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AN ACCELERATED HYBRID PROXIMAL EXTRAGRADIENT
METHOD FOR CONVEX OPTIMIZATION AND ITS
IMPLICATIONS TO SECOND-ORDER METHODS∗
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Abstract. This paper presents an accelerated variant of the hybrid proximal extragradient
(HPE) method for convex optimization, referred to as the accelerated HPE (A-HPE) framework.
Iteration-complexity results are established for the A-HPE framework, as well as a special version
of it, where a large stepsize condition is imposed. Two specific implementations of the A-HPE
framework are described in the context of a structured convex optimization problem whose objective
function consists of the sum of a smooth convex function and an extended real-valued nonsmooth
convex function. In the first implementation, a generalization of a variant of Nesterov’s method is
obtained for the case where the smooth component of the objective function has Lipschitz continuous
gradient. In the second implementation, an accelerated Newton proximal extragradient (A-NPE)
method is obtained for the case where the smooth component of the objective function has Lipschitz
continuous Hessian. It is shown that the A-NPE method has a O(1/k7/2) convergence rate, which
improves upon the O(1/k3) convergence rate bound for another accelerated Newton-type method
presented by Nesterov. Finally, while Nesterov’s method is based on exact solutions of subproblems
with cubic regularization terms, the A-NPE method is based on inexact solutions of subproblems
with quadratic regularization terms and hence is potentially more tractable from a computational
point of view.
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1. Introduction. A broad class of optimization, saddle-point, equilibrium, and
variational inequality problems can be posed as the monotone inclusion problem: find
x such that 0 ∈ T (x), where T is a maximal monotone point-to-set operator defined
in a real Hilbert space. The proximal point method, proposed by Martinet [6], and
further studied by Rockafellar [16, 15], is a classical iterative scheme for solving the
monotone inclusion problem which generates a sequence {xk} according to

xk = (λkT + I)−1(xk−1).

It has been used as a generic framework for the design and analysis of several im-
plementable algorithms. The classical inexact version of the proximal point method
allows for the presence of a sequence of summable errors in the above iteration, i.e.,

‖xk − (λkT + I)−1(xk−1)‖ ≤ ek,

∞∑
k=1

ek <∞,

∗Received by the editors May 12, 2011; accepted for publication (in revised form) February 25,
2013; published electronically June 6, 2013.

http://www.siam.org/journals/siopt/23-2/83378.html
†School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA

30332-0205 (monteiro@isye.gatech.edu). The work of this author was partially supported by NSF
grants CCF-0808863, CMMI-0900094, and CMMI-1300221 and ONR grant ONR N00014-11-1-0062.

‡IMPA, 22460-320 Rio de Janeiro, Brazil (benar@impa.br). The work of this author was par-
tially supported by CNPq grants 303583/2008-8, 302962/2011-5, 480101/2008-6, and 474944/2010-7,
FAPERJ grants E-26/102.821/2008 and E-26/102.940/2011, and by PRONEX-Optimization.

1092



ACCELERATED METHOD FOR CONVEX OPTIMIZATION 1093

where ‖·‖ is the canonical norm of the Hilbert space. Convergence results under the
above error condition have been establish in [16] and have been used in the convergence
analysis of other methods that can be recast in the above framework [15].

New inexact versions of the proximal point method with relative error tolerance
were proposed by Solodov and Svaiter [18, 19, 20, 21]. Iteration-complexity results
for one of these inexact versions of the proximal point method introduced in [18, 19],
namely, the hybrid proximal extragradient (HPE) method, were established in [10].
Application of this framework in the iteration-complexity analysis of several zero-order
(or, in the context of optimization, first-order) methods for solving monotone varia-
tional inequalities, and monotone inclusion and saddle-point problems, are discussed
in [10] and in the subsequent papers [8, 9].

The HPE framework was also used to study the iteration-complexity of a first-
order (or, in the context of optimization, second-order) method for solving monotone
nonlinear equations (see [10]) and, more generally, for monotone smooth variational
inequalities and inclusion problems consisting of the sum of a smooth monotone map
and a maximal monotone point-to-set operator (see [11]).

Iteration-complexity bounds for accelerated inexact versions of the proximal point
method for convex optimization have been obtained in [4, 17] under suitable absolute
error asymptotic conditions. The purpose of this paper is to present an accelerated
variant of the HPE method for convex optimization (based on a relative error con-
dition), which we refer to as the accelerated HPE (A-HPE) framework. This frame-
work builds on the ideas introduced in [10, 18, 19, 13]. Iteration-complexity results
are established for the A-HPE method, as well as a special version of it, where a
large stepsize condition is imposed. We then give two specific implementations of
the A-HPE framework in the context of a structured convex optimization problem
whose objective function consists of the sum of a smooth convex function and an
extended real-valued nonsmooth convex function. In the first implementation, we
obtain an generalization of a variant of Nesterov’s method for the case where the
smooth component of the objective function has Lipschitz continuous gradient. In
the second implementation, we obtain an accelerated Newton proximal extragradient
(A-NPE) method for the case where the smooth component of the objective function
has Lipschitz continuous Hessian. We show that the A-NPE method has a O(1/k7/2)
convergence rate, which improves upon the O(1/k3) convergence rate bound for an-
other accelerated Newton-type method presented in Nesterov [12]. As opposed to
the method in the latter paper, which is based on exact solutions of subproblems
with cubic regularization terms the A-NPE method is based on inexact solutions
of subproblems with quadratic regularization terms and hence is potentially more
tractable from a computational point of view. In addition, the method in [12] is de-
scribed only in the context of unconstrained convex optimization, while the A-HPE
framework applies to constrained, as well as more general, convex optimization
problems.

This paper is organized as follows. Section 2 introduces some basic definitions
and facts about convex functions and ε-enlargement of maximal monotone operators.
Section 3 describes in the context of convex optimization an accelerated variant of
the HPE method introduced in [18, 19] and studies its computational complexity.
Section 4 analyzes the convergence rate of a special version of the A-HPE framework,
namely, the large-step A-HPE framework, which imposes a large-step condition on the
sequence of stepsizes. Section 5 describes a first-order implementation of the A-HPE
framework which leads to a generalization of a variant of Nesterov’s method. Section 6
describes a second-order implementation of the large-step A-HPE framework, namely,
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the A-NPE method. Section 7 describes a line search procedure which is used to
compute the stepsize at each iteration of the A-NPE method.

2. Basic definitions and notation. In this section, we review some basic defi-
nitions and facts about convex functions and ε-enlargement of monotone multivalued
maps.

Throughout this paper, E will denote a finite-dimensional inner product real vec-
tor space with inner product and induced norm denoted by 〈·, ·〉 and ‖·‖, respectively.
For a nonempty closed convex set Ω ⊆ E, we denote the orthogonal projection oper-
ator onto Ω by PΩ. We denote the set of real numbers by R and the set of extended
reals, namely, R ∪ {±∞} by R̄ = R ∪ {±∞}. We let R+ and R++ denote the set of
nonnegative and positive real numbers, respectively. The domain of definition of a
point-to-point function F is denoted by DomF .

A point-to-set operator T : E ⇒ E is a relation T ⊆ E×E. Alternatively, one can
consider T as a multivalued function of E into the family ℘(E) = 2(E) of subsets of E,
namely,

T (z) = {v ∈ E | (z, v) ∈ T } ∀z ∈ E.

Regardless of the approach, it is usual to identify T with its graph defined as

Gr(T ) = {(z, v) ∈ E× E | v ∈ T (z)}.
The domain of T , denoted by DomT , is defined as

DomT := {z ∈ E : T (z) �= ∅}.
The operator T : E ⇒ E is monotone if

〈v − ṽ, z − z̃〉 ≥ 0 ∀(z, v), (z̃, ṽ) ∈ Gr(T ),

and T is maximal monotone if it is monotone and maximal in the family of monotone
operators with respect to the partial order of inclusion, i.e., S : E ⇒ E monotone and
Gr(S) ⊃ Gr(T ) implies that S = T .

In [2], Burachik, Iusem, and Svaiter introduced the ε-enlargement of maximal
monotone operators. In [10] this concept was extended to a generic point-to-set op-
erator in E as follows. Given T : E ⇒ E and a scalar ε, define T ε : E ⇒ E as

(2.1) T ε(z) = {v ∈ E | 〈z − z̃, v − ṽ〉 ≥ −ε ∀z̃ ∈ E, ∀ṽ ∈ T (z̃)} ∀z ∈ E.

We now state a few useful properties of the operator T ε that will be needed in
our presentation.

Proposition 2.1. Let T, T ′ : E ⇒ E. Then,
(a) if ε1 ≤ ε2, then T ε1(z) ⊆ T ε2(z) for every z ∈ E;
(b) T ε(z) + (T ′)ε

′
(z) ⊆ (T + T ′)ε+ε′ (z) for every z ∈ E and ε, ε′ ∈ R;

(c) T is monotone if and only if T ⊆ T 0.
Proof. Statements (a) and (b) follow immediately from definition (2.1), and state-

ment (c) is proved in [7, Proposition 21].
Proposition 2.2 (see [3, Corollary 3.8]). Let T : E ⇒ E be a maximal monotone

operator. Then, Dom(T ε) ⊆ Dom(T ) for any ε ≥ 0.
For a scalar ε ≥ 0, the ε-subdifferential of a proper closed convex function f :

E→ R̄ is the operator ∂εf : E ⇒ E defined as

(2.2) ∂εf(x) = {v | f(y) ≥ f(x) + 〈y − x, v〉 − ε ∀y ∈ E} ∀x ∈ E.
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When ε = 0, the operator ∂εf is simply denoted by ∂f and is referred to as the
subdifferential of f . The operator ∂f is trivially monotone if f is proper. If f is a
proper lower semicontinuous convex function, then ∂f is maximal monotone [14]. The
next proposition states some useful properties of the ε-subdifferential.

Proposition 2.3. Let f : E→ R̄ be a proper convex function. Then,
(a) ∂εf(x) ⊆ (∂f)ε(x) for any ε ≥ 0 and x ∈ E, where (∂f)ε stands for the

ε-enlargement of ∂f ;
(b) if v ∈ ∂f(x) and f(y) <∞, then v ∈ ∂εf(y), where ε := f(y)− [f(x) + 〈y −

x, v〉].
Proof. Statement (a) is proved in [2, Proposition 3], and (b) is a classical result

which can be found, for example, in Proposition 4.2.2 of [5].
Let X ⊆ E be a nonempty closed convex set. The indicator function of X is the

function δX : E→ R̄ defined as

δX(x) =

{
0, x ∈ X,

∞ otherwise,

and the normal cone operator of X is the point-to-set map NX : E ⇒ E given by

(2.3) NX(x) =

{
∅, x /∈ X,

{v ∈ E, | 〈y − x, v〉 ≤ 0 ∀y ∈ X}, x ∈ X.

Clearly, the normal cone operator NX of X can be expressed in terms of δX as
NX = ∂δX .

3. An A-HPE framework. In this section, we describe in the context of convex
optimization an accelerated variant of the HPE method introduced in [18, 19] and
study its computational complexity. This variant uses ideas similar to the ones used
in Nesterov’s optimal method but generalizes the later method in a significant way.

Our problem of interest is the convex optimization problem

(3.1) f∗ := inf {f(x) : x ∈ E},

where f : E → R ∪ {∞} is a proper closed convex function. We assume throughout
the paper that f∗ ∈ R and the set of optimal solutions X∗ of (3.1) is nonempty.

The A-HPE framework studied in this section is as follows.

A-HPE framework.
0. Let x0, y0 ∈ E and 0 ≤ σ ≤ 1 be given, and set A0 = 0 and k = 0.
1. Compute λk+1 > 0 and a triple (ỹk+1, vk+1, εk+1) ∈ E× E× R+ such that

vk+1 ∈ ∂εk+1
f(ỹk+1),(3.2)

‖λk+1vk+1 + ỹk+1 − x̃k‖2 + 2λk+1εk+1 ≤ σ2‖ỹk+1 − x̃k‖2,(3.3)

where

x̃k =
Ak

Ak + ak+1
yk +

ak+1

Ak + ak+1
xk,(3.4)

ak+1 =
λk+1 +

√
λ2
k+1 + 4λk+1Ak

2
.(3.5)
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2. Find yk+1 such that f(yk+1) ≤ f(ỹk+1) and let

Ak+1 = Ak + ak+1,(3.6)

xk+1 = xk − ak+1vk+1.(3.7)

3. Set k ← k + 1, and go to step 1.
end

We now make several remarks about the A-HPE framework. First, the framework
obtained by replacing (3.6) by the equation Ak+1 = 0, which as a consequence implies
that x̃j = xj , aj = λj , and xj+1 = xj − λj+1vj+1 for all j ∈ N, is exactly the HPE
method proposed by Solodov and Svaiter [18]. Second, the A-HPE framework does not
specify how to compute λk+1 and (ỹk+1, vk+1, εk+1) as in step 1. Specific computation
of these quantities will depend on the particular implementation of the framework
and properties of function f . In sections 5 and 6, we will describe procedures for
finding these quantities in the context of two specific implementations of the A-HPE
framework, namely, a first-order method which is a variant of Nesterov’s algorithm,
and a second-order accelerated method. Third, for an arbitrary λk+1 and x̃k as
in (3.4)–(3.5), the exact proximal point iterate ỹ and the vector v defined as

ỹ := argmin
x∈E

(
λk+1f(x) +

1

2
‖x− x̃k‖2

)
, v :=

1

λk+1
(x̃k − ỹ),

are characterized by

(3.8) v ∈ ∂f(ỹ), λk+1v + ỹ − x̃k = 0,

and hence εk+1 := 0, ỹk+1 := ỹ and vk+1 := v satisfy the error tolerance (3.2)–
(3.3) with σ = 0. Therefore, the error criterion (3.2)–(3.3) is a relaxation of the
characterization (3.8) of the proximal point iterate in that the inclusion in (3.8) is
relaxed to v ∈ ∂εf(ỹ) and the equation in (3.8) is allowed to have a residual r =
λk+1v + ỹ − x̃k such that the residual pair (r, ε) is small relative to ‖ỹ − x̃k‖ in
that ‖r‖2 + 2λk+1ε ≤ σ2‖ỹ − x̃k‖2. Fourth, the error tolerance (3.2)–(3.3) is the
optimization version of the HPE relative error tolerance introduced in [18] in that an
inclusion in terms of the ε-enlargement of a maximal monotone operator is replaced
by an inclusion in terms of the ε-subdifferential of a proper closed convex function.
Fifth, there are two readily available rules for choosing yk+1 in step 2 of the A-HPE
framework:

• either set yk+1 = ỹk+1

• or yk+1 = argmin{f(y) : y ∈ {yk, ỹk+1}}.
The advantage of the latter rule is that it forces the sequence {f(yk)} to be non-
increasing.

For future reference, we state the following trivial result.
Lemma 3.1. For every integer k ≥ 0, we have λk+1Ak+1 = a2k+1 > 0.
Proof. Clearly, ak+1 > 0 satisfies (3.5) if and only if a = ak+1 > 0 satisfies

a2 − λk+1a− λk+1Ak = 0,

or equivalently, a2k+1 = λk+1(Ak + ak+1) = λk+1Ak+1, where the last equality is due
to (3.6).

In order to analyze the properties of the sequences {xk} and {yk}, define the
affine maps γk : E→ R as

γk(x) = f(ỹk) + 〈x− ỹk, vk〉 − εk ∀x ∈ E, k ≥ 1,(3.9)
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and the aggregate affine maps Γk : E→ R recursively as

Γ0 ≡ 0, Γk+1 =
Ak

Ak+1
Γk +

ak+1

Ak+1
γk+1 ∀k ≥ 0.(3.10)

Lemma 3.2. For every integer k ≥ 0, the following hold:
(a) γk+1 is affine and γk+1 ≤ f .
(b) Γk is affine and AkΓk ≤ Akf .
(c) xk = argminx∈E

(
AkΓk(x) +

1
2‖x− x0‖2

)
.

Proof. Statement (a) follows from (3.9), (3.2), and definition (2.2). Statement (b)
follows from (a), (3.10), and a simple induction argument. To prove (c), first note
that (3.10) imply by induction that

Ak∇Γk(x) =
k∑

j=1

ajvj ∀x ∈ E.

Moreover, (3.7) imply that xk = x0−
∑k

j=1 ajvj . The last two conclusions then imply
that Ak∇Γk(xk) + xk − x0 = 0 and hence that xk satisfies the optimality condition
for the minimization problem in (c). Hence, (c) follows.

The following elementary result will be used in the analysis of the A-HPE
framework.

Lemma 3.3. Let vectors x̃, ỹ, ṽ ∈ E and scalars λ > 0, ε, σ ≥ 0 be given. Then,
the inequality

‖λṽ + ỹ − x̃‖2 + 2λε ≤ σ2‖ỹ − x̃‖2

is equivalent to the inequality

min
x∈E

{
〈ṽ, x− ỹ〉 − ε+

1

2λ
‖x− x̃‖2

}
≥ 1− σ2

2λ
‖ỹ − x̃‖2.

Lemma 3.4. For integer k ≥ 0, define

(3.11) βk = inf
x∈E

(
AkΓk(x) +

1

2
‖x− x0‖2

)
−Akf(yk).

Then, β0 = 0 and

(3.12) βk+1 ≥ βk +
(1− σ2)Ak+1

2λk+1
‖ỹk+1 − x̃k‖2 ∀k ≥ 0.

Proof. Since A0 = 0, we trivially have β0 = 0. We will now prove (3.12). Let an
arbitrary x ∈ E be given. Define

(3.13) x̃ =
Ak

Ak+1
yk +

ak+1

Ak+1
x

and note that by (3.4), (3.6), and the affinity of γk+1, we have

x̃− x̃k =
ak+1

Ak+1
(x− xk),(3.14)

γk+1(x̃) =
Ak

Ak+1
γk+1(yk) +

ak+1

Ak+1
γk+1(x).(3.15)

Using the definition of Γk+1 in (3.10), and items (b) and (c) of Lemma 3.2, we conclude
that for any x ∈ E,
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Ak+1Γk+1(x) +
1

2
‖x− x0‖2 = ak+1γk+1(x) +AkΓk(x) +

1

2
‖x− x0‖2

= ak+1γk+1(x) +AkΓk(xk) +
1

2
‖xk − x0‖2 + 1

2
‖x− xk‖2

= ak+1γk+1(x) +Akf(yk) + βk +
1

2
‖x− xk‖2,

where the third equality follows from the definition of βk in (3.11). Combining the
above relation with Lemma 3.2(a), the definition of x̃ in (3.13), and relations (3.14)
and (3.15), we conclude that

Ak+1Γk+1(x) +
1

2
‖x− x0‖2 ≥ ak+1γk+1(x) +Akγk+1(yk) + βk +

1

2
‖x− xk‖2

= βk +Ak+1γk+1(x̃) +
A2

k+1

2a2k+1

‖x̃− x̃k‖2

= βk +Ak+1γk+1(x̃) +
Ak+1

2λk+1
‖x̃− x̃k‖2,

where the last equality is due to Lemma 3.1. Using definition (3.9) with k = k + 1,
(3.3), and Lemma 3.3 with ṽ = vk+1, ỹ = ỹk+1, x̃ = x̃k, and ε = εk+1, we conclude
that

γk+1(x̃) +
1

2λk+1
‖x̃− x̃k‖2

= f(ỹk+1) +

(
〈x̃− ỹk+1, vk+1〉 − εk+1 +

1

2λk+1
‖x̃− x̃k‖2

)

≥ f(ỹk+1) +
1− σ2

2λk+1
‖ỹk+1 − x̃k‖2.

Using the nonnegativity of Ak+1 and the above two relations, we conclude that

inf
x∈E

(
Ak+1Γk+1(x) +

1

2
‖x− x0‖2

)

≥ βk +Ak+1f(ỹk+1) +
(1− σ2)Ak+1

2λk+1
‖ỹk+1 − x̃k‖2,

which, combined with definition (3.11) with k = k + 1 and the inequality in step 2 of
the A-HPE framework, proves that (3.12) holds.

We now make a remark about Lemma 3.4. The only conditions we have used
about xk, yk, Ak, and Γk in order to show that (3.12) holds are that Ak ≥ 0, yk ∈
dom f , Γk is an affine function such that AkΓk ≤ Akf ,

xk = argminx∈E

(
AkΓk(x) +

1

2
‖x− x0‖2

)
,

and (xk+1, yk+1, Ak+1) is obtained according to an iteration of the A-HPE framework
initialized with the triple (xk, yk, Ak).

The next proposition follows directly from Lemma 3.4.
Proposition 3.5. For every integer k ≥ 1 and x ∈ E,

Akf(yk) +
1− σ2

2

k∑
j=1

Aj

λj
‖ỹj − x̃j−1‖2 + 1

2
‖x− xk‖2 ≤ AkΓk(x) +

1

2
‖x− x0‖2.



ACCELERATED METHOD FOR CONVEX OPTIMIZATION 1099

Proof. Adding (3.12) from k = 0 to k = k − 1 and using the fact that β0 = 0, we
conclude that

1− σ2

2

k∑
j=1

Aj

λj
‖ỹj − x̃j−1‖2 ≤ βk,

which together with (3.11) then implies that

(3.16) Akf(yk) +
1− σ2

2

k∑
j=1

Aj

λj
‖ỹj − x̃j−1‖2 ≤ inf

x′∈E

(
AkΓk(x) +

1

2
‖x′ − x0‖2

)
.

Using (b) and (c) of Lemma 3.2, we conclude that for any x ∈ E,

AkΓk(x) +
1

2
‖x− x0‖2 = inf

x′∈E

(
AkΓk(x

′) +
1

2
‖x′ − x0‖2

)
+

1

2
‖x− xk‖2.

To end the proof, add ‖x− xk‖2/2 to both sides of (3.16) and use the above
equality.

The following main result, which establishes the rate of convergence of f(yk)− f∗
and the boundedness of {xk}, follows as an immediate consequence of the previous
result.

Theorem 3.6. Let x∗ be the projection of x0 onto X∗ and d0 be the distance of
x0 to X∗. Then, for every integer k ≥ 1,

1

2
‖x∗ − xk‖2 +Ak [f(yk)− f∗] +

1− σ2

2

k∑
j=1

Aj

λj
‖ỹj − x̃j−1‖2 ≤ 1

2
d20.

As a consequence, for every integer k ≥ 1,

(3.17) f(yk)− f∗ ≤ d20
2Ak

, ‖xk − x∗‖ ≤ d0,

and if σ < 1, then

(3.18)

k∑
j=1

Aj

λj
‖ỹj − x̃j−1‖2 ≤ d20

1− σ2
.

Proof. This result follows immediately from Proposition 3.5 with x = x∗ and
Lemma 3.2(b).

The following result shows how fast Ak grows in terms of the sequence of stepsizes
{λk}.

Lemma 3.7. For every integer k ≥ 0,

(3.19)
√
Ak+1 ≥

√
Ak +

1

2

√
λk+1.

As a consequence, the following statements hold:
(a) for every integer k ≥ 1,

(3.20) Ak ≥ 1

4

⎛
⎝ k∑

j=1

√
λj

⎞
⎠

2

;

(b) if σ < 1, then
∑∞

j=1 ‖ỹj − x̃j−1‖2 ≤ 4d20/(1− σ2).
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Proof. Noting that the definition of ak+1 in (3.5) implies that

ak+1 ≥ λk+1

2
+
√
λk+1Ak

and using (3.6), we conclude that

Ak+1 ≥ Ak +

(
λk+1

2
+
√
λk+1Ak

)
≥

(√
Ak +

1

2

√
λk+1

)2

∀k ≥ 0,

and hence that (3.19) holds for every k ≥ 0. Adding (3.19) from k = 0 to k = k − 1
and using the fact that A0 = 0, we conclude that

√
Ak ≥ 1

2

k∑
j=1

√
λj ∀k ≥ 1

and hence that (a) holds. Statement (b) follows from (a) and (3.18).
The following result follows as an immediate consequence of Theorem 3.6 and

Lemma 3.7.
Theorem 3.8. For every integer k ≥ 1, we have

f(yk)− f∗ ≤ 2d20

⎛
⎝ k∑

j=1

√
λj

⎞
⎠

−2

.

Theorem 3.8 gives an upper bound on f(yk)− f∗ in terms of the sequence {λk}.
Depending on the specific instance of the A-HPE, it is possible to further refine this
upper bound to obtain an upper bound depending on the iteration count k only.
Specific illustrations of that will be given in sections 4, 5, and 6.

Recall that vk ∈ ∂εkf(ỹk) in view of the formulation of the A-HPE framework.
Since the set of solutions of the inclusion 0 ∈ ∂f(x) is exactly X∗, it follows that
the size of ‖vk‖ and εk provides an optimality measure for ỹk. The following result
provides a certain estimate on these quantities in terms of the sequences {λk} and
{Ak}, and hence {λk} only, in view of Lemma 3.7.

Proposition 3.9. Assume that σ < 1. For every integer k ≥ 1, we have
vk ∈ ∂εkf(ỹk), and there exists 1 ≤ i ≤ k such that

√
λi‖vi‖ ≤

√
1 + σ

1− σ

d0√∑k
j=1 Aj

, εi ≤ σ2

2(1− σ2)

d20∑k
j=1 Aj

.

Proof. For every integer k ≥ 1, define

τk := max

{
2εk
σ2

,
λk‖vk‖2
(1 + σ)2

}

with the convention 0/0 = 0. Inequality (3.3) with k = k − 1, the nonnegativity of
εk, and the triangle inequality imply that

2λkεk ≤ σ2‖ỹk − x̃k−1‖2,
‖λkvk‖ ≤ ‖ỹk − x̃k−1‖+ ‖λkvk + ỹk − x̃k−1‖ ≤ (1 + σ)‖ỹk − x̃k−1‖.

Therefore,

λkτk ≤ ‖ỹk − x̃k−1‖2 ∀k ≥ 1.
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Hence, it follows from (3.18) that

d20
1− σ2

≥
k∑

j=1

Ajτj ≥
(

min
j=1,...,k

τj

)⎛
⎝ k∑

j=1

Aj

⎞
⎠ .

Noting the definition of τk, we easily see that the last inequality implies the conclusion
of the proposition.

Theorem 3.6 shows that the sequence {xk} is bounded. The following result
establishes boundedness of {yk} and hence of {x̃k} in view of (3.4), under the condition
that yk+1 is chosen to be ỹk+1 at every iteration of the A-HPE framework.

Theorem 3.10. Let x∗ be the projection of x0 onto X∗ and d0 be the distance of
x0 to X∗. Consider the A-HPE framework with σ < 1 and yk+1 chosen as yk+1 = ỹk+1

for every k ≥ 0. Then, for every k ≥ 1,

‖yk − x∗‖ ≤
(

2√
1− σ2

+ 1

)
d0.

Proof. We first claim that for every integer k ≥ 1, there holds

(3.21) ‖yk − x∗‖ ≤ 1

Ak

⎡
⎣ k∑
j=1

Aj‖yj − x̃j−1‖
⎤
⎦+ d0.

We will show this claim by induction on k. Note first that the triangle inequality,
relations (3.4) and (3.6), the convexity of the norm, and Theorem 3.6 imply that

‖yk+1 − x∗‖ ≤ ‖yk+1 − x̃k‖+ ‖x̃k − x∗‖
≤ ‖yk+1 − x̃k‖+ Ak

Ak+1
‖yk − x∗‖+ ak+1

Ak+1
‖xk − x∗‖

≤ ‖yk+1 − x̃k‖+ Ak

Ak+1
‖yk − x∗‖+ ak+1

Ak+1
d0 ∀k ≥ 0.

The previous inequality with k = 0 and the fact that A0 = 0 clearly imply (3.21)
with k = 1. Assume now that (3.21) holds for k and let us show it also holds for
k + 1. Indeed, the previous inequality, relation (3.6), and the induction hypothesis
imply that

‖yk+1 − x∗‖ ≤ ‖yk+1 − x̃k‖+ Ak

Ak+1

⎧⎨
⎩ 1

Ak

⎡
⎣ k∑
j=1

Aj‖yj − x̃j−1‖
⎤
⎦+ d0

⎫⎬
⎭+

ak+1

Ak+1
d0

=
1

Ak+1

⎡
⎣k+1∑
j=1

Aj‖yj − x̃j−1‖
⎤
⎦+ d0

and hence that (3.21) holds for k + 1. Hence, the claim follows.
Letting sk := ‖yk − x̃k−1‖, it follows from Theorem 3.6 and the assumption that

yk = ỹk for every k ≥ 1 that

k∑
j=1

Aj

λj
s2j ≤

d20
1− σ2

.

Hence, in view of Lemma A.2 with C = d20/(1 − σ2), αj = Aj , and βj = Aj/λj for
every j = 1, . . . , k, we conclude that
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k∑
j=1

Aj‖yj − x̃j−1‖ ≤ d0√
1− σ2

√√√√ k∑
j=1

Ajλj ≤ d0√
1− σ2

√
Ak

√√√√ k∑
j=1

λj

≤ d0√
1− σ2

√
Ak

k∑
j=1

√
λj ,

where the second inequality follows from the fact that {Ak} is increasing and the last
one from the fact that the 2-norm is majorized by the 1-norm. The latter inequality
together with (3.21) then implies that

‖yk − x∗‖ ≤ d0√
1− σ2

1√
Ak

k∑
j=1

√
λj + d0.

The conclusion of the proposition now follows from the latter inequality and
Lemma 3.7.

4. Large-step A-HPE framework. In this section, we analyze the conver-
gence rate of a special version of the A-HPE framework, which ensures that the
sequence of stepsizes {λk} is not too small. This special version, referred to as the
large-step A-HPE framework, will be useful in the analysis of second-order inexact
proximal methods for solving (3.1) discussed in section 6.

We start by stating the whole large-step A-HPE framework.

Large-step A-HPE framework.
0. Let x0, y0 ∈ E, 0 ≤ σ < 1 and θ > 0 be given, and set A0 = 0 and k = 0.
1. If 0 ∈ ∂f(xk), then stop.
2. Otherwise, compute λk+1 > 0 and a triple (ỹk+1, vk+1, εk+1) ∈ E×E×R+

such that

vk+1 ∈ ∂εk+1
f(ỹk+1),

‖λk+1vk+1 + ỹk+1 − x̃k‖2 + 2λk+1εk+1 ≤ σ2‖ỹk+1 − x̃k‖2,(4.1)

λk+1‖ỹk+1 − x̃k‖ ≥ θ,(4.2)

where

x̃k =
Ak

Ak + ak+1
yk +

ak+1

Ak + ak+1
xk,(4.3)

ak+1 =
λk+1 +

√
λ2
k+1 + 4λk+1Ak

2
.(4.4)

3. Choose yk+1 such that f(yk+1) ≤ f(ỹk+1) and let

Ak+1 = Ak + ak+1,(4.5)

xk+1 = xk − ak+1vk+1.

4. Set k ← k + 1, and go to step 1.
end

We now make a few remarks about the large-step A-HPE framework. First, the
large-step A-HPE framework is similar to the A-HPE framework, except that it adds a
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stopping criterion and requires the large-step condition (4.2) on the quantities λk+1,
x̃k, and ỹk+1 computed at step 1 of the A-HPE framework. Clearly, ignoring the
stopping criterion in step 1, any implementation of the large-step A-HPE framework
is also an instance of the A-HPE framework. Second, as in the A-HPE framework,
the above framework does not specify how the quantities λk+1 and (ỹk+1, vk+1, εk+1)
are computed in step 2. An specific implementation of the above framework will
be described in sections 6 and 7, in which these quantities are computed by solving
subproblems based on second-order approximations of f . Third, due to statement
(b) of Lemma 3.7 and the first remark above, any instance of the large-step A-HPE
framework satisfies limk→∞ ‖ỹk+1 − x̃k‖ = 0, and hence limk→∞ λk = ∞, due to
the large-step condition (4.2). As a result, the large-step A-HPE framework does
not contain variants of Nesterov’s method where a prox-type subproblem based on
a first-order approximation of f and with bounded stepsize λk is solved at the kth
iteration.

In what follows, we study the complexity of the large-step A-HPE framework. For
simplicity of exposition, the convergence results presented below implicitly assume
that the framework does not stop in a finite number of iterations. However, they
can easily be restated without assuming such condition by saying that either the
conclusion stated thereof holds or xk is a solution of (3.1).

The main result we intend to prove in this section is as follows.
Theorem 4.1. Let d0 denote the distance of x0 to X∗. For every integer k ≥ 1,

the following statements hold:
(a) there holds

(4.6) f(yk)− f∗ ≤ 37/2

2
√
2

d30
θ
√
1− σ2

1

k7/2
;

(b) vk ∈ ∂εkf(ỹk) and there exists i ≤ k such that

(4.7) ‖vi‖ = O
(

d20
θk3

)
, εi = O

(
d30

θ k9/2

)
.

Before giving the proof of the above result, we will first establish a number of
technical results. Note that we are assuming 0 ≤ σ < 1.

Lemma 4.2. If for some constants b > 0 and ξ ≥ 0 there holds

(4.8) Ak ≥ bkξ ∀k ≥ 1,

then

Ak ≥ wb1/3

(ξ/7 + 1)7/3
k(ξ+7)/3 ∀k ≥ 1,

where

(4.9) w =
1

4

(
θ2(1 − σ2)

d20

)1/3

.

Proof. First we claim that for every integer k ≥ 1,

(4.10)

k∑
j=1

Aj

λ3
j

≤ d20
θ2(1 − σ2)

.
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To prove this claim, use the large step condition (4.2) and inequality (3.18) on Theo-
rem 3.6 to conclude that

k∑
j=1

Aj

λ3
j

θ2 ≤
k∑

j=1

Aj

λ3
j

(λj‖ỹj − x̃j−1‖)2 =
k∑

j=1

Aj

λj
‖ỹj − x̃j−1‖2 ≤ d20

1− σ2

and divide the above inequalities by θ2.
Using (4.10) and Lemma A.1 with

C =
d20

θ2(1− σ2)
, αj = Aj , tj =

√
λj ∀j = 1, . . . , k,

we conclude that

k∑
j=1

√
λj ≥ 1

C1/6

⎛
⎝ k∑

j=1

A
1/7
j

⎞
⎠

7/6

,

which combined with Lemma 3.7 shows that for every k ≥ 1,

(4.11) Ak ≥ w

⎛
⎝ k∑

j=1

A
1/7
j

⎞
⎠

7/3

,

Assume that (4.8) holds. Then, using (4.11), we have

Ak ≥ wb1/3

⎛
⎝ k∑

j=1

jξ/7

⎞
⎠

7/3

∀k ≥ 1.

Since 0 ≤ t �→ tξ/7 is nondecreasing, we have

k∑
j=1

jξ/7 ≥
∫ k

0

tξ/7 dt =
1

ξ/7 + 1
kξ/7+1.

The conclusion of the lemma now follows by combining the above two
inequalities.

We are now ready to prove Theorem 4.1.
Proof of Theorem 4.1. We first claim that for every integer i ≥ 0, we have

(4.12) Ak ≥ bik
ξi ∀k ≥ 1,

where

(4.13) bi := w̃

(
A1

w̃

) 1

3i

, ξi :=
7

2

(
1− 3−i

)
, w̃ :=

(
w

(3/2)7/3

)3/2

.

We will prove this claim by induction on i. The claim is obviously true for i = 0 since
in this case b0 = A1 and ξ0 = 0, and hence b0k

ξ0 = A1 ≤ Ak for every k ≥ 1. Assume
now that the result holds for i ≥ 0. Using this assumption and Lemma 4.2 with b = bi
and ξ = ξi, we conclude that

Ak ≥ wb
1/3
i

(ξi/7 + 1)7/3
k(ξi+7)/3 ∀k ≥ 1,
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Since (4.13) implies that

ξi + 7

3
=

1

3

[
7

2
(1− 3−i) + 7

]
=

7

2
(1− 3−(i+1)) = ξi+1

and

wb
1/3
i

(ξi/7 + 1)7/3
≥ wb

1/3
i

(3/2)7/3
= w̃2/3b

1/3
i = w̃2/3

(
w̃

(
A1

w̃

) 1

3i

)1/3

= w̃

(
A1

w̃

) 1

3i+1

= bi+1,

we conclude that (4.12) holds for i+1. Hence, we conclude that (4.12) holds for every
i ≥ 0.

Now letting i goes to∞ in (4.12) and noting that limi→∞ bi = w̃ and limi→∞ ξi =
7/2, we conclude that

Ak ≥ w̃k7/2 =

(
2

3

) 7
2

w3/2k7/2 =

(
2

3

) 7
2
(
θ(1 − σ2)1/2

8d0

)
k7/2.

Statement (a) now follows from the last inequality and the first inequality in (3.17).
Moreover, the above inequality together with Proposition 3.9 implies the existence of
i ≤ k such that the second estimate in (4.7) holds and

√
λi‖vi‖ = O

(
d
3/2
0

θ1/2k9/4

)
.

Now, it is easily seen that the inequality in (4.1) and the large step condition (4.2)
imply that

λ2
i ‖vi‖ ≥ θ(1 − σ).

Combining the last two inequalities, we now easily see that the first estimate in (4.7)
also holds.

5. Application I: First-order methods. In this section, we use the theory
presented in the previous sections to analyze a first-order implementation of the
A-HPE framework for solving structured convex optimization problems.

The problem of interest in this section is

(5.1) f∗ := min{f(x) := g(x) + h(x) : x ∈ E},
where the following conditions are assumed to hold:

A.1. g, h : E→ R̄ are proper closed convex functions.
A.2. g is differentiable on a closed convex set Ω ⊇ dom(h).
A.3. ∇g is L0-Lipschitz continuous on Ω.
A.4. the solution set X∗ of (5.1) is nonempty.
Under the above assumptions, it can be easily shown that problem (5.1) is equiv-

alent to the inclusion

(5.2) 0 ∈ (∇g + ∂h)(x).

We now state a specific implementation of the A-HPE framework for solving
(5.1) under the above assumptions. In the following sections, we let PΩ denote the
projection operator onto Ω.
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Algorithm I.

0. Let x0, y0 ∈ E and 0 < σ ≤ 1 and set be given, and set A0 = 0, λ = σ2/L0

and k = 0.
1. Define

ak+1 =
λ+
√
λ2 + 4λAk

2
(5.3)

x̃k =
Ak

Ak + ak+1
yk +

ak+1

Ak + ak+1
xk,(5.4)

and compute

x′
k = PΩ(x̃k), yk+1 = (I + λ∂h)−1(x̃k − λ∇g(x′

k)).(5.5)

2. Define

Ak+1 = Ak + ak+1,(5.6)

xk+1 = xk − ak+1

λ
(x̃k − yk+1).

3. Set k ← k + 1, and go to step 1.
end

Note that the computation of yk+1 in (5.5) is equivalent to solving

(5.7) yk+1 = argmin
x∈E

(
λ [〈∇g(x′

k), x〉+ h(x)] +
1

2
‖x− x̃k‖2

)
.

The following result shows that Algorithm I is a special case of the A-HPE frame-
work with λk = λ for all k ≥ 1.

Proposition 5.1. Define for every k ≥ 0,

λk+1 = λ, ỹk+1 = yk+1, vk+1 =
1

λ
(x̃k − yk+1),(5.8)

εk+1 = g(yk+1)− [g(x′
k) + 〈yk+1 − x′

k,∇g(x′
k)〉].(5.9)

Then

vk+1 ∈ ∂εk+1
(g+h)(ỹk+1), ‖λk+1vk+1 + ỹk+1 − x̃k‖2+2λk+1εk+1 ≤ σ2‖ỹk+1 − x̃k‖2.

As a consequence, Algorithm I is a particular case of the A-HPE framework.
Proof. Using (5.5), (5.8), (5.9), and Proposition 2.3(b) we easily see that

(5.10) vk+1 −∇g(x′
k) ∈ ∂h(yk+1), ∇g(x′

k) ∈ ∂εk+1
g(yk+1).

Since (∂εg + ∂h)(y) ⊆ ∂ε(g + h)(y), we conclude that

vk+1 ∈ ∂εk+1
(g + h)(yk+1).
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Noting that yk+1 ∈ dom∂h ⊆ Ω and x′
k = PΩ(x̃k) ∈ Ω, it follows from (5.9), assump-

tion A.3, and a well-known property of PΩ(·), that

εk+1 ≤ L0

2
‖yk+1 − x′

k‖2 ≤
L0

2
‖yk+1 − x̃k‖2.

This inequality together with (5.8) and the fact that λ = σ2/L0 then imply that

‖λvk+1 + yk+1 − x̃k‖2 + 2λεk+1 = 2λεk+1 ≤ λL0‖yk+1 − x̃k‖2 = σ2‖yk+1 − x̃k‖2.
Moreover, note that (5.8) implies that the update formula for xk+1 in step 2 of
Algorithm I is the same as that of the A-HPE framework. Hence, the result
follows.

The following result gives the complexity estimation of Algorithm I as a conse-
quence of Proposition 5.1 and the complexity results for the A-HPE framework in
section 3.

Proposition 5.2. Consider the sequence {yk} generated by Algorithm I, the
sequences {vk} and {εk} defined as in Proposition 5.1 and the sequence {wk} defined
as

wk = vk +∇g(yk)−∇g(x′
k−1), k ≥ 1.

Then, the following statements hold:
(a) for every k ≥ 1,

yk ∈ dom(h) ⊆ Ω, f(yk)− f∗ ≤ 2L0d
2
0

k2σ2
;

(b) if σ < 1, then

‖yk − x∗‖ ≤
(

2√
1− σ2

+ 1

)
d0;

(c) if σ < 1, then for every k ≥ 1, vk ∈ ∂εkg(yk) + ∂h(yk) ⊆ ∂εk(g + h)(yk), and
there exists i ≤ k such that

‖vi‖ = O
(
L0d0
k3/2

)
, εi = O

(
L0d

2
0

k3

)
;

(d) if σ < 1, then for every k ≥ 1, wk ∈ (∇g + ∂h)(yk), and there exists i ≤ k
such that

‖wi‖ = O
(
L0d0
k3/2

)
.

Proof. Statements (a) and (b) follow from Proposition 5.1, Theorem 3.8 with
λk = λ := σ2/L0, and Theorem 3.10. Statement (c) follows from Proposition 5.1,
Lemma 3.7(a), Proposition 3.9, and the fact that λk = λ := σ2/L0. The inclusion
in (d) follows from the first inclusion in (5.10) with k = k − 1 and the definition of
wk. Noting that yk ∈ dom∂h ⊆ Ω and x′

k−1 = PΩ(x̃k−1) ∈ Ω, it follows from the
definition of wk, assumption A.3, the nonexpansiveness of PΩ(·), and the last equality
in (5.8) that

‖wk‖ ≤ ‖vk‖+ ‖∇g(yk)−∇g(x′
k−1)‖ ≤ ‖vk‖+ L0‖yk − x̃k−1‖ = (1 + λL0) ‖vk‖.
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The complexity estimation in (d) now follows from the previous inequality, statement
(c), and the definition of λ.

It can be shown that Algorithm I for the case in which Ω = E, and hence ∇g
is defined and is L0-Lipschitz continuous on the whole E, reduces to a variant of
Nesterov’s method, namely, the FISTA method in [1]. (See also Algorithm 2 of [22].)
In this case, x′

k = x̃k and only the resolvent in (5.5), or equivalently the minimization
subproblem (5.7), has to be computed at iteration k, while in the general case where
Ω �= E, the projection of x̃k onto Ω must also be computed in order to determine x′

k.
In summary, we have seen above that the A-HPE contains a variant of Nesterov’s

optimal method for (5.1) when Ω = E and also an extension of this variant when
Ω �= E. The example of this section also shows that the A-HPE is a natural framework
for generalizing Nesterov’s acceleration schemes. We will also see in the next section
that it is a suitable framework for designing and analyzing second-order proximal
methods for (5.1).

6. Application II: Second-order methods. We will now apply the theory
outlined in sections 3 and 4 to analyze an A-NPE method, which is an accelerated
version of the method presented in [10] for solving a monotone nonlinear equation.

In this section, our problem of interest is the same as that of section 5, namely,
problem (5.1). However, in this section, we impose a different set of assumptions on
(5.1):

C.1. g and h are proper closed convex functions.
C.2. g is twice-differentiable on a closed convex set Ω such that Ω ⊇ Dom(∂h).
C.3. g′′(·) is L1-Lipschitz continuous on Ω.
Recall that for the monotone inclusion problem (5.2), the exact proximal iteration

y from x with stepsize λ > 0 is defined as

(6.1) y = argminu∈E
g(u) + h(u) +

1

2λ
‖u− x‖2.

The A-NPE method of this section is based on inexact solutions of the minimization
problem

(6.2) min
u∈E

gx(u) + h(u) +
1

2λ
‖u− x‖2,

where gx is the second-order approximation of g at x with respect to Ω defined as

(6.3) gx(y) = g(x̄) + 〈∇g(x̄), y − x̄〉+ 1

2
〈y − x̄, g′′(x̄)(y − x̄)〉, x̄ := PΩ(x).

Note that the unique solution yx of (6.2) together with the vector v := (x− yx)/λ are
characterized by the optimality condition

(6.4) v ∈ (∇gx + ∂h)(yx), λv + yx − x = 0.

We will consider the following notion of approximate solution for (6.4) and hence of
(6.2).

Definition 6.1. Given (λ, x) ∈ R++ × E and σ̂ ≥ 0, the triple (y, u, ε) ∈
E× E× R+ is called a σ̂-approximate Newton solution of (6.1) at (λ, x) if

u ∈ (∇gx + ∂εh)(y), ‖λu+ y − x‖2 + 2λε ≤ σ̂2‖y − x‖2.
We now make a few remarks about the above definition. First, if (yx, v) is the

solution pair of (6.4), then (yx, v, 0) is a σ̂-approximate Newton solution of (6.1) at
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(λ, x) for any σ̂ ≥ 0. Second, if h is the indicator function δX of a closed convex
set X ⊆ E, then exact computation of the pair (yx, v) boils down to minimizing a
strongly convex quadratic function over X .

The next result shows how an approximate Newton solution can be used to gen-
erate a triple (y, v, ε) satisfying (3.2)–(3.3) with f = g + h.

Lemma 6.2. Suppose that the triple (y, u, ε) ∈ E × E × R+ is a σ̂-approximate
Newton solution of (6.1) at (λ, x) and define

v = ∇g(y) + u−∇gx(y), σ = σ̂ +
L1

2
λ‖y − x‖.

Then,

v ∈ (∇g + ∂εh)(y) ⊆ ∂ε(g + h)(y), ‖λv + y − x‖2 + 2λε ≤ σ2‖y − x‖2.

Proof. Direct use of the inclusion in Definition 6.1 together with the definition of
v shows that

v = u+∇g(y)−∇gx(y) ∈ (∇gx + ∂εh)(y) +∇g(y)−∇gx(y) = (∇g + ∂εh)(y),

which proves the first inclusion. The second inclusion follows trivially from the first
one and basic properties of the ε-subdifferential. Now, Definition 6.1, assumption C.2,
and a basic property of the ε-subdifferential imply that

y ∈ Dom(∂εh) ⊆ cl (∂h) ⊆ Ω.

Letting x̄ = PΩ(x) and using the above conclusion, assumption C.3, and (6.3), we
conclude that

‖v − u‖ = ‖∇g(y)−∇gx(y)‖ = ‖∇g(y)− (∇g(x̄) + g′′(x̄)(y − x̄)‖
≤ L1

2
‖y − x̄‖2 ≤ L1

2
‖y − x‖2,

where the last inequality follows from the fact that PΩ is a nonexpansive map. The
above inequality, the triangle inequality for norms, the definition of σ, and the in-
equality in Definition 6.1 then imply that

‖λv + y − x‖2 + 2λε ≤ (λ‖v − u‖+ ‖λu+ y − x‖)2 + 2λε

≤
(
λ‖v − u‖+

√
‖λu+ y − x‖2 + 2λε

)2

≤
(
L1

2
λ‖y − x‖2 + σ̂‖y − x‖

)2

= σ2‖y − x‖2.

We now state the A-NPE method based on the above notion of approximate
solutions.
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A-NPE method.
0. Let x0, y0 ∈ E, σ̂ ≥ 0, and 0 < σ� < σu < 1 such that

(6.5) σ := σ̂ + σu < 1, σ�(1 + σ̂) < σu(1− σ̂)

be given, and set A0 = 0 and k = 1.
1. If 0 ∈ ∂f(xk), then stop.
2. Otherwise, compute a positive scalar λk+1 and a σ̂-approximate Newton

solution (yk+1, uk+1, εk+1) ∈ E× E×R+ of (6.1) at (λk+1, x̃k) satisfying

2σ�

L1
≤ λk+1‖ỹk+1 − x̃k‖ ≤ 2σu

L1
,(6.6)

where

x̃k =
Ak

Ak + ak+1
yk +

ak+1

Ak + ak+1
xk,(6.7)

ak+1 =
λk+1 +

√
λ2
k+1 + 4λk+1Ak

2
.(6.8)

3. Choose yk+1 such that f(yk+1) ≤ f(ỹk+1) and let

vk+1 = ∇g(ỹk+1) + uk+1 −∇gx̃k
(ỹk+1),(6.9)

Ak+1 = Ak + ak+1,(6.10)

xk+1 = xk − ak+1vk+1.

4. Set k ← k + 1, and go to step 1.
end

Define for each k

(6.11) σk := σ̂ +
L1

2
λk‖ỹk − x̃k−1‖.

We will now establish that the inexact A-NPE method can be viewed as a special
case of the large-step A-HPE framework.

Proposition 6.3. Let σ be defined as in (6.5). Then, for each k ≥ 0, σk+1 ≤ σ
and

vk+1 ∈
(∇g + ∂εk+1

h
)
(ỹk+1) ⊆ ∂εk+1

(g + h)(ỹk+1),(6.12)

‖λk+1vk+1 + ỹk+1 − x̃k‖2 + 2λk+1εk+1 ≤ σ2
k+1‖ỹk+1 − x̃k‖2.

As a consequence of (6.6) and (6.9), it follows that the A-NPE method is a special
case of the large-step A-HPE framework stated in section 3 with f = g + h and
θ = 2σ�/L1.

Proof. The inequality on σk+1 follows from (6.6) and the definition of σ in (6.5).
The inclusion and the other inequality follow from the fact that (yk+1, uk+1, εk+1) is a
σ̂-approximate Newton solution of (6.1) at (λk+1, x̃k), relation (6.9), and Lemma 6.2
with (x, λ) = (x̃k, λk+1) and (y, u, ε) = (yk+1, uk+1, εk+1). The last claim of the
proposition follows from its first part and the first inequality in (6.6).
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As a consequence of the above result, it follows that all the convergence rate and
complexity results derived for the A-HPE and the large-step A-HPE framework hold
for the A-NPE method.

Theorem 6.4. Let d0 denote the distance of x0 to X∗ and consider the sequences
{xk}, {yk}, {ỹk}, {vk}, and {εk} generated by the A-NPE method. Then, for every
k ≥ 1, the following statements hold:

(a) ‖xk − x∗‖ ≤ d0 and

(6.13) f(yk)− f∗ ≤ 37/2

4
√
2

L1d
3
0

σ�

√
1− σ2

1

k7/2
,

where σ is given by (6.5).
(b) vk ∈ ∇g(ỹk) + ∂εkh(ỹk), and there exists i ≤ k such that

(6.14) ‖vi‖ = O
(
L1d

2
0

k3

)
, εi = O

(
L1d

3
0

k9/2

)
.

Proof. This result follows immediately from Theorem 4.1, Proposition 6.3, and
the fact that θ = 2σ�/L1.

Assuming that we have at our disposal a black-box which is able to compute a
σ̂-approximate Newton solution at any given pair (x, λ) ∈ E×�++, the next section
describes a line search procedure, and corresponding complexity bounds, for finding
a stepsize λk+1 > 0, and hence the corresponding x̃k given by (6.7)–(6.8), which, to-
gether with a σ̂-approximate Newton solution (yk+1, uk+1, εk+1) at (λk+1, x̃k) output
by the black-box, satisfy condition (6.6).

We note that a simpler line search procedure described in [11] accomplishes the
same goal under the simpler assumption that the base point x̃k does not depend on
the choice of λk+1.

7. Line search. The main goal of this section is to present a line search pro-
cedure for implementing step 2 of the A-NPE method. This section contains four
subsections as follows. Subsection 7.1 reviews some technical results about the resol-
vent of a maximal monotone operator. Subsection 7.2 introduces a certain structured
monotone inclusion problem of which (5.2) is a special case and studies some prop-
erties of the resolvents of maximal monotone operators obtained by linearizing the
operator of this inclusion problem. subsection 7.3 presents a line search procedure
in the more general setting of the structured monotone inclusion problem. Finally,
subsection 7.4 specializes the line search procedure of the previous subsection to the
context of (5.2) in order to obtain an implementation of step 2 of the A-NPE method.

7.1. Preliminary results. Let a maximal monotone operator B : E ⇒ E and
x ∈ E be given and define for each λ > 0,

(7.1) yB(λ;x) := (I + λB)−1(x), ϕB(λ;x) := λ‖yB(λ;x) − x‖.

In this subsection, we describe some basic properties of ϕB that will be needed in our
presentation.

The point yB(λ;x) is the exact proximal point iteration from x with stepsize λ > 0
with respect to the inclusion 0 ∈ B(x). Note that yB(λ;x) is the unique solution y of
the inclusion

(7.2) 0 ∈ (λB + I)(y)− x = λB(y) + y − x
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or, equivalently, the y-component of the unique solution (y, v) of the inclusion/equation

(7.3) v ∈ B(y), λv + y − x = 0.

The following result, whose proof can be found in Lemma 4.3 of [10], describes
some basic properties of the function λ �→ ϕB(λ;x).

Proposition 7.1. For every x ∈ E, the following statements hold:
(a) λ > 0→ ϕB(λ;x) is a continuous function;
(b) for every 0 < λ̃ ≤ λ,

(7.4)
λ

λ̃
ϕB(λ̃;x) ≤ ϕB(λ;x) ≤

(
λ

λ̃

)2

ϕB(λ̃;x).

The following definition introduces the notion of an approximate solution of (7.3).
Definition 7.2. Given σ̂ ≥ 0, the triple (y, v, ε) is said to be a σ̂-approximate

solution of (7.3) at (λ, x) if

(7.5) v ∈ Bε(y), ‖λv + y − x‖2 + 2λε ≤ σ̂2‖y − x‖2.

Note that (y, v, ε) = (ỹk+1, vk+1, εk+1), where ỹk+1, vk+1, and εk+1 are as in step 2
of the large-step A-HPE framework, is a σ-approximate solution of (7.3) with B = ∂f
at (λk+1, x̃k) due to Proposition 2.3(a). Note also that (y, v, ε) = (yk+1, uk+1, εk+1),
where yk+1, uk+1, and εk+1 are as in step 2 of the A-NPE method, is a σ-approximate
solution of (7.3) with B = (∇gx̃k

+ ∂h) at (λk+1, x̃k) due to the fact that

(∇gx̃k
+ ∂εh)(y) ⊆ ∂ε(gx̃k

+ h)(y) ⊆ [∂(gx̃k
+ h)]ε(y) ∀y ∈ E.

Note also that conditions (4.2) and (6.6) that appear in these methods are conditions
on the quantity λ‖y − x‖. The following result, whose proof can be found in Lemma
4.1 of [10], shows that the quantity λ‖y−x‖, where (y, v, ε) is a σ̂-approximate solution
of (7.3) at (λ, x), can be well-approximated by ϕB(x;λ).

Proposition 7.3. Let x ∈ E, λ > 0 and σ̂ ≥ 0 be given. If (y, v, ε) is a
σ̂-approximate solution of (7.3) at (λ, x), then

(7.6) (1− σ̂)λ‖y − x‖ ≤ ϕB(λ;x) ≤ (1 + σ̂)λ‖y − x‖.

7.2. Technical results. In this subsection, we describe the monotone inclusion
problem in the context of which the line search procedure of subsection 7.3 will be
presented. It contains the inclusion (5.2) as a special case, and hence any line search
procedure described in the context of this inclusion problem will also work in the set-
ting of (5.2). We will also establish a number of preliminary results for the associated
function ϕB in this setting.

In this subsection, we consider the monotone inclusion problem

(7.7) 0 ∈ T (x) := (G+H)(x),

where G : DomG ⊆ E→ E and H : E ⇒ E satisfy the following:
C.1. H is a maximal monotone operator.
C.2. G is monotone and differentiable on a closed convex set Ω such that DomH ⊆

Ω ⊆ DomG.
C.3. G′ is L-Lipschitz continuous on Ω.
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Observe that the monotone inclusion problem (5.2) is a special case of (7.7) in
which G = ∇g and H = ∂h. Also, under the above assumptions, it can be shown
using Proposition A.1 of [8] that T = G+H is a maximal monotone operator.

Recall that for the monotone inclusion problem (7.7), the exact proximal iteration
from x with stepsize λ > 0 is the unique solution y of the inclusion

(7.8) 0 ∈ λ(G +H)(y) + y − x

or, equivalently, the y-component of the unique solution (y, v) of the inclusion/equation

(7.9) v ∈ (G+H)(y), λv + y − x = 0.

For x ∈ E, define the first-order approximation of Tx : E ⇒ E of T at x as

Tx(y) = Gx(y) +H(y) ∀y ∈ E,

where Gx : E→ E is the first-order approximation of G at x with respect to Ω given
by

Gx(y) = G(PΩ(x)) +G′(PΩ(x))(y − x).

Lemma 7.4. For every x ∈ E and y ∈ Ω,

‖G(y)−Gx(y)‖ ≤ L

2
‖y − x‖2.

Proof. Use the fact that G(y) − Gx(y) is a linearization error, assumption C.3,
and the fact that PΩ is nonexpansive.

Finally, note that when G = ∇g and H = ∂h, where g and h are as in section 6,
then Tx = ∇gx + ∂h. In view of Proposition 7.3 and the fact that the approximate
Newton solutions generated by the A-NPE method are approximate solutions of op-
erators of the form Tx = ∇gx + ∂h where the base point x depends on the choice
of the stepsize λ, it is important to understand how the quantity ϕTx(λ;x) behaves
in terms of λ and x in order to develop a scheme for computing λ = λk+1 satisfying
condition (6.6). The dependence of ϕTx(λ;x) in terms of λ follows from Proposition
7.1, while its dependence in terms of x follows from the next result.

Lemma 7.5. Let x, x̃ ∈ E and λ > 0 be given and define B := Tx and B̃ := Tx̃.
Then,

(7.10) |ϕB(λ;x) − ϕB̃(λ; x̃)| ≤ λ‖x̃− x‖+ Lλ2‖x̃− x‖2 + 2Lλ‖x̃− x‖η,

where

η := min {ϕB(λ;x) , ϕB̃(λ; x̃)} .

As a consequence,

ϕB(λ;x) ≤ λ‖x̃− x‖+ Lλ2‖x̃− x‖2 + (2Lλ‖x̃− x‖+ 1)ϕB̃(λ; x̃).

Proof. To simplify notation, let y = yB(λ;x) and ỹ = yB̃(λ; x̃). Then, there exist

unique v ∈ B(y) and ṽ ∈ B̃(ỹ) such that

(7.11) λv + y − x = 0, λṽ + ỹ − x̃ = 0.
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Clearly,

(7.12) ϕB(λ;x) = λ2‖v‖, ϕB̃(λ; x̃) = λ2‖ṽ‖.
Let u := v+Gx̃(y)−Gx(y) and note that the fact that v ∈ B(y) and the first identity
(7.11) imply that

u ∈ B(y)+Gx̃(y)−Gx(y) = Tx(y)+Gx̃(y)−Gx(y) = Gx̃(y)+H(y) = Gx̃(y) = B̃(y)

and

λu+ y − x̃ = λv + y − x+ (x̃− x) + λ(u − v) = (x̃− x) + λ(u− v).

Subtracting the second equation in (7.11) from the last identity, we conclude that

λ(u− ṽ) + (y − ỹ) = (x̃− x) + λ(u − v).

Since u ∈ B̃(y) and ṽ ∈ B̃(ỹ), it follows from the monotonicity of B̃ that

〈u− ṽ, y − ỹ〉 ≥ 0,

which together with the previous relation and the triangle inequality for norms implies
that

λ‖u− ṽ‖ ≤ ‖x̃− x‖+ λ‖u− v‖
and hence that

λ‖v − ṽ‖ ≤ ‖x̃− x‖+ 2λ‖u− v‖.
The latter conclusion together with (7.12) then implies that
(7.13)
|ϕB(λ;x) − ϕB̃(λ; x̃)| = λ2 | ‖v‖ − ‖ṽ‖ | ≤ λ2‖v − ṽ‖ ≤ λ [‖x̃− x‖+ 2λ‖u− v‖] .

Now, letting xp = PΩ(x) and x̃p = PΩ(x̃), and using the definition of u, we have

u− v = Gx̃(y)−Gx(y) = G(x̃p) +G′(x̃p)(y − x̃p)− [G(xp) +G′(xp)(y − xp)]

= [G(x̃p) +G′(x̃p)(xp − x̃p)−G(xp)] + [G′(x̃p)−G′(xp)](y − xp)

and hence

λ‖u− v‖ ≤ λ‖G(x̃p) +G′(x̃p)(xp − x̃p)−G(xp)‖+ λ‖G′(x̃p)−G′(xp)‖‖y − xp‖
≤ λL

2
‖x̃p − xp‖2 + λL‖x̃p − xp‖‖y − x̃p‖

≤ λL

2
‖x̃− x‖2 + Lλ‖x̃− x‖‖y − x‖

=
λL

2
‖x̃− x‖2 + L‖x̃− x‖ϕB(λ;x).

Combining the latter inequality with (7.13), we then conclude that

|ϕB(λ;x) − ϕB̃(λ; x̃)| ≤ λ
[‖x̃− x‖+ Lλ‖x̃− x‖2 + 2LϕB(λ;x)‖x̃ − x‖] .

This inequality and the symmetric one obtained by interchanging x and x̃ in the latter
relation then imply (7.10).
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The following definition extends the notion of a σ̂-approximate Newton solution
to the context of (7.9).

Definition 7.6. Given (λ, x) ∈ R++ × E and σ̂ ≥ 0, the triple (y, u, ε) ∈
E× E× R+ is called a σ̂-approximate Newton solution of (7.9) at (λ, x) if

u ∈ (Gx +Hε)(y), ‖λu+ y − x‖2 + 2λε ≤ σ̂2‖y − x‖2.
Note that when G = ∇g and H = ∂h, where g and h are as in section 6, then a σ̂-

approximate Newton solution according to Definition 6.1 is a σ̂-approximate Newton
solution according to Definition 7.6, due to Proposition 2.3(a).

The following result shows that σ̂-approximate Newton solutions of (7.9) yield
approximate solutions of (7.9).

Proposition 7.7. Let (λ, x) ∈ R++ × E and a σ̂-approximate Newton solution
(y, u, ε) of (7.9) at (λ, x) be given, and define v := G(y) + u−Gx(y). Then,

(7.14) v ∈ (G+Hε)(y) ⊆ T ε(y), ‖λv+y−x‖2+2λε ≤
(
σ̂ +

Lλ

2
‖y − x‖

)2

‖y−x‖2

and

(7.15) ‖v‖ ≤ 1

λ

(
1 + σ̂ +

Lλ

2
‖y − x‖

)
‖y − x‖, ε ≤ σ̂2

2λ
‖y − x‖2.

Proof. The first inclusion and the inequality in (7.14) have been established
in Lemma 3.2 of [11]. The second inclusion in (7.14) can be easily proved using
assumptions C.1 and C.2, the definition of T , and (b) and (c) of Proposition 2.1.
Moreover, the inequalities in (7.15) follow from either (7.14) or Definition 7.6.

As a consequence of Proposition 7.7, we can now establish the following result,
which will be used to obtain the upper endpoint of the initial bracketing interval
used in the line search procedure of subsection 7.3 for computing the stepsize λk+1

satisfying (6.5).
Lemma 7.8. Let tolerances ρ̄ > 0 and ε̄ > 0 and scalars σ̂ ≥ 0 and α > 0 be

given. Then, for any scalar

(7.16) λ ≥ max

{√
α

ρ̄

(
1 + σ̂ +

Lα

2

)
,

(
σ̂2α2

2ε̄

) 1
3

}
,

vector x ∈ E, and σ̂-approximate Newton solution (y, u, ε) of (7.9) at (λ, x), one of
the following statements holds:

(a) either, λ‖y − x‖ > α;
(b) or, the vector v := G(y)−Gx(y) + u satisfies

(7.17) v ∈ (G+Hε)(y), ‖v‖ ≤ ρ̄, ε ≤ ε̄.

Proof. To prove the lemma, let λ satisfying (7.16) be given and assume that (a)
does not hold, i.e.,

(7.18) λ‖y − x‖ ≤ α.

Then, it follows from Proposition 7.7 and relations (7.16) and (7.18) that the inclusion
in (7.17) holds and

‖v‖ ≤ 1

λ

(
1 + σ̂ +

Lλ

2
‖y − x‖

)
‖y − x‖ ≤

(
1 + σ̂ +

Lα

2

)
α

λ2
≤ ρ̄
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and

ε ≤ σ̂2‖y − x‖2
2λ

≤ σ̂2α2

2λ3
≤ ε̄.

We now make a few remarks about Lemma 7.8. First, note that condition (7.17)
is a natural relaxation of an exact solution of (7.7), where two levels of relaxations
are introduced, namely, the scalar ε ≥ 0 in the enlargement of H and the residual v
in place of 0 as in (7.7). Hence, if a triple (y, u, ε) satisfying condition (7.17) is found
for some user-supplied tolerance pair (ρ̄, ε̄), then y can be considered a sufficiently
accurate approximate solution of (7.7) and the pair (v, ε) provides a certificate of such
accuracy. Second, when the triple (y, u, ε) fails to satisfy (b), then (7.16) describes
how large λ should be chosen so as to guarantee that the quantity λ‖y − x‖ is larger
than a given scalar α > 0.

The following result describes the idea for obtaining the lower endpoint of the
initial bracket interval for the line search procedure of subsection 7.3.

Lemma 7.9. Let x0− ∈ E, (λ0
+, x

0
+) ∈ R++ × E, and a σ̂-approximate Newton

solution (y0+, u
0
+, ε

0
+) of (7.9) at (λ0

+, x
0
+) be given. Then, for any scalar α such that

(7.19) 0 < α ≤ λ0
+‖y0+ − x0

+‖,

scalar λ0
− > 0 such that

(7.20)

λ0
− ≤

α(1− σ̂)λ0
+

(1 + σ̂)(1 + 2Lθ0+)λ
0
+‖y0+ − x0

+‖+ θ0+ + L(θ0+)
2
, θ0+ := λ0

+‖x0
+ − x0

−‖,

and σ̂-approximate Newton solution (y0−, u
0
−, ε

0
−) of (7.9) at (x0

−, λ
0
−), we have

(1 + σ̂)λ0
− ≤ (1− σ̂)λ0

+,(7.21)

λ0
−‖y0− − x0

−‖ ≤ α.(7.22)

Proof. First, note that (7.21) follows immediately from (7.19) and (7.20). Let
B− := Tx0

−
and B+ = Tx0

+
. Since a σ̂-approximate Newton solution of (7.9) at

(λ0
−, x

0
−) is obviously a σ̂-approximate solution of (7.3) with B = B−, it follows from

Lemma 7.3 with B = B− that

λ0
−‖y0− − x0

−‖ ≤
ϕB−(λ

0
−;x

0
−)

1− σ̂
≤ λ0

−ϕB−(λ
0
+;x

0
−)

(1− σ̂)λ0
+

,

where the last inequality is due to (7.21) and Proposition 7.1(b) with B = B−, λ̃ = λ0
−,

and λ = λ0
+. Also, Lemma 7.5 with λ = λ0

+, x = x0−, and x̃ = x0
+ and the definition

of θ0+ in (7.20) imply that

ϕB−(λ
0
+;x

0
−) ≤

(
1 + 2Lθ0+

)
ϕB+(λ

0
+;x

0
+) + θ0+ + L(θ0+)

2

≤ (
1 + 2Lθ0+

)
(1 + σ̂)λ0

+‖y0+ − x0
+‖+ θ0+ + L(θ0+)

2 ≤ α(1− σ̂)λ0
+

λ0−
,

where the last inequality follows from the definition of λ0
−. Combining the above two

inequalities, we then conclude that (7.22) holds.
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7.3. Line search problem and procedure. In this subsection, we describe a
line search procedure whose goal is to implement step 2 of the A-NPE method. For
generality and simplicity of notation, it will be described in a setting slightly more
general than that of (5.1) or equivalently (5.2). Namely, we will consider the setting
of the inclusion problem (7.7) with G and H satisfying conditions C.1 to C.3.

Throughout this subsection, we assume that we have at our disposal the following
Newton black-box: For any given σ ≥ 0 and (λ, x) ∈ R++ × E, it computes a σ-
approximate Newton solution (y, u, ε) of (7.9) at (λ, x).

With the aid of the above black-box, the goal of the line search procedure de-
scribed in this subsection is to solve the following line search problem.

Line search problem. Given tolerances σ̂ ≥ 0, ρ̄ > 0, and ε̄ > 0, bounds
α+ > α− > 0, and a continuous curve x : [0,∞)→ E satisfying the property that for
some constant M0 ≥ 0 and M1 ≥ 0,

(7.23) ‖x(s)− x(t)‖ ≤ min

{
M0

t
(s− t) , M1‖x(s)− x(0)‖

}
∀s ≥ t > 0,

the problem is to find a stepsize λ > 0 and a σ̂-approximate Newton solution (yλ, uλ, ελ)
of (7.9) at (λ, x(λ)) such that

(a) either λ‖yλ − x(λ)‖ ∈ [α−, α+] or
(b) the triple (y, v, ε) = (yλ, vλ, ελ) satisfies (7.17), where

vλ := G(yλ) + uλ −Gx(λ)(yλ).

We now state the procedure for solving the above line-search problem.

Bracketing/bisection procedure.
Input: Curve x : [0,∞) → E satisfying (7.23), tolerances σ̂ ≥ 0, ρ̄ > 0,
and ε̄ > 0, and bounds α+ > α− > 0 satisfying

(7.24) α−(1 + σ̂) < α+(1− σ̂).

Output: stepsize λ > 0 and a σ̂-approximate Newton solution (yλ, uλ, ελ
of (7.9) at (λ, x(λ)) such that either (a) or (b) above holds.

1. (Bracketing stage) compute

(7.25) λ0
+ := max

{√
α+

ρ̄

(
1 + σ̂ +

Lα+

2

)
,

(
σ̂2α2

+

2ε̄

) 1
3

}

and set x0
+ = x(λ0

+); use the Newton black-box to compute a
σ̂-approximate Newton solution (y0+, u

0
+, ε

0
+) of (7.9) at (λ0

+, x
0
+), and

set

v0+ = G(y0+)−Gx0
+
(y0+) + u0

+;

1.a. if (v0+, ε
0
+) satisfies ‖v0+‖ ≤ ρ̄ and ε0+ ≤ ε̄, then output λ = λ0

+ and
(yλ, uλ, ελ = (y0+, u

0
+, ε

0
+), and stop;

1.b. otherwise, compute γ0 := M1λ
0
+‖x0

+ − x(0)‖ and
(7.26)

λ0
− :=

(1 − σ̂)α−λ0
+

(1 + σ̂)(1 + 2Lγ0)λ0
+‖y0+ − x0

+‖+ γ0 + L(γ0)2
, x0

− := x(λ0
−),
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and use the Newton black-box to compute a σ̂-approximate Newton solution
(y0−, u

0
−, ε

0
−) of (7.9) at (λ

0
−, x

0
−).

2. (Bisection stage) set λ− = λ0− and λ+ = λ0
+;

2.a. set λ = (λ− + λ+)/2, use the Newton black-box to compute a σ̂-
approximate Newton solution (yλ, uλ, ελ) of (7.9) at (λ, x(λ)), and set

vλ := G(yλ) + uλ −Gx(λ)(yλ);

if (vλ, ελ) satisfies ‖vλ‖ ≤ ρ̄ and ελ ≤ ε̄, then output λ and (yλ, uλ, ελ),
and stop;

2.b. if λ‖yλ − x(λ)‖ ∈ [α−, α+], then output λ and (y, u, ε), and stop;
2.c. if λ‖yλ − x(λ)‖ > α+, then set λ+ ← λ; else set λ− ← λ;
2.d. go to step 2.a.

end

Proposition 7.10. If the bracketing/bisection procedure does not stop during
the bracketing stage, then at the end of the bracketing stage, the following conditions
hold:

λ0
−‖y0− − x0

−‖ ≤ α−, λ0
+‖y0+ − x0

+‖ ≥ α+.

Proof. Assume that the bracketing/bisection procedure does not stop during the
bracketing stage. In view of Lemma 7.8 with α = α+, λ = λ0

+, x = x0
+, (y, u, ε) =

(y0+, u
0
+, ε

0
+), and v = v0+, we conclude that λ0

+‖y0+ − x0
+‖ > α+. Observe that (7.24)

implies that α− < α+ and hence that λ0
+‖y0+ − x0

+‖ > α−. Also, the assumption on
the curve x : [0,∞)→ E and the definition of γ0 in step 1.b imply that

λ0
+‖x0

+ − x0
−‖ = λ0

+‖x(λ0
+)− x(λ0

−)‖ ≤ λ0
+‖x(λ0

+)− x(0)‖ = M1λ
0
+‖x0

+ − x(0)‖ = γ0

and hence that λ0
− given by (7.26) satisfies the inequality in (7.20). Hence, using

Lemma 7.9 with α = α−, we conclude that λ0
−‖y0− − x0

−‖ ≤ α−.
The proof of the following result can be found in Proposition 4.8 of [10].
Proposition 7.11. Assume that x∗ ∈ T−1(0) = (G +H)−1(0) and let x̄, x ∈ E

be given. Then,

‖x− (I + λTx̄)
−1(x)‖ ≤ ‖x− x∗‖+ λL‖x̄− x∗‖2.

As a consequence, for every x ∈ E, x∗ ∈ T−1(0), and λ > 0, there holds

ϕTx(λ;x) ≤ λ‖x− x∗‖+ λ2L‖x− x∗‖2.

We are now ready to give the complexity of the bracketing/bisection procedure.
Lemma 7.12. The bracketing/bisection procedure makes at most

3 + log

⎡
⎣C2

0M0λ
0
+

⎛
⎝1 + LM0λ

0
+ + 2

(
L+ 1

M0λ0
+

)
(1 + σ̂)α−

(1− σ̂)α+ − (1 + σ̂)α−

⎞
⎠
⎤
⎦

black-box calls, where λ0
+ is as in (7.25),

C0 :=
(1 + σ̂)(1 + 2Lγ0)

[
λ0
+d(x

0
+) + (λ0

+)
2Ld(x0

+)
2
]
+ γ0 + L(γ0)

2

(1− σ̂)2α−
,
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γ0 is defined in step 1.b of the procedure, and d(x0
+) denotes the distance of x0

+ to
T−1(0).

Proof. First observe that the bracketing/bisection procedure performs at most
two black-box calls during the bracketing stage. Assume that the procedure enters
the bisection stage and let us estimate the number of black-box calls within this stage.
Since λ = (λ− + λ+)/2, it follows that after j bisection iterations, the scalars λ− and
λ+ computed at step 2.c satisfy

(7.27) λ+ − λ− =
1

2j
(λ0

+ − λ0
−) ≤

1

2j
λ0
+,

and hence

(7.28) j ≤ log

(
λ0
+

λ+ − λ−

)
.

Assume now that the method does not stop at the jth bisection iteration. Then, the
values of λ− and λ+ at step 2.c of this iteration satisfy

λ+‖yλ+ − x(λ+)‖ > α+, λ−‖yλ− − x(λ−)‖ < α−,

and let x+ := x(λ+), x− := x(λ−), B+ := Tx+ , and B− := Tx− . Hence, applying
Lemma 7.3 twice, one time with B = B+, x = x+, and (y, u, ε) = (yλ+ , uλ+ , ελ+), and
the other with B = B−, x = x−, and (y, u, ε) = (yλ− , uλ− , ελ−), we conclude that

(7.29) ϕ+ := ϕB+(λ+;x+) > (1− σ̂)α+, ϕ− := ϕB−(λ−;x−) < (1 + σ̂)α−.

On the other hand, it follows from Proposition 7.1(b) with B = B+, x = x+, λ̃ = λ−,
and λ = λ+, and Lemma 7.5 with λ = λ−, x = x+, and x̃ = x−, that

ϕ+ = ϕB+(λ+;x+) ≤
(
λ+

λ−

)2

ϕB+(λ−;x+)

≤
(
λ+

λ−

)2 [
θ + Lθ2 + (1 + 2Lθ)ϕ−))

]
,(7.30)

where

(7.31) θ := λ−‖x+ − x−‖ ≤M0(λ+ − λ−),

in view of the property assumed for the curve x(·). Hence, we conclude that

ϕ+ − ϕ− ≤
(
λ+

λ−

)2

θ[1 + Lθ + 2Lϕ−] +

[(
λ+

λ−

)2

− 1

]
ϕ−

≤
(
λ0
+

λ0−

)2

M0

(
1 + LM0λ

0
+ + 2Lϕ−

)
(λ+ − λ−) +

(λ+ + λ−)
(λ−)2

ϕ−(λ+ − λ−)

≤
(
λ0
+

λ0−

)2

M0

(
1 + LM0λ

0
+ + 2Lϕ−

)
(λ+ − λ−) + 2

λ0
+

(λ0−)2
ϕ−(λ+ − λ−)

= (λ+ − λ−)
(
λ0
+

λ0−

)2

M0

[
1 + LM0λ

0
+ + 2

(
L+

1

M0λ0
+

)
ϕ−

]
.
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Combining the latter inequality with (7.29), we then conclude that

(7.32)
1

λ+ − λ−
≤
(
λ0
+

λ0−

)2

M0

⎛
⎝1 + LM0λ

0
+ + 2

(
L+ 1

M0λ0
+

)
(1 + σ̂)α−

(1 − σ̂)α+ − (1 + σ̂)α−

⎞
⎠ .

We will now estimate the ratio λ0
+/λ

0−. First note that Lemma 7.3 with λ = λ0
+,

x = x0
+, B = Tx0

+
, and (y, u, ε) = (y0+, u

0
+, ε

0
+) and Proposition 7.11 with λ = λ0

+ and

x = x0
+ imply that

λ0
+‖y0+ − x0

+‖ ≤
ϕT

x0
+

(λ0
+;x

0
+)

1− σ̂
≤ λ0

+d(x
0
+) + (λ0

+)
2Ld(x0

+)
2

1− σ̂
.

The latter inequality together with relations (7.25) and (7.20) then imply that

λ0
+

λ0−
=

(1 + σ̂)(1 + 2Lγ0)λ
0
+‖y0+ − x0

+‖+ γ0 + L(γ0)
2

(1− σ̂)α−

≤ (1 + σ̂)(1 + 2Lγ0)
[
λ0
+d(x

0
+) + (λ0

+)
2Ld(x0

+)
2
]
+ γ0 + L(γ0)

2

(1 − σ̂)2α−
.

The result now follows from the above inequality and relations (7.28) and (7.32).

7.4. Complexity of implementing step 2 of the A-NPE method. In this
subsection, we study a special case of the line search procedure introduced in the
previous subsection whose goal is to implement step 2 of the A-NPE method. We will
also derive its computational complexity, and as a by-product the overall complexity
of the A-NPE method, in terms of number of calls to a given optimization Newton
black-box.

Throughout this subsection without further mentioning, we consider only the
version of the A-NPE method in which σ < 1 and yk+1 = ỹk+1 for every k ≥ 0, and
hence the sequence {yk} is bounded due to Theorem 3.10.

We assume throughout this subsection that an optimization Newton black-box
for (5.1) is available which, given σ̂ and (λ, x) ∈ R++ × E, finds a σ̂-approximate
Newton optimal solution for (5.1) at (λ, x), i.e., a triple (y, u, ε) ∈ E × E × R+ such
that

(7.33) u ∈ (∇gx + ∂εh)(y), ‖λu+ y − x‖2 + 2λε ≤ σ̂2‖y − x‖2.
Clearly, by Proposition 2.3(a), it follows that a σ̂-approximate Newton optimal solu-
tion for (6.1) is a σ̂-approximate Newton solution for (6.4) in the sense of Definition
7.6, and hence an optimization Newton black-box for (6.1) is a Newton black-box
for (6.4) in the sense of subsection 7.3. Note also that the triple (ỹk+1, uk+1, εk+1)
as in step 2 of the A-NPE method is a σ̂-approximate Newton solution for (6.1) at
(λk+1, x̃k).

Consider the curve

(7.34) x̃k(λ) =
Ak

Ak + ak+1(λ)
yk +

ak+1(λ)

Ak + ak+1(λ)
xk,

where

(7.35) ak+1(λ) =
λ+
√
λ2 + 4Akλ

2
.
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In order to compute the stepsize λk+1 and the triple (ỹk+1, uk+1, εk+1) as in step 2
of the A-NPE method, the strategy used is based on invoking the line search pro-
cedure described in the previous subsection to look for a stepsize λk+1 > 0 and a
σ̂-approximate Newton optimal solution (ỹk+1, uk+1, εk+1) at (λk+1, x̃k(λk+1)) such
that

(7.36)
2σ�

L
≤ λk+1‖ỹk+1 − x̃k(λk+1)‖ ≤ 2σu

L

and then setting (ak+1, x̃k) = (ak+1(λk+1), x̃k(λk+1)). More precisely, with the aid
of the optimization Newton black-box at our disposal, we can use the bracketing/
bisection procedure of the previous subsection with tolerances σ̂ ≥ 0, ρ̄ > 0, and
ε̄ > 0, curve x(·) = x̃k(·), and bounds α− = 2σ�/L, α+ = 2σu/L to compute a
stepsize λk+1 > 0 and a σ̂-approximate Newton optimal solution (ỹk+1, uk+1, εk+1)
at (λk+1, x̃k(λk+1)) such that

(a) either the residual pair (vk+1, εk+1) (see relation (6.12)) with vk+1 given by
(6.9) satisfy ‖vk+1‖ ≤ ρ̄ and εk+1 ≤ ε̄

(b) or relation (7.36) holds, and as a consequence, λk+1 and (ỹk+1, uk+1, εk+1)
fulfill the conditions of step 2 of the A-NPE method.

The following result shows that the curve (7.34) satisfies property (7.23) as re-
quired by the bracketing/bisection procedure.

Lemma 7.13. The curve x̃k(·), where x̃k(·) is given by (7.34), satisfies (7.23)
with

(7.37) M0 := 2

(
1√

1− σ2
+ 1

)
d0, M1 = 1.

Proof. To show the lemma, let s > t > 0 be given. Define

τ(λ) =
ak+1(λ)

Ak + ak+1(λ)
∀λ > 0,

where ak+1(λ) is given by (7.35), and note that τ(·) is an increasing function. In view
of (7.34), we have

x̃k(λ) = yk + τ(λ)(xk − yk) ∀λ > 0

and hence

(7.38) ‖x̃k(s)− x̃k(t)‖ = (τ(s) − τ(t))‖xk − yk‖.
Since τ(·) is increasing and τ(0) = 0, we conclude

(7.39) ‖x̃k(s)− x̃k(t)‖ ≤ ‖x̃k(s)− x̃k(0)‖.
Clearly (7.35) implies that a = ak+1(λ) satisfies the second-order equation a2−λk+1a−
λk+1Ak = 0, and hence

τ(λ) =
ak+1(λ)

Ak + ak+1(λ)
=

λ

ak+1(λ)
=

2

1 +
√
1 + 4Akλ−1

,

where the last equality is due to (7.35). Differentiating the last expression for τ(λ),
we conclude that

τ̇(λ) =
4Akλ

−2(
1 +
√
1 + 4Akλ−1

)2√
1 + 4Akλ−1

≤ 1

λ
∀λ > 0.
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Hence, by the mean value theorem, we have

τ(s) − τ(t) = τ̇(ξ)(s − t) ≤ 1

ξ
(s− t) ≤ 1

t
(s− t)

for some ξ ∈ (t, s). Combining the last inequality with (7.38), we then obtain

‖x̃k(s)− x̃k(t)‖ = ‖xk − yk‖
t

(s− t).

Now, Theorem 3.6, Theorem 3.10, and the triangle inequality for norms imply that

‖xk − yk‖ ≤ 2

(
1√

1− σ2
+ 1

)
d0.

The latter two inequalities together with (7.39) then imply that the curve x̃(·) = x̃k(·)
satisfies (7.23) with M0 and M1 given by (7.37).

Viewing σ�, σu, σ̂ as universal constants, the following result establishes the
complexity of the line search procedure when used to implement step 2 of the A-NPE
method.

Theorem 7.14. Let ρ̄ > 0 and ε̄ > 0 be given and suppose that the bracket-
ing/bisection procedure is used to implement step 2 of the A-NPE method as explained
in the paragraphs preceding Lemma 7.13. Then, the procedure performs at most

(7.40) O (
max

{
log ε̄−1, log ρ̄−1, log d0, logL, logL

−1
})

optimization Newton black-box calls to compute a stepsize λk+1>0 and a σ̂-approximate
Newton optimal solution (ỹk+1, uk+1, εk+1) at (λk+1, x̃k(λk+1)) such that one of the
statements (a) or (b) preceding Lemma 7.13 holds.

Proof. Viewing σ�, σu, σ̂ as universal constants, it follows from the definition of
γ0 in step 1.b of the bracketing/bisection procedure and Lemmas 7.12 and 7.13 that
the latter procedure when used to implement step 2 of the A-NPE method will find
a stepsize λk+1 > 0 and a σ̂-approximate Newton optimal solution (ỹk+1, uk+1, εk+1)
at (λk+1, x̃k(λk+1)) such that either statement (a) or (b) holds in at most

O (
max

{
logλ0

+ , log d0 , logL , log d(x̃k(λ
0
+)) , log

∥∥x̃k(λ
0
+)− yk

∥∥})
optimization Newton black-box calls, where d(x̃k(λ

0
+)) denotes the distance of x̃k(λ

0
+)

to X∗. Now, using (7.25), the fact that α+ = 2σu/L, Theorems 3.6 and 3.10, and
the triangle inequality for norms, we easily see that the above bound is majorized
by (7.40).

Assuming that an upper bound on d0 is known, the following result describes
the computational complexity (in terms of number of optimization Newton black-box
calls) for the A-NPE method to find an iterate yk such that f(yk)− f∗ ≤ δ for some
given tolerance δ > 0.

Theorem 7.15. Assume that an upper bound D0 on the distance d0 from x0

to X∗ is known and let tolerance δ > 0 be given. Consider the A-NPE method with
step 2 implemented as explained in this subsection with tolerances ρ̄ and ε̄ chosen as
ρ̄ = δ/(2D0) and ε̄ = δ/2. Then, an iterate yk satisfying f(yk)− f∗ ≤ δ will be found
in no more than

O
((

L1d
3
0

δ

)2/7
)
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iterations of this method, making no more than

O
((

L1d
3
0

δ

)2/7

max
{
log δ−1, logL, logL−1, logD0

})

calls to the optimization Newton black-box.
Proof. This result follows immediately from Theorems 6.4(a) and 7.14.
The following result gives the complexity of computing of an approximate solution

of (5.2).
Theorem 7.16. Consider the A-NPE method with step 2 implemented as ex-

plained in this subsection with given tolerances ρ̄ > 0 and ε̄ > 0. Then, the A-NPE
method finds a triple (ỹk, vk, εk) satisfying

vk ∈ ∇g(ỹk) + ∂εkh(ỹk), ‖vk‖ ≤ ρ̄, εk ≤ ε̄,

in at most

O
(
d
2/3
0 max

{(
L1

ρ̄

)1/3

,

(
L1

ε̄

)2/9
})

iterations of this method, making no more than

O
(
d
2/3
0 max

{
log ρ̄−1, log ε̄−1, logL, logL−1, log d0

}
max

{(
L1

ρ̄

)1/3

,

(
L1

ε̄

)2/9
})

calls to the optimization Newton black-box.
Proof. This result follows immediately from Theorems 6.4(b) and 7.14.

8. Concluding remarks. In this section, we discuss the relationship between
the A-HPE framework and the accelerated inexact proximal point method studied in
[4, 17]. First, although they are presented with different notation, it can be shown
that the exact method in [4] and the exact case of the A-HPE framework, namely, the
one in which σ = 0 in (3.3), coincide. The other remarks below concern the inexact
case. Second, instead of using the relative error condition (3.2)–(3.3), they assume
that one of the (or both) residuals rk+1 := λk+1vk+1+ ỹk+1− x̃k and εk+1 are O(1/kp)
for some scalar p > 0. Hence, their method is based on an absolute error asymptotic
condition rather than a relative error condition such as the one, namely, (3.2)–(3.3),
used by the A-HPE framework. Third, aside from the use of different error criteria,
all steps of the A-HPE and the one in [4, 17] are the same with the exception of the
update formula (3.7). More specifically, instead of (3.7), they use the formula

xk+1 = xk − ak+1

λk+1
(ỹk+1 − x̃k),

and also assume that ỹk+1 = yk+1. Clearly, when rk+1 �= 0, the two aforementioned
formulae, and hence the respective methods, differ. We believe that the use of the
relative error condition and the update formula (3.7) play an important role in making
the A-HPE framework a powerful tool in the design and/or analysis of accelerated
methods for convex optimization, as illustrated by the discussion in sections 5 and 6.

Appendix A. Auxiliary technical results. First we state a technical result
whose proof is simple and hence is omitted.
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Lemma A.1. If C > 0, t1, . . . , tk > 0 and α1, . . . , αk > 0 are such that

k∑
j=1

αj

t6j
≤ C,

then

k∑
j=1

tj ≥ 1

C1/6

⎛
⎝ k∑

j=1

α
1/7
j

⎞
⎠

7/6

.

Lemma A.2. For any C ≥ 0, α1, . . . , αk ∈ R and β1, . . . , βk > 0, there holds

max

⎧⎨
⎩

k∑
j=0

αjsj :

k∑
j=0

βjs
2
j ≤ C

⎫⎬
⎭ =

√√√√C

k∑
j=0

α2
j

βj
.

Proof. The lemma holds trivially when C = 0. Suppose then that C > 0.
Consider the maximization problem and associated Lagrangean

max

⎧⎨
⎩

k∑
j=0

αjsj :
k∑

j=0

βjs
2
j ≤ C

⎫⎬
⎭ , L(s, μ) =

n∑
j=0

αjsj +
μ

2

⎛
⎝C −

k∑
j=0

βjs
2
j

⎞
⎠ .

Since the feasible set of this problem is a compact convex set and the objective function
is linear, there exists a solution to this problem, say, s∗, in the boundary of the feasible
set, that is,

(A.1)
k∑

j=0

βj(s
∗
j )

2 = C.

Moreover, since 0 is an interior point of the feasible set, there exists μ∗ ≥ 0 such that

∇sL(s
∗, μ∗) = 0,

whence

(A.2) μ∗βjs
∗
j = αj , j = 0, . . . , n.

If μ∗ = 0, then α1 = · · · = αn = 0, and the lemma holds trivially. So, assume that
μ∗ > 0. Multiplying each of the n+1 equalities in (A.2) by the corresponding s∗j and
adding the resulting equalities, we conclude that

μ∗
n∑

j=0

βj(s
∗
j )

2 =

n∑
j=0

αjs
∗
j ,

which combined with (A.1) yields

μ∗C =

n∑
j=0

αjs
∗
j .
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Multiplying each of the n + 1 equalities in (A.2) by the corresponding αj/βj and
adding the resulting equalities, we conclude that

μ∗
n∑

j=0

αjs
∗
j =

n∑
j=0

α2
j/βj .

To end the proof, multiply the above equality by C and use the previous equality.
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