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Abstract This paper considers a special but broad class of convex programming
problems whose feasible region is a simple compact convex set intersected with the
inverse image of a closed convex cone under an affine transformation. It studies the
computational complexity of quadratic penalty based methods for solving the above
class of problems. An iteration of these methods, which is simply an iteration of
Nesterov’s optimal method (or one of its variants) for approximately solving a smooth
penalization subproblem, consists of one or two projections onto the simple convex
set. Iteration-complexity bounds expressed in terms of the latter type of iterations
are derived for two quadratic penalty based variants, namely: one which applies the
quadratic penalty method directly to the original problem and another one which
applies the latter method to a perturbation of the original problem obtained by adding
a small quadratic term to its objective function.
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116 G. Lan, R. D. C. Monteiro

1 Introduction

The basic problem of interest in this paper is the convex programming (CP) problem

f ∗ := inf{ f (x) : A(x) ∈ K∗, x ∈ X}, (1)

where f : X → IR is a convex function with Lipschitz continuous gradient, X ⊆ �n

is a sufficiently simple closed convex set, A : �n → �m is an affine function, and
K∗ denotes the dual cone of a closed convex cone K ⊆ �m , i.e., K∗ := {s ∈ �m :
〈s, x〉 ≥ 0, ∀x ∈ K}.

For the case where the feasible region consists only of the set X , or equivalently
A ≡ 0, Nesterov [6,8] developed a method which finds a point x ∈ X such that
f (x)− f ∗ ≤ ε in at most O(ε−1/2) iterations. Moreover, each iteration of his method
requires one gradient evaluation of f and computation of two projections onto X . It
is shown that his method achieves, uniformly in the dimension, the lower bound on
the number of iterations for minimizing convex functions with Lipschitz continuous
gradient over a closed convex set. When A is not identically 0, Nesterov’s optimal
method can still be applied directly to problem (1) but this approach would require
the computation of projections onto the feasible region X ∩ {x : A(x) ∈ K∗}, which
for most practical problems is as expensive as solving the original problem itself.
An alternative and natural approach is to investigate first-order methods for solving
problem (1) whose iterations consist of, in addition to a couple of gradient evaluations,
only projections onto the simple set X .

In this paper, we consider one penalty-based approach for solving (1), namely:
the quadratic penalty method. Clearly, it is possible to develop different iteration-
complexity bounds for this method depending on the (possibly, many) adopted ter-
mination criteria. In our presentation, we adopt a certain natural primal-termination
criterion which can be described as follows. For the purpose of this local discussion
only, assume for simplicity that K = �m and hence that K∗ = {0}. Motivated by the
optimality condition of (1), define an (εp, εd)-primal–dual solution of (1) as a pair
(x̃, λ̃) ∈ X ×�m satisfying

‖A(x̃)‖ ≤ εp, (2)

∇ f (x̃)+ (A0)
∗ λ̃ ∈ −NX (x̃)+ B(εd). (3)

Here, A0 := A(·) −A(0) is the linear part of A, NX (x̃) := {s ∈ �n : 〈s, x − x̃〉 ≤
0, ∀x ∈ X} denotes the normal cone of X at x̃ and B(η) := {x ∈ �n : ‖x‖ ≤ η} for
every η ≥ 0. The main goal of this paper is to derive the computational-complexity of a
variant of the quadratic penalty approach in which the penalty subproblems are solved
by Nesterov’s optimal method (or, some of its variants), and the overall complexity is
expressed in terms of the number of iterations of the latter method.

It is well-known that the penalty parameter of the penalization problem for the
above penalty-based approach must be chosen larger than some threshold value so as
to ensure that (near) optimal solutions of the penalization problem yield (near) optimal
solutions for the original problem (1). Accordingly, we develop a threshold penalty
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Iteration-complexity of first-order penalty methods 117

parameter value which depends not only on the desired solution accuracies but also on
the size ‖λ∗‖ of the minimum norm Lagrange multiplier associated with the constraint
A(x) ∈ K∗. Theoretically, setting the penalty parameter to this threshold value would
yield the best provably iteration-complexity bound. But since ‖λ∗‖, and hence the
aforementioned threshold penalty parameter value, is not known a priori, we present
an alternative penalty-based approach based on a simple “guess-and-check” procedure
for the penalty parameter whose iteration-complexity bound is of the same order as the
one for the penalty approach with known threshold penalty parameter value. Finally,
we present a variant of this guess-and-check quadratic penalty method which consists
of applying the guess-and-check quadratic penalty method to the perturbed problem
obtained by adding a suitable quadratic perturbation term to the objective function of
(1), and show that its iteration-complexity is better than the one for the guess-and-
check quadratic penalty method applied directly to (1). More specifically, we show
that the iteration-complexity of the variant, after disregarding a few constant factors,
is given by

O
⎛
⎝ 1
(
εpεd

) 1
2

log
(
εpεd

)− 1
2

⎞
⎠ , (4)

while the one for the guess-and-check quadratic penalty method applied directly to
(1) is bounded by O(1/(εpεd)).

It is worth mentioning a few other possible approaches for solving problem (1).
We first discuss dual methods for solving (1). A natural method is to consider the
Lagrangian dual

d∗ := max
λ∈�m

d(λ) := min{ f (x)+ 〈λ,A(x)〉 : x ∈ X}, (5)

and use the subgradient method to solve it.
It is well-known that the subgradient method requires O(1/ε2) subgradient eval-

uations to compute λ ∈ �m such that d∗ − d(λ) ≤ ε. Noting that the computa-
tion of a subgradient of d at λ requires us to find a solution of the subproblem
min{ f (x) + 〈λ,A(x)〉 : x ∈ X}, it follows that one still has to account for the
work involved in computing such solution (or an approximation of it) in the general
case where it cannot be expressed in closed form. Another potential dual approach
to solve (1) is to use Nesterov’s smoothing approximation technique to solve (5).
In this case, one would add a small strongly convex perturbation term h(x) to the
objective function of the above subproblem, thereby forcing the perturbed dual func-
tion dh(λ) := min{ f (x) + h(x) + 〈λ,A(x)〉 : x ∈ X} to be smooth with Lipschitz
continuous gradient. One can then use Nesterov’s optimal method for solving the per-
turbed dual problem in order to obtain an approximate primal–dual solution of (1).
We observe that, for the above two methods, one has to deal with the technicality of
solving the subproblems only approximately, and hence of working with approximate
subgradients of the dual function or its perturbed version. We observe that the overall
complexity of these methods taking into account this technical issue has not been fully
studied in the literature.
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118 G. Lan, R. D. C. Monteiro

Another possible approach for solving problem (1) is to reformulate it as a monotone
variational inequality and use some specific methods for solving the latter problem.
More specifically, (1) is equivalent to finding w∗ ∈ � := X ×�m such that

〈w − w∗, F(w∗)〉 ≥ 0, ∀w ∈ �, (6)

where

F(w) = F(x, λ) :=
(∇ f (x)+A∗0λ−A(x)

)
. (7)

One can use Korpelevich’s algorithm or Tseng’s modified forward–backward splitting
method whose iteration-complexities have been more recently studied by Nemirovski
[5] and Monteiro and Svaiter [3,4]. Another possibility is to use Nesterov’s method
proposed in [9]. It is worth mentioning that the complexities derived in [5,9] assume
that the set � is bounded and are based on a different weaker termination criterion
than the one used in this paper. It is not clear to us how the complexities derived in
[5,9] can be applied to our specific case in which � = X × �m is unbounded. On
the other hand, by considering slightly more general termination criteria, Monteiro
and Svaiter [3,4] develop iteration-complexity bounds for Korpelevich’s algorithm as
well as Tseng’s modified forward–backward splitting method for the case when � is
unbounded, and hence to our specific case in this paper.

This paper is organized as follows. Section 2 describes the assumptions imposed
on (1), introduces the definition of an approximate primal–dual solution of (1) for a
general closed convex cone K and derives a few basic properties of (1). Section 3 dis-
cusses some technical results that will be used in our analysis and reviews a first-order
algorithm due to Nesterov [6,8] for solving CP problems with simple feasible sets, and
a restarting version of it for solving CP problems with strongly convex objective func-
tions. Section 4 establishes iteration-complexity bounds for quadratic penalty based
methods for solving (1). More specifically, Sect. 4.1 presents an iteration-complexity
bound for the quadratic penalty method applied directly to (1) and Sect. 4.2 establishes
a sharper iteration-complexity bound for a variant of the above method, which consists
of applying the quadratic penalty method to a perturbed problem obtained by adding a
small quadratic term to the objective function of (1). Finally, Sect. 5 compares the best
iteration-complexity obtained in this paper with that derived in Monteiro and Svaiter
[3,4] and shows that the first one is generally better than the latter one.

1.1 Notation and terminology

We denote the p-dimensional Euclidean space by IRp. Also, IRp
+ and IRp

++ denote the
nonnegative and the positive orthants of IRp, respectively. In this paper, we use the
notation �p to denote a p-dimensional vector space inherited with an inner product
space 〈·, ·〉.

Given a closed convex set C ∈ �p, we define the distance function dC : �p → IR to
C with respect to a given norm ‖·‖ as dC(u) := min{‖u−c‖ : c ∈ C} for every u ∈ �p.

123



Iteration-complexity of first-order penalty methods 119

It is well-known that this minimum is always achieved at some c ∈ C. Moreover, this
minimizer is unique whenever ‖ ·‖ is an inner product norm. In such a case, we denote
this unique minimizer by �C(u), i.e., �C(u) = argmin{‖u − c‖ : c ∈ C} for every
u ∈ �p. The support function of a set C ⊂ �p is defined as σC (u) := sup{〈u, c〉 :
c ∈ C}.

2 Problem of interest

Throughout this paper, we consider inner product spaces �n and �m and denote their
corresponding inner product norms simply by ‖ · ‖. We consider the CP problem (1),
where f : X → IR is a convex function with L f -Lipschitz-continuous gradient, i.e.:

‖∇ f (x̃)−∇ f (x)‖ ≤ L f ‖x̃ − x‖, ∀x, x̃ ∈ X. (8)

We define the norm of the map A as being the operator norm of its linear part A0 :=
A(·)−A(0), i.e.:

‖A‖ := ‖A0‖ = max{‖A0(x)‖ : ‖x‖ ≤ 1} = max{‖A(x)−A(0)‖ : ‖x‖ ≤ 1}.

The Lagrangian dual function and value function associated with (1) are defined as

d(λ) := inf{ f (x)+ 〈λ,A(x)〉 : x ∈ X}, ∀λ ∈ −K, (9)

v(u) := inf{ f (x) : A(x)+ u ∈ K∗, x ∈ X}, ∀u ∈ �m . (10)

We make the following assumptions throughout this paper:

Assumption 1 (A.1) the set X is bounded (and hence f ∗ ∈ IR);

(A.2) there exists a Lagrange multiplier for (1), i.e., a vector λ∗ ∈ −K such that
f ∗ = d(λ∗).

We define a near optimal solution of (1) based on the following optimality condi-
tions: x∗ ∈ X is an optimal solution of (1) and λ∗ ∈ −K is a Lagrange multiplier for
(1) if, and only if, (x̃, λ̃) = (x∗, λ∗) satisfies

A(x̃) ∈ K∗, 〈λ̃,A(x̃)〉 = 0,
∇ f (x̃)+ (A0)

∗ λ̃ ∈ −NX (x̃),
(11)

where NX (x̃) := {s ∈ �n : 〈s, x − x̃〉 ≤ 0, ∀x ∈ X} denotes the normal cone of X at
x̃ . Based on this observation, we introduce the following definition of a near optimal
solution of (1).

Definition 1 For a given pair (εp, εd) ∈ IR++ × IR++, (x̃, λ̃) ∈ X × (−K) is called
an (εp, εd)-primal–dual solution of (1) if

dK∗(A(x̃)) ≤ εp, 〈λ̃,�K∗(A(x̃))〉 = 0, (12)

∇ f (x̃)+ (A0)
∗ λ̃ ∈ −NX (x̃)+ B(εd), (13)
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120 G. Lan, R. D. C. Monteiro

where B(η) := {x ∈ �n : ‖x‖ ≤ η} for every η ≥ 0.

In the remaining part of this section, we describe some properties for the distance
function dK∗(·) used in (12). The proof of the following result is given in the Appendix.

Proposition 1 Let K ⊆ �m be a closed convex cone. Then, the following statements
hold:

(a) dK∗ = σC , where C := (−K) ∩ B(0, 1) and B(0, 1) := {u ∈ �m : ‖u‖ ≤ 1};
(b) for every u ∈ �m and λ ∈ K, we have 〈u, λ〉 ≥ −‖λ‖ dK∗(u).

As a consequence of the above result, we obtain the following technical inequality
which will be used in our analysis.

Corollary 2 Let λ∗ be an Lagrange multiplier for (1). Then, for every x ∈ X, we have
f (x)− f ∗ ≥ −‖λ∗‖ dK∗(A(x)).
Proof It is well-known that our assumptions imply that v is a convex function such
that λ∗ ∈ ∂v(0), and hence that

v(u)− v(0) ≥ 〈λ∗, u〉 = 〈 − λ∗,−u〉 ≥ −‖ − λ∗‖ dK∗(−u) = −‖λ∗‖ dK∗(−u),

∀u ∈ �m,

where the inequality follows from Proposition 1(b) and the fact that −λ∗ ∈ K. Now,
let x ∈ X be given. Since x is clearly feasible for problem (10) with u = −A(x), the
definition of v(·) in (10) implies that v(u) ≤ f (x). Hence,

f (x)− f ∗ ≥ v(u)− v(0) ≥ −‖λ∗‖ dK∗(−u) = −‖λ∗‖ dK∗(A(x)).

��

3 Technical results

This section discusses some technical results that will be used in our analysis and
reviews a first-order algorithm due to Nesterov [6,8] for solving CP problems with
simple feasible sets, and a restarting version of it for solving CP problems with strongly
convex objective functions. It consists of two subsections. The first one develops
several technical results involving projected gradients. The second subsection reviews
Nesterov’s optimal method and its restarting variant for solving CP problems with
strongly convex objective functions.

3.1 Projected gradient and the optimality conditions

We consider the CP problem

φ∗ := min
x∈X

φ(x), (14)
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Iteration-complexity of first-order penalty methods 121

where X ⊂ �n is a convex set and φ : X → IR is a convex function that has Lφ-
Lipschitz-continuous gradient over X with respect to the norm ‖ · ‖.

It is well-known that x∗ ∈ X is an optimal solution of (14) if and only if
∇φ(x∗) ∈ −NX (x∗). Moreover, this optimality condition is in turn related to the
projected gradient of the function φ over X defined as follows.

Definition 2 Given a fixed constant τ > 0, we define the projected gradient of φ at
x̃ ∈ X with respect to X as (see, for example, [7])

∇φ(x̃)]τX :=
1

τ

[
x̃ −�X (x̃ − τ∇φ(x̃))

]
, (15)

where �X (·) is the projection map onto X defined in terms of ‖ · ‖.
The following proposition relates the projected gradient to the aforementioned

optimality condition.

Proposition 3 Let x̃ ∈ X be given and define x̃+ := �X (x̃ − τ∇φ(x̃)). Then, for
any given ε ≥ 0 and τ > 0, the following statements hold:

(a) ‖∇φ(x̃)]τX‖ ≤ ε if, and only if, ∇φ(x̃) ∈ −NX (x̃+)+ B(ε);
(b) ‖∇φ(x̃)]τX‖ ≤ ε implies that ∇φ(x̃+) ∈ −NX (x̃+)+ B (

(1+ τ Lφ)ε
)
.

Proof To simplify notation, define v := ∇φ(x̃)]τX . By (15) and well-known properties
of the projection operator �X , we have

v = ∇φ(x̃)]τX ⇔ x̃ − τv = �X (x̃ − τ∇φ(x̃))
⇔ 〈x̃ − τ∇φ(x̃)− (x̃ − τv), y − (x̃ − τv)〉 ≤ 0, ∀y ∈ X

⇔ 〈v − ∇φ(x̃), y − (x̃ − τv)〉 ≤ 0, ∀y ∈ X

⇔ 〈v − ∇φ(x̃), y − x̃+〉 ≤ 0, ∀y ∈ X

⇔ ∇φ(x̃)− v ∈ −NX (x̃
+).

from which statement (a) clearly follows. To show (b), assume that ‖v‖ ≤ ε. Then,
we have

‖x̃+ − x̃‖ ≤ ‖�X (x̃ − τ∇φ(x̃))− x̃‖ = ‖(x̃ − τv)− x̃‖ = τ‖v‖ ≤ τε.

which, together with the assumption that φ has Lφ-Lipschitz-continuous gradient,
implies that ‖∇φ(x̃+) − ∇φ(x̃)‖ ≤ τ Lφε. Statement (b) now follows immediately
from the latter conclusion and statement (a). ��

The following lemma summarizes some interesting properties of the projected
gradient.

Lemma 4 Let x̃ ∈ X be given and x̃+ := �X (x̃−τ∇φ(x̃)). Denoting g(·) := ∇φ(·),
gX (·) := ∇φ(·)]τX . We have:

(a) φ(x̃+)− φ(x̃) ≤ −τ‖gX (x̃)‖2/2 for any τ ≤ 1/Lφ;
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122 G. Lan, R. D. C. Monteiro

(b) For any x ∈ X and τ > 0, there holds

〈g(x̃)− gX (x̃), x − x̃+〉 ≥ 0; (16)

In particular, setting x = x̃ , we obtain

〈g(x̃)− gX (x̃), gX (x̃)〉 ≥ 0; (17)

(c) For any x ∈ X and τ > 0, there holds

φ(x̃+)− φ(x) ≤ (
1+ τ Lφ

) ‖gX (x̃)‖ ‖x̃+ − x‖. (18)

(d) If τ = 1/Lφ in definition (15), then

φ(x)− φ(x∗) ≥ 1

2Lφ
‖gX (x)‖2, ∀ x ∈ X, (19)

where x∗ ∈ Argminx∈Xφ(x).

Proof (a) This statement is proved in p. 87 of [7].
(b) Noting that x̃+ = x̃ − τgX (x̃) = �X (x̃ − τg(x̃)), it follows from well-known

properties of the projection map �X that

〈x − (x̃ − τgX ), x̃ − τg(x̃)− (x̃ − τgX (x̃))〉 = 〈x − (x̃ − τgX (x̃)), τ (gX (x̃)− g(x̃))〉
= 〈x − x̃+, τ (gX (x̃)− g(x̃))〉 ≤ 0, ∀ x ∈ X,

which clearly implies statement (b).
(c) It follows from from the convexity of φ(·), (16), the assumption that φ(·) has

Lφ-Lipschitz-continuous gradient, and definition (15) that

φ(x̃+)− φ(x) ≤ 〈g(x̃+), x̃+ − x〉
= 〈g(x̃)− gX (x̃), x̃+ − x〉 + 〈gX (x̃), x̃+ − x〉
+〈g(x̃+)− g(x̃), x̃+ − x〉
≤ 〈gX (x̃), x̃+ − x〉 + 〈g(x̃+)− g(x̃), x̃+ − x〉
≤ 〈gX (x̃), x̃+ − x〉 + Lφ‖x̃+ − x̃‖ ‖x̃+ − x‖
= 〈gX (x̃), x̃+ − x〉 + τ Lφ‖gX (x̃)‖ ‖x̃+ − x‖
≤ (

1+ τ Lφ
) ‖gX (x̃)‖ ‖x̃+ − x‖, ∀ x ∈ X.

(d) Using the fact that φ(x∗) ≤ φ(x), ∀x ∈ X and the assumption that φ(·) has
Lφ-Lipschitz-continuous gradient, we conclude that

φ(x∗) ≤ φ
(

x − 1

Lφ
gX (x)

)
≤ φ(x)− 1

Lφ
〈g(x), gX (x)〉 + 1

2Lφ
‖gX (x)‖2

≤ φ(x)− 1

2Lφ
‖gX (x)‖2
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Iteration-complexity of first-order penalty methods 123

for any x ∈ X , where the last inequality follows from (17).
��

3.2 Nesterov’s optimal method

In this subsection, we discuss Nesterov’s smooth first-order method for solving a
class of smooth CP problems. This method or its restarting version described in this
subsection will be used by the quadratic penalty method to solve the penalization
subproblems. We observe, however, that any variant of Nesterov’s method with the
same optimal complexity, see, for example, [1,2,6–8,10], could also be used to solve
the penalization subproblems without changing any of the main results of the paper.

Our problem of interest is still the CP problem (14), which is assumed to satisfy
the same assumptions mentioned in Sect. 3.1. Moreover, we assume throughout our
discussion that the optimal value φ∗ of problem (14) is finite and that its set of optimal
solutions is nonempty. Let h : X → IR be a differentiable strongly convex function
with modulus σh > 0 with respect to ‖ · ‖, i.e.,

h(x) ≥ h(x̃)+ 〈∇h(x̃), x − x̃〉 + σh

2
‖x − x̃‖2, ∀x, x̃ ∈ X. (20)

The Bregman distance dh : X × X → IR associated with h is defined as

dh(x; x̃) ≡ h(x)− lh(x; x̃), ∀x, x̃ ∈ X, (21)

where lh : �n × X → IR is the “linear approximation” of h defined as

lh(x; x̃) = h(x̃)+ 〈∇h(x̃), x − x̃〉, ∀(x, x̃) ∈ �n × X.

We are now ready to state Nesterov’s smooth first-order method for solving (14).
We use the superscript ‘sd’ in the sequence obtained by taking a steepest descent
step and the superscript ‘ag’ (which stands for ‘aggregated gradient’) in the sequence
obtained by using all past gradients.

Nesterov’s algorithm:

(0) Let xsd
0 = xag

0 ∈ X be given and set k = 0
(1) Set xk = 2

k+2 xag
k + k

k+2 xsd
k and compute φ(xk) and φ′(xk).

(2) Compute (xsd
k+1, xag

k+1) ∈ X × X as

xsd
k+1 ≡ argmin

{
lφ(x; xk)+ Lφ

2
‖x − xk‖2 : x ∈ X

}
, (22)

xag
k+1 ≡ argmin

{
Lφ
σh

dh(x; x0)+
k∑

i=0

i + 1

2
[lφ(x; xi )] : x ∈ X

}
. (23)

(3) Set k ← k + 1 and go to step 1.

end
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124 G. Lan, R. D. C. Monteiro

The main convergence result established by Nesterov [8] regarding the above algo-
rithm is summarized in the following theorem.

Theorem 5 The sequence {xsd
k } generated by Nesterov’s optimal method satisfies

φ
(

xsd
k

)
− φ∗ ≤ 4Lφ dh(x∗; xsd

0 )

σh k(k + 1)
, ∀k ≥ 1,

where x∗ is an optimal solution of (14). As a consequence, given any ε > 0, an iterate
xsd

k ∈ X satisfying φ(xsd
k )− φ∗ ≤ ε can be found in no more than

⎡
⎢⎢⎢

2

√
dh(x∗; xsd

0 )Lφ
σhε

⎤
⎥⎥⎥

(24)

iterations.

The following result is as an immediate special case of Theorem 5.

Corollary 6 Suppose that h : X → � is chosen as h(·) = ‖ · ‖2/2 in Nesterov’s
optimal method. Then, for any ε > 0, an iterate xsd

k ∈ X satisfying φ(xsd
k )− φ∗ ≤ ε

can be found in no more than

⌈
‖xsd

0 − x∗‖
√

2Lφ
ε

⌉
(25)

iterations, where x∗ is an optimal solution of (14).

Proof If h(x) = ‖x‖2/2, then (21) implies that dh(x∗; xsd
0 ) = ‖xsd

0 − x∗‖2/2. The
corollary now follows from this bound and relation (24). ��

Now assume that the objective function φ is strongly convex over X , i.e., for some
μ > 0,

〈∇φ(x)−∇φ(x̃), x − x̃〉 ≥ μ‖x − x̃‖2, ∀x, x̃ ∈ X. (26)

Nesterov shows in Theorem 2.2.2 of [7] that, under the assumptions of Corollary 6, a
variant of his optimal method finds a solution xk ∈ X satisfying φ(xk) − φ∗ ≤ ε in
no more than

⌈√
Lφ
μ

log
Lφ ‖xsd

0 − x∗‖2
ε

⌉
(27)

iterations. The following result gives an iteration-complexity bound for Nesterov’s
optimal method that replaces the term log(Lφ‖xsd

0 −x∗‖2/ε) in (27) with log(μ‖xsd
0 −

x∗‖2/ε). The resulting iteration-complexity bound is not only sharper but also more
suitable since it makes it easier for us to compare the quality of the different bounds
obtained in our analysis of first-order penalty methods.
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Iteration-complexity of first-order penalty methods 125

Theorem 7 Let ε > 0 be given and suppose that the function φ is strongly convex
with modulus μ. Then, the variant where we restart Nesterov’s optimal method, with
proximal functions h(·) = ‖ · ‖2/2, every

K :=
⌈√

8Lφ
μ

⌉
(28)

iterations finds a solution x̃ ∈ X satisfying φ(x̃)− φ∗ ≤ ε in no more than

⌈√
8 Lφ
μ

⌉
max{1, �log Q�} (29)

iterations, where

Q := μ ‖xsd
0 − x∗‖2

2ε
(30)

and x∗ := argminx∈Xφ(x).

Proof Denote D := ‖xsd
0 − x∗‖. First consider the case where Q ≤ 1. Clearly we

have ε ≥ μD2/2, which, in view of Corollary 6, implies that the number of iterations
is bounded by �2√Lφ/μ�, and hence bounded by (29).

We now show that bound (29) holds for the case when Q > 1. Let x j be the iterate
obtained at the end of ( j−1)th restart after K iterations of Nesterov’s optimal method
are performed. By Theorem 5 with h(·) = ‖ · ‖2/2 and inequality (26), we have

φ
(

x1
)
− φ(x∗) ≤ 2Lφ ‖xsd

0 − x∗‖2
K 2 ≤ 2Lφ D2

K 2

φ
(

x j
)
− φ(x∗) ≤ 2Lφ ‖x j−1 − x∗‖2

K 2 ≤ 4Lφ
μ K 2

[
φ
(

x j−1
)
− φ(x∗)

]
, ∀ j ≥ 2.

Using the above relations inductively, we conclude that

φ
(

x j
)
− φ(x∗) ≤ (4Lφ) j D2

2μ j−1 K 2 j
.

Setting j = �log Q� and observing that

K 2 j ≥
[(

8Lφ
μ

) 1
2
]2 j

= 2 j
(

4Lφ
μ

) j

≥ 2log Q
(

4Lφ
μ

) j

≥ μD2

2

(4Lφ) j

μ j

= D2

2

(4Lφ) j

μ j−1 ,

we conclude that φ(x j ) − φ(x∗) ≤ ε. Hence, the overall number of iterations is
bounded by K �log Q�, or equivalently, by (29). ��
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It is interesting to compare the complexity bounds of Corollary 6 and Theorem 7.
Indeed, it can be easily seen that there exists a threshold value Q̄ > 0 such that the
condition Q ≥ Q̄, where Q is defined in (30), implies that the bound (25) is always
greater than or equal to the bound (29). Moreover, as Q goes to infinity, the ratio
between (25) and (29) converges to infinity.

4 The quadratic penalty method

The goal of this section is to establish iteration-complexity bounds for quadratic
penalty based methods for solving (1), expressed in terms of number of Nesterov’s
optimal method iterations performed for approximately solving quadratic penalty sub-
problems. It consists of two subsections. Section 4.1 derives an iteration-complexity
bound for the quadratic penalty method applied directly to (1). Section 4.2 establishes
a sharper iteration-complexity bound for a variant of the above method, which consists
of applying the quadratic penalty method to a perturbed problem obtained by adding
a small quadratic term to the objective function of (1).

The basic idea underlying penalty methods is rather simple, namely: instead of
solving problem (1) directly, we solve certain relaxations of (1) obtained by penalizing
some violation of the constraint A(x) ∈ K∗. More specifically, in the case of the
quadratic penalty method, given a penalty parameter ρ > 0, we solve the relaxation

∗ρ := inf
x∈X

{
ρ(x) := f (x)+ ρ

2
[dK∗(A(x))]2

}
. (31)

We will now see that the objective function ρ of (31) has Lipschitz continuous
gradient. We first state the following well-known result which guarantees that the
distance function has Lipschitz continuous gradient (see for example proposition 15
of [2] for its proof).

Proposition 8 Given a closed convex set C ⊆ �m, consider the distance function
dC : �m → IR to C with respect to ‖·‖ on�m. Then, the functionψ : �m → � defined
as ψ(u) = [dC(u)]2 is convex and its gradient is given by ∇ψ(u) = 2[u −�C (u)]
for every u ∈ �m. Moreover, ‖∇ψ(ũ)−∇ψ(ũ)‖ ≤ 2‖ũ − u‖ for every u, ũ ∈ �m.

As an immediate consequence of Proposition 8, we obtain the following result.

Corollary 9 The function ρ has Mρ-Lipschitz continuous gradient, where Mρ :=
L f + ρ‖A‖2.

Proof The differentiability of ρ follows immediately from the assumption that f is
differentiable and Proposition 8. Moreover, it easily follows from the chain rule that
∇ρ(x) = ∇ f (x)+ρA∗0∇(d2

K)(A(x))/2, which together with (8) and Proposition 8,
then imply that

‖∇ρ(x1)− ∇ρ(x2)‖ ≤ ‖∇ f (x1)− ∇ f (x2)‖ + ρ
2

∥∥∥A∗0∇(d2
K)(A(x1))−A∗0∇(d2

K)(A(x2))

∥∥∥

≤ L f ‖x1 − x2‖ + ρ
2
‖A∗0‖

∥∥∥∇d2
K(A(x1))− ∇d2

K(A(x2))

∥∥∥
≤ L f ‖x1 − x2‖ + ρ‖A∗0‖‖A0(x1 − x2)‖
≤ L f ‖x1 − x2‖ + ρ‖A∗0‖‖A0‖‖x1 − x2‖ = Mρ‖x1 − x2‖,
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for every x1, x2 ∈ X , where the last equality follows from the fact that ‖A‖ = ‖A0‖ =
‖A∗0‖. ��

In view of Corollary 9, which establishes that ρ has Lipschitz continuous gra-
dient, it follows that iteration-complexity bounds for approximately solving (31) via
Nesterov’s optimal method (or one of its variants described for example in [2,6,8]) or
its restarting variant (see Sect. 3.2) can now be easily obtained by means of Corollary 6
or Theorem 7.

4.1 Quadratic penalty method applied to the original problem

In this subsection, we consider the quadratic penalty method applied directly to the
original problem (1). It consists of approximately solving penalized subproblems of
the form (31) for an increasing sequence of penalty parameters ρ, until eventually an
(εp, εd)-primal–dual solution of (1) is obtained.

Given an approximate solution x̃ ∈ X for the penalized problem (31), the follow-
ing result shows that there exists a pair (x̃+, λ) ∈ X × (−K) depending on x̃ that
approximately satisfies the optimality conditions (11).

Proposition 10 If x̃ ∈ X is a δ-approximate solution of (31), i.e., it satisfies

ρ(x̃)−∗ρ ≤ δ, (32)

then the pair (x̃+, λ) defined as

x̃+ := �X (x̃ −∇ρ(x̃)/Mρ), (33)

λ := ρ [A(x̃+)−�K∗(A(x̃+))
]

(34)

is in X × (−K) and satisfies the second relation in (12) and the relations

dK∗(A(x̃+)) ≤ 2

ρ
‖λ∗‖ +

√
2δ

ρ
, (35)

∇ f (x̃+)+ (A0)
∗ λ ∈ −NX (x̃

+)+ B
(

2
√

2Mρδ
)
, (36)

where λ∗ is an arbitrary Lagrange multiplier for (1).

Proof It follows from Lemma 4(a) with φ = ρ and τ = Mρ that ρ(x̃+) ≤ ρ(x̃),
and hence thatρ(x̃+)−∗ρ ≤ δ in view of (32). Using the fact that v(0) = f ∗ ≥ ∗ρ ,
Corollary 2 and assumption (32), we conclude that

δ ≥ ρ(x̃)−∗ρ = f (x̃)+ ρ
2
[dK∗(A(x̃))]2 −∗ρ

≥ f (x̃)− f ∗ + ρ
2
[dK∗(A(x̃))]2 ≥ −‖λ∗‖ dK∗(A(x̃))+ ρ2 [dK∗(A(x̃))]2,
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which clearly implies (35). Moreover, by Lemma 4(d) with φ = ρ and Lφ = Mρ

and assumption (32), we have

‖∇ρ(x̃)]1/Mρ

X ‖ ≤
√

2Mρ[ρ(x̃)−∗ρ ] ≤
√

2Mρδ.

Relation (36) now follows from this inequality, Proposition 3(b) with Lφ = Mρ ,
τ = 1/Mρ and ε = √

2Mρδ, and the fact that∇ρ(x̃+) = ∇ f (x̃+)+ (A0)
∗ λ, where

λ is given by (34). Finally, λ ∈ (−K) and the second relation of (12) holds in view of
the definition of λ and well-known properties of the projection operator onto a cone.

��
With the aid of Proposition 10, we can now derive an iteration-complexity bound

for Nesterov’s method applied to the quadratic penalty problem (31) to compute an
(εp, εd)-primal–dual solution of (1).

Theorem 11 Let λ∗ be an arbitrary Lagrange multiplier for (1) and let (εp, εd) ∈
IR++ × IR++ be given. If

ρ = ρpd(t) := 1

εp

(
2t + εd

2‖A‖
)

(37)

for some t ≥ ‖λ∗‖, then Nesterov’s optimal method with h(·) = ‖ · ‖2/2 applied to
problem (31) finds an (εp, εd)-primal–dual solution of (1) in at most

Npd(t) :=
⌈

4DX

(
L f

εd
+ 2‖A‖2t

εpεd
+ ‖A‖

2εp

)⌉
(38)

iterations, where DX := maxx1,x2∈X ‖x1 − x2‖.
Proof Let x̃ ∈ X be a δ-approximate solution of (31) where δ := ε2

d/(8Mρ). Noting
that δ ≤ ε2

d/(8ρ‖A‖2) in view of the fact that Mρ := L f +ρ‖A‖2 ≥ ρ‖A‖2, we con-
clude from Proposition 10 that the pair (x̃+, λ)defined as x̃+ := �X (x̃−∇ρ(x̃)/Mρ)

and λ := ρ[A(x̃+) −�K∗(A(x̃+))] satisfies ∇ f (x̃+) +A∗λ ∈ −NX (x̃+) + B(εd)

and

dK∗(A(x̃+)) ≤ 2

ρ
‖λ∗‖ +

√
2δ

ρ
≤ 1

ρ

(
2‖λ∗‖ + εd

2‖A‖
)
≤ εp,

where the last inequality is due to (37) and the assumption that t ≥ ‖λ∗‖. We have thus
shown that (x̃+, λ) is an (εp, εd)-primal–dual solution of (1). In view of Corollary 6,
Nesterov’s optimal method finds an approximate solution x̃ as above in at most

⌈√
2DX

(
Mρ

δ

)1/2
⌉
=
⎡
⎢⎢⎢
√

2DX

(
8M2

ρ

ε2
d

)1/2
⎤
⎥⎥⎥
=
⌈

4DX
Mρ

εd

⌉
=
⌈

4DX
L f + ρ‖A‖2

εd

⌉

iterations. Substituting the value of ρ given by (37) in the above bound, we obtain
bound (38). ��
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We now make a few observations regarding Theorem 11. First, the choice of ρ given
by (37) requires that t ≥ ‖λ∗‖ so as to guarantee that an δ-approximate solution x̃ of
(31) satisfies dK∗(A(x̃)) ≤ εp, where δ = ε2

d/(8Mρ). Second, note that the iteration-
complexity Npd(t) obtained in Theorem 11 achieves its minimum possible value over
the interval t ≥ ‖λ∗‖ exactly when t = ‖λ∗‖. However, since the quantity ‖λ∗‖ is
not known a priori, it is necessary to use a “guess and check” procedure for t so as to
develop a scheme for computing an (εp, εd)-primal solution of (1) whose iteration-
complexity has the same order of magnitude as the ideal one in which t = ‖λ∗‖.

We now describe the aforementioned “guess and check” procedure for t .

Search procedure 1

(1) Set k = 0 and define

β0 = 4DX

(
L f

εd
+ ‖A‖

2εp

)
, β1 = 8DX‖A‖2

εpεd
, t0 := max(1, β0)

β1
. (39)

(2) Set ρ = ρpd(tk), and perform at most �Npd(tk)� iterations of Nesterov’s optimal
method applied to problem (31). If an iterate x̃ is obtained such that (32) with
δ = ε2

d/(8Mρ) and dK∗(A(x̃)) ≤ εp are satisfied, then stop; otherwise, go to
step 3;

(3) Set tk+1 = 2tk , k = k + 1, and go to step 2.

Before establishing the iteration-complexity of the above procedure, we state a
technical result, namely: Lemma 13. Lemma 12 states a simple inequality used in the
proof of Lemma 13.

Lemma 12 For any τ, α ≥ 0 and x ∈ �, we have τ x + α ≤ (τ + α)max{1, �x�}.
Lemma 13 Let scalar p > 0 be given. Then, there exists a constant C = C(p) such
that for any β0 ∈ � and β1, t̄ > 0, we have

K∑
k=0

�β0 + β1t p
k � ≤ C�β0 + β1 t̄ p�, (40)

where tk = t02k for k = 1, . . . , K , and

t0 :=
(

max(β0, 1)

β1

)1/p

, K := max

{
0,

⌈
log

(
t̄

t0

)⌉}
. (41)

Proof Assume first that t̄ ≤ t0. Due to the definition of K in (41), we have K = 0 in
this case, and hence that

K∑
k=0

�β0 + β1t p
k � = �β0 + β1t p

0 � = �β0 +max(β0, 1)� ≤ 2β0 + 2

≤ 4 max{�β0�, 1} ≤ 4�β0 + β1 t̄ p�,
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where the second equality follows from the definition of t0 and the second inequality
follows from Lemma 12. Hence, in the case where t̄ ≤ t0, inequality (40) holds with
C = 4.

Assume now that t̄ > t0. By the definition of K in (41), we have K = �log(t̄/t0)�,
from which we conclude that K < log(t̄/t0)+ 1, and hence that t02K+1 < 4t̄ . Using
these relations, the inequality log x = (log x p)/p ≤ x p/p for any x > 0, and the
definition of t0 in (41), we obtain

K∑
k=0

�β0 + β1t p
k � ≤

K∑
k=0

1+ β0 + β1 t p
0 2pk ≤ (1+ β0)(1+ K )+ β1t p

0
2(K+1)p

2p − 1

≤ (1+ β0)

[
2+ log

(
t̄

t0

)]
+ β1

(4t̄)p

2p − 1

≤ (1+ β0)

[
2+ 1

p

(
t̄

t0

)p]
+ 4p

2p − 1
β1 t̄ p

≤ (1+ β0)

[
2+ 1

p

(
β1 t̄ p

max(β0, 1)

)]
+ 4p

2p − 1
β1 t̄ p

≤ 2(1+ β0)+ 2

p
β1 t̄ p + 4p

2p − 1
β1 t̄ p

≤ 2+max

{
2,

2

p
+ 4p

2p − 1

}
(β0 + β1 t̄ p),

which, in view of Lemma 12, implies that (40) holds with

C = C(p) := 2+max

{
2,

2

p
+ 4p

2p − 1

}
.

��

The following result gives the iteration-complexity of Search procedure 1 for obtain-
ing an (εp, εd)-primal–dual solution of (1).

Corollary 14 Let λ∗ be the minimum norm Lagrange multiplier for (1). Then, the
overall number of iterations of search procedure 1 for obtaining an (εp, εd)-primal–
dual solution of (1) is bounded by O(Npd(‖λ∗‖)), where Npd(·) is defined in (38).

Proof In view of Theorem 11, the iteration count k in search procedure 1 cannot exceed
K := max{0, �log(‖λ∗‖/t0)�}, and hence its overall number of inner (i.e., Nesterov’s
optimal method) iterations is bounded by

∑K
k=0 Npd(tk) =∑K

k=0�β0 + β1tk�, where
β0 and β1 are defined by (39). The result now follows from the definition of t0 in (39)
and (40) with p = 1 and t̄ = ‖λ∗‖. ��
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4.2 Quadratic penalty method applied to a perturbed problem

Consider the perturbation problem

f ∗γ := min
{

fγ (x) := f (x)+ γ
2
‖x − x0‖2 : A(x) ∈ K∗, x ∈ X

}
, (42)

where x0 is a fixed point in X and γ > 0 is a pre-specified perturbation parameter.
It is well-known that if γ is sufficiently small, then an approximate solution of (42)
will also be an approximate solution of (1). In this subsection, we will derive the
iteration-complexity (in terms of Nesterov’s optimal method iterations) of computing
a primal–dual approximate solution of (1) by applying the quadratic penalty approach
to the perturbation problem (42) for a conveniently chosen perturbation parameter
γ > 0.

Note that the quadratic penalty problem associated with (42) is given by

∗ρ,γ := min
x∈X

{
ρ,γ (x) := f (x)+ γ

2
‖x − x0‖2 + ρ

2
dK∗(A(x))2

}
. (43)

It can be easily seen that the function ρ,γ has Mρ,γ -Lipschitz continuous gradient
where

Mρ,γ := L f + ρ‖A‖2 + γ. (44)

The following simple lemma relates the optimal values of the perturbation problem
(42), the penalty problem (43) and the original problem (1).

Lemma 15 Let f ∗,∗ρ , f ∗γ , and∗ρ,γ be the optimal values defined in (1), (31), (42),
and (43), respectively. Then,

0 ≤ f ∗γ − f ∗ ≤ γ D2
X/2 (45)

0 ≤ ∗ρ,γ −∗ρ ≤ γ D2
X/2, (46)

where DX := maxx1,x2∈X ‖x1 − x2‖.
Proof The first inequalities in both relations (45) and (46) follow immediately from
the fact that fγ ≥ f and ρ,γ ≥ ρ . Now, let x∗ and x∗γ be optimal solutions of (1)
and (42), respectively. Then,

f ∗γ = f (x∗γ )+
γ

2
‖x∗γ − x0‖2 ≤ f (x∗)+ γ

2
‖x∗ − x0‖2 ≤ f ∗ + γ D2

X

2
,

from which the second inequality in (45) immediately follows. The second inequality
in (46) can be similarly shown. ��

Theorem 16 below describes the iteration-complexity of computing a primal–dual
approximate solution of (1) by applying the quadratic penalty method to the pertur-
bation problem (42). It shows that the resulting approach has a substantially better
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iteration-complexity than the one discussed in Sect. 4.1, which consists of applying
the quadratic penalty method directly to the original problem (1).

Theorem 16 Let λ∗γ be an arbitrary Lagrange multiplier for (42) and let (εp, εd) ∈
IR++ × IR++ be given. Also assume that

ρ = ρ̃pd(t) := 1

εp

(
2t + εd

4‖A‖
)
, γ = εd

2DX
, (47)

for some t ≥ ‖λ∗γ ‖. Then, the variant of Nesterov’s optimal method of Theorem7
with μ = γ and Lφ = Mρ,γ applied to problem (43) finds an (εp, εd)-primal–dual
solution of (1) in at most

Ñpd(t) := �8S(t)� �2 log(2S(t))� , (48)

where DX is defined in Theorem11 and

S(t) :=
[

2DX

(
L f

εd
+ ‖A‖

4εp

)
+ 1

] 1
2 + 2D1/2

X ‖A‖√
εpεd

t1/2. (49)

Proof Define δ := ε2
d/(32Mρ,γ ) and let x̃ ∈ X be a δ-approximate solution for (43),

i.e., ρ,γ (x̃)−∗ρ,γ ≤ δ. It then follows from Proposition 10 with ρ = ρ,γ , f =
fγ , and Mρ = Mρ,γ that the pair (x̃+, λ) defined as x̃+ := �X (x̃−∇ρ,γ (x̃)/Mρ,γ )

and λ := ρ[A(x̃+)−�K∗(A(x̃+))] satisfies

∇ fγ (x̃
+)+A∗λ ∈ −NX (x̃

+)+ B
(

2
√

2Mρ,γ δ
)
= −NX (x̃

+)+ B(εd/2).

This together with the fact that γ ‖x̃+ − x0‖ ≤ γ DX ≤ εd/2 then imply that

∇ f (x̃+)+A∗λ = [∇ fγ (x̃
+)− γ (x̃+ − x0)] +A∗λ

∈ −γ (x̃+ − x0)−NX (x̃
+)+ B(εd/2) ⊆ −NX (x̃

+)+ B(εd).

Moreover, noting that δ := ε2
d/(32Mρ,γ ) ≤ ε2

d/(32ρ‖A‖2), we conclude that
Proposition 10 also implies that

dK∗(A(x̃+)) ≤ 2

ρ
‖λ∗γ ‖ +

√
2δ

ρ
≤ 1

ρ

(
2‖λ∗γ ‖ +

εd

4‖A‖
)
≤ εp,

where the last inequality is due to (47) and the assumption that t ≥ ‖λ∗γ ‖. We have thus
shown that (x̃+, λ) is an (εp, εd)-primal–dual solution of (1). Now, using Theorem 7
with φ = ρ,γ ,μ = γ and ε = δ, and noting that the definition of δ and the definition
of γ in (47) imply that

Q = μ‖xsd
0 − x∗‖2

2ε
= γ ‖xsd

0 − x∗‖2
2δ

≤ γ D2
X

2δ
= γ D2

X

ε2
d/(16Mρ,γ )

= 4Mρ,γ

γ
,
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we conclude that the number of iterations performed by Nesterov’s optimal method
(with the restarting feature) for finding a δ-approximate solution x̃ as above is bounded
by

⌈
8

√
Mρ,γ

γ

⌉
�log Q � =

⌈
8

√
Mρ,γ

γ

⌉⌈
log

(
4Mρ,γ

γ

)⌉
. (50)

Now, using (44) and the definitions of ρ and γ in (47), we easily see that the latter
bound is majorized by (48). ��

Note that the complexity bound (48) derived in Theorem 16 is guaranteed only under
the assumption that t ≥ ‖λ∗γ ‖, where λ∗γ is the minimum norm Lagrange multiplier
for (42). Since the bound (48) is a monotonically increasing function of t , the ideal
(theoretical) choice of t would be to set t = ‖λ∗γ ‖. Without assuming any knowledge of
this Lagrange multiplier, the following result shows that a “guess and check” procedure
similar to search procedure 1 still has an O(Ñpd(‖λ∗γ ‖)) iteration-complexity bound,

where Ñpd(·) is defined in (48).

Corollary 17 Let λ∗γ be the minimum norm Lagrange multiplier for (42). Consider
the “guess and check” procedure similar to search procedure 1 where the functions
Npd and ρpd are replaced by the functions Ñpd and ρ̃pd defined in Theorem16,
Nesterov’s optimal method is replaced by its variant of Theorem7 with μ = γ and
Lφ = Mρ,γ (see step 2 of search procedure 1), δ is set to ε2

d/(32Mρ,γ ), and t0 is set
to [max(β0, 1)/β1]2 with

β0 = 8

[
2DX

(
L f

εd
+ ‖A‖

4εp

)
+ 1

]1/2

, β1 = 16D1/2
X ‖A‖

(εpεd)1/2
. (51)

Then, the overall number of iterations of this “guess and check” procedure for obtain-
ing an (εp, εd)-primal–dual solution of (1) is bounded by O(Ñpd(‖λ∗γ ‖)), where

Ñpd(·) is defined in (48).

Proof In view of Theorem 16, the iteration count k of the above “guess and check”
(see search procedure 1) for obtaining an (εp, εd)-primal–dual solution of (1) cannot
exceed K := max{0, �log(‖λ∗γ ‖/t0)�, and hence its overall number of inner (i.e.,
Nesterov’s optimal method) iterations is bounded by

K∑
k=0

Ñpd(tk) =
K∑

k=0

�8S(tk)� �2 log(2S(tk))� ≤ �2 log(2S(tK ))�
K∑

k=0

�8S(tk)� .

(52)

Now, the definition of t0 and relation (40) with p = 1/2 and t̄ = ‖λ∗γ ‖ imply that

K∑
k=0

�8S(tk)� =
K∑

k=0

⌈
β0 + β1t1/2

k

⌉
= O

(⌈
β0 + β1‖λ∗γ ‖1/2

⌉)
= O

(⌈
8S(‖λ∗γ ‖)

⌉)
,
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where β0 and β1 are defined by (51). Moreover, using the fact that tK ≤ 2‖λ∗γ ‖, we
easily see that �2 log(2S(tK ))� = O(�2 log(2S(‖λ∗γ ‖))�). Substituting the last two

bounds into (52), we then conclude that
∑K

k=0 Ñpd(tk) = O(Ñpd(‖λ∗γ ‖)), and hence
that the corollary holds. ��

It is interesting to compare the functions Npd(t) and N̂pd(t) defined in Theorems 11
and 16, respectively. It follows from (38), (48), and (49) that

Ñpd(t)

Npd(t)
≤ (�8S(t)� �2 log(2S(t))�)⌈

(S(t))2 − 1
⌉ ≤ O(1) log S(t)

S(t)− 1
, (53)

where O(1) denotes an absolute constant. Hence, when S(t) is large, the bound Ñpd(t)
can be substantially smaller than the bound Npd(t).

Note that we cannot use the previous observation to compare the iteration-
complexity of Corollary 14 with that obtained in Corollary 17 since the first one is
expressed in terms of ‖λ∗‖ and the latter in terms of ‖λ∗γ ‖. However, if ‖λ∗γ ‖ =
O(‖λ∗‖), then it can be easily seen that (53) implies that

Ñpd

(
λ∗γ

)

Npd (λ∗)
≤ O(1) log S (λ∗)

S (λ∗)− 1
.

Hence, the first complexity is better than the second one whenever ‖λ∗γ ‖ = O(‖λ∗‖)
and S(‖λ∗‖) is sufficiently large.

Observe that the iteration-complexity bound given in Corollary 17 is expressed
in terms of the minimum norm Lagrange multiplier for the perturbed problem (42).
A natural question is whether an alternative bound can be obtained in terms of the
minimum norm Lagrange multiplier for the original problem (1). Indeed, Theorem 19
and Corollary 20 derive these alternative bounds.

Before presenting these results, we first state the following simple result.

Lemma 18 Let αi , i = 0, 1, 2, be given positive constants. Then, the only positive
scalar ρ satisfying the equation α2ρ

−1 + α1ρ
−1/2 = α0 is given by

ρ =
⎛
⎝α1 +

√
α2

1 + 4α0α2

2α0

⎞
⎠

2

.

Theorem 19 Let λ∗ be an arbitrary Lagrange multiplier for (1) and let (εp, εd) ∈
IR++ × IR++ be given. Assume that

ρ = ρ̂pd(t) :=
(√

εd DX +
√
εd DX + 4α(t)εp

2εp

)2

, γ = εd

2DX
, (54)

where α(t) := t + εd/(4 ‖A‖) for some t ≥ ‖λ∗‖. Then, the variant of Nesterov’s
optimal method of Theorem7 with μ = γ and Lφ = Mρ,γ applied to problem (43)
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finds an (εp, εd)-primal–dual solution of (1) in at most

N̂pd(t) :=
⌈

8Ŝ(t)
⌉ ⌈

2 log(2Ŝ(t))
⌉
, (55)

where DX is defined in Theorem11 and

Ŝ(t) :=
√

2L f DX

εd
+ ‖A‖

(√
2DX

εp
+
√

2t DX

εpεd

)
+
√
‖A‖DX

2εp
+ 1. (56)

Proof Define δ := ε2
d/(32Mρ,γ ) and let x̃ ∈ X be a δ-approximate solution for (43),

i.e., ρ,γ (x̃) − ∗ρ,γ ≤ δ. As shown in the proof of Theorem 16, the pair (x̃+, λ)
defined as x̃+ := �X (x̃ − ∇ρ,γ (x̃)/Mρ,γ ) and λ := ρ[A(x̃+) − �K∗(A(x̃+))]
satisfies

∇ f (x̃+)+A∗λ ∈ −NX (x̃
+)+ B(εd).

Moreover, it follows from Lemma 4(a) withφ = ρ,γ and τ = Mρ,γ thatρ,γ (x̃+) ≤
ρ,γ (x̃), and hence that ρ,γ (x̃+)−∗ρ,γ ≤ ρ,γ (x̃)−∗ρ,γ ≤ δ. This observation
together with (31), (43), (46) and (54) then imply that

ρ(x̃
+)−∗ρ = ρ,γ (x̃+)−

γ

2
‖x̃+ − x0‖2 −∗ρ ≤

[
ρ,γ (x̃

+)−∗ρ,γ
]

+
[
∗ρ,γ −∗ρ

]
≤ δ + γ D2

X ≤
ε2

d

32ρ‖A‖2 +
εd DX

2
,

where the last inequality follows from the definition of δ and the fact that Mρ ≥ ρ‖A‖2.
The above inequality together with Proposition 10, the assumption that t ≥ ‖λ∗‖,
relation (54) and Lemma 18 with α0 = εp, α1 = √εd DX and α2 = t+εd/(4 ‖A‖) =:
α(t) then imply that

dK∗(A(x̃+)) ≤ 2

ρ
‖λ∗‖+

√
ε2

d

16ρ2‖A‖2 +
DXεd

ρ
≤ 1

ρ

(
t + εd

4 ‖A‖
)
+
√

DXεd

ρ
=εp.

We have thus shown that (x̃+, λ) is an (εp, εd)-primal–dual solution of (1). Now, using
Theorem 7 with φ = ρ,γ , μ = γ and ε = δ, and noting that the definition of δ and
the definition of γ in (54) imply that

Q = μ‖xsd
0 − x∗‖2

2ε
= γ ‖xsd

0 − x∗‖2
2δ

≤ γ D2
X

2δ
= γ D2

X

ε2
d/(16Mρ,γ )

= 4Mρ,γ

γ
,

we conclude that the number of iterations performed by Nesterov’s optimal method
(with the restarting feature) for finding a δ-approximate solution x̃ as above is bounded
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by (50). Since relations (44) and (54) and the definition of α(t) imply that

√
Mρ,γ

γ
=
√

L f + ρ‖A‖2 + γ
γ

≤
√

L f

γ
+ ‖A‖

√
ρ

γ
+ 1 =

√
2L f DX

εd

+‖A‖
√
ρ

γ
+ 1

and

√
ρ

γ
≤
(√

εd DX

εp
+
√
α(t)

εp

)√
2DX

εd
=
√

2DX

εp
+
√

t + εd/(4‖A‖)
εp

√
2DX

εd

≤
(√

2DX

εp
+
√

2t DX

εpεd
+
√

DX

2εp‖A‖

)
,

it follows that (50) can be bounded by (55). ��
The following result states the iteration-complexity of a “guess and check” proce-

dure based on Theorem 19. Its proof is based on similar arguments as those used in
the proof of Corollary 17.

Corollary 20 Let λ∗ be the minimum norm Lagrange multiplier for (1). Consider
the “guess and check” procedure similar to search procedure 1 where the functions
Npd and ρpd are replaced by the functions N̂pd and ρ̂pd defined in Theorem16,
Nesterov’s optimal method is replaced by its variant of Theorem7 with μ = γ and
Lφ = Mρ,γ (see step 2 of search procedure 1), δ is set to ε2

d/(32Mρ,γ ), and t0 is set
to [max(β0, 1)/β1]2 with

β0 = 8

(√
2L f DX

εd
+
√

2‖A‖DX

εp
+
√
‖A‖DX

2εp
+ 1

)
, β1 = 8‖A‖

√
2DX

εpεd
.

Then, the overall number of iterations of this “guess and check” procedure for obtain-
ing an (εp, εd)-primal–dual solution of (1) is bounded by O(N̂pd(‖λ∗‖)), where
N̂pd(·) is defined in (55).

It is interesting to compare the functions Npd(t) and N̂pd(t) defined in Theorems 11
and 19, respectively. When the second term in the right hand side of (56) is dominated
by the other terms, i.e.,

‖A‖DX

εp
= O

(
‖A‖t1/2 D1/2

X√
εpεd

+
√

L f DX

εd

)
, (57)

then it can be easily seen that

N̂pd(t)

Npd(t)
≤ O(1) Ñpd(t)

Npd(t)
≤ O(1) log S(t)

S(t)− 1
.
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Hence, if (57) holds and S(t) is large, then N̂pd(t) can be considerably smaller than
Npd(t). It is also interesting to observe when εp = εd = ε, the dependence on ε of
the function N̂pd is O(1/ε) log(1/ε) while that of Npd is O(1/ε2).

5 Concluding remarks

In this section, we compare the results obtained in this paper for the quadratic penalty
method with another possible approach for solving variational inequalities (VI) studied
in Nemirovski [5] for bounded sets, and Monteiro and Svaiter [3] for unbounded sets.
For the sake of simplicity, we assume that K = �m and hence that K∗ = {0}.

Given a closed convex set � ∈ �p and a monotone continuous function F : �→
�p. The (monotone) VI problem with respect to the pair (F,�), denoted by V I (F,�),
consists of finding w∗ such that (6) holds.

It is well-known that, under the assumption that F is monotone and continuous, (6)
is equivalent to

w∗ ∈ �, 〈w − w∗, F(w)〉 ≥ 0, ∀w ∈ �.

Relaxing (6) and the above condition, we obtain the following two notions of
approximate solutions of V I (F,�).

Definition 3 A point w̄ ∈ � is a (�, ε)-strong (resp., (�, ε)-weak) solution of
V I (F,�) if there exists r ∈ �n such that ‖r‖ ≤ � and, for every w ∈ �,
〈w − w̄, F(w̄)− r〉 ≥ −ε (resp., 〈w − w̄, F(w)− r〉 ≥ −ε).

It is well-known that the CP problem (1) is equivalent to solving the V I (F,�),
where � := X × �m and F given by (7). Moreover, defining the norm on �n × �m

as ‖w‖ := (‖x‖2 + ‖λ‖2)1/2, then it is easy to see that an (εp, εd)-primal–dual
solution (x̄, λ̄) is a (�, 0)-strong solution, where � = max{εp, εd}. Disregarding the
constants L f , ‖A‖, DX and ‖λ∗‖, it has been shown in Monteiro and Svaiter [3]
that, given (�, ε) ∈ �++ ×�++, a variant of Korpelevich’s method can find a (�, ε)-
strong solution for V I (F,�) in O(�−2 + ε−1) iterations. Also, when ε is chosen as
ε = O(�2), it can be shown by means of proposition C.6 of Monteiro and Svaiter
[4] that such solution can be cheaply purified to a (�, 0)-strong solution of V I (F,�).
Hence, we conclude that this variant of Korpelevich’s method can find a (�, 0)-strong
solution for V I (F,�) in O(�−2) iterations. On the other hand, we show in this paper
that a (�, 0)-strong solution can be found in

O
(

1

�
(log �−1)

)

iterations by applying the guess-and-check procedure of Subsection 4.2 with εp =
εd = �/

√
2. Hence, the best complexity obtained in this paper for the quadratic

penalty method is better than the one obtained in [3] for a variant of Korpelevich’s
method by at least a factor of �(log �−1).
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It should be noted that [3] also shows that an (�, ε)-weak solution for V I P(F,�)
can be found in

O(�−1 + ε−1). (58)

It would be interesting to see whether our analysis in this paper can be modified to
the context of finding a weak solution of V I (F,�) so as to obtain a better iteration-
complexity bound than (58).

In this paper, we have studied the iteration-complexities of the quadratic penalty
methods (see Theorems 11 and 16) under the assumption that the convex set X in (1)
is bounded. It would be interesting to generalize these results to the situation where
X is unbounded. We can immediately point out two difficulties if one is to pursue this
task. First, the iteration-complexity bounds would have to be expressed in terms of a
quantity related to the distances of x0 to the optimal sets of subproblems (31) or (43)
corresponding to different values of ρ since the quadratic penalty approach studied
in this paper consists of applying Nesterov’s method to these subproblems and the
iteration-complexity of the latter method depends on these distances (see Theorems 5
and 7). Clearly, all these distances are simply majorized by DX when X is bounded.
Second, one would need to develop a suitable way to terminate Nesterov’s method
applied to the above subproblems based on easily computable stopping criteria for the
case when X is unbounded. We observe that the two well-known ways of terminating
Nesterov’s method proposed in the literature only work when X is bounded or φ∗ is
known. Indeed, the first way consists of checking the optimality gap φ(xsd

k ) − φ∗.
This can be accomplished when φ∗ is known or by generating a sequence of lower
bounds for φ∗ (see [8]). The second way to terminate Nesterov’s method is to perform
a pre-specified number of iterations estimated by means of the complexity bounds
(24) and (29). The latter way was exactly the one we have used in the guess and check
procedures developed in this paper. However, none of them seem to be suitable when
X is not assumed to be bounded.

Appendix

In this section, we prove Proposition 1.

Proof of Proposition 1 Define C := {(v, t) ∈ �m × IR : ‖v‖ ≤ t} and let C∗ denote
the dual cone of C. It is easy to see that C∗ = {(ṽ, t̃) ∈ �m × IR : ‖ṽ‖ ≤ t̃}. By
definition of dK∗ and conic duality, we have

dK∗(u) = inf
k̃,t̃
{t̃ : ‖u − k̃‖ ≤ t̃, k̃ ∈ K∗}

= inf
k̃,t̃,ṽ
{t̃ : ṽ + k̃ = u, (ṽ, t̃) ∈ C∗, k̃ ∈ K∗}

= sup
(v,k,t)
{〈u, y〉 : t = 1, y + v = 0, y + k = 0, (v, t) ∈ C, k ∈ K}

= sup{〈u, y〉 : (−y, 1) ∈ C, −y ∈ K} = sup{〈u, y〉 : y ∈ (−K) ∩ B(0, 1)}.
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Statement (a) follows from the above identity and the definition of the support function
of a set (see Sect. 1.1).

To show statement (b), let u ∈ �m and λ ∈ K be given and assume without
loss of generality that λ �= 0. Now noting that −λ/‖λ‖ ∈ C := (−K) ∩ B(0, 1),
we conclude from the above identity that dK(u) ≥ 〈u,−λ/‖λ‖〉, or equivalently,
〈u, λ〉 ≥ −‖λ‖ dK(u). ��
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