

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. OPTIM. c© 2009 Society for Industrial and Applied Mathematics
Vol. 19, No. 4, pp. 1918–1946

A POLYNOMIAL PREDICTOR-CORRECTOR TRUST-REGION
ALGORITHM FOR LINEAR PROGRAMMING∗

GUANGHUI LAN† , RENATO D. C. MONTEIRO† , AND TAKASHI TSUCHIYA‡

Abstract. In this paper we present a scaling-invariant, interior-point, predictor-corrector type
algorithm for linear programming (LP) whose iteration-complexity is polynomially bounded by the
dimension and the logarithm of a certain condition number of the LP constraint matrix. At the
predictor stage, the algorithm either takes the step along the standard affine scaling (AS) direction
or a new trust-region type direction, whose construction depends on a scaling-invariant bipartition of
the variables determined by the AS direction. This contrasts with the layered least squares direction
introduced in S. Vavasis and Y. Ye [Math. Program., 74 (1996), pp. 79–120], whose construction
depends on multiple-layered partitions of the variables that are not scaling-invariant. Moreover, it is
shown that the overall arithmetic complexity of the algorithm (weakly) depends on the right-hand
side and the cost of the LP in view of the work involved in the computation of the trust region steps.

Key words. interior-point algorithms, primal-dual algorithms, path-following, trust-region,
central path, layered steps, condition number, polynomial complexity, predictor-corrector, affine
scaling, strongly polynomial, linear programming

AMS subject classifications. 65K05, 68Q25, 90C05, 90C51, 90C60

DOI. 10.1137/070693461

1. Introduction. We consider the linear programming (LP) problem

minimizex cTx
subject to Ax = b, x ≥ 0(1)

and its associated dual problem

maximize(y,s) bT y
subject to AT y + s = c, s ≥ 0,(2)

where A ∈ �m×n, c ∈ �n, and b ∈ �m are given, and the vectors x, s ∈ �n, and
y ∈ �m are the unknown variables.

Karmarkar in his seminal paper [4] proposed the first polynomially convergent
interior-point method with an O(nL) iteration-complexity bound, where L is the size
of the LP instance (1). The first path-following interior-point algorithm was proposed
by Renegar in his breakthrough paper [17]. Renegar’s method closely follows the
primal central path and exhibits an O(

√
nL) iteration-complexity bound. The first

path-following algorithm that simultaneously generates iterates in both the primal and
dual spaces has been proposed by Kojima, Mizuno, and Yoshise [5] and Tanabe [19],
based on ideas suggested by Megiddo [7]. In contrast to Renegar’s algorithm, Kojima
et al.’s algorithm has an O(nL) iteration-complexity bound. A primal-dual path-
following with an O(

√
nL) iteration-complexity bound was subsequently obtained by

∗Received by the editors June 1, 2007; accepted for publication (in revised form) November 6,
2008; published electronically February 27, 2009.

http://www.siam.org/journals/siopt/19-4/69346.html
†School of ISyE, Georgia Institute of Technology, Atlanta, Georgia 30332 (glan@isye.gatech.edu,

monteiro@isye.gatech.edu). The first author was supported by NSF Grant CCR-0430644 and ONR
Grants N00014-05-1-0183 and N00014-08-1-0033. The second author was supported in part by NSF
Grants CCR-0430644 and CCF-0808863 and ONR Grant N00014-05-1-0183 and N00014-08-1-0033.

‡The Institute of Statistical Mathematics, 4-6-7 Minami-Azabu, Minato-Ku, Tokyo, 106-8569,
Japan (tsuchiya@sun312.ism.ac.jp).

1918

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A POLYNOMIAL PC-TR ALGORITHM FOR LP 1919

Kojima, Mizuno, and Yoshise [6] and Monteiro and Adler [11, 12] independently.
Following these developments, many other primal-dual interior-point algorithms for
linear programming have been proposed.

An outstanding open problem in optimization is whether there exists a strongly
polynomial algorithm for linear programming, that is one whose complexity is bounded
by a polynomial of m and n only. A major effort in this direction is due to Tardos
[20] who developed a polynomial-time algorithm whose complexity is bounded by a
polynomial of m, n, and LA, where LA denotes the size of A. Such an algorithm gives
a strongly polynomial method for the important class of linear programming problems
where the entries of A are either 1, −1, or 0, e.g., LP formulations of network flow
problems. Tardos’ algorithm consists of solving a sequence of “low-sized” LP prob-
lems by a standard polynomially convergent LP method and using their solutions to
obtain the solution of the original LP problem.

The development of a method which works entirely in the context of the original
LP problem and whose complexity is also bounded by a polynomial of m, n, and LA

is due to Vavasis and Ye [28]. Their method is a primal-dual, path-following, interior-
point algorithm similar to the ones mentioned above except that it uses once in a while
a crucial step, namely the least layered square (LLS) direction. They showed that
their method has an O(n3.5(log χ̄A + logn)) iteration-complexity bound, where χ̄A

is a condition number associated with A having the property that log χ̄A = O(LA).
The number χ̄A was first introduced implicitly by Dikin [2] in the study of primal
affine scaling (AS) algorithms, and was later studied by several researchers including
Vanderbei and Lagarias [27], Todd [21], and Stewart [18]. Properties of χ̄A are studied
in [3, 25, 26].

The complexity analysis of Vavasis and Ye’s algorithm is based on the notion
of crossover event, a combinatorial event concerning the central path. Intuitively, a
crossover event occurs between two variables when one of them is larger than the other
at a point in the central path and then becomes smaller asymptotically as the optimal
solution set is approached. Vavasis and Ye showed that there can be at most n(n−1)/2
crossover events and that a distinct crossover event occurs everyO(n1.5(log χ̄A+logn))
iterations, from which they deduced the overall O(n3.5(log χ̄A + logn)) iteration-
complexity bound. In [10], an LP instance is given where the number of crossover
events is Θ(n2).

One difficulty of Vavasis and Ye’s method is that it requires the explicit knowl-
edge of χ̄A in order to determine a partition of the variables into layers used in the
computation of the LLS step. This difficulty was remedied in a variant proposed by
Megiddo, Mizuno, and Tsuchiya [8] which does not require the explicit knowledge of
the number χ̄A. They observed that at most n types of partitions arise as χ̄A varies
from 1 to ∞, and that one of these can be used to compute the LLS step. Based on
this idea, they developed a variant which computes the LLS steps for all these parti-
tions and picks the one that yields the greatest duality gap reduction at the current
iteration. Another approach that also remedies the above difficulty was proposed by
Monteiro and Tsuchiya [14]. Their algorithm computes only one LLS step per itera-
tion without any explicit knowledge of χ̄A. This method is a predictor-corrector type
algorithm like the one described in [9] except that at the predictor stage it takes a
step along either the primal-dual AS step or the LLS step. In contrast to the LLS
step used in Vavasis and Ye’s algorithm, the partition of variables used for computing
the LLS step is constructed from the information provided by the AS direction and
hence does not require any knowledge on χ̄A. Both of these variants ([8], [14]) have
exactly the same overall complexity as Vavasis and Ye’s algorithm.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1920 G. LAN, R. D. C. MONTEIRO, AND T. TSUCHIYA

Another disadvantage associated with Vavasis and Ye’s algorithm, as well as its
variants in [8] and [14], is that they are not scaling-invariant under the change of
variables (x, y, s) = (Dx̃, ỹ,D−1s̃), where D is a positive diagonal matrix. Hence,
when these algorithms are applied to the scaled pair of LP problems, the number of
iterations performed by it generally changes and is now bounded by O(n3.5 log(χ̄AD +
n)), as AD is the coefficient matrix for the scaled pair of LP problems. On the
other hand, using the notion of crossover events, LLS steps and a few other nontrivial
ideas, Monteiro and Tsuchiya [15] have shown that, for the Mizuno-Todd-Ye predictor-
corrector (MTY P-C) algorithm, the number of iterations needed to approximately
traverse the central path from μ0 to μf is bounded by O(n3.5 log(χ̄∗

A+n)+T (μ0/μf)),
where χ̄∗

A is the infimum of χ̄AD as D varies over the set of positive diagonal matrices
and T (t) ≡ min{n2 log(log t), log t} for all t > 0. The condition number χ̄∗

A is clearly
scaling-invariant and the ratio χ̄∗

A/χ̄A, as a function of A, can be arbitrarily small
(see [15]). Hence, while the iteration-complexity obtained in [15] for the MTY P-C
algorithm has the extra term T (μ0/μf), its first term can be considerably smaller
than the bound obtained by Vavasis and Ye. Also note that, as μ0/μf grows to ∞,
the iteration-complexity bound obtained in [15] is smaller than the classical iteration-
complexity bound of O(

√
n log(μ0/μf)) established in [9] for the MTY P-C algorithm.

An interesting open problem is whether one can develop a scaling-invariant interior-
point algorithm for linear programming whose iteration-complexity and arithmetic-
complexity are bounded by a polynomial of n and log χ̄∗

A. In this paper, we par-
tially answer the above question by presenting a predictor-corrector type algorithm,
referred to as the predictor-corrector trust-region (PC-TR) algorithm, which has
O(n3.5 log(χ̄∗

A + n)) iteration-complexity bound. It is a predictor-corrector algorithm
similar to the one developed in [9] except that, at the predictor stage, it takes a step
along either the AS direction or a trust-region (TR) type step. Unlike the LLS di-
rection used in the predictor-corrector algorithm of [14], the TR direction depends
on a scaling-invariant bipartition of the variables and hence it is a scaling-invariant
direction. Its iteration can be briefly described as follows. First, the AS direction is
computed and a test involving this direction is performed to determine whether the
TR step is needed. If the TR direction is not needed, a step along the AS direction,
followed by a standard corrector step, is taken as usual. Otherwise, the AS direction
determines a scaling-invariant bipartition of the variables which allows to construct
a pair of primal and dual trust region subproblems whose optimal solutions yield the
TR direction. Then the algorithm takes a step along either the AS or the TR di-
rection whichever yields the largest duality gap reduction. Moreover, we show that
the overall arithmetic complexity of the PC-TR algorithm (weakly) depends also on
b and c due to work involved in the computation of the trust region steps.

The organization of the paper is as follows. Section 2 consists of six subsections.
In subsection 2.1, we review the notion of the primal-dual central path and its associ-
ated two norm neighborhoods. Subsection 2.2 introduces the notion of the condition
number χ̄A of a matrix A and describes the properties of χ̄A that will be useful in
our analysis. Subsection 2.3 reviews the AS step and the corrector (or centrality)
step which are the basic ingredients of several well-known, interior-point algorithms.
Subsection 2.4 motivates and formally introduces the TR step. Subsection 2.5 de-
scribes an interior-point algorithm based on these TR steps, which we refer to as the
predictor-corrector trust-region (PC-TR) algorithm, and states one of main results
of this paper which gives an upper bound on the iteration-complexity of the PC-TR
algorithm. Subsection 2.6 introduces a variant of the PC-TR algorithm with the same
iteration-complexity as the latter one and discusses a procedure for computing the TR

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A POLYNOMIAL PC-TR ALGORITHM FOR LP 1921

steps used by this variant. It also states the other main result of this paper regard-
ing the overall arithmetic complexity of the above variant of the PC-TR algorithm.
Section 3, which consists of three subsections, introduces some basic tools which are
used in our convergence analysis. Subsection 3.1 discusses the notion of crossover
events. Subsection 3.2 introduces the LLS direction and states an approximation re-
sult that provides an estimation of the closeness between the AS direction and the
LLS direction. Subsection 3.3 reviews an important result, which basically provides
sufficient conditions for the occurrence of crossover events. Section 4 is dedicated to
the proof of the main result stated in subsection 2.5. Section 5 provides the proof
of the other main result stated in subsection 2.6 regarding the arithmetic complexity
of the variant of the PC-TR algorithm. Finally, the Appendix gives the proof of an
important lemma used in subsection 2.4 to motivate the definition of the TR step.

The following notation is used throughout our paper. We denote the vector of
all ones by e. Its dimension is always clear from the context. The symbols �n, �n

+,
and �n

++ denote the n-dimensional Euclidean space, the nonnegative orthant of �n,
and the positive orthant of �n, respectively. The set of all m × n matrices with real
entries is denoted by �m×n. If J is a finite index set, then |J | denotes its cardinality,
that is the number of elements of J . For J ⊆ {1, . . . , n} and w ∈ �n, we let wJ

denote the subvector [wi]i∈J ; moreover, if E is an m×n matrix, then EJ denotes the
m× |J | submatrix of E corresponding to J . For a vector w ∈ �n, we let max(w) and
min(w) denote the largest and the smallest component of w, respectively; Diag(w)
denote the diagonal matrix whose ith diagonal element is wi for i = 1, . . . , n; and for
an arbitrary α ∈ �, wα denote the vector [Diag(w)]αe whenever it is well-defined.
For two vectors u, v ∈ �n, uv denotes their Hadamard product, i.e., the vector in �n

whose ith component is uivi. The Euclidean norm, the 1-norm, and the ∞-norm are
denoted by ‖ · ‖, ‖ · ‖1, and ‖ · ‖∞, respectively. For a matrix E, Im(E) denotes the
subspace generated by the columns of E, and Ker(E) denotes the subspace orthogonal
to the rows of E. The superscript T denotes transpose.

2. The problem and algorithm. In this section we propose a predictor-
corrector, primal-dual, interior-point algorithm with trust-region steps for solving
linear programming (1) and (2). We also present the main convergence results for the
algorithm. One result establishes a polynomial iteration-complexity bound, namely,
O(n3.5 log(χ̄∗

A +n+ε−1
0)), where ε0 is a constant and χ̄∗

A is a certain scaling-invariant
condition number associated with the constraint matrix A, and the other result es-
tablishes a polynomial arithmetic complexity bound for the algorithm.

2.1. The central path. In this subsection we introduce the pair of primal and
dual linear programs and the assumptions used in our development. We also describe
the associated primal-dual central path and its corresponding two-norm neighbor-
hoods.

Given A ∈ �m×n, c ∈ �n, and b ∈ �m, consider the pairs of linear programs (1)
and (2), where x ∈ �n and (y, s) ∈ �m × �n are their respective variables. The set
of strictly feasible solutions for these problems are

P++ ≡ {x ∈ �n : Ax = b, x > 0},
D++ ≡ {(y, s) ∈ �m×n : AT y + s = c, s > 0},

respectively. Throughout the paper we make the following assumptions on the pair
of problems (1) and (2).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1922 G. LAN, R. D. C. MONTEIRO, AND T. TSUCHIYA

A.1 P++ and D++ are nonempty.
A.2 The rows of A are linearly independent.
Under the above assumptions, it is well known that for any ν > 0 the system,

xs = νe,(3)
Ax = b, x > 0,(4)

AT y + s = c, s > 0,(5)

has a unique solution (x, y, s), which we denote by (x(ν), y(ν), s(ν)). The central path
is the set consisting of all these solutions as ν varies in (0,∞). As ν converges to zero,
the path (x(ν), y(ν), s(ν)) converges to a primal-dual optimal solution (x∗, y∗, s∗) for
problems (1) and (2). Given a point w = (x, y, s) ∈ P++×D++, its duality gap and its
normalized duality gap are defined as xT s and μ = μ(x, s) ≡ xT s/n, respectively, and
the point (x(μ), y(μ), s(μ)) is said to be the central point associated with w. Note
that (x(μ), y(μ), s(μ)) also has normalized duality gap μ. We define the proximity
measure of a point w = (x, y, s) ∈ P++ ×D++ with respect to the central path by

η(w) ≡ ‖xs/μ− e‖.
Clearly, η(w) = 0 if and only if w = (x(μ), y(μ), s(μ)), or equivalently w coincides
with its associated central point. The two-norm neighborhood of the central path
with opening β > 0 is defined as

N (β) ≡ {w = (x, y, s) ∈ P++ ×D++ : η(w) ≤ β}.
Finally, for any point w = (x, y, s) ∈ P++ ×D++, we define

δ(w) ≡ s1/2x−1/2 ∈ �n.(6)

The following propositions provide important estimates which are used through-
out our analysis.

Proposition 2.1. For every 0 < ν1 ≤ ν2, we have

s(ν1) ≤ ns(ν2) and x(ν1) ≤ nx(ν2).(7)

Proof. Please refer to Lemma 16 of Vavasis and Ye [28].
Proposition 2.2. Let w = (x, y, s) ∈ N (β) for some β ∈ (0, 1) be given and

define δ ≡ δ(w). Let w(μ) = (x(μ), y(μ), s(μ)) be the central point associated with w.
Then:

1− β
(1 + β)1/2

δ ≤ s(μ)√
μ
≤ (1 + β)1/2

1− β δ.

Proof. This result is summarized in Proposition 2.1 in [14].

2.2. Condition number. In this subsection we define a certain condition num-
ber associated with the constraint matrix A and state the properties of χ̄A which will
play an important role in our analysis.

Let D denote the set of all positive definite n× n diagonal matrices and define

χ̄A ≡ sup
{
‖AT (AD̃AT)−1AD̃‖ : D̃ ∈ D

}

= sup
{

‖AT y‖
‖c‖ : y = argminỹ∈�n‖D̃1/2(AT ỹ − c)‖ for some 0 �= c∈�n and D̃ ∈ D

}
.

(8)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A POLYNOMIAL PC-TR ALGORITHM FOR LP 1923

The parameter χ̄A plays a fundamental role in the complexity analysis of algorithms
for linear programming and least square problems (see [28] and references therein). Its
finiteness has been firstly established by Dikin and Zorkalcev [2]. Other authors have
also given alternative derivations of the finiteness of χ̄A (see, for example, Stewart
[18], Todd [21], and Vanderbei and Lagarias [27]).

We summarize in the next proposition a few important facts about the parame-
ter χ̄A.

Proposition 2.3. Let A ∈ �m×n with full row rank be given. Then, the following
statements hold:

(a) χ̄GA = χ̄A for any nonsingular matrix G ∈ �m×m;
(b) χ̄A = max{‖G−1A‖ : G ∈ G} where G denotes the set of all m×m nonsingular

submatrices of A;
(c) if the m×m identity matrix is a submatrix of A and Ã is an r×n submatrix

of A, then ‖G̃−1Ã‖ ≤ χ̄A for every r × r nonsingular submatrix G̃ of Ã.
Proof. Statement (a) readily follows from the definition (8). The inequality

χ̄A ≥ max{‖G−1A‖ : G ∈ G} is established in Lemma 3 of [28] while the proof of the
reverse inequality is given in [21] (see also Theorem 1 of [22]). Hence, (b) holds. A
proof of (c) can be found in [14].

The condition number χ̄∗
A, defined by taking the infimum of the condition number

χ̄AD as D varies over the set of positive diagonal matrices, that is, χ̄∗
A ≡ inf{χ̄AD : D

∈ D}, also plays an important role in the convergence analysis for our algorithm.
Note that by definition, χ̄∗

A is a scaling-invariant quantity.

2.3. Predictor-corrector step. In this subsection we describe the well-known
predictor-corrector (P-C) iteration which is used by several interior-point algorithms
(see for example Mizuno et al. [9]). We also describe the properties of this iteration
which will be used in our analysis.

The P-C iteration consists of two steps, namely the predictor (or AS) step and
the corrector (or centrality) step. The search direction used by either step from a
current point in (x, y, s) ∈ P++ ×D++ is the solution of the following linear system
of equations

SΔx+XΔs = σμe− xs,
AΔx = 0,(9)

AT Δy + Δs = 0,

where μ = μ(x, s) and σ ∈ � is a prespecified parameter, commonly referred to as the
centrality parameter. When σ = 0, we denote the solution of (9) by (Δxa,Δya,Δsa)
and refer to it as the primal-dual affine scaling direction at w; it is the direction used
in the predictor step of the P-C iteration. When σ = 1, we denote the solution of (9)
by (Δxc,Δyc,Δsc) and refer to it as the corrector direction at w; it is the direction
used in the corrector step of the P-C iteration.

We are now ready to describe the entire predictor-corrector iteration. Suppose
that a constant β ∈ (0, 1/4] and a point w = (x, y, s) ∈ N (β) is given. The P-C
iteration generates another point (x+, y+, s+) ∈ N (β) as follows. It first moves along
the direction (Δxa,Δya,Δsa) until it hits the boundary of the enlarged neighbor-
hood N (2β). More specifically, it computes the point wa = (xa, ya, sa) ≡ (x, y, s) +
αa(Δxa,Δya,Δsa) where

αa ≡ sup {α ∈ [0, 1] : (x, y, s) + α(Δxa,Δya,Δsa) ∈ N (2β)}.(10)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1924 G. LAN, R. D. C. MONTEIRO, AND T. TSUCHIYA

Next, the P-C iteration generates a point inside the smaller neighborhood N (β) by
taking a unit step along the corrector direction (Δxc,Δyc,Δsc) at the point wa; that
is, it computes the point (x+, y+, s+) ≡ (xa, ya, sa) + (Δxc,Δyc,Δsc) ∈ N (β). The
successive repetition of this iteration leads to the so-called Mizuno–Todd–Ye (MTY)
predictor-corrector algorithm (see [9]).

Our method is very similar to the algorithm of [9] except that it sometimes re-
places the AS step by the trust-region step described in the next subsection. The
insertion of the trust region step in the above MTY predictor-corrector algorithm
guarantees that the modified method has the finite termination property. The trust-
region step is taken only when it yields a point with a smaller duality gap than the
one obtained from the AS step as described above.

In the remaining part of this subsection, we discuss some properties of the P-C
iteration and the primal-dual AS direction. For a proof of the next two propositions,
we refer the reader to [9].

Proposition 2.4 (predictor step). Suppose that w = (x, y, s) ∈ N (β) for some
constant β ∈ (0, 1/2]. Let Δwa = (Δxa,Δya,Δsa) denote the affine scaling direction
at wa and let αa be the step-size computed according to (10). Then the following
statements hold:

(a) the point w+αΔwa has normalized duality gap μ(α) = (1−α)μ for all α ∈ �;
(b) αa ≥

√
β/n and hence μ(αa)/μ ≤ 1−√β/n.

Proposition 2.5 (corrector step). Suppose that w = (x, y, s) ∈ N (2β) for some
constant β ∈ (0, 1/4] and let (Δxc,Δyc,Δsc) denote the corrector step at w. Then,
w+ Δwc ∈ N (β). Moreover, the (normalized) duality gap of w+ Δwc is the same as
that of w.

For the sake of future usage, we mention the following alternative characterization
of the primal-dual AS direction whose verification is straightforward:

Δxa ≡ argminp∈�n

{‖δ(x+ p)‖2 : Ap = 0
}
,(11)

(Δya,Δsa) ≡ argmin(r,q)∈�m×�n

{‖δ−1(s+ q)‖2 : AT r + q = 0
}
,(12)

where δ ≡ δ(w). For a search direction (Δx,Δy,Δs) at a point (x, y, s), the quantity

(Rx(w), Rs(w)) ≡
(
δ(x+ Δx)√

μ
,
δ−1(s+ Δs)√

μ

)

=
(
x1/2s1/2 + δΔx√

μ
,
x1/2s1/2 + δ−1Δs√

μ

)(13)

appears quite often in our analysis. We refer to it as the residual of (Δx,Δy,Δs).
Note that if (Rxa(w), Rsa(w)) is the residual of (Δxa,Δya,Δsa), then

Rxa(w) = − 1√
μ
δ−1Δsa, Rsa(w) = − 1√

μ
δΔxa,(14)

and

Rxa(w) +Rsa(w) =
x1/2s1/2

√
μ

,(15)

due to the fact that (Δxa,Δya,Δsa) satisfies the first equation in (9) with σ = 0. The
following quantity is used in the test to determine when the trust-region step should
be used in place of the AS step:

εa∞(w) ≡ max
i
{min {|Rxa

i (w)| , |Rsai (w)|}} .(16)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A POLYNOMIAL PC-TR ALGORITHM FOR LP 1925

We end this section by providing some estimates involving the residual of the AS
direction.

Lemma 2.6. Suppose that w = (x, y, s) ∈ N (β) for some β ∈ (0, 1/4]. Then, for
all i = 1, . . . , n, we have

max {|Rxa
i (w)|, |Rsai (w)|} ≥

√
1− β
2

≥ 1
4
.

Proof. Assume for a contradiction that for some i ∈ {1, . . . , n}, max{|Rxa
i (w)|,

|Rsai (w)|} < √1− β/2. Then, using (15), we obtain the following contradiction:

x
1/2
i s

1/2
i√
μ

= Rxa
i (w) +Rsai (w) ≤ |Rxa

i (w)| + |Rsai (w)| <
√

1− β ≤ x
1/2
i s

1/2
i√
μ

.

2.4. Trust region step. In this subsection we introduce a new type of search
step, namely, the trust-region (TR) step, and describe some properties about it.

The definition of the TR step is motivated by the following result regarding the
duality gap reduction obtained by moving along a search direction satisfying certain
conditions. This result can be viewed as a generalization of Lemma 4.6 in [14], and
its proof is given in the Appendix.

Lemma 2.7. Let w ∈ N (β) with β ∈ (0, 1/2] and a direction Δw = (Δx,Δy,Δs)
satisfying AΔx = 0 and AT Δy + Δs = 0 be given. Then, for any positive scalar γ
satisfying

(
4
√

2 +
√

2(1 + β)
)
γ ≤ β − 2β2

1 + 2β
(17)

and for any bipartition (B,N) of {1, 2, . . . , n}, the condition

max
{‖δBΔxB‖√

μ
,
‖δ−1

N ΔsN‖√
μ

}
≤ γ(18)

implies that

μ(w + ατΔw)
μ(w)

≤
√

1 + β + γ

2γ
max{‖RxN‖, ‖RsB‖},(19)

where ατ ≡ sup {α ∈ [0, 1] : w + αΔw ∈ N (2β)} and (Rx(w), Rs(w)) is defined in
(13).

A trivial application of Lemma 2.7 is as follows. Let (B,N) be the AS-bipartition
at w, i.e.,

B = B(w) ≡ {i : |Rsa
i (w)| ≤ |Rxa

i (w)|},
N = N(w) ≡ {i : |Rsa

i (w)| > |Rxa
i (w)|}.(20)

and let

εa2(w) := max{‖Rxa
N‖, ‖Rsa

B‖}.(21)

Then, in view of Lemma 2.7 and identity (14), the condition εa2(w) ≤ γ implies that

μ(w + αΔwa)
μ(w)

≤
√

1 + β + γ

2γ
εa2(w),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1926 G. LAN, R. D. C. MONTEIRO, AND T. TSUCHIYA

showing that the smaller the quantity εa2(w) is, the larger the reduction of the duality
gap will be, as it moves from w along the AS direction Δwa(w).

However, a more interesting application of Lemma 2.7 is towards deriving a new
scaling-invariant search direction, which we refer to as the trust-region direction (see
the definition below). This direction is the one which minimizes the right-hand side
of (19) subject to the condition (18) when (B,N) = (B(w), N(w)). To define this
direction, set (B,N) = (B(w), N(w)) and consider the two subproblems:

minimize ‖δN (xN + ΔxN)‖
subject to ‖δBΔxB‖/√μ ≤ γp

AΔx = 0
(22)

and

minimize ‖δ−1
B (sB + ΔsB)‖

subject to ‖δ−1
N ΔsN‖/√μ ≤ γd

AT Δy + Δs = 0
.(23)

Definition. Given w ∈ N (β) and positive scalars γp and γd, let Δxτ (w; γp)
and (Δyτ (w; γd), Δsτ (w; γd)) denote optimal solutions of subproblems (22) and (23),
respectively. The direction Δwτ (w; γp, γd) ≡ (Δxτ (w; γp),Δyτ (w; γd),Δsτ (w; γd)) is
then referred to as a trust-region direction at w with radius pair (γp, γd).

We now make a few observations regarding the above definition. First, it can
be easily shown that both subproblems (22) and (23) must have optimal solutions
although their optimal solutions are not necessarily unique. We will refer to any pair of
optimal solutions of subproblems (22) and (23) as a trust-region step corresponding to
the triple (w; γp, γd). Second, if εa2(w) ≤ min{γp, γd}, then the quantity ετ

2(w; γp, γd)
defined as

ετ
2(w; γp, γd) := max {‖Rxτ

N (w)‖ , ‖Rsτ
B(w)‖} ,(24)

where (Rxτ (w), Rsτ (w)) denotes the residual pair for the the TR direction Δwτ (w; γp,
γd), satisfies ετ

2(w; γp, γp) ≤ εa2(w). In other words, whenever the AS direction is a
reasonably good direction in the sense that εa2(w) is sufficiently small, then the TR
step is likely to be an even better direction in that it makes the right-hand side
of (19) smaller. Third, even though our definition of a TR step does not uniquely
characterize it, one can easily modify the definition to make it uniquely defined in the
following way. Without loss of generality, we consider only the primal direction, which
previously was defined as an optimal solution of (22). This clearly implies that Δxτ

N

is uniquely defined. Now, minimizing the quantity ‖δBΔxB‖ under the condition that
AΔx = 0 and ΔxN = Δxτ

N uniquely determines the component ΔxB , and hence the
whole primal TR step. We note, however, that our analysis does not require that the
TR step be uniquely determined and in fact works for any pair of optimal solutions
of (22) and (23).

2.5. Main algorithm and the convergence results. In this subsection, we
describe our algorithm, namely, the predictor-corrector trust-region (PC-TR) algo-
rithm, to solve the linear programming problem (1) and (2), and then state the main
result of this paper which guarantees the convergence of the method in a strong sense.
More specifically, this result states that the outer iteration-complexity bound for our
method depends only on n and the scaling-invariant condition number χ̄∗

A.
We start by stating our predictor-corrector trust-region algorithm.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A POLYNOMIAL PC-TR ALGORITHM FOR LP 1927

PC-TR Algorithm:

Let 0 < β ≤ 1/4 and γ > 0 satisfying (17), w0 ∈ N (β) and a scalar ε0
∈ (0, γ/3] be given.

Set μ0 ≡ μ(w0) and k = 0.

1) Set w = wk, compute the AS step Δwa at w and the residual εa2(w) as
defined in (21);

2) If εa2(w) > ε0, then set w ← w + αaΔwa, where αa is defined as in (10)
and go to 6);

3) Otherwise, compute the TR step Δwτ = Δwτ (w; γp, γd), for scalars
γp, γd ∈ [γ/2, 2γ];

4) Let wτ = w + ατ Δwτ , where ατ ≡ sup{α ∈ [0, 1] : w + αΔwτ ∈
N (2β)};

5) If μ(wτ) < (1 − αa)μ, then set w ← wτ , or else set w ← w + αaΔwa;
6) If μ(w) = 0, then stop;
7) Compute the corrector step Δwc at w and set w← w + Δwc;
8) Set wk+1 = w, increment k by 1 and go to 1).

End
We now make a few comments about the above algorithm. In the main body of the

algorithm, step 2 followed by step 7 is a standard predictor-corrector iteration of the
type described in subsection 2.3. This iteration is always performed in those iterations
for which εa2(w) > ε0(w). In order to save computation time, the TR step is computed
only in those iterations for which the current iterate w satisfies εa2(w) ≤ ε0. In these
iterations, the algorithm performs either a standard predictor-corrector iteration or
a TR-corrector iteration depending on which of the two iterations gives the lower
reduction of the duality gap. This test is performed in step 5 since the term (1−αa)μ
is the normalized duality gap obtained when the AS step is taken (see Proposition
2.4(a)).

For the sake of future reference, we note that (17) and the assumption that
β ∈ (0, 1/4] imply that

γ ≤ 1
20
, ε0 ≤ γ

3
≤ 1

60
.(25)

We refer to an iteration where the TR step is computed as a TR-iteration. The
following result is immediate from Lemma 2.7 and the definition of a TR-iteration.

Proposition 2.8. Let w be an iterate of the PC-TR algorithm and assume that
the next iterate w+ after w is obtained by means of a TR-iteration. Then,

μ(w+)
μ(w)

≤
√

1 + β + γ

2γ
ετ
2(w; γp, γd) ≤

√
1 + β + γ

2γ
εa2(w) ≤

√
1 + β + γ

2γ
ε0 ≤ 1

4
.(26)

Proof. First note that if the iteration from w is a TR-iteration, then we have
εa2(w) ≤ ε0 ≤ γ/3 ≤ min{γp, γd}. The first three inequalities in (26) follow from
Lemma 2.7, the previous observation, and the second observation after (23). More-
over, the last inequality in (26) follows from (25) and the fact that β ≤ 1/4.

We have the following convergence result for the above algorithm.
Theorem 2.9. The PC-TR algorithm described above finds a primal-dual optimal

solution w = (x∗, s∗, y∗) of (1) and (2) in at most O(n3.5 log(χ̄∗
A+n+ε−1

0)) iterations,
of which O(n3 log(χ̄∗

A + n+ ε−1
0)/ log ε−1

0) are TR-iterations. In particular, if ε−1
0 =

O((n+ χ̄∗
A)κ) for some constant κ > 0, then the total number of iterations is bounded

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1928 G. LAN, R. D. C. MONTEIRO, AND T. TSUCHIYA

by O(n3.5 log(χ̄∗
A + n)). Also, if ε−1

0 = Ω((n + χ̄∗
A)κ) for some constant κ > 0, then

the number of TR-iterations is bounded by O(n3).
Note that the PC-TR algorithm is scaling-invariant; i.e., if the change of variables

(x, y, s) = (Dx̃, ỹ,D−1s̃) for some D ∈ D is performed on the pair of problems (1) and
(2) and the PC-TR algorithm is applied to the new dual pair of scaled problems, then
the sequence of iterates w̃k generated satisfies (xk, yk, sk) = (Dx̃k, ỹk, D−1s̃k) for all
k ≥ 1, as long as the initial iterate w̃0 ∈ N (β) in the w̃-space satisfies (x0, y0, s0) =
(Dx̃0, ỹ0, D−1s̃0). For this reason, the PC-TR algorithm should have an iteration-
complexity bound which does not depend on the scaled space where the sequence of
iterates is generated. Indeed, the iteration-complexity bound stated in Theorem 2.9
is scaling-invariant since the condition number χ̄∗

A is too. It is worth noting that
the PC-TR algorithm is also scaling-invariant with respect to a more strict notion of
scaling invariance described in Tunçel [24], which corresponds to choosing the set D
in the above defintion as the full automorphism group of Rn

+. Note that the latter
set is larger than the set of positive diagonal maps since it contains the permutation
maps, and hence it leads to a stronger notion of scaling invariance.

We note also that, to prove Theorem 2.9, it suffices to show that the the num-
ber of iterations of the PC-TR algorithm applied to (1) and (2) is bounded by
O(n3.5 log(χ̄A + n + ε−1

0)). Indeed, since in the D-scaled space, the iterates can
also be viewed as being generated by the PC-TR algorithm (started from a different
point), then its complexity is also bounded by

O(n3.5 log(χ̄AD + n+ ε−1
0)),(27)

and hence by the infimum of (27) over all D ∈ D, that is, by O(n3.5 log(χ̄∗
A+n+ε−1

0)).
Finally, Theorem 2.9 does not deal with the overall arithmetic complexity of the

PC-TR algorithm. This issue will be dealt with in the next subsection and section 5,
where we discuss the arithmetic complexity involved in the computation of a TR step
for a suitable variant of the PC-TR algorithm. Roughly speaking, we will derive a
bound on the number of arithmetic operations required to compute a TR step which
depends on the ratio between the current duality gap and the initial duality gap. This
implies that the overall arithmetic complexity obtained in this paper for the above
variant of the PC-TR algorithm depends (weakly) on b and c, though its number of
iterations just depends on A as shown in Theorem 2.13.

2.6. Computing the TR step. In this subsection, we present an algorithm to
compute the TR step and derive the arithmetic complexity for the PC-TR algorithm.

For the sake of simplicity, we focus our discussion on the computation of the primal
TR direction. We start by introducing a search direction that is closely related to the
optimal solution of (22). Given a scalar λ > 0 and w ∈ P++ ×D++, consider the
following direction defined as

Δx(λ) := argmin
{‖δN (xN + ΔxN)‖2 + λ‖δBΔxB‖2 : AΔx = 0

}
,(28)

where δ ≡ δ(w) and (B,N) ≡ (B(w), N(w)). Note that this direction is well-defined
in the sense that the above optimization problem has a unique optimal solution. Now,
let ψp : �++ → �+ denote the mapping given by

ψp(λ) ≡ ‖δBΔxB(λ)‖√
μ

,(29)

where μ ≡ μ(w).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A POLYNOMIAL PC-TR ALGORITHM FOR LP 1929

The following technical result can be proved regarding the functions Δx(λ) and
ψp(λ). Note that in the discussion below, we denote the derivatives of Δx(λ) and
ψp(λ) as Δx′(λ) and ψ′

p(λ), respectively.
Lemma 2.10. The following statements hold:
(a) The limits Δx(0) ≡ limλ→0+ Δx(λ) and ψp(0) ≡ limλ→0+ ψp(λ) exist and are

given by

ΔxN (0) = argmin
{‖δN(xN + ΔxN)‖2 : ANΔxN ∈ Im(AB)

}
,(30)

ΔxB(0) = argmin
{‖δBΔxB‖2 : ABΔxB = −ANΔxN (0)

}
,(31)

ψp(0) = ‖δBΔxB(0)‖/√μ.(32)

(b) The limit Δx′B(0) ≡ limλ→0+ Δx′B(λ) exists. Moreover, if ψp(0) �= 0, then
ψ′

p(0) ≡ limλ→0+ ψ′
p(λ) also exists;

(c) If ψp(0) �= 0, then the function ψp(·) is strictly convex, strictly decreasing,
and limλ→∞ ψp(λ) = 0; otherwise, if ψp(0) = 0, then the function ψp(·) is
identically zero.

(d) If 0 < λ1 ≤ λ2, then ψp(λ1)/ψp(λ2) ≤ λ2/λ1 (with the convention that
0/0 = 0).

We note that, in view of Lemma 2.10, the functions Δx(λ) and ψp(λ) can be
extended to λ = 0 and their extensions are continuously differentiable at λ = 0. The
following result relates the direction Δx(λ) above to the primal TR direction, i.e., the
optimal solutions of (22).

Lemma 2.11. The following statements hold:
(a) For any λ > 0, Δx(λ) is an optimal solution of (22) with γp = ψp(λ);
(b) Δx(0) is an optimal solution of (22) for any γp ≥ ψp(0).
Proof. (a) Using the fact that Δx(λ) satisfies the optimality conditions for (28),

we easily see that it also satisfies the optimality conditions, and hence is an optimal
solution, of (22) with γp = ψp(λ).

(b) In view of Lemma 2.10, we can pass the optimality conditions of (28) to the
limit as λ ↓ 0 to conclude that AΔx(0) = 0 and δ2N (xN + ΔxN (0)) ∈ Im(AT). This
together with (29) and the assumption that γp ≥ ψp(0) imply that Δx(0) satisfies the
optimality conditions, and hence is an optimal solution, of (22).

Using the above results, the primal TR direction required by the algorithm can be
computed as follows. Recall that the goal is to find an optimal solution of (22) for some
γp ∈ [γ/2, 2γ]. We start by computing Δx(0) and then ψp(0). If ψp(0) ≤ 2γ, then by
Lemma 2.11(b), we conclude that Δx(0) is an optimal solution of (22) with γp = 2γ,
and hence can be chosen as the required TR direction. Otherwise, if ψp(0) > 2γ, we
search for some λp > 0 such that

γ/2 ≤ ψp(λp) ≤ 2γ,(33)

which always exists in view of Lemma 2.10(c) and the fact that ψp(0) > 2γ.
Now, to find some λp > 0 satisfying (33), it suffices to determine 0 < λl ≤ λu

such that

ψp(λl) ≥ γ ≥ ψp(λu),(34)
λu/λl ≤ 2.(35)

In such a case, any scalar λp ∈ [λl, λu] satisfies (33). Indeed, by Lemma 2.10(d), we
have

γ

2
≤ λl

λu
γ ≤ λl

λp
ψp(λl) ≤ ψp(λp) ≤ λu

λp
ψp(λu) ≤ λu

λl
γ ≤ 2γ.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1930 G. LAN, R. D. C. MONTEIRO, AND T. TSUCHIYA

Assuming that initial λl and λu satisfying (34) are given, a standard bisection proce-
dure on the (log λ)-space can then be used to determine scalars λl and λu satisfying
both (34) and (35). An iteration of this bisection scheme updates λl or λu as follows.
First, compute λ̃ such that log λ̃ = (logλl + logλu)/2, that is λ̃ = (λlλu)1/2. Second,
if ψp(λ̃) > γ, λl is updated to λ̃; otherwise λu is updated to λ̃. It is clear that each it-
eration of this bisection scheme always preserves condition (34) and halves the length
of the interval [logλl, logλu]. Hence, it eventually finds a pair (λl, λu) satisfying (34)
and (35) in O(log(log(λu/λl))) bisection iterations, where λl and λu are the initial
values of these scalars at the start of the procedure.

It remains to describe how to choose initial scalars 0 < λl ≤ λu such that (34)
holds. We first focus our attention on the description of λl. Since ψp(λ) is convex,
we have ψp(λ) ≥ ψp(0) + ψ′

p(0)λ for every λ > 0. Hence, choosing λl to be the root
of the linear equation ψp(0) + ψ′

p(0)λ = γ, i.e.,

λl =
ψp(0)− γ
|ψ′

p(0)| ,

we conclude that ψp(λl) ≥ γ.
The following lemma provides the needed information to obtain a lower bound on

λl. We observe that, in spite of the notation, the quantities ψp(0) and ψ′
p(0) depend

on the point w ∈ P++ ×D++.
Lemma 2.12. Let w0 denote the initial iterate of the PC-TR algorithm and set

μ0 = μ(w0). Then, for any w ∈ N (β) such that μ := μ(w) ≤ μ0, we have

ψp(0)
|ψ′

p(0)| ≥
(1− β)8μ2

n4(1 + β)4μ2
0 χ̄

2
Aδ−1

0

.(36)

Using the above result, a lower bound on λl can be obtained by observing that,
under the assumption that ψp(0) ≥ 2γ, we have

λl =
ψp(0)− γ
|ψ′

p(0)| ≥
ψp(0)

2 |ψ′
p(0)| ≥

(1− β)8μ2

2n4 (1 + β)4μ2
0 χ̄

2
Aδ−1

0

.(37)

We now discuss how to choose the initial scalar λu satisfying (34). In contrast
to the choice of λl, there is no clear way of choosing λu for an arbitrary curve ψp(λ).
Fortunately, the PC-TR algorithm stated in the previous subsection can be slightly
modified so as to compute the TR step only when the condition ψp(1) ≤ γ (in addition
to the previously required condition that εa2(w) > ε0) is satisfied. Hence, we may
always choose the initial λu to be 1. In view of our discussion above, we conclude
that the computation of a TR step in this variant of the PC-TR algorithm requires
O (log logλ−1

l

)
bisection steps, which is bounded by

O
[
log
(

log χ̄Aδ−1
0

+ log
μ0

μ

)]
(38)

bisection steps, in view of (37).
We will now precisely discuss the variant of the PC-TR algorithm mentioned in

the previous paragraph. First, we mention that the whole discussion of this subsection
up to this point also applies to the computation of the dual TR direction, with the
dual auxiliary direction

(Δy(λ),Δs(λ)) := argmin{‖δ−1
B (sB + ΔsB)‖2
+ λ‖δ−1

N ΔsN‖2 : AT Δy + Δs = 0}(39)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A POLYNOMIAL PC-TR ALGORITHM FOR LP 1931

replacing Δx(λ) and the dual curve

ψd(λ) ≡ ‖δ
−1
N ΔsN (λ)‖√

μ
(40)

replacing ψp(λ). We then have the following convergence result about a certain variant
of the PC-TR algorithm.

Theorem 2.13. Consider the variant of the PC-TR algorithm where step 2) is
replaced by the following step:

2’) If εa2(w) > ε0 and max{ψp(1), ψd(1)} > γ/18, then set w ← w + αaΔwa,
where αa is defined as in (10) and go to 6);

Then, the conclusions of Theorem 2.9 also hold for the resulting variant of the PC-TR
algorithm.

We will now briefly discuss the arithmetic complexity of the above variant. We
will see later in section 4 that the bisection procedure to compute a TR step takes

T (μ;w0) ≡ O
[
n3 + n log

(
log χ̄Aδ−1

0
+ log(μ0/μ)

)]
(41)

arithmetic operations, since the procedure requires O[log(log χ̄Aδ−1
0

+log(μ0/μ))] eval-
uations of the curves ψp(λ) and ψd(λ) with the first evaluation of either curve tak-
ing O(n3) arithmetic operations and subsequent ones taking only O(n) arithmetic
operations.

The above observation together with Theorem 2.13 yields the following arithmetic
complexity result for the above PC-TR variant.

Theorem 2.14. The number of arithmetic operations performed by the variant of
the PC-TR algorithm stated in Theorem 2.13 to find an iterate w such that μ(w) ≤ μf

is bounded by

O
[
n3 log(χ̄∗

A + n+ ε−1
0)

log ε−1
0

T (μf , w0) + n6.5 log(χ̄∗
A + n+ ε−1

0)
]
,

where T (·, ·) is defined in (41). In particular, if ε−1
0 = Θ((n+ χ̄∗

A)κ) for some κ > 0,
the above arithmetic complexity bound reduces to

O
[
n6.5 log(χ̄∗

A + n) + n4 log
(
log χ̄Aδ−1

0
+ log(μ0/μf)

)]
.

3. Basic tools. In this section we introduce the basic tools that will be used in
the proof of Theorem 2.9. The analysis heavily relies on the notion of layered least
squares(LLS) directions and crossover events due to Vavasis and Ye [28]. Subsection
3.1 below gives the definition of a crossover event which is slightly different than the
one used in [28] and discusses some of its properties. Subsection 3.2 defines the layered
least squares directions that will be used in the complexity analysis and also states
an approximation result that provides an estimation of the closeness between the LLS
direction with respect to a partition J of {1, . . . , n} and the AS direction. Subsection
3.3 reviews from a different perspective an important result from [28], namely Lemma
17 of [28], that essentially guarantees the occurrence of crossover events. Since this
result is stated in terms of the residual of an LLS step, the use of the approximation
result of subsection 3.2 between the AS and LLS steps allows us to obtain a similar
result stated in terms of the residual of the AS direction.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1932 G. LAN, R. D. C. MONTEIRO, AND T. TSUCHIYA

3.1. Crossover events. In this subsection we discuss the notion of crossover
event which plays a fundamental role in our convergence analysis.

Definition. For two indices i, j ∈ {1, . . . , n} and a constant C ≥ 1, a C-crossover
event for the pair (i, j) is said to occur on the interval (ν′, ν] if

there exists ν0 ∈ (ν′, ν] such that
sj(ν0)
si(ν0)

≤ C,

and,
sj(ν̃)
si(ν̃)

> C for all ν̃ ≤ ν′.
(42)

Moreover, the interval (ν′, ν] is said to contain a C-crossover event if (42) holds for
some pair (i, j).

Hence, the notion of a crossover event is independent of any algorithm and is a
property of the central path only. Note that in view of (3), condition (42) can be
reformulated into an equivalent condition involving only the primal variable. For our
purposes, we will use only (42).

We have the following simple but crucial result about crossover events.
Proposition 3.1. Let C > 0 be a given constant. There can be at most n(n−1)/2

disjoint intervals of the form (ν′, ν] containing C-crossover events.
The notion of C-crossover events can be used to define the notion of C-crossover

events between two iterates of the PC-TR algorithm as follows. We say that a C-
crossover event occurs between two iterates wk and wl, k < l, generated by the
PC-TR algorithm if the interval (μ(wl), μ(wk)] contains a C-crossover event. Note
that in view of Proposition 3.1, there can be at most n(n−1)/2 intervals of this type.
We will show in the remaining part of this paper that there exists a constant C > 0
with the following property: for any index k, there exists an index l > k such that
l− k = O(n1.5 log(χ̄A +n+ ε−1

0)) and a C-crossover event occurs between the iterates
wk and wl of the PC-TR algorithm. Proposition 3.1 and a simple argument then
show that the PC-TR algorithm must terminate within O(n3.5 log(χ̄A + n + ε−1

0))
iterations.

3.2. The layered least squares step. In this subsection we describe another
type of direction, namely the layered least squares (LLS) step, which is very important
in the analysis of our algorithm. This step was first introduced by Vavasis and Ye
in [28]. We also describe two ordered partitions of the index set {1, . . . , n} that are
crucial in the definition of the LLS directions.

Let w = (x, y, s) ∈ P++ ×D++ and a partition (J1, . . . , Jp) of the index set
{1, . . . , n} be given and define δ ≡ δ(w). The primal LLS direction Δxll = (Δxll

J1
, . . . ,

Δxll
Jp

) at w with the respect to J is defined recursively according to the order
Δxll

Jp
, . . . ,Δxll

J1
as follows. Assume that the components Δxll

Jp
, . . . ,Δxll

Jk+1
have been

determined. Let ΠJk
: �n → �Jk denote the projection map defined as ΠJk

(u) = uJk

for all u ∈ �n. Then Δxll
Jk
≡ ΠJk

(Lx
k) where Lx

k is given by

Lx
k ≡ Argminu∈�n

{‖δJk
(xJk

+ uJk
)‖2 : u ∈ Lx

k−1

}
= Argminu∈�n

{
‖δJk

(xJk
+ uJk

)‖2 : u ∈ Ker(A),

uJi = Δxll
Ji

for all i = k + 1, . . . , p
}
,

(43)

with the convention that Lx
0 = Ker(A). The slack component Δsll = (ΔsllJ1

, . . . ,ΔsllJp
)

of the dual LLS direction (Δyll,Δsll) at w with the respect to J is defined recursively

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A POLYNOMIAL PC-TR ALGORITHM FOR LP 1933

as follows. Assume that the components ΔsllJ1
, . . . ,ΔsllJk−1

have been determined.
Then ΔsllJk

≡ ΠJk
(Ls

k) where Ls
k is given by

Ls
k ≡ Argminv∈�n

{‖δ−1
Jk

(sJk
+ vJk

)‖2 : v ∈ Ls
k−1

}
= Argminv∈�n

{
‖δ−1

Jk
(sJk

+ vJk
)‖2 : v ∈ Im(AT),

vJi = ΔsllJi
for all i = 1, . . . , k − 1

}
,

(44)

with the convention that Ls
0 = Im(AT). Finally, once Δsll has been determined, the

component Δyll is determined from the relation AT Δyll + Δsll = 0.
Note that (11) and (12) imply that the AS direction is a special LLS direction,

namely the one with respect to the only partition in which p = 1. Clearly, the LLS
direction at a given w ∈ P++ ×D++ depends on the partition J = (J1, . . . , Jp) used.

A partition J = (J1, . . . , Jp) of {1, . . . , n} is said to be ordered with respect to a
fixed vector z ∈ �n

++ if max(zJi) ≤ min(zJi+1) for all i = 1, . . . , p− 1. In such a case,
we define the gap of J with respect to z as

gap(z, J) := min
1≤i≤p−1

{
min(zJi+1)
max(zJi)

}
≥ 1,

with the convention that gap(z, J) =∞ if p = 1. We say that a partition J is ordered
at w ∈ P++ ×D++ if it is ordered with respect to z = δ(w), in which case we denote
the quantity gap(δ(w), J) simply by gap(w, J). For partition J = (J1, . . . , Jp) and a
point w ∈ P++ ×D++, the spread of the layer Jk with respect to w is defined as

spr(w, Jk) ≡ max(δJk
(w))

min(δJk
(w))

, ∀k = 1, . . . , p.

We now state how the AS direction can be well approximated by suitable LLS
steps. Lemma 3.2, whose proof can be found in [14], essentially states that the larger
the gap of J is, the closer the AS direction and the LLS direction with respect to J
will be to one another.

Lemma 3.2. Let w = (x, y, s) ∈ P++ ×D++ and an ordered partition J =
(J1, . . . , Jp) at w be given. Define δ ≡ δ(w) and let Δwa = (Δxa,Δya,Δsa) and
Δwll = (Δxll,Δyll,Δsll) denote the AS direction at w and the LLS direction at w
with respect to J , respectively. If gap(w, J) ≥ 4 p χ̄A, then

max
{ ∥∥∥Rxa(w) −Rxll(w)

∥∥∥
∞
,
∥∥∥Rsa(w) −Rsll(w)

∥∥∥
∞

}
≤ 12

√
n χ̄A

gap(w, J)
,

where (Rxa(w), Rsa(w)) and (Rxll(w), Rsll(w)) denote the residual pairs for the AS
direction Δwa and the LLS direction Δwll, respectively.

In the remainder of this subsection, we describe the two important LLS directions
in the analysis of our algorithm that differs in the definition of ordered partitions. The
first ordered partition is due to Vavasis and Ye [28]. Given a point w ∈ P++ ×D++

and a parameter ḡ ≥ 1, this partition, which we refer to as the V Y partition, is defined
as follows. Let (i1, . . . , in) be an ordering of {1, . . . , n} such that δi1 ≤ . . . ≤ δin , where
δ = δ(w). For k = 2, . . . , n, let rk ≡ δik

/δik−1 and define r1 ≡ ∞. Let k1 < . . . < kp

be all the indices k such that rk > ḡ. The VY ḡ-partition J is then defined as
J = (J1, . . . , Jp), where Jq ≡ {ikq , ikq+1, . . . , ikq+1−1} for all q = 1, . . . , p. More
generally, given a subset I ⊂ {1, . . . , n}, we can similarly define the VY ḡ-partition of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1934 G. LAN, R. D. C. MONTEIRO, AND T. TSUCHIYA

I at w by taking an ordering (i1, . . . , im) of I satisfying δi1 ≤ . . . ≤ δim where m = |I|,
defining the ratios r1, . . . , rm as above, and proceeding exactly as in the construction
above to obtain the partition J = (J1, . . . , Jp) of I.

It is easy to see that the following result holds for the partition J described in
the previous paragraph.

Proposition 3.3. Given a subset I ⊆ {1, . . . , n}, a point w ∈ P++ ×D++, and
a constant ḡ ≥ 1, the VY ḡ-partition J = (J1, . . . , Jp) of I at w satisfies gap(w, J) > ḡ
and spr(w, Jq) ≤ ḡ|Jq| ≤ ḡn for all q = 1, . . . , p.

The second-ordered partition, which is used heavily in our analysis, was intro-
duced by Monteiro and Tsuchiya [14]. Given a point w ∈ P++ ×D++. First,
we compute the bipartition (B,N) of {1, . . . , n} according to (20). Next, an or-
der (i1, . . . , in) of the index variables is chosen such that δi1 ≤ . . . ≤ δin . Then,
the first block of consecutive indices in the n-tuple (i1, . . . , in) lying in the same
set B or N are placed in the first layer J1, the next block of consecutive indices
lying in the other set is placed in J2, and so on. As an example assume that
(i1, i2, i3, i4, i5, i6, i7) ∈ B×B×N×B×B×N×N . In this case, we have J1 = {i1, i2},
J2 = {i3}, J3 = {i4, i5}, and J4 = {i6, i7}. A partition obtained according to the
above construction is clearly ordered at w. We refer to it as an ordered AS-partition,
and denote it by J = J (w).

Note that an ordered AS-partition is not uniquely determined since there can be
more than one n-tuple (i1, . . . , in) satisfying δi1 ≤ . . . ≤ δin . This situation happens
exactly when there are two or more indices i with the same value for δi. If these tying
indices do not all belong to the same set B or N , then there will be more than one
way to generate an ordered AS-partition J .

We say that the bipartition (B,N) is regular if there do not exist i ∈ B and
j ∈ N such that δi = δj . Observe that there exists a unique ordered AS-partition if
and only if (B,N) is regular. When (B,N) is not regular, our algorithm avoids the
computation of an ordered AS-partition and hence of any LLS direction with respect
to such a partition.

3.3. Relation between crossover events, the AS step, and the LLS step.
In this subsection, we state some variants of Lemma 17 of Vavasis and Ye [28]. Specif-
ically, we present two estimates on the number of iterations needed to guarantee the
occurrence of a crossover event. While the first estimate essentially depends on the
size of the residual of the LLS step and the step-size at the initial iterate, the second
one depends only on the size of the residual of the AS direction at the initial iterate.
Lemma 3.4 is a restatement of Lemma 17 of of Vavasis and Ye [28]. Its proof can be
found in Lemma 3.4 of Monteiro and Tsuchiya [14].

Lemma 3.4. Let w = (x, y, s) ∈ N (β) for some β ∈ (0, 1) and an ordered partition
J = (J1, . . . , Jp) at w be given. Let δ ≡ δ(w), μ = μ(w), and (Rxll(w), Rsll(w)) denote
the residual of the LLS direction (Δxll,Δyll,Δsll) at w with respect to J . Then, for
any q = 1, . . . , p and any constant

Cq ≥ (1 + β) spr(w, Jq)/(1− β)2

and for any μ′ ∈ (0, μ) such that

μ′

μ
≤ ‖Rx

ll
Jq

(w)‖∞‖RsllJq
(w)‖∞

n3C2
q χ̄

2
A

,

the interval (μ′, μ] contains a Cq-crossover event.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A POLYNOMIAL PC-TR ALGORITHM FOR LP 1935

The following lemma is the immediate consequence of Lemma 3.4 and an adaption
from Lemma 3.5 of Monteiro and Tsuchiya [14].

Lemma 3.5. Let w = (x, y, s) ∈ N (β) for some β ∈ (0, 1/4] and an ordered
partition J = (J1, . . . , Jp) at w be given. Define δ ≡ δ(w) and μ = μ(w), and
let (Rxll(w), Rsll(w)) denote the residual of the LLS direction (Δxll,Δyll,Δsll) at w
with respect to J . Then, for every q ∈ {1, . . . , p} and every

Cq ≥ (1 + β)spr(w, Jq)/(1 − β)2,(45)

the following statements hold:
(a) the PC-TR algorithm (or its variant) started from the point w will generate

an iterate ŵ with a Cq-crossover event occurring between w and ŵ in O(
√
nΦ)

iterations, where

Φ ≡ log(χ̄A + n) + log Cq + log

(
μ+/μ

‖Rxll
Jq

(w)‖∞‖RsllJq
(w)‖∞

)
(46)

and μ+ is the normalized duality gap attained immediately after the first iter-
ation. Moreover, steps 3 through 5 of the PC-TR algorithm (or its variant),
and hence computation of the TR step, is performed in only

O(Φ/ log(ε−1
0))(47)

of these iterations.
(b) if, in addition,

gap(w, J) ≥ max

{
4nχ̄A ,

24
√
nχ̄A

εaJq

}
(48)

where εaJq
≡ min

{
‖Rxa

Jq
(w)‖∞ , ‖RsaJq

(w)‖∞
}
, then

Φ = O
(
log(χ̄A + n) + log Cq + log(εaJq

)−1
)
.(49)

Proof. The proofs of the first part of statement (a) and the whole statement
(b) are given in Lemma 3.5 of [14]. It remains to prove the latter part of statement
(a). We refer to an iteration of the PC-TR algorithm as a TR-iteration whenever the
TR direction is computed. Let N0 be the number of TR-iterations performed before
reaching the first iterate ŵ such that a Cq-crossover event occurs between w and ŵ.
We will show that N0 is bounded by (47). Indeed, let w̃ denote the iterate obtained
immediately after the (N0−1)-th TR-iteration. Then, in view of Lemma 3.4, we have

μ(w̃)
μ(w)

>
‖Rxll

Jq
(w)‖∞‖RsllJq

(w)‖∞
n3C2

q χ̄
2
A

.(50)

Since the duality gap is reduced by a factor of μ+/μ in the first iteration, and by a
factor of at least

(
(
√

1 + β + γ)/(2γ)
)
ε0 in subsequent TR-iterations, due to relation

(26), we conclude that

log
(
μ+

μ

)
+ (N0 − 2) log

(√
1 + β + γ

2γ
ε0

)
≥ log

μ(w̃)
μ(w)

> log

[
‖Rxll

Jq
(w)‖∞‖RsllJq

(w)‖∞
n3C2

q χ̄
2
A

]
,

which clearly implies that N0 is bounded by (47).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1936 G. LAN, R. D. C. MONTEIRO, AND T. TSUCHIYA

4. Convergence analysis of the PC-TR algorithm. In this section, we will
provide the proofs of Theorems 2.9 and 2.13.

Lemma 3.5 gives a good idea of the effort that will be undertaken in this sec-
tion, namely, to show that there exists a universal constant C = C(ε0) > 0 with
the property that, for each iterate w of the PC-TR algorithm, or its variant, there
exists an ordered partition J = (J1, . . . , Jp) and an index q = 1, . . . , p such that
C ≥ (1 + β)spr(w, Jq)/(1 − β)2 and the quantity Φ defined in (46) with Cq = C
is bounded by O(n log(χ̄A + n + ε−1

0)). In view of Lemma 3.5(a), we would then
conclude that a C-crossover event occurs every time O(n1.5 log(χ̄A + n + ε−1

0)) it-
erations of the PC-TR algorithm is performed. Proposition 3.1 together with the
previous fact would then imply that the PC-TR algorithm, or its variant, terminates
in O(n3.5 log(χ̄A + n+ ε−1

0)) iterations.
We start by introducing the aforementioned constant C = C(ε0) and another

global constant used in this section. Let

ḡ(ε0) ≡ 24nχ̄A

ε0
, C(ε0) ≡ (1 + β)

(1 − β)2
[ḡ(ε0)]n.(51)

The proof of the above claim will be broken into three cases, namely: (i) εa2(w) ≥
ε0; (ii) gap(w,J) ≤ ḡ(ε0); and (iii) gap(w,J) ≥ ḡ(ε0) and εa2(w) ≤ ε0, where εa2(w)
is given by (21), J is the AS-partition at w, and gap(w,J) is defined in subsection
3.2. The first result below considers the case (i).

Lemma 4.1. Suppose that w ∈ N (β) for some β ∈ (0, 1/4] and that εa2(w) ≥ ε0 for
some constant ε0 > 0. Then PC-TR algorithm, or its variant, started from the point
w will generate an iterate ŵ with a C(ε0)-crossover event occurring between w and ŵ
in O(n1.5 log(χ̄A +n+ ε−1

0)) iterations, of which O(n log(χ̄A + n+ ε−1
0)/ log ε−1

0) are
TR-iterations.

Proof. The assumption that εa2(w) ≥ ε0 implies εa∞(w) ≥ ε0/
√
n, and hence, in

view of definition (16), there exists an index i = 1, . . . , n such that min{|Rxa
i (w)|, |Rsai

(w)|} ≥ ε0/√n. Now let J = (J1, . . . , Jp) be a VY ḡ(ε0)-partition at w and let Jq be
the layer containing the index i above. Clearly, we have

εaJq
≡ min

{
‖Rxa

Jq
(w)‖∞, ‖RsaJq

(w)‖∞
}
≥ ε0/

√
n.(52)

Using the above inequality, the fact that gap(w, J) ≥ ḡ(ε0) and (51), we easily see that
(48) holds. Since by Proposition 3.3 the spread of every layer of a VY ḡ(ε0)-partition
at w is bounded above by ḡ(ε0)n, we conclude that spr(w, Jq) ≤ ḡn, and hence that
the constant C(ε0) defined in (51) satisfies (45) with Cq = C(ε0). We then conclude
from Lemma 3.5(b) that Φ = O(n1.5 log(χ̄A +n+ ε−1

0)) in view of (52), (51), and the
fact that log(Cq) = O(n log ḡ(ε0)) = O(n log(χ̄A + n + ε−1

0)). The conclusion of the
lemma now follows from the previous observation and Lemma 3.5(a).

The next result takes care of case (ii), namely the case in which gap(w,J) ≤ ḡ(ε0).
Lemma 4.2. Suppose that w ∈ N (β) for some β ∈ (0, 1/4]. Let ḡ(ε0) and

C(ε0) be the constants defined in (51). Let J = (J1, . . . ,Jr) be an ordered AS-
partition at w and assume that gap(w,J) ≤ ḡ(ε0). Then, the PC-TR algorithm, or
its variant, started from the point w will generate an iterate ŵ with a C(ε0)-crossover
event occurring between w and ŵ in O(n1.5 log(χ̄A + n + ε−1

0)) iterations, of which
O(n log(χ̄A + n+ ε−1

0)/ log ε−1
0) are TR-iterations.

Proof. Assume that gap(w,J) ≤ ḡ(ε0) and let J = (J1, . . . , Jp) be a VY ḡ(ε0)-
partition at w. Using the assumption that gap(w,J) ≤ ḡ(ε0), it is easy to see that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A POLYNOMIAL PC-TR ALGORITHM FOR LP 1937

there exist two indices i, j of different types, say i ∈ B(w) and j ∈ N(w), both lying
in some layer Jq of J . By Lemma 2.6 and the definition of (B(w), N(w)) given in
(20), it follows that |Rxa

i (w)| ≥ 1/4 and |Rsaj(w)| ≥ 1/4, and hence that

εaJq
≡ min

{
‖Rxa

Jq
(w)‖∞ , ‖RsaJq

(w)‖∞
}
≥ 1

4
.(53)

Using this inequality and the fact that gap(w, J) ≥ ḡ(ε0) ≥ 96χ̄An, where the last
inequality is due to (51) and (25), we easily see that (48) holds. Since by Proposition
3.3 the spread of every layer of a VY ḡ(ε0)–partition at w is bounded above by ḡ(ε0)n,
we conclude that spr(w, Jq) ≤ ḡn, and hence that (45) holds with Cq = C(ε0) in view
of (51). The result now follows from Lemma 3.5 by noting that the quantity Φ in
(49) with Cq = C(ε0) is bounded by O(n1.5 log(χ̄A + n + ε−1

0)) in view of (51) and
(53).

From now on, we consider case (iii), namely the case in which gap(w,J) ≥ ḡ(ε0)
and εa2(w) ≤ ε0.

We start by stating a technical result whose proof is given in Lemma 4.3 of [14]
and holds for any ḡ(ε0) ≥ 96nχ̄A, hence for our specific choice of ḡ(ε0) given in (51),
in view of (25).

Lemma 4.3. Suppose that w ∈ N (β) for some β ∈ (0, 1/4]. Let ḡ(ε0) and C(ε0)
be the constants defined in (51). Let J = (J1, . . . ,Jr) denote the AS-partition at w
and assume that gap(w,J) ≥ ḡ(ε0). Let (Rxl(w), Rsl(w)) denote the residual of the
LLS direction at w with respect to J . Let

Φ̂ ≡ n log
(
χ̄A + n+ ε−1

0

)
+ log

(
μ+/μ

εl∞(w)

)
,(54)

μ+ is the normalized duality gap attained immediately after the first iteration,

εl∞(w) ≡ max
{∥∥∥Rxl

N (w)
∥∥∥
∞
,
∥∥∥RslB(w)

∥∥∥
∞

}
(55)

and (B,N) ≡ (B(w), N(w)). Then, the PC-TR algorithm started from the point w
will generate an iterate ŵ with a C(ε0)-crossover event occurring between w and ŵ in
O(
√
n Φ̂) iterations, of which O(Φ̂/ log ε−1

0) are TR-iterations.
Our goal now will be to estimate, under the conditions of case (iii), the second

logarithm that appears in the iteration-complexity bound (54). In this estimation
procedure, it is important to show that the first iteration from w is a TR-iteration.
This will always be the case for the PC-TR algorithm since a TR-iteration occurs in
this algorithm if and only if εa2(w) ≤ ε0 and case (iii) assumes this condition. On
the other hand, for the variant, TR-iteration occurs if and only if, in addition to
εa2(w) ≤ ε0, we also have max{ψp(1), ψd(1)} ≤ γ, where the curves ψp(·) and ψd(·)
are defined in (29) and (40). The next two results show that the latter condition also
holds under case (iii).

Given F ∈ �m×n, h ∈ �m, and a scaling vector z ∈ �n
++, consider the projection

p0 ∈ �n given by

p0 ≡ argminp∈�n

{‖h− p‖2 : FZp = 0
}
,(56)

where Z ≡ Diag(z). For a given ordered partition J = (J1, . . . , Jl), Lemma 4.4 shows
that if gap(z, J) is large, then the projection matrix onto Ker(F Diag(z)) can be well
approximated by a block diagonal matrix where each block is a projection matrix

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1938 G. LAN, R. D. C. MONTEIRO, AND T. TSUCHIYA

associated with some layer Jk of J . This fact was first established in [23] and an
alternative proof can be found in [13]. The proof of a slightly stronger version of the
variant stated below can be found in [16].

Lemma 4.4. Let F ∈ �m×n, h ∈ �m, z ∈ �n
++, and an ordered partition

J = (J1, . . . , Jl) of {1, . . . , n} with respect to z be given. Define p0 ∈ �n as in (56)
and p̃0 ∈ �n as

p̃0
Jk
≡ argminp̃Jk

∈�Jk

{ ‖p̃Jk
− hJk

‖2 : FJk
ZJk

p̃Jk
∈ Im(FJ̄k

)
}
,(57)

for every k = 1, . . . , l, where J̄k ≡ Jk+1 ∪ . . . ∪ Jl. Then,

‖p0 − p̃0‖∞ ≤ K(3 + 2K)‖h‖,(58)

where K ≡ χ̄F /gap(z, J).
Using this approximation result, we are now able to prove the result mentioned

just after Lemma 4.3.
Lemma 4.5. Assume that w ∈ P++ ×D++ and that gap(w,J) ≥ ḡ(ε0) for

some ε0 ∈ (0, 12n], where J = (J1, . . . ,Jr) denotes the ordered AS-partition at
w. Then, the curves ψp(·) and ψd(·) defined in (29) and (40), respectively, satisfy
max{ψp(1), ψd(1)} ≤ ε0/6.

Proof. We will show only the inequality ψp(1) ≤ ε0/6. The proof of the inequality
ψd(1) ≤ ε0/6 is similar. Consider the projections p0 and p̃0 defined in Lemma 4.4 with
F = A, h = (hB, hN) ≡ (0, δNxN), z = δ−1, and J = (Jr , . . . ,J1), where δ ≡ δ(w). It
is easy to see that the constant K of Lemma 4.4 is exactly equal to χ̄A/gap(w,J). It
then follows from relation (51) and the assumptions gap(w,J) ≥ ḡ(ε0) and ε0 ≤ 12n
that K ≤ ε0/(24n) ≤ 1/2. Using these two inequalities, the conclusion of Lemma 4.4
and the fact that ‖h‖ ≤ ‖δx‖ =

√
xT s =

√
nμ, we then obtain

1√
μ
‖p0

B − p̃0
B‖ ≤

√
n√
μ
‖p0

B − p̃0
B‖∞ ≤ nK(3 + 2K) ≤ 4nK ≤ ε0/6.(59)

Moreover, definition (28) clearly implies that p0 = δΔx(1), where we recall that Δx(1)
is the optimal solution of (28) with λp = 1. Using the fact that hJk

= 0 for every
Jk ⊂ B and the definition (57), we easily see that p̃0

Jk
= 0 for every Jk ⊂ B and hence

that p̃0
B = 0. The last two observations together with (59) and (29) then imply that

ψp(1) =
1√
μ
‖δBΔxB(1)‖ =

1√
μ
‖p0

B‖ =
1√
μ
‖p0

B − p̃0
B‖ ≤ ε0/6.

The following result follows an immediate consequence of Lemma 4.5.
Lemma 4.6. Assume that w is an iterate of the PC-TR variant such that εa2(w) ≤

ε0 and gap(w,J) ≥ ḡ(ε0). Then, the iteration of the PC-TR variant from w is a TR-
iteration.

Proof. In view of Lemma 4.5 and the assumptions that gap(w,J) ≥ ḡ(ε0) and
ε0 ≤ γ/3, we conclude that max{ψp(1), ψd(1)} ≤ γ/18. This inequality, together with
the assumption εa2(w) ≤ ε0, implies that the iteration of the PC-TR variant from w
is a TR-iteration (see the statement of Theorem 2.13).

When a TR-iteration is performed, it follows from relation (26) that the duality
gap is reduced by a factor bounded by O(ετ

2(w; γp, γd)). The following result shows
that this factor is indeed O(

√
nεl∞(w)), where εl∞(w) is defined in (55), thereby giving

the necessary means to bound the second logarithm which appears in (54).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A POLYNOMIAL PC-TR ALGORITHM FOR LP 1939

Lemma 4.7. Suppose that w ∈ P++ ×D++ is such that εa2(w) ≤ ε0. Let Δwl =
(Δxl,Δyl,Δsl) denote the LLS direction at w with respect to the AS-partition J =
(J1, . . . ,Jr) and assume that gap(J) ≥ ḡ(ε0). Then, we have

max

{
‖δBΔxl

B‖√
μ

,
‖δ−1

N Δsl
N‖√

μ

}
≤ 3ε0

2
.(60)

Moreover, if in addition ε0 ≤ γ/3, then

ετ
2(w; γp, γd) ≤

√
nεl∞(w)(61)

for any γp, γd ≥ γ/2, where εl∞(w) and ετ
2(w; γp, γd) are defined in (55) and (24),

respectively.
Proof. Clearly, by definitions (9) and (43) we have AΔxl = 0. Moreover, from

the triangle inequality for norms, Theorem 3.2, relations (14), (21) and (51) and the
assumptions that gap(w,J) ≥ ḡ(ε0) and εa2(w) ≤ ε0, we conclude that

‖δBΔxl
B‖√

μ
≤ ‖δBΔxa

B‖√
μ

+
‖δB(Δxl

B −Δxa
B)‖√

μ
≤ ‖Rsa

B‖+
√
n ‖Rxl −Rxa‖∞

≤ εa2(w) +
12nχ̄A

gap(w,J)
≤ ε0 +

12nχ̄A

ḡ(ε0)
≤ ε0 +

ε0
2
≤ 3ε0

2
.

In a similar manner, we can also show that ‖δ−1
N Δsl

N‖/
√
μ ≤ 3ε0/2, showing that

(60) holds.
Assume now that ε0 ≤ γ/3 also holds. In view of (60), it follows that Δxl

B and
Δsl

N are feasible for subproblems (22) and (23), respectively, whenever γp, γd ≥ γ/2.
Hence, we conclude that ‖Rxτ

N‖ ≤ ‖Rxl
N‖ and ‖Rsτ

B‖ ≤ ‖Rsl
B‖, from which it follows

that

ετ
2(w; γp, γd) := max{‖Rxτ

N‖, ‖Rsτ
B‖}≤

√
nmax{‖Rxl

N‖∞, ‖Rsl
B‖∞}=

√
nεl∞(w).

We are now ready to prove Theorems 2.9 and 2.13.
Proof of Theorems 2.9 and 2.13. Let C and ḡ(ε0) be the constant defined in (51).

We claim that the PC-TR algorithm started from any w ∈ N (β) generates an iterate
ŵ with a C(ε0)-crossover event occurring between w and ŵ in O(n1.5 log(χ̄A + n +
ε−1
0)) iteration, of which O(n log(χ̄A + n+ ε−1

0)/ log ε−1
0) are TR-iterations. Since by

Proposition 3.1 there can be at most n(n+ 1)/2 C(ε0)-crossover events, we conclude
that the PC-TR algorithm must ultimately terminate in O(n3.5 log(χ̄A + n + ε−1

0))
iterations, of which O(n3 log(χ̄A + n + ε−1

0)/ log ε−1
0) are TR-iterations. Let J =

(J1, . . . ,Jr) denote an AS-partition at w. We split the proof into one of the following
three possible cases: (1) εa2(w) ≥ ε0; (2) gap(J) ≤ ḡ(ε0); and (3) εa2(w) ≤ ε0 and
gap(J) ≥ ḡ(ε0). The claim clearly holds for the first two cases due to Lemmas
4.1 and 4.2. Moreover, Lemma 4.3 implies that the claim also holds in the third
case as long as we can show that the quantity (μ+/μ)/εl∞(w) appearing in (54) is
O(
√
n). Indeed, assume that εa∞(w) ≤ ε0 and gap(J) ≥ ḡ(ε0). Then, the iteration

from w for both the PC-TR algorithm and its variant is a TR-iteration in view of
Lemma 4.6. Then, it follows from Proposition 2.8 and Lemma 4.7 that (μ+/μ)/εl∞(w)
= O(

√
n).

5. Arithmetic complexity for the PC-TR variant. In this section, we will
provide the details of the several claims made on subsection 2.6 and prove the main
result stated in that subsection, namely Theorem 2.14.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1940 G. LAN, R. D. C. MONTEIRO, AND T. TSUCHIYA

We start by noting that the results stated in subsection 2.6 remain invariant if
elementary row operations are applied to the rows of A. Indeed, the condition that
AΔx(λ) = 0 can be replaced by the condition that Δx(λ) is in the null space of A,
which remains invariant when the elementary row operations are performed on A. In
this section, we will therefore freely perform elementary row operations to bring A to
a more convenient form.

Let w ∈ P++ ×D++ be given. By placing the columns with indices in B ≡ B(w)
before the ones with indices in N ≡ N(w), it is easy to see that there exists a sequence
of elementary row operations which brings A to a matrix of the form(

B E
0 N

)
,(62)

where B ∈ �rb×|B| and N ∈ �rn×|N | are full row rank matrices with rb ≡ rank(AB)
and rn ≡ m− rb. By performing further elementary row operations, we may assume
that A contains an m×m identity matrix, or equivalently, after permuting columns
of A if necessary, the matrices B, N , and E have the form

B = [B̃ I], N = [I Ñ], E = [0 Ẽ],(63)

and hence, A has the form

A =
(
B̃ I 0 Ẽ

0 0 I Ñ

)
,(64)

where B̃ ∈ �rb×(|B|−rb), Ñ ∈ �rn×(|N |−rn), and Ẽ ∈ �rb×(|N |−rn). Note that, by
abuse of notation, we still denote the above matrix by A.

The following result, which is only used in the proof of Lemma 2.12, strongly uses
the fact that A has the form (64). We observe however that the weaker form (62) of
A is sufficient to establish the other results of subsection 2.6.

Lemma 5.1. For any positive diagonal n × n matrix D, there exists a matrix
W ∈ �|B|×|N | such that E = BW and ‖D−1

B WDN‖ ≤ χ̄AD, where B and E are given
by (63).

Proof. We first prove the result for D = I. In this case, we choose W as

W =
(

0 0
0 Ẽ

)
.

It is easy to see that E = BW and that ‖W‖ = ‖Ẽ‖ ≤ χ̄A, where the last inequality
follows as a consequence of Proposition 2.3(c).

Assume now that D is an arbitrary n × n positive diagonal matrix and let DI

denote the diagonal submatrix of D corresponding to the identity matrix of A. Also,
let Db and Dn denote the diagonal submatrices of DI corresponding to the first |B|
columns and the last |N | columns of the identity matrix of A, respectively. Then, the
matrix given by

Â ≡ D−1
I AD =

(
D−1

b BDB D−1
b EDN

0 D−1
n NDN

)

also contains an m × m identity matrix. Applying the result shown in the first
paragraph of this proof to the matrix Â, we conclude that there exists a matrix

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A POLYNOMIAL PC-TR ALGORITHM FOR LP 1941

Ŵ such that ‖Ŵ‖ ≤ χ̄Â = χ̄AD and (D−1
b BDB)Ŵ = D−1

b EDN , or equivalently
B(DBŴD−1

N) = E. The result now follows by letting W = DBŴD−1
N .

The following lemma establishes some technical results about the direction Δx(λ)
defined in (28). Its proof is based on techniques developed in [23].

Lemma 5.2. Let Δx(·) be the curve defined as in (28) and let Δx′(·) denote its
derivative. Then:

ΔxB(0) ≡ lim
λ→0+

ΔxB(λ) = Δ−2
B BT (BΔ−2

B BT)−1HΔNxN ;(65)

ΔxN (0) ≡ lim
λ→0+

ΔxN (λ) = −Δ−1
N PNΔ−1

N
xN ;(66)

Δx′B(0) ≡ lim
λ→0+

Δx′B(λ) = Δ−2
B BT (BΔ−2

B BT)−1HHT (BΔ−2
B BT)−1HΔNxN ;(67)

where ΔB ≡ Diag{δB}, ΔN ≡ Diag{δN}, H ≡ EΔ−1
N PNΔ−1

N
, and PNΔ−1

N
denote the

projection matrix onto the null space of NΔ−1
N .

Proof. Defining Dλ ≡ Diag{√λ δB, δN}, we can easily see from (28) thatDλΔx(λ)
is the projection of the vector (0, δNxN) onto the null space of AD−1

λ . Hence, for any
λ > 0 we have

ΔxB(λ) = λ−1Δ−2
B AT

B(AD−2
λ AT)−1ANxN ,(68)

ΔxN (λ) = Δ−2
N AT

N (AD−2
λ AT)−1ANxN − xN .(69)

Using (62) and the definition of Dλ, we have

AD−2
λ AT =

(
B E
0 N

)(
λ−1Δ−2

B 0
0 Δ−2

N

)(
BT 0
ET NT

)

=
(
λ−1BΔ−2

B BT + EΔ−2
N ET EΔ−2

N NT

NΔ−2
N ET NΔ−2

N NT

)

=
(
λ−1RBB +REE REN

RT
EN RNN

)
,

where

RBB ≡ BΔ−2
B BT , RNN ≡ NΔ−2

N NT , REE ≡ EΔ−2
N ET , REN ≡ EΔ−2

N NT .(70)

Using the standard way to compute the inverse of a 2 × 2 block matrix (see, for
example, page 71–72 of [1]), it is easy to verify that

(
AD−2

λ AT
)−1

=
(

Uλ Vλ

V T
λ Zλ

)
,

where

Uλ = (λ−1RBB +REE −RENR
−1
NNR

T
EN)−1,(71)

Vλ = −UλRENR
−1
NN ,(72)

Zλ = (RNN −RT
EN (λ−1RBB +REE)−1REN)−1.(73)

Note that, by (70), we have

REE −RENR
−1
NNR

T
EN = EΔ−1

N (I −Δ−1
N NT (NΔ−2

N NT)−1NΔ−1
N)Δ−1

N ET

= EΔ−1
N PNΔ−1

N
Δ−1

N ET = HHT .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1942 G. LAN, R. D. C. MONTEIRO, AND T. TSUCHIYA

where we recall H = EΔ−1
N PNΔ−1

N
and PNΔ−1

N
denotes the projection matrix onto the

null space of NΔ−1
N . Hence, by (71), we have

Uλ = (λ−1RBB +HHT)−1 = λ(RBB + λHHT)−1.(74)

Also, by (62) and (72), we have

(
AD−2

λ AT
)−1

AN =
(

UλE + VλN
V T

λ E + ZλN

)
=
(

Uλ(E −RENR
−1
NNN)

−R−1
NNR

T
ENU

T
λ E + ZλN

)
.(75)

Hence, using relations (68), (70), (74), and (75) and the definition of H , we obtain

ΔxB(λ) = λ−1Δ−2
B BTUλ(E −RENR

−1
NNN)xN

= λ−1Δ−2
B BTUλEΔ−1

N

(
I −Δ−1

N NT (NΔ−2
N NT)−1NΔ−1

N

)
ΔNxN

= λ−1Δ−2
B BTUλEΔ−1

N PND−1
N

ΔNxN = Δ−2
B BT (RBB + λHHT)−1HΔNxN ,(76)

from which we can easily see that (65) and (67) hold. Now, using relations (74) and
(73), we easily see that

lim
λ→0+

Uλ = 0, lim
λ→0+

Zλ = R−1
NN .

Relation (66) now follows from the last conclusion and relations (69) and (75).
We need one more technical result before giving the proofs of the results of sub-

section 2.6.
Lemma 5.3. Let G ∈ �p×q and g ∈ �q be given. Then, (GGT)Gg = 0 if and

only if Gg = 0.
Proof. The assumption (GGT)Gg = 0 clearly implies that ‖GTGg‖2 = 0, and

hence that GTGg = 0. Also, the latter condition implies that ‖Gg‖2 = 0, or equiva-
lently, Gg = 0.

We are now ready to prove Lemma 2.10, Lemma 2.12, and Theorem 2.14 stated
in subsection 2.6.

Proof of Lemma 2.10. We first prove statements (a) and (b). The existence
and characterizations of the two limits Δx(0) ≡ limλ→0+ Δx(λ) and Δx′B(0) ≡
limλ→0+ Δx′B(λ) were established in Lemma 5.2. The alternative characterization
given by (30) and (31) of the limit Δx(0) ≡ limλ→0+ Δx(λ) can be easily proved by
showing that ΔxB(0) and ΔxN (0) satisfy the optimality conditions, and hence are op-
timal solutions of (30) and (31), respectively. Now, relation (32) follows immediately
from (29). Moreover, differentiating (29) with respect to λ, we conclude that

ψ′
p(λ) =

[δBΔxB(λ)]T [δBΔx′B(λ)]√
μ‖δBΔxB(λ)‖ =

[δBΔxB(λ)]T [δBΔx′B(λ)]
μψp(λ)

.(77)

Hence, under the the condition that ψp(0) �= 0, the limit ψ′
p(0) ≡ limλ→0+ ψ′

p(λ)
exists and is equal to the right-hand side of (77) with λ = 0.

We now outline the proof of statement (c). Using definition (29) and relation (76)
we conclude that

μψp(λ)2 = xT
NΔNH

T (RBB + λHHT)−1RBB(RBB + λHHT)−1HΔNxN

= xT
NΔNH

TR
−1/2
BB (I + λR

−1/2
BB HHTR

−1/2
BB)−2R

−1/2
BB HΔNxN ,

= ‖(I + λH̃)−1g̃‖2,(78)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A POLYNOMIAL PC-TR ALGORITHM FOR LP 1943

where μ ≡ μ(w), H̃ ≡ R−1/2
BB HHTR

−1/2
BB , and g̃ ≡ R−1/2

BB HΔNxN . The above formula
for ψp(·) allows us to express it in terms of the eigenvalues and eigenvector of the
positive semidefinite matrix H̃, and the resulting expression easily reveals that (i)
H̃g̃ = 0 if and only if ψp(·) is identically constant, and (ii) H̃g̃ �= 0 if and only if
ψp(·) is strictly decreasing and strictly convex over the interval (0,∞). Moreover, if
case (i) occurs, it follows from Lemma 5.3 with G = R

−1/2
BB H and g = ΔNxN that

0 = Gg = R
−1/2
BB HΔNxN , and hence that HΔNxN = 0. In view of (65), this implies

that ΔxB(0) = 0, and hence that ψp(0) = 0. We have thus shown that ψp(·) is indeed
identically zero when case (i) occurs.

We now show statement d). Let 0 < λ1 ≤ λ2 be given. By (78), we have

ψ2
p(λ1)

ψ2
p(λ2)

=
g̃T (λ1H̃ + I)−2g̃

g̃T (λ2H̃ + I)−2g̃
=
uT M̃u

uTu
,

where u ≡ (λ2H̃ + I)−1g̃ and M̃ = (λ2H̃ + I)(λ1H̃ + I)−2(λ2H̃ + I). Using the
fact that 0 < λ1 ≤ λ2, we easily see that the largest eigenvalue of M̃ , and hence
ψ2

p(λ1)/ψ2
p(λ2) is bounded by (λ2/λ1)2.

Proof of Lemma 2.12. First observe that, by (29), (77), and the Cauchy–Schwarz
inequality, we have

|ψ′
p(0)|

ψp(0)
=

∣∣[δBΔxB(0)]T [δBΔx′B(0)]
∣∣

‖δBΔxB(0)‖2 ≤ ‖δBΔx′B(0)‖
‖δBΔxB(0)‖ .(79)

We will now use the formulas developed in Lemma 5.2 to bound the above ratio from
above. Letting ΔB ≡ Diag(δB) and ΔN ≡ Diag(δN), we have that the matrix H
defined in Lemma 5.2 can be written as

H ≡ EΔ−1
N PNΔ−1

N
= BΔ−1

B (ΔBWΔ−1
N PNΔ−1

N
) = BΔ−1

B M,

where M ≡ ΔBWΔ−1
N PNΔ−1

N
and W is a matrix as in Lemma 5.1. Using this expres-

sion for H and relations (65) and (67), we then obtain

δBΔx′B(0) = Δ−1
B BT (BΔ−2

B BT)−1HHT (BΔ−2
B BT)−1HΔNxN

= Δ−1
B BT (BΔ−2

B BT)−1
(
BΔ−1

B M
) (
MT Δ−1

B BT
)
(BΔ−2

B BT)−1HΔNxN

= [Δ−1
B BT (BΔ−2

B BT)−1BΔ−1
B](MMT) [δBΔxB(0)].

Using the fact that the matrix inside the first bracket in the right-hand side of the
above inequality is a projection matrix and Lemma 5.1, we then conclude that

‖δBΔx′B(0)‖
‖δBΔxB(0)‖ ≤ ‖M‖

2 = ‖ΔBWΔ−1
N PND−1

N
‖2 ≤ ‖ΔBWΔ−1

N ‖2

≤ ‖δB(δ0)−1
B ‖2∞‖(Δ0)BW (Δ0)−1

N ‖2‖δ−1
N (δ0)N‖2∞

≤ [χ̄AΔ−1
0

]2‖δB(δ0)−1
B ‖2∞‖δ−1

N (δ0)N‖2∞,(80)

where δ0 ≡ δ(w0) and Δ0 ≡ Diag(δ0). Moreover, using the fact that μ ≤ μ0 together
with Propositions 2.1 and 2.2, we conclude that

‖δB(δ0)−1
B ‖∞ ≤

1 + β

(1 − β)2

√
μ0

μ

∥∥∥∥ s(μ)
s(μ0)

∥∥∥∥
∞
≤ (1 + β)n

(1 − β)2

√
μ0

μ
,(81)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1944 G. LAN, R. D. C. MONTEIRO, AND T. TSUCHIYA

‖δ−1
N (δ0)N‖∞ ≤ 1 + β

(1 − β)2

√
μ

μ0

∥∥∥∥sN (μ0)
sN (μ)

∥∥∥∥
∞

≤ 1 + β

(1 − β)2

√
μ0

μ

∥∥∥∥ xN (μ)
xN (μ0)

∥∥∥∥
∞
≤ (1 + β)n

(1− β)2

√
μ0

μ
.(82)

Inequality (36) now follows by combining the estimates (79), (80), (81), and (82).
Proof of Theorem 2.14. Recall that our goal is to prove that the arithmetic

complexity of computing a TR direction during a TR-iteration is bounded by (41). It
suffices to examine just the computation of the primal TR direction since the argument
for the dual TR direction is analogous. We have seen in the proof of Lemma 2.10
that ψp(λ) can be expressed as ψp(λ) = ‖(I +λH̃)−1g̃‖/√μ, where H̃ ∈ �|B|×|B| and
g̃ ∈ �|B| can be computed in O(n3) arithmetic operations. It is well known that we
can compute an orthogonal matrix Q such that the matrix T ≡ QT H̃Q is tridiagonal
in O(n3) arithmetic operations. Moreover, using the fact that orthogonal matrices
preserve vector lengths, we easily see that ψp(λ) = ‖(I +λT)−1QT g̃‖/√μ. Hence, for
any fixed λ > 0, the fact that T is tridiagonal implies that ψp(λ) can be computed in
O(n) arithmetic operations. We have thus shown that the arithmetic complexity to
compute a TR direction during a TR iteration is bounded by (41).

6. Conclusion. In this paper, we have developed a predictor-corrector, trust-
region algorithm for linear programming whose iteration-complexity just depends on
χ̄∗

A. The overall arithmetic complexity of the algorithm is not independent of b and/or
c, due to work involved in the computation of the trust region steps. An interesting
and challenging open question is whether the arithmetic complexity of the PC-TR
algorithm, or a variant of it, has an arithmetic complexity that does not depend on b
and c.

Appendix. The objective of this section is to provide a proof of Lemma 2.7.
First, we state a technical result whose proof is given in Lemma 4.4 of Monteiro

and Tsuchiya [14].
Lemma A.1. Let w = (x, y, s) ∈ P++ ×D++ be given and assume that ‖xs −

νe‖ ≤ τν for some constants τ ∈ (0, 1) and ν > 0. Then, (1 − τ/√n)ν ≤ μ(w) ≤
(1 + τ/

√
n)ν and w ∈ N (τ/(1 − τ)).

We are now ready to prove Lemma 2.7.
Proof of Lemma 2.7. Define v(α) ≡ (x+ αΔx)(s+ αΔs) for all α ∈ �. We claim

that

‖v(α)− (1− α)μe‖ ≤ 2β
1 + 2β

(1− α)μ ∀ 0 ≤ α ≤ 1− ᾱ,(83)

where μ ≡ μ(w),

ε2(w) ≡ max{‖RxN‖, ‖RsB‖}, ᾱ ≡
√

1 + β + γ

4γ
ε2(w).(84)

Using this claim, the result can be proved as follows. By Lemma A.1 with w =
w + αΔw, ν = (1 − α)μ and τ = 2β/(1 + 2β), we conclude from the claim that for
any 0 ≤ α ≤ 1− ᾱ, we have w + αΔw ∈ N (2β) and

μ(w + αΔw) ≤
(

1 +
2β√

n(1 + 2β)

)
(1 − α)μ ≤ 2(1− α)μ.(85)

By the definition of ατ , we then conclude that ατ ≥ 1− ᾱ. Setting α = 1− ᾱ in (85)
and using the fact that ατ ≥ 1− ᾱ and μ(w + αΔw) is a decreasing (affine) function

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A POLYNOMIAL PC-TR ALGORITHM FOR LP 1945

of α, we obtain

μ(w + ατΔw)
μ(w)

≤
√

1 + β + γ

2γ
ε2(w),

that is, the result holds.
In the remaining part of the proof, we show that (83) holds. It is easy to see that

v(α) − (1− α)μe = (x + αΔx)(s+ αΔs)− (1− α)μe
= (1 − α)(xs− μe) + αh1 + α(1 − α)h2 + α2h3,(86)

where h1, h2, and h3 are vectors in �n defined as(
h1

B

h1
N

)
≡
(

xB(sB + ΔsB)
sN (xN + ΔxN)

)
= μ

(
wBpB

wNpN

)
,(87) (

h2
B

h2
N

)
≡
(

sBΔxB

xNΔsN

)
= μ

(
wBqB
wNqN

)
,(88) (

h3
B

h3
N

)
≡
(

ΔxB(sB + ΔsB)
ΔsN (xN + ΔxN)

)
= μ

(
pBqB
pNqN

)
.(89)

Here, the vectors p, q, and w appearing in the second alternative expressions for h1,
h2, and h3 are defined as(

pB

pN

)
≡
(

RsB(w)
RxN (w)

)
,

(
qB
qN

)
≡
(

ΔBΔxB/
√
μ

Δ−1
N ΔsN/

√
μ

)
, w ≡ x1/2s1/2

√
μ

.

Clearly, in view of (84), (18), and the fact that w ∈ N (β), we have

‖p‖∞ ≤ ε2(w), ‖p‖ ≤
√

2ε2(w), ‖q‖ ≤
√

2γ, ‖w‖∞ ≤
√

1 + β, ‖w‖ =
√
n.(90)

Using (87), (88), (89), and (90), we obtain

‖h1‖ ≤ μ‖w‖∞ ‖p‖ ≤ μ
√

2(1 + β)ε2(w),

‖h2‖ ≤ μ‖w‖∞ ‖q‖ ≤ μ
√

2(1 + β)γ,

‖h3‖ ≤ μ‖p‖∞ ‖q‖ ≤ μ
√

2γε2(w).

Using (86), the triangle inequality for norms, the three estimates above and relations
(84) and (17), we then obtain

‖v(α)− (1− α)μe‖ ≤ (1− α)‖xs− μe‖+ α‖h1‖+ α(1− α)‖h2‖+ α2‖h3‖
≤ (1− α)

(‖xs− μe‖+ ‖h2‖)+ ‖h1‖+ ‖h3‖
≤
[
(1− α)

(
β +

√
2(1 + β) γ

)
+
(√

2(1 + β) +
√

2 γ
)
ε2(w)

]
μ

≤
[
(1− α)

(
β +

√
2(1 + β) γ

)
+ 4
√

2γᾱ
]
μ

≤
[(
β +

√
2(1 + β) γ

)
+ 4
√

2γ
]
(1− α)μ

≤ 2β
1 + 2β

(1 − α)μ,

for all 0 ≤ α ≤ 1− ᾱ.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1946 G. LAN, R. D. C. MONTEIRO, AND T. TSUCHIYA

REFERENCES

[1] S. Barnett, Matrices: Methods and Applications, Oxford Univerisy Press, Oxford, 1990.
[2] I. I. Dikin and V. I. Zorkalcev, Iterative Solution of Mathematical Programming Problems:

Algorithms for the Method of Interior Points (in Russian), Nauka, Novosibirsk, USSR,
1980.

[3] C. C. Gonzaga and H. J. Lara, A note on properties of condition numbers, Linear Algebra
Appl., 261 (1997), pp. 269–273.

[4] N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica, 4
(1984), pp. 373–395.

[5] M. Kojima, S. Mizuno, and A. Yoshise, A primal-dual interior-point algorithm for linear pro-
gramming, in Progress in Mathematical Programming, Interior-point and Related Methods,
N. Megiddo, ed., Springer-Verlag, New York, 1989, pp. 29–47.

[6] M. Kojima, S. Mizuno, and A. Yoshise, A polynomial-time algorithm for a class of linear
complementarity problems, Math. Program., 44 (1989), pp. 1–26.

[7] N. Megiddo, Pathways to the optimal set in linear programming, Progress in Mathematical
Programming, Pacific Grove, CA, 1987, pp. 131–158, Springer, New York-Berlin, 1989.

[8] N. Megiddo, S. Mizuno, and T. Tsuchiya, A modified layered-step interior-point algorithm
for linear programming, Math. Program., 82 (1998), pp. 339–355.

[9] S. Mizuno, M. J. Todd, and Y. Ye, On adaptive-step primal-dual interior-point algorithms
for linear programming, Math. Oper. Res., 18 (1993), pp. 964–981.

[10] S. Mizuno, N. Megiddo, and T. Tsuchiya, A linear programming instance with many
crossover events, J. Complexity, 12 (1996), pp. 474–479.

[11] R. D. C. Monteiro and I. Adler, Interior path-following primal-dual algorithms. Part I:
Linear programming, Math. Program., 44 (1989), pp. 27–41.

[12] R. D. C. Monteiro and I. Adler, Interior path-following primal-dual algorithms. Part II:
Convex quadratic programming, Math. Program., 44 (1989), pp. 43–66.

[13] R. D. C. Monteiro and T. Tsuchiya, Global convergence of the affine scaling algorithm for
convex quadratic programming, SIAM J. Optim., 8 (1998), pp. 26–58.

[14] R. D. C. Monteiro and T. Tsuchiya, A variant of the Vavasis-Ye layered-step interior-point
algorithm for linear programming, SIAM J. Optim., 13 (2003), pp. 1054–1079.

[15] R. D. C. Monteiro and T. Tsuchiya, A new iteration-complexity bound for the MTY
predictor-corrector algorithm, SIAM J. Optim., 15 (2004), pp. 319–347.

[16] R. D. C. Monteiro and T. Tsuchiya, A strong bound on the integral of the central path cur-
vature and its relationship with the iteration complexity of primal-dual path-following LP
algorithms, working paper, School of ISyE, Georgia Tech, USA, September 2005 (accepted
in Mathematical Programming).

[17] J. Renegar, A polynomial-time algorithm, based on Newton’s method, for linear programming,
Math. Program., 40 (1988), pp. 59–93.

[18] G. W. Stewart, On Scaled projections and pseudo-inverses, Linear Algebra Appl., 112 (1989),
pp. 189–193.

[19] K. Tanabe, Centered Newton method for mathematical programming, System Modeling and
Optimization, M. Iri and K. Yajima, eds., Springer-Verlag, Berlin, 1988, pp. 197–206

[20] É. Tardos, A strongly polynomial algorithm to solve combinatorial linear programs, Oper.
Res., 34 (1986), pp. 250–256.

[21] M. J. Todd, A Dantzig-Wolfe-like variant of Karmarkar’s interior-point linear programming
algorithm, Oper. Res., 38 (1990), pp. 1006–1018.

[22] M. J. Todd, L. Tunçel, and Y. Ye, Characterizations, bounds, and probabilistic analysis
of two complexity measures for linear programming problems, Math. Program., 90 (2001),
pp. 59–70.

[23] T. Tsuchiya, Global convergence property of the affine scaling methods for primal degenerate
linear programming problems, Math. Oper. Res., 17 (1992), pp. 527–557.

[24] L. Tunçel, Primal-dual symmetry and scale invariance of interior-point algorithms for convex
optimization, Math. Oper. Res., 23 (1998), pp. 708–718.

[25] L. Tunçel, Approximating the complexity measure of Vavasis-Ye algorithm is NP-hard, Math.
Program., 86 (1999), pp. 219–223.

[26] L. Tunçel, On the condition numbers for polyhedra in Karmarkar’s form, Oper. Res. Lett.,
24 (1999), pp. 149–155.

[27] R. J. Vanderbei and J. C. Lagarias, I. I. Dikin’s convergence result for the affine-scaling
algorithm, Vol. 17, Contemp. Math., 114 (1990), pp. 109–119.

[28] S. Vavasis and Y. Ye, A primal-dual accelerated interior-point method whose running time
depends only on A, Math. Program., 74 (1996), pp. 79–120.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

