteration-complexity result stated in Section 4.1.

4.1 An accelerated scheme for solving (P1)

This subsection presents a scheme for finding a solution of problem (P1) based on the acceler-
ated gradient method of Section 2.2 applied to a certain regularized convex–concave min–max
problem.

With the above goal in mind, consider the regularized convex–concave min–max problem

min
x∈X

max
y∈Y

�̂(x, y)+ 1

λ
(dw1)x−(x)−

1

λ
(dw2)y−(y). (41)

It is easy to see that the exact solution of (41) determines a solution of (P1) with σ = 0 in which
λ̃ = λ. Letting

fλ(x) := max
y∈Y

{
�(x, y)− 1

λ
(dw2)y−(y)

}
, ∀x ∈ X , (42)

gλ(x) := 1

λ
(dw1)x−(x)+ φ(x), ∀x ∈ X , (43)

it follows from (36), (42) and (43) that (41) is equivalent to (15) with (f , g) = (fλ, gλ). More-
over, conditions A.1 and A.2 are satisfied with μ = η1/λ due to (42) and assumption C.5 which
requires w1 to be η1-strongly convex on X. Also, the following result establishes the validity
of A.3.
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1258 O. Kolossoski and R.D.C. Monteiro

Proposition 4.1 The following statements hold for every λ > 0 :

(a) for every x ∈ X , the point yλ(x) defined as

yλ(x) := argmaxy∈Y

{
�(x, y)− 1

λ
(dw2)y−(y)

}
(44)

is well defined and lies in Y ∩ int(W2);
(b) the constant L = Lλ and function ∇f = ∇fλ : X → X defined as

Lλ := 2

(
Lxx + λ

η2
L2

xy

)
, ∇fλ(x) := ∇x�(x, yλ(x)), ∀x ∈ X , (45)

respectively, satisfy condition A.3 with f = fλ.

Proof (a) This statement follows from Proposition A.1 of Appendix with w = (1/λ)w2, z− =
y− and ψ = −�(x, ·)+ IY .

(b) This statement follows from Proposition 4.1 of [17] with the function � given by

�(x, y) = �(x, y)− 1

λ
(dw2)y−(y), ∀(x, y) ∈ X × Y ,

and with η = 0 and β = η2/λ. �

Next, we present a scheme for solving (P1) under the assumption that the input z− lies in W 0 ∩
Z. The scheme consists on applying the accelerated method of Section 2.2, namely Algorithm 1,
to problem (15) with (f , g) = (fλ, gλ), where fλ and gλ are as in (42) and (43), respectively, and
choosing the function h as h = (1/η1)(dw1)x− . Note that g and h defined in this manner satisfy
condition A.1 with μ = η1/λ and condition A.4.

Algorithm 2 Accelerated scheme for solving (P1)
Input: σ ∈ (0, 1], λ > 0, τ ∈ (0, 1) and z− = (x−, y−) ∈ W 0 ∩ Z.

(0) Set A0 = 0, k = 1, 	̃0 ≡ 0, ỹ0 = 0, Lλ as in (45), and x0 = x̃0 := x−;
(1) compute Ak as in (16) with μ = η1/λ, iterate x̆k as in (17), compute yλ(x̆k) according to

(44), and the affine function 	̃k as

	̃k := Ak−1

Ak
	̃k−1 + Ak − Ak−1

Ak
[�(x̆k , yλ(x̆k))+ 〈∇x�(x̆k , yλ(x̆k)), · − x̆k〉X ] (46)

(2) set

λk =
(

1

λ
+ 1

η1Ak

)−1

, (47)

and compute iterates xk and ỹk as

xk = argmin

{
	̃k(x)+ φ(x)+ 1

λk
(dw1)x−(x)

}
, (48)

ỹk = Ak−1

Ak
ỹk−1 + Ak − Ak−1

Ak
yλ(x̆k), (49)

and x̃k as in (20);
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Optimization Methods & Software 1259

(3) if λk ≥ max{1− σ , τ }λ, then compute yk := yλk (x̃k) according to (44), set λ̃ = λk , z̃ =
z̃k := (x̃k , ỹk), z = zk := (xk , yk) and

ε = εk := �̂(x̃k , yk)− 	̃k(xk)− φ(xk)− 1

λk
〈∇(dw)zk (z−), z̃k − zk〉,

output λ̃ and the triple (z̃, z, ε), and terminate; otherwise, set k← k + 1 and go to step 1.

end

We now make several remarks about Algorithm 2. First, due to the stopping criterion and (47),
Algorithm 2 outputs λ̃ ∈ [τλ, λ]. Second, it follows from Proposition A.1 of Appendix with
ψ = 	̃k + φ, w = w1/λk and z− = x− that xk given in (48) is well defined and lies in int(W1) ∩
X . Third, due to Proposition A.1 and relations (35), (44) and (48), the output z lies in W 0 ∩
Z. Fourth, steps 1 and 2 of Algorithm 2 are specializations of steps 1 and 2 of Algorithm 1
to the instance of (15) in which (f , g) is given by (fλ, gλ) with fλ and gλ as in (42) and (43),
respectively. The only difference is the extra computation of ỹk in (49) which is used to compute
the component z̃ of the output. Fifth, even though the affine function 	̃k given in (46) and the
affine function 	k given in (18) with f = fλ are not the same, they both have the same gradient
due to (45), and hence the subproblems (48) and (19) are equivalent. Sixth, each iteration of
Algorithm 2 before the last one requires solving two subproblems, namely, (48) and one of the
form (44), while the last one requires one additional subproblem of the form (44) in step 3.
Seventh, when the termination criterion in step 3 is met, this extra step computes the output
λ̃ and (z̃, z, ε) which solve (P1) (see Proposition 4.2). Eighth, another possible way to terminate
Algorithm 2 would be to compute the triple (z̃, z, ε) = (z̃k , zk , εk) as described in its step 3 at every
iteration and check whether λ̃ = λk and this triple satisfy the HPE error criterion (40). (They
always satisfy (39) due to Proposition 4.2(a).) The drawback of this stopping criterion is that it
requires solving an additional subproblem of the form (44) at every iteration. Our computational
benchmark presented in Section 5 is based on the stopping criterion of Algorithm 2.

The following result establishes the correctness and iteration-complexity of Algorithm 2. Its
proof is given in Section 4.3.

Proposition 4.2 The following statements hold for every k ≥ 1 :

(a) the scalar λ̃ = λk and the triple (z̃, z, ε) = (z̃k , zk , εk) satisfy inclusion (39);
(b) if λk ≥ (1− σ)λ, then λ̃ = λk and (z̃, z, ε) = (z̃k , zk , εk) satisfy condition (40).

Corollary 4.3 By performing at most

O

⎛
⎜⎜⎝
⎡
⎢⎢⎢⎢⎢

√√√√λ
(

Lxx + λ
η2

L2
xy

)
η1

⎤
⎥⎥⎥⎥⎥

⎞
⎟⎟⎠ (50)

iterations, Algorithm 2 terminates with a stepsize λ̃ > 0 and a triple (z̃, z, ε) which solve (P1).

Proof When Algorithm 2 terminates in step 3, it easily follows from (47) that the generated out-
put λ̃ = λk satisfies λ̃ ∈ [τλ, λ]. Hence, in view of Proposition 4.2, we conclude that Algorithm 2
outputs λ̃ and (z̃, z, ε)which solves (P1). Moreover, using the estimate Ak ≥ k2/4Lλ given in (21),
and the definitions of Lλ and λk given in (45) and (47), respectively, it is easy to verify that
the number of iterations until the stopping criterion of Algorithm 2 occurs is bounded by (50)
(when τ and σ are viewed as universal constants such that max{1− σ , τ } is neither close to zero
nor one). �
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1260 O. Kolossoski and R.D.C. Monteiro

4.2 An accelerated NE-HPE instance for solving SP(�̂)

This subsection describes an accelerated instance of the NE-HPE framework for solving the
saddle-point problem SP(�̂) and its corresponding iteration-complexity result. It also discusses
optimal ways of choosing the prox stepsize in order to minimize the overall inner iteration-
complexity of the instance.

We start by stating an accelerated instance of the NE-HPE framework for solving SP(�̂)which
computes the required stepsize λj and triple (z̃j, zj, εj) in its step 1 with the aid of Algorithm 2.
Accelerated NE-HPE method for the saddle-point problem

(0) Let z0 ∈ W 0, λ > 0, σ ∈ (0, 1] and τ ∈ (0, 1) be given and set j= 1;
(1) invoke Algorithm 2 with input σ , λ, τ and z− = zj−1 to obtain a stepsize λj ∈ [τλ, λ] and a

triple (z̃j, zj, εj) satisfying (34) and (27);
(2) set j← j+ 1, and go to step 1.

end
In view of Proposition 4.2, the accelerated NE-HPE method satisfies the error conditions (34)

and (27) of step 1 of the NE-HPE framework. Therefore, the accelerated NE-HPE method is
clearly a special case of the NE-HPE framework. It follows that the ergodic (outer) convergence
rate bound for the accelerated NE-HPE method is as described in Theorem 3.5.

Theorem 4.4 Consider the sequence {(z̃j, zj, εj)} generated by the accelerated NE-HPE method
applied to a saddle-point problem SP(�̂) which has the composite structure (35) and (36) and
satisfies the assumptions C.1–C.3. Consider also the ergodic sequence {(z̃a

j , ra
j , εa

j )} computed as
in Lemma 3.4 and the sequence {ε̃j} computed as in (31) with � = Z. Also, let R := R(z0; Z)
where R(z0; Z) is as in (30). Then, the following statements hold:

(a) for every positive scalar ε̄, there exists

j0 = O
(⌈

R

λε̄

⌉)

such that for every j ≥ j0, (z̃a
j , ε̃j) is an ε̄-saddle-point of �̂;

(b) each iteration of the accelerated NE-HPE method performs at most

O

⎛
⎜⎜⎝
⎡
⎢⎢⎢⎢⎢

√√√√λ
(

Lxx + λ
η2

L2
xy

)
η1

⎤
⎥⎥⎥⎥⎥

⎞
⎟⎟⎠

inner iterations.

As a consequence, the accelerated NE-HPE method finds an ε̄-saddle-point of �̂ by perform-
ing no more than

O

⎛
⎜⎜⎝
⎡
⎢⎢⎢⎢⎢

√√√√λ
(

Lxx + λ
η2

L2
xy

)
η1

⎤
⎥⎥⎥⎥⎥
⌈

R

λε̄

⌉⎞⎟⎟⎠ (51)

inner iterations.

Proof Since the accelerated NE-HPE method is a special instance of the NE-HPE framework,
(a) follows from Corollary 3.7 (b) and from the fact that λj ≥ τλ for every j ≥ 1. Statement
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Optimization Methods & Software 1261

(b) follows from Proposition 4.2. The last assertion of the theorem follows immediately from
(a) and (b). �

We end this subsection by making a remark about the complexity bound (51) in light of the
one obtained in relation (4.4) of [22]. Clearly, when λ = R/ε̄, the complexity bound (51) reduces
to

O
(

1+ RLxy

ε̄
√
η1η2
+
√

RLxx

ε̄η1

)
. (52)

It turns out that, by suitably scaling the distance generating functions w1 and w2, this bound
reduces to

O
(

1+
√

R1R2Lxy

ε̄
√
η1η2

+
√

R1Lxx

ε̄η1

)
, (53)

where

R1 := max{(dw1)x0(x) : x ∈ X }, R2 := max{(dw2)y0(y) : y ∈ Y }.

The latter bound generalizes the one in relation (4.4) of [22] which was shown to be valid only
for a special bilinear structured case of SP(�̂).

To obtain the bound (53), consider the distance generating functions

w1,θ := θw1, w2,θ := θ−1w2,

where θ > 0 is a fixed parameter. Clearly, w1,θ (resp., w2,θ ) is a distance generating function with
domain W1 (resp., W2) which is θη1-strongly convex on X (resp., θ−1η2-strongly convex on Y ).
In this case, R becomes

R = θR1 + θ−1R2.

Hence, choosing θ = (R2/R1)
1/2, the quantities R, η1 and η2 in this case reduce to

R = 2
√

R1R2, η1 =
√

R2

R1
η1, η2 =

√
R1

R2
η2,

and hence (52) reduces to (53).

4.3 Proof of Proposition 4.2

This subsection proves Proposition 4.2.
Given the input of problem (P1) and a point z̃ ∈ Z ∩W 0, the following result describes a way

of generating a pair (z, ε) in terms of �̂z̃ (as in (13)) and a convex function minorizing it so
that (39) holds and (40) is satisfied whenever a suitable sufficient condition holds. This result
will be used to show that Algorithm 2 obtains a scalar λ̃ and a triple (z̃, z, ε) which solve (P1).

Lemma 4.5 Consider the distance generating function w as in (37) and let λ̃ > 0, z− ∈ W 0

and z̃ ∈ Z ∩W 0 be given. Assume that there exists a proper closed convex function �z̃ such that
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1262 O. Kolossoski and R.D.C. Monteiro

dom �z̃ = Z and �z̃ ≤ �̂z̃ where �̂z̃ is as in (13). Moreover, define the quantities

z := argminu

{
�z̃(u)+ 1

λ̃
(dw)z−(u)

}
, (54)

ε := −�z̃(z)− 〈r, z̃− z〉, (55)

where

r := 1

λ̃
∇(dw)z(z−). (56)

Then, the following statements hold:

(a) z is well defined and z ∈ Z ∩W 0, and hence r is well defined ;
(b) ε ∈ [0,∞) and (39) holds.
(c) if, in addition, for a given scalar σ ≥ 0, we have

1− σ
λ̃

(dw)z−(z̃) ≤ inf

{
�z̃(u)+ 1

λ̃
(dw)z−(u) : u ∈ Z

}
, (57)

then (40) holds.

Proof (a) The assumptions of the lemma clearly imply that z̃ ∈ Z ∩W 0 = dom �z̃ ∩W 0.
Hence, using the latter inclusion, assumption C.5 that w is strongly convex over Z = dom �̂z̃

and relation (56), we conclude from Proposition A.1 of Appendix with ψ = λ̃�z̃ that z is
well-defined, z ∈ Z ∩W 0 and satisfies

r ∈ ∂�z̃(z). (58)

(b) Clearly, ε <∞ due to (55) and the fact that �z̃ is proper. Using the assumption that �z̃ ≤
�̂z̃, and relations (55) and (58), we conclude that

�̂z̃(u) ≥ �z̃(u) ≥ �z̃(z)+ 〈r, u− z〉 = 〈r, u− z̃〉 − ε, ∀u ∈ Z . (59)

The latter conclusion together with the fact that (13) implies that �̂z̃(z̃) = 0 then yield (39).
Clearly, (59) with u = z̃ implies that ε ≥ 0.

(c) Note that (54) and (57) imply that

1− σ
λ̃

(dw)z−(z̃) ≤ �z̃(z)+ 1

λ̃
(dw)z−(z). (60)

Moreover, relations (24)–(56) imply that

(dw)z−(z̃)− (dw)z−(z) = (dw)z(z̃)+ 〈∇(dw)z−(z), z̃− z〉 = (dw)z(z̃)− λ̃〈r, z̃− z〉. (61)

Now, using (55), (60) and (61), we conclude that

(dw)z(z̃)+ λ̃ε = (dw)z(z̃)− λ̃[�z̃(z)+ 〈r, z̃− z〉]
= (dw)z−(z̃)− (dw)z−(z)− λ̃�z̃(z) ≤ σ(dw)z−(z̃),

and hence that (40) holds. �

We now establish the following technical lemma which guarantees that the output of
Algorithm 2 satisfies the conditions described in Lemma 4.5.
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Optimization Methods & Software 1263

Lemma 4.6 For every k ≥ 1, the scalar λk , triple (z̃k , zk , εk) and function 	̃k generated by
Algorithm 2 satisfy the following statements:

(a) z̃k , zk ∈ W 0 ∩ Z;
(b) �z̃k : Z → [−∞,∞] defined as

�z̃k (z) :=
⎧⎨
⎩
	̃k(x)+φ(x)− �̂(x̃k , y), ∀z = (x, y) ∈ Z,

+∞ otherwise
(62)

is a proper closed convex function such that dom �z̃k = Z and �z̃k ≤ �̂z̃k where the latter
function is defined in (13);

(c) λ̃ = λk , (z̃, z, ε) = (z̃k , zk , εk) and �z̃ = �z̃k as in (62) satisfy (54) and (55).

As a consequence, λ̃ = λk and (z̃, z, ε) = (z̃k , zk , εk) satisfy (39) for every k ≥ 1.

Proof (a) First observe that the second remark following Algorithm 2 and Proposition 4.1(a)
implies that xk ∈ X ∩ int(W1) and yλ(x̆k) ∈ Y ∩ int(W2) for every k ≥ 1. Also, note that by (20)
(resp., (49)), we have

x̃k =
k∑

i=1

Ai − Ai−1

Ak
xi, ỹk =

k∑
i=1

Ai − Ai−1

Ak
yλ(x̆i) (63)

and hence x̃k (resp., ỹk) is a convex combination of the points xi (resp., yλ(x̆i)), i = 1, . . . , k. Since
the set X ∩ int(W1) (resp., Y ∩ int(W2)) is convex, we conclude that z̃k = (x̃k , ỹk) ∈ Z ∩W 0. The
conclusion that zk ∈ Z ∩W 0 follows from the inclusion xk ∈ X ∩ int(W1), the definition of yk in
step 3 of Algorithm 2 and Proposition 4.1(a).

(b) Using (13), the definition of �z̃k in (62), condition C.2, the assumption that φ is a proper
closed convex function, and the fact that 	̃k is an affine function, we easily that �z̃k is a proper
closed convex function with dom�z̃k = Z. Using the definitions of 	̃k and ỹk given in (46)
and (48) as well as the fact that �(·, y)−�(x, ·) is convex for every (x, y) ∈ Z, we see that
for every x ∈ X

	̃k(x) =
k∑

i=1

Ai − Ai−1

Ak
[�(x̆i, yλ(x̆i))+ 〈∇x�(x̆i, yλ(x̆i)), x− x̆i〉X ]

≤
k∑

i=1

Ai − Ai−1

Ak
[�(x, yλ(x̆i))] ≤ �

(
x,

k∑
i=1

Ai − Ai−1

Ak
yλ(x̆i)

)
= �(x, ỹk).

By (13), (36) and (62), we see that �z̃k minorizes �̂z̃k if and only if 	̃k ≤ �(·, ỹk), and hence (b)
follows.

(c) This statement follows directly from the definitions of zk and εk and relations (44), (48)
and (62).

The last conclusion of the lemma follows directly from Lemma 4.5(b). �

Lemma 4.7 If at the kth step of Algorithm 2, the condition λk ≥ (1− σ)λ is satisfied, then
λ̃ = λk and (z̃, z, ε) = (z̃k , zk , εk) satisfy (57), and, as a consequence, condition (40).
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1264 O. Kolossoski and R.D.C. Monteiro

Proof The last conclusion of the lemma follows from Lemma 4.5(c). Moreover, in view of (38)
and (62), the first conclusion of lemma is equivalent to the condition that

1− σ
λk

[(dw1)x−(x̃k)+ (dw2)y−(ỹk)]

≤ 	̃k(x)+ φ(x)− �̂(x̃k , y)+ 1

λk
[(dw1)x−(x)+ (dw2)y−(x)] ∀(x, y) ∈ Z. (64)

To show the latter condition, assume that λk ≥ (1− σ)λ. For the purpose of applying Proposi-
tion 2.6, let

x0 = x−, f = fλ, g = gλ, h = (1/η1)(dw1)x− , (65)

where fλ and gλ are as in (42) and (43), respectively. Note that the assumption that w1 is strongly
convex on X (see C.5) implies that x0, g and h satisfy conditions A.4–A.6. Since the set X and the
functional pair (f , g) satisfy conditions A.1–A.3, and Algorithm 2 corresponds to Algorithm 1
applied to (15) with x0, f, g and h as above (see the fourth remark following Algorithm 2), it
follows from Proposition 2.6, and relations (36), (42), (43) and (65), that

k∑
i=1

Ai − Ai−1

Ai
[fλ(x̆i)+ 〈∇fλ(x̆i), x− x̆i〉X ]+ gλ(x)+ 1

η1Ak
(dw1)x−(x) ≥ (fλ + gλ)(x̃k)

≥ �(x̃k , y)− 1

λ
(dw2)y−(y)+

1

λ
(dw1)x−(x̃k)+ φ(x̃k)

= �̂(x̃k , y)− 1

λ
(dw2)y−(y)+

1

λ
(dw1)x−(x̃k), ∀(x, y) ∈ Z. (66)

Using (46), (63) and the convexity of (dw2)y−(·), we have

	̃k(x)− 1

λ
(dw2)y−(ỹk)

≥
k∑

i=1

Ai − Ai−1

Ai

[
�(x̆i, yλ(x̆i))+ 〈∇x�(x̆i, yλ(x̆i)), x− x̆i〉X − 1

λ
(dw2)y−(yλ(x̆i))

]

=
k∑

i=1

Ai − Ai−1

Ai
[fλ(x̆i)+ 〈∇fλ(x̆i), x− x̆i〉X ], (67)

where the last equality is due to (42), (44) and (45). Combining (66) and (67), and using (43)
and (47), we then conclude that

�̂(x̃k , y)− 1

λ
(dw2)y−(y)+

1

λ
(dw1)x−(x̃k)

≤ 	̃k(x)− 1

λ
(dw2)y−(ỹk)+ gλ(x)+ 1

η1Ak
(dw1)x−(x)

≤ 	̃k(x)− 1

λ
(dw2)y−(ỹk)+ φ(x)+ 1

λk
(dw1)x−(x), ∀(x, y) ∈ Z.

Now, using (47) and the assumption that λk ≥ (1− σ)λ, we have that (1− σ)/λk ≤ 1/λ ≤ 1/λk .
Combining these inequalities with the previous relation, we obtain (64). �

We now end this subsection by observing that Proposition 4.2 follows immediately from
Lemmas 4.6 and 4.7.
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Optimization Methods & Software 1265

5. Numerical experiments

This section presents computational results showing the numerical performance of the acceler-
ated NE-HPE method on a collection of saddle-point problems. All the computational results
were obtained using MATLAB R2014a on a Windows 64 bit machine with processor Intel
2.16 GHz with 4 GB memory.

The accelerated NE-HPE method (referred to as ACC-HPE) is compared with Nesterov’s
smoothing scheme [22] (referred to as NEST). We have implemented both algorithms based
on the Euclidean distance and the Bregman distance induced by the Kullback–Leibler diver-
gence, namely, dwz2(z1) =∑i z1

i log(z1
i /z

2
i )+ z1

i − z2
i . Our computational results then consider

four variants, namely, E-ACC-HPE, KL-ACC-HPE, E-NEST and KL-NEST, where the ones
starting with E- (resp., KL-) are the ones based on the Euclidean (resp., Kullback–Leibler log
distance). The implementation of all these variants are based on Nesterov’s accelerated gradient
method discussed in Section 2.2, namely, Algorithm 1. However, a restarting feature is added to
the implementation of both E-NEST and KL-NEST. Essentially, Algorithm 1 is restarted from
the most recent iterate whenever the objective function of the smoothing subproblem fails to
decrease. We have observed that adding the restarting feature to both E-NEST and KL-NEST
resulted in a minor improvement of their performance (which is probably due to the smoothing
nature of these two variants). The restarting feature was not added to the implementation of the
HPE variants since it did not improve their performance (which is probably due to the fact that
they perform a relatively small number of inner iterations to solve each of their subproblems).
Finally, we could have compared the aforementioned variants with the accelerated method of
[7]. However, since the E-ACC-HPE variant was compared with the accelerated method of [7]
in reference [13] and the two methods were found to have similar performance, we have decided
to leave the accelerated method of [7] out of our computational study in this section.

To improve the performance of the KL-variants, we have used the adaptive scheme for choos-
ing the parameter L given in [32], i.e. the initial value of L is set to a fraction of the true Lipschitz
constant value and is increased by a factor of 2 whenever it fails to satisfy a certain convergence
criterion (see Equations (23) and (45) of [32]). The fraction 1/29 was used in our experiments.
The same scheme was not used for the E-variants since we have observed that it does not improve
their performance. The value of L at the last iteration divided by the true Lipschitz constant var-
ied between 1/64 and 1 in our experiments. More specifically, this ratio was 1/64 for 1 instance,
1/32 for 3 instances, 1/8 for 1 instance, 1/4 for 4 instances, 1/2 for 12 instances and 1 for the
remaining instances.

The following four subsections report computational results on the following classes of prob-
lems: (a) zero-sum matrix game, (b) quadratic game, (c) vector–matrix saddle-point and (d)
minimizing the maximum of convex quadratic functions. The results are reported in tables and
in performance profiles (see [9]). We recall the following definition of a performance profile. For
a given instance, a method A is said to be at most x times slower than method B, if the time taken
by method A is at most x times the time taken by method B. A point (x, y) is in the performance
profile curve of a method if it can solve exactly 100% of all the tested instances x times slower
than any other competing method.

For the three first problem classes, the stopping criterion used to terminate all methods at the
kth iteration is

max
y∈Y

�̂(x̃k , y)−min
x∈X

�̂(x, ỹk) ≤ ε̄.

The use of this criterion for the second and third problem classes is not the best strategy from
the computational point of view, since the computation of the dual function involves solving a
quadratic programming problem over the unit simplex. Note that our method has the ability to
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1266 O. Kolossoski and R.D.C. Monteiro

compute at every iteration a pair ((x̃k , ỹk), εk) such that the above inequality holds with ε̄ = εk

and hence the above termination criterion will be satisfied whenever εk ≤ ε̄. Since the usual
description of Nesterov’s smoothing scheme generates (x̃k , ỹk) but not εk , we have opted for the
gap criterion but adopted the convention of excluding the effort to evaluate the dual functions
from the reported cpu times. Since we do not implement Nesterov’s smoothing schemes for the
fourth class of problems, we use for this class the stopping criterion ε̃j ≤ ε̄ where ε̃j is as in (31).

We let R
n denote the n-dimensional Euclidean space and Sn denote the linear space of n× n

real symmetric matrices. The unit simplex in R
n is defined as

�n :=
{

x ∈ R
n :

n∑
i=1

xi = 1, x ≥ 0

}
. (68)

5.1 Zero-sum matrix game problem

This subsection compares the performance of the four variants on instances of the zero-sum
matrix game problem

min
x∈�n

max
y∈�m

〈x, Ay〉,

where A is a real n× m matrix and �n, �m are given in (68). The matrices were generated so
that its elements are non-zero with probability p and the non-zero ones are randomly generated
in the interval [−1, 1]. We have tested the methods for a set of problems with different sizes of
matrices and different values of p. The tolerance used here was ε̄ = 10−4.

Table 1 reports the results of the four variants applied to several instances of this problem with
different sizes of matrices and different values of p.

Figure 1 gives the performance profile for the same set of instances. Overall, it shows that the
accelerated NE-HPE variants perform better than NEST variants on this set of zero-sum games
instances.

Finally, we have observed that the instances in Table 1 which E-ACC-HPE performed too
many iterations to solve (namely the first, second and last instances) are ones that satisfy n>m.
By running the algorithm with the transpose matrix so that now n<m, we have observed a
significant decrease in the number of iterations performed by E-ACC-HPE. We have, however,
not reported these findings although it can be seen from Table 1 that instances with n<m are
usually easy for E-ACC-HPE to solve.

Table 1. Test results for the zero-sum matrix game problem (ε̄ = 1e− 4).

Size E-ACC-HPE E-NEST KL-ACC-HPE KL-NEST

n m p Time Iter. Time Iter. Time Iter. Time Iter.

1000 100 0.01 174.3864 131,359 138.119 106,259 91.5114 32,465 123.529 69,887
1000 100 0.02 305.3871 254,661 194.055 95,060 74.2447 55,461 80.7436 52,114
1000 1000 0.01 1.5908 978 339.334 205,336 167.1044 82,073 184.826 79,856
1000 1000 0.02 3.2378 1836 396.728 192,183 126.0967 56,404 139.102 62,115
1000 10,000 0.01 2.9961 495 195.446 24,701 451.2670 49,351 452.116 68,855
1000 10,000 0.02 7.1158 978 440.115 44,226 456.4244 51,364 526.755 58,229
10,000 100 0.01 19.2045 6363 582.755 169,582 177.5826 54,432 193.402 52,268
10,000 100 0.02 8.8340 2493 1075.75 295,855 176.9932 41,964 244.735 60,115
10,000 1000 0.01 2.8091 531 1219.55 405,663 356.6100 73,020 1204.42 70,718
10,000 1000 0.02 11,717.8 594,684 2967.5 379,056 1104.8 77,524 1048.45 69,998
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Optimization Methods & Software 1267

Figure 1. Performance profile for the zero-sum matrix problem (ε̄ = 1e− 4).

5.2 Quadratic game problem

This subsection compares the four variants on instances of the quadratic game problem

min
x∈�n

max
y∈�m

1

2
‖Bx‖2 + 〈x, Ay〉

for different sizes of matrices and different values of p. The matrices were generated in the same
way as in the zero-sum matrix game problem (see Section 5.1). The tolerance used was ε̄ = 10−3.

Table 2 reports the results of the four variants applied to several instances of this problem with
different sizes of matrices and different values of p.

Figure 2 gives the performance profile for the same set of instances. It shows that the accel-
erated NE-HPE variant based on the Euclidean (resp., Kullback–Leibler log) distance performs
better than the NEST variant based on the Euclidean (resp., Kullback–Leibler log) distance on
this set of quadratic game instances.

Table 2. Test results for the quadratic game problem (ε̄ = 1e− 3).

Size E-ACC-HPE E-NEST KL-ACC-HPE KL-NEST

n m p Time Iter. Time Iter. Time Iter. Time Iter.

100 100 0.01 0.1814 25 0.4271 210 0.3035 725 7.7894 2760
100 1000 0.01 0.2905 45 1.2477 3265 0.7193 1260 9.3556 2275
1000 100 0.01 0.3812 765 0.7559 210 15.3816 1925 10.2989 2055
1000 1000 0.01 0.3706 60 11.0226 4820 12.0675 1245 12.2159 2255
100 100 0.1 0.4913 75 11.6642 3060 6.7952 720 9.2554 1685
100 1000 0.1 0.3342 70 13.8469 6630 7.8718 1055 12.0627 1635
1000 100 0.1 10.4097 1140 13.7982 5065 10.4403 1940 11.8599 1925
1000 1000 0.1 11.5278 1800 15.7258 6150 9.7203 1045 11.9566 1750
100 100 0.2 5.5546 460 9.2208 4690 8.7195 695 11.5903 1465
100 1000 0.2 0.3995 95 26.9528 9605 9.4831 1025 12.1928 1390
1000 100 0.2 13.7596 2100 22.1286 6870 8.3569 685 17.6890 1795
1000 1000 0.2 19.4915 3805 25.7224 4370 9.7182 1145 17.5225 2625
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1268 O. Kolossoski and R.D.C. Monteiro

Figure 2. Performance profile for the quadratic game problem (ε̄ = 1e− 3).

5.3 Vector–matrix saddle-point problem

This subsection compares the four variants on instances of the vector–matrix saddle-point prob-
lem. Given c ∈ R

n, a real n× n matrix B and a linear operator A : R
n → Sm, the vector–matrix

saddle-point problem is

min
x∈�n

1

2
‖Bx+ c‖2 + θmax(A(x)),

where θmax(A(x)) denotes the largest eigenvalue of A(x). Such problem is equivalent to the
saddle-point problem

min
x∈�n

max
y∈�

1

2
‖Bx+ c‖2 + 〈A(x), y〉,

where � := {y ∈ Sm : tr(y) = 1, y is positive definite} and �n is given in (68). We have tested
the four variants on a set of problems where the matrices B and Ai := A(ei), i = 1, . . . , n, were
generated so that its elements are non-zero with probability 0.1 and the non-zero ones are ran-
domly generated in the interval [−1, 1]. (Here, ei denotes the ith unit n dimensional vector.) The
tolerance used was ε̄ = 10−3.

Table 3 reports the results of the four variants applied to several instances of this problem with
different sizes of matrices.

Figure 3 gives the performance profile for the same set of instances. It also shows that the
accelerated NE-HPE variants perform better than NEST variants on this set of vector–matrix
saddle-point instances.

5.4 Minimizing the maximum of convex quadratic functions

Consider m convex quadratic functions given as

fi(x) = 1

2
xTQix+ ct

ix+ γi, ∀x ∈ R
n

where for each i = 1, . . . , m, Qi are n× n positive semidefinite symmetric matrices, ci ∈ R
n

and γi ∈ R. Define f (x) = max{fi(x) : i = 1, . . . , m}. In this subsection, we use the accelerated
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Table 3. Test results for the vector-matrix saddle-point game problem (ε̄ = 1e− 3).

Size E-ACC-HPE E-NEST KL-ACC-HPE KL-NEST

n m Time Iter. Time Iter. Time Iter. Time Iter.

50 50 31.7197 3090 6.9952 871 21.638 3355 23.0662 2338
50 100 5.0795 207 25.8155 1061 26.4985 1585 25.2686 1786
50 200 273.052 1870 265.815 1856 108.54 1575 189.779 2085
100 50 2.8717 257 18.7195 1651 15.2115 2240 30.4799 2677
100 100 1.7303 103 14.7265 876 63.6484 2300 57.2244 2087
100 200 169.718 860 271.8164 1396 129.0064 1755 198.1275 2163
200 50 31.9003 1587 78.1515 3329 19.7539 2520 34.9962 2728
200 100 2.8319 149 15.8466 811 49.9772 1238 80.1758 2654
200 200 92.403 710 118.0432 986 147.0955 1930 209.543 2027

Figure 3. Performance profile for the vector–matrix saddle-point problem (ε̄ = 1e− 3).

NE-HPE method to solve the optimization problem

min{f (x) : x ∈ �n},

where �n is defined in (68). Clearly, the above problem is equivalent to the convex–concave
saddle-point problem

min
x∈�n

max
y∈�m

m∑
i=1

yifi(x), (69)

which is generally not a special case of the class of problems (3). However, it is a special
case of the class of problems considered in Section 4 in which X × Y = �n ×�m, φ = I�n

and �(x, y) =∑m
i=1 yifi(x) for all (x, y) ∈ R

n ×�m. Hence, problem (69) can be solved by the
accelerated NE-HPE method of Section 4.2.

Results are reported in Table 4 for eight instances of the above problem in which Qi and ci,
i = 1, . . . , m, are randomly generated for different pairs (n, m). The tolerance used was ε̄ = 10−4.
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1270 O. Kolossoski and R.D.C. Monteiro

Table 4. Test results for the maximum of convex quadratic functions problem (ε̄ = 1e− 4).

Size E-ACC-HPE KL-ACC-HPE

n m Time Iter. Time Iter.

10 10 3.4656 145 22.0530 711
10 20 16.4593 304 23.7624 4476
20 10 3.4124 446 16.7082 2197
20 20 41.2514 3342 131.5449 9342
50 10 25.8993 3730 88.3269 1294
50 20 64.4898 5726 196.6463 15,805
100 10 85.4456 9416 138.7094 15,708
100 20 255.2760 13,715 676.754 43,975

6. Concluding remarks

In this section, we make some final remarks about the computational results described in this
section. We have shown in Section 4.2 that the accelerated NE-HPE method has the same
complexity as Nesterov’s smoothing technique of [22]. The experiment results of this section
involving three problem sets have shown that the accelerated NE-HPE variants outperform the
variants of Nesterov’s smoothing scheme. The experiments have also shown that the accelerated
NE-HPE variant based on the Euclidean distance performs better than the accelerated NE-HPE
variant based on the Kullback–Leibler log distance.
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Appendix

This appendix presents two existence/uniqueness results about solutions of certain regularized convex minimization
and/or monotone inclusion problems.

We begin by stating without proof a well-known result about regularized convex minimization problems.

Proposition A.1 Let ψ : Z → [−∞,∞] be a proper closed convex function and w be a distance generating function
such that dom ψ ∩ int(dom w) �= ∅ and w is strongly convex on dom ψ . Then, for any z− ∈ dom ψ ∩ int(dom w), the
problem

inf{ψ(u)+ (dw)z− (u) : u ∈ Z}
has a unique optimal solution z, which necessarily lies in dom ψ ∩ int(dom w). Moreover, z is the unique zero of the
inclusion ∇w(z−) ∈ (∂ψ + ∂w)(z).

The next result gives a version of Proposition A.1 in the context of regularized monotone operators.

Proposition A.2 Let T : Z ⇒Z be a maximal monotone operator and w : Z → [−∞,∞] be a distance generating
function such that int(dom w) ⊃ ri(Dom T) and w is strongly convex on ri(Dom T). Then, for every z− ∈ int(dom w), the
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inclusion 0 ∈ (T + ∂(dw)z− )(z) has a unique solution z, which must necessarily be on Dom T ∩ int(dom w) and hence
satisfy the inclusion 0 ∈ (T +∇(dw)z− )(z).

Proof Let z− ∈ int(dom w) be given. First note that

int(dom w) ⊂ Dom(∂w) = Dom(∂(dw)z− ) ⊂ dom w,

from which we conclude that ri(Dom(∂(dw)z− ) = int(dom w). Moreover, by Proposition 2.40 and Theorem 12.41 of
[26], we have that ri(Dom T) �= ∅. These two observations then imply that

ri(Dom T) ∩ ri(Dom(∂(dw)z− ) = ri(Dom T) ∩ int(dom w) = ri(Dom T) �= ∅. (A1)

Clearly, (dw)z− (·) is a proper lower semicontinuous function due to Definition 3.1 and (20), and hence ∂(dw)z− is
maximal monotone in view of Theorem 12.17 of [26]. Thus, it follows from (A1), the last conclusion, the assumption
that T is maximal monotone and Corollary 12.44 of [26] that T + ∂(dw)z− is maximal monotone. Moreover, since w
is strongly convex on ri(Dom T), it follows that ∂(dw)z− is strongly monotone on ri(Dom T). By using a simple limit
argument and the fact that ∂w is a continuous map on int(dom w) due to Definition 3.1, we conclude that ∂(dw)z− is
strongly monotone on the larger set Dom T ∩ int(dom w). Since the latter set is equal to Dom(T + ∂(dw)z− ) and T is
monotone, we conclude that T + ∂(dw)z− is strongly monotone. The first conclusion of the proposition now follows
from Proposition 12.54 of [26]. The second conclusion follows immediately from the first one and the fact that, by
Definition 3.1, Dom (∂w) = int(dom w). �
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