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Abstract 

Adler and Monteiro (1992) developed a parametric analysis approach that is naturally related 
to the geometry of the linear pro~am. This approach is based on the availability of primal and 
dual optimal solutions satisfying strong complementarity. In this paper, we develop an altemative 
geometric approach for parametric analysis which does not require the strong complementarity 
condition. This parametric analysis approach is used to develop range and marginal analysis 
techniques which are suitable for interior point methods. Two approaches are developed, namely 
the LU factorization approach and the affine scaling approach. 
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1. Introduct ion 

The analysis of  how changes in the input data affect the optimal  solution o f  the 

problem is often essential  for the practical usefulness  of  opt imizat ion  models .  The  ability 
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to perform post-optimality analysis in a natural way in the context of the simplex 
method has contributed significantly to its success as a practical tool for management 
decision making. Our objective in this paper is to show that post-optimality analysis 

techniques can also be developed naturally in the context of interior point methods. 
First, a general framework for performing parametric analysis of linear programs is 
develop. Next, this framework is used to develop techniques for performing range and 

marginal analysis on optimal solutions obtained by interior point methods. 

One possible approach to perform post-optimality analysis in connection with interior 
point methods is to first process the optimal solution available from these methods to 
generate an optimal basic solution, and then perform the analysis as in the context of the 

simplex method. A computational scheme for finding a pair of primal and dual optimal 
basic solutions from a pair of primal and dual optimal solutions is described by Megiddo 
[8]. One of the objectives of this paper is to explore alternative approaches for 

performing post-optimality analysis that do not require the availability of optimal basic 
solutions. 

To simplify our presentation, we only provide a rigorous treatment for perturbations 
with respect to the right hand side (Sections 2 and 3). For the sake of completeness, the 
analogous results for perturbations with respect to the cost vector are given in Section 4 
without any proofs. Consider the following right-hand side (RHS) parametric linear 
program RLP(t): 

~b(t) - rain cTx (1) 

s.t. Ax = b + tw, x > 0, 

and its dual RLD(t): 

max ( b + tw) T Y 

s.t. A T y + s = c ,  s>~O, 

where A e N  'nxn, c, x, s E N " ,  b ,w,  y E N "  and t e N .  The purpose of the RHS 

parametric analysis is to find optimal solutions of RLP(t) for all values of t in a 
prespecified interval. 

The following terminology is used in this paper. By RHS range analysis we mean 
the estimation of the region of parameters t for which an optimal solution of RLD(0) 
remains optimal for RLD(t) (see for example [6, pp. 91-92]). By RHS marginal 
analysis we mean the estimation of the left and right derivatives of the optimal value 
function 4)(t) at t = 0. The term sensitiuit), analysis is used here to simultaneously refer 
to range analysis and marginal analysis. We use the term post-optimality analysis to 
refer to both parametric and sensitivity analysis. A similar terminology is used with 
respect to perturbations on the cost vector. 

In [I], a parametric analysis approach is developed that is naturally related to the 
geometry of the linear program. In Section 2 we develop an alternative approach for 
parametric analysis which has several features of the approach in [1]. Similar to the 
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approach developed in [1], our parametric analysis approach consists of solving a 
sequence of linear programs. The major difference of the two approaches is that we 
show that a sequence of linear programs can be constructed which does not depend on 
the concept of "optimal partition" of the variables. More specifically, it is shown that 
the next linear program of the sequence is determined by any optimal solution of the 
current linear program. At the time of revising this paper, we learned of a paper by 
Jansen et al. [7] that also considers a related approach for parametric and sensitivity 

analysis of linear programs. 
The relaxation of the assumption of having points in the relative interior of the 

optimal face as assumed in [1 ] is important for both theoretical and practical reasons. On 
the theoretical side, it provides a natural way for unifying the optimal basis approach 
with the approach in [1]. From the practical side, it allows us to combine interior point 
methods with the simplex method while performing parametric analysis. In addition, it 
gives insights to develop approaches for performing sensitivity analysis on optimal 

solutions lying anywhere in the optimal face. 
In Section 3, we use the parametric analysis framework of Section 2 to develop 

sensitivity analysis techniques which do not require the availability of optimal basic 
solutions. Two approaches are presented, namely (i) LU factorization approach and (ii) 
affine scaling approach. The first approach shares the same machinery as used in the 
approach that employs the optimal basis, and hence, it can be viewed as a natural 
extension of the optimal basis approach. The second approach uses machinery similar to 
the one employed by interior point methods. 

In Section 4, we present equivalent results (without proofs) for the parametric and 
sensitivity analysis with respect to perturbations of the cost vector. In Section 5, we 
summarize our computational experience with the sensitivity analysis approach de- 
scribed in Section 3 and 4. 

1.1. Notation and terminology 

The following notation is used throughout this paper. The set {1, 2 . . . . .  n} is denoted 
by .,4C For a given vector x ~ [R ", we define o r (x )=  {i ~ J lx  i > 0}. For /3 G J we 
denote the complement of /3 with respect to ~K by ~. If /3 G J ,  then At3 denotes the 
submatrix of the rn • n-matrix A whose columns correspond to indices in /3. Similarly, 
xt3 denotes the subvector of the vector x ~ N" whose components correspond to indices 

in /3. 
It is well known (e.g., see [4]) that any linear program has a pair of optimal primal 

and dual solutions that satisfies the strong complementarity property. Mathematically, 
this property ensures that if t is such that RLP(t) has an optimal solution, then there 
exists a pair of optimal primal and dual solutions x* (t) and (y*( t ) ,  s*(t)) for which 
~r(x*( t ) )=~(s*( t ) ) .  The optimal solutions x*(t)  and ( y ' ( t ) ,  s ' ( t ) )  are called 
strongly optimal solutions. The partition ./K= cr( x*(t)) O ~'( x=(t)) is called the 
optimal partition for problem RLP(t). 
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2. Right-hand side parametric analysis 

Similar to tile approach developed in [1], an algorithm for parametric analysis is 
developed that consists in the solution of a sequence of linear programs. A major 
difference between our approach and the one developed in [1] is that here a sequence of 
linear programs can be constructed without requiring the knowledge of optimal parti- 
tions. More specifically, it is shown that the next linear program of the sequence is 
determined by any optimal solution (not necessarily in the relative interior of the optimal 
face) of the current linear program. 

The outline for this section is as follows. First, the notion of an optimality interval of 
an optimal dual solution is defined. Next, the equivalence of these optimality intervals 
with the intervals of linearity (to be defined below) of the function 4,(t) is presented. 
Furthermore, it is shown that any optimality interval can be computed by solving a pair 
of linear programs. Using these results, an algorithm for parametric analysis is presented 
at the end of the section. 

Let ( 9 ,  sO) be an optimal solution for RLD(t ~ for some t o e  ff~. The optimality 
interval of ( y 0  s 0) is defined as 

~,(y0, s o ) _-_ (t e l~ l (y~ s o ) is an optimal solution of RLD (t)}.  (2) 

The following notation is introduced to give a computational characterization of the 
optimality interval (2). For/3 _./IC let 

r ( / 3 ) - = { ( x , t ) e ~ ' x ~ l A x - t w = b ,  x>_.O, x~=O},  

~ - ( / 3 )  =- { t l 3 x e  ~"  such t ha t (x ,  t) e F ( / 3 ) } ,  (3) 

and, for any t e ,Y~(/3 ), define 

E ( / 3 )  - { x e  ~" I(x,  t) e r ( / 3 ) } .  

Observe that ~?-(/3) is an interval. Moreover, if 9- ( /3)  is nonempty, then its left 
endpoint t# and right endpoint t+ ~ can be computed by solving the following two linear 
programs: 

t ~ inf{t I (x ,  t) e F ( / 3 ) }  

and 

sup{tl( x, t) e r ( / 3 ) } .  

(4) 

(5) 

Proposition 1. For some t o e F~, 
/3 = ~(s~ Then, 
(i) •(yO, s0)=y-(/3); 

(ii) For every t e Y (  ~ ), F,( /3 

let ( yO s o) be an optimal solution of RLD (to). Let 

is equal to the set of optimal solutions of RLP (t). 

Proof. The proof of (i) follows from the following equivalences: t e ~ ' ( y ~  s 0) 
(y0, s o) is an optimal solution of RLD(t)r there exists a feasible solution x for 
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RLP(t)  such that x and ( 9 ,  sO) satisfy complementary slackness condition ~ Ax = b 

+ nv, x >/0, x~ = 0 ~, t E 3-( /3) .  The proof of (ii) follows from the following equiva- 
lences: x ~ F~( /3 ) r ( x, t) ~ F (  ~ ) ,~, Ax  - m, = b, x >~ O, x-~ = 0 ~ x is feasible for 
RLP(t)  and satisfies the complementary slackness condition together with (y~ s 0) r x 
is an optimal solution for RLP(t). [] 

It follows from Proposition l(i) that the endpoints of the optimality interval ~f( y0, s 0) 
can be computed by solving the two linear programs (4) and (5) in which /3 = ~(s~  

It is well known that qS(t) defined in (1) is a convex piecewise linear function with a 
finite number of breakpoints (e.g., see [10]). We call the interval between two consecu- 
tive breakpoints an interval o f  lineario, of qS(t). The following proposition expresses 
the left and right slopes of the function oh(t) as optimal values of certain linear 
programs. 

Proposi t ion 2 (Gauvin [3]). Let t o ~ ~ be such that RLP (t ~ has an optimal solution. 

Let S(t  ~ denote the set o f  all optimal solutions ( y, s) o f  RLD (to). Then, the left and 

the right derivatives o f  qS(t) at t = t o are given by 

4,'_ ( t  ~ = inf{wTy l( y, S) ~ S( t~  (6) 

and 

qS+(t ~ = sup{wTyl (y ,  S) ~ S ( t ~  (7) 

respectively. 

Note that in Eq. (6) and (7) the left and right derivatives may be equal to - ~ and 2, 
respectively. If the left derivative is - ~  then RLP(t)  is infeasible for every t < t ~ 
Similarly, if the right derivative is ~ then RLP(t)  is infeasible for every t > t ~ 

The proof of Proposition 2 follows from well-known results from convex analysis 
(see for example [I 1]). Only an outline of the proof is provided here; for a complete 
proof the reader is referred to [12]. The function F ( b ) -  i n f { c V x l A x  = b, x >1 0} is a 
polyhedral convex function and its subgradient OF(b) is equal to the set of optimal 
solutions to the dual problem sup{bTyl ATy <~ C}. From convex analysis, we know that 
the directional derivative F'(7); w) of F at ~, along w is given by 

F'(1); w) = sup{wTy I y ~ 0F(~))}. (8) 

Relations (6) and (7) follows by using relation (8) with the -b = b + tow and the 
formulas ~b+(t ~ = F' (b  + tow; w) and ~b'( t  ~ = - F ' (b  + tow; - w). 

The relationship between the optimality intervals and the geometric shape of the 
function qS(t) is described next. 

Theorem 1. Let t o ~ ~ be such that RLP (t ~ has an optimal solution. Let (y0, s 0) be 

an optimal solution o f  RLD (to). Then, 

(i) i f  t o is not a breakpoint, then G ( y  ~ s ~ is the interval q f  linearity o f  qS(t) 

containing t~ 
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(ii) if 
(a) 
(b) 

(c) 

t o is a breakpoint, then there are three possibilities: 
if 05' - (t ~ < wTy ~ < 05"(t0), then S ( y  ~ s o ) = {to}; 

/f 05'( t  ~ = wry ~ then G( yO, s o) is the interval q[ linearity lying to the left of  

t~ 
if 05+(t ~ = wVy ~ then G( ,v ~ s ~ is the interval of  linearity lying to the right of  
t o . 

Proof. We first give the proof of (i). Since t o is not a breakpoint, 05 '( t  ~ = 05'+(t ~ = 
05'(t~ Clearly, the interval of linearity J ( t  ~ of 05(t) containing t ~ can be expressed as 

J ( t  ~ = {tl 05(t) = 05(t ~ + 0 5 ' ( t ~  r~ (9) 

On the other hand, 

y 0  , 0 )  = {t t + ( t )  = ( b + ,,o} = {, I = 6 (  t ~ ) + ( ,  - t ~ , ; y o } ,  

( lo)  

where the last equality follows from the fact that 05(t ~ = (b + t0w)Ty ~ By proposition 
2, we know that wTy ~  05'(t~ Hence, it follows from expressions (9) and (10) that 
J ( t ~  ~ sO). We next show (ii). Assmne that t o is a breakpoint, that is, 
05 '( t  ~ < 05'+(t~ The interval of linearity J -+ ( t  ~ to the right of t ~ and the interval of 
linearity ~ ( t  ~ to the left of t o can be expressed as 

�9 f + ( t  ~ = {tl 05(t) = cb(t ~ + 05'+(t~ - to)} (11) 

and 

J _ ( t  o ) = {tl 05(t)  = 4)(r  ~ + 4 ; _ ( t ~  t~  (12)  

respectively. Clearly, expressions (10) and (11) imply that <r s O ) = j + ( t  o) if 
05"(t ~ = wry ~ Similarly, expressions (10) and (12) imply that G ( y  ~ s ~ = ~,~_ (t ~ if 
05'_ (t ~ = wry ~ Lastly, if 05'_0 ~ < wry  ~ < 05'+ (t ~ then 050 ~ + (r - t0)wTy ~ < 05(t) 
fo revery  t r  ~ Hence, O ( y  ~ s~176  [] 

The previous results lead to the following method for parametric analysis. Assuming 
that an optimal solution is available for t = 0, the algorithm is described only for 
increasing values of t. 

Algori thm 2.1 (An algorithm for the RHS parametric analysis). 
Input. Solutions x ~ and (yO, s o) which are optimal for RLP(0) and RLD(0), 

respectively. Set k = 0, and t o =  0. 

Step 1. Let /3 = #(sk) .  Solve the linear program 

tk+ 1= sup{t[ A x -  t w =  b, x>~ 0, x ~ = 0 } .  (13) 

If t ~+~ is zc stop. Otherwise, let (x  a+ ~, t k+ a) be an optimal solution of this problem. 
Then, x ~+ ~ is an optimal solution of RLP(t a" i) and z.v a + (1 - ~.)x ~+ ~ is an optimal 
solution of RLP(ht  ~ + (1 - A)t k+ i) for every A ~ [0, 1]. 
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S t e p  2. Let o~-  o ' ( x  k+ ~). Solve the linear program 

sup{wTy I A-rY + s = c,  so = O, s >1 0}. 

If this problem is unbounded, RLP(t)  is infeasible for all t > t k+ i 
(y~+ t, sk+ !) be an optimal solution of (14). 

S tep  3. Set k =  k + 1, return to Step 1. 

(14) 

; stop. Otherwise, let 

The correctness of Algorithm 2.1 is now discussed. In order to simplify the 
arguments, assume that 0 is not a breakpoint. By Theorem l(i), the optimal value t ~ 

(possibly t ~ = z~) computed at Step 1 is equal to the first breakpoint larger than 0. Using 
Proposition l(ii), it is easily seen that the point x r computed at Step 1 is an optimal 
solution of RLP(t  ~) and that ax  ~ + (1 - a ) x  t is an optimal solution of RLP(At ~ + (1 - 
a) t  I) for every a ~ [0, 1]. Since a = cr(x  l) and x I is an optimal solution for RLP(t l ) ,  

it follows by tile complementarity slackness condition that the feasible region of 
problem (14) is exactly the set of optimal solutions of problem RLD(tl) .  In particular, 
tile solution (y~, s 1) is an optimal solution of RLD(fl) .  By Propositon 2, the optimal 
value of the linear program (14) gives the slope of (b(t) over the interval of linearity to 
the right of  t 1. Hence, ~ ' + ( t  1) = wTy  1. Since t I is a breakpoint, by using Theorem 

l(ii-c), it follows that t 2 is the first breakpoint larger than t ~ (possibly t 2 = ze). The 
above arguments justify one step of Algorithm 2.1. The additional steps are similarly 
justified. 

Note that there is no algorithmic restriction on how (13) and (14) are solved. In 
particular, either the simplex method or an interior point method can be used for this 
purpose. 

3. RHS sensitivity analysis in interior point methods 

The theory studied in Section 2 gives the foundation for the development of a 
sensitivity analysis approach in the absence of an optimal basis. The main goal of  this 
section is to describe how this can be done. Two approaches are presented, namely the 
LU factorization approach and the affine scaling approach. The first approach shares the 
same computational machinery as used in the optimal basis approach, and hence, it can 
be viewed as a natural extension of the optimal basis approach. The second approach 
uses machinery similar to the one employed by interior point methods. 

The outline for this section is as follows. In Subsection 3.1, approaches for perform- 
ing range analysis, i.e. for estimating the optimality interval(s) containing 0 are given. In 
Subsection 3.2, approaches for performing marginal analysis, i.e. for estimating the left 
and right slopes of ~b(t) at t = 0 are given. 

Sensitivity analysis is usually performed along many specified directions (i.e., along 
all unit vectors). Therefore, sensitivity analysis estimation along a direction should be 
performed as cheap as possible. Preferably, only one square system of linear equations 
with an already factored coefficient matrix should be solved for each direction. The 
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corresponding computational task involves one forward and one back substitution for 
each direction, or simply, one solve for each direction. The optimal basis approach 
performs one solve for each direction. However,  by performing little computational 

work for each direction, we can only expect to get an approximation of the optimality 
interval containing O, or estimates of the slopes of  d,(t) at t = O. 

We believe that the LU factorization approach is computationally less expensive than 
the affine scaling approach. Indeed, tile LU factorization approach has the advantage 

that it requires the factorization of one matrix for estimating the ranges and the slopes 
corresponding to all directions. On the other hand, the affine scaling approach requires 
the factorization of two matrices: one for the range analysis and the other for the 

marginal analysis. A detailed computational study is required to find the approach which 
gives better approximations of the optimality intervals and better estimates for file slopes 
of qS(t). 

In this section, it is convenient to simplify the notation used in Section 2. It is 
assumed that a pair of strongly complementary optimal solutions x ~ and (y ' : ,  s*)  for 
problems RLP(0) and RLD(0) are available. Let /3 - o-(x"  ) throughout this section and 
assume that A = [P  : Z] where the columns of P correspond to variables with indices in 

/3. 
It has been shown that some interior point algorithms, when properly terminated, are 

able to compute a strongly optimal solution pair (e.g., see [5,9]). Therefore, the 
assumption that a strongly optimal pair is available is not restrictive in the context of 
interior point methods and simplifies our development considerably. 

The discussion in this section also applies to the case when a strongly complementary 
solution pair is not available. If x ~ and (y~ s 0) are optimal solutions for RLP(0) and 
RLD(0), respectively, then the discussion of Subsection 3.1 holds if /3 = ~ ( s  ~ is taken 
and, similarly, the discussion of Subsection 3.2 holds if /3 = o ' ( x  ~ is taken. However,  
if the strong complementarity property does not hold then we may fail to find a 
nontrivial estimate (i.e., a interval of positive length) of a nontrivial optimality interval 
of (y0,  sO). The possibility of this failure also exists in the optimal basis approach. In 
summary, degeneracy of the linear program and the need for performing little computa- 
tional work for each direction causes the possibility of trivial estimates be generated in 
both approaches. Finally, we note that the LU factorization approach discussed below 
reduces to the optimal basis approach if 13 is taken to be the set of basic variable indices 
of an optimal basic feasible solution. 

The following proposition shows that the optimality interval associated with a 
strongly complementary optimal solution of problem RLD(0) is either equal to the 
singleton {0} or is a nontrivial closed interval containing 0 in its interior. 

Proposi t ion 3. Suppose that x ~ and ( y  ~, s *) are strongly complementary optimal 

solutions for  problems RLP(0) and RLD(0), respectively. Consider Theorem 1 with 

t o =  0, x ~ = x *  and (y0,  s 0) = (y~ ,  s* ). Then, Cases (ii-b) and (ii-c) of  Theorem 1 

cannot occur. 
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Proof. By Proposition 2, 952(0) and 95+(0) are exactly the minimum and maxinmm 
value of the linear function wTy over the set 

S'~(0) = ( ( y ,  s) l pTy=cB, Z V y +  s~=cB, s # = 0 ,  sg>~ 0}, 

that is the set of all optimal solutions of the problem RLD(0). Using the fact that the 
range space of P and the null space of pT are orthogonal complements, one can easily 
verify that exactly one of the following two systems of linear equations has a solution: 

ed~ = w (15) 

or  

pTdy = O, wfdy = 1. (16) 

If (15) has a solution, say dS, then wTy = (ct~)TpTy = (d~)Tco for every (y,  s) in the 

' 0 optimal face S'~(0) of RLD(0). Hence, wry is constant over S(0), and so & '  (0) = 4~+ ( ) .  
Thus, 0 is not a breakpoint of 4,(t), that is Case (i) of Theorem 1 holds. Assume now 
that (16) has a solution, say d>*.. Clearly, ( y * ,  s*)  is a feasible solution of S~(0) for 
which s~ > 0. Hence, one can take positive steps from ( y * ,  s* ) along the directions 
(d~,, el; ) and - ( d ]  d~ ), where d,7: = -ATd~., to obtain points in SP(0) with smaller 
and larger values (in terms of the function wfy) than (y~ ,  s ~ ). Hence, qS'_(0) < wTy * 

' 0 < 95+( ) which shows that Case (ii-a) of Theorem 1 holds. [] 

Proposition 3 is not only interesting in its own right but it also motivates approaches 
for obtaining an estimate for the optimality interval containing 0 when 0 is not a 
breakpoint or estimates for the derivatives 4/_(0) and 95+(0) when 0 is a breakpoint. 
The details of how to compute these estimates are the subject of the following 
subsections. 

3.1. Estimating right-hand side ranges 

It follows from the results of Section 2 that the optimality interval [ t2,  t+] = 
c~(y * , s * ) of the optimal solution (y  ~, s*)  is determined by solving the two linear 
programs t+ = sup{t I(x, t) ~ F(/3)} and t* = inf{t [(x, t) ~ F(/3)},  where F ( / 3 )  is 
defined by relation (3). Equivalently, t+ and tL are determined by 

and 

t := sup{tl Px~- ~v=b, x ~ ) 0 }  (17) 

t* = inf{tl Px# - tw = b, x# >~ 0}, (18) 

where P-= At3. To obtain estimates of the interval [ t : ,  t+ ], a solution of the system of 
linear equations 

Pd# = w (19) 
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is computed. If (19) has no solution, dmt is w is not in the range of P, then the 
optimality interval of ( y 0  s0) is {0} (see the proof of Proposition 3). If (19) has a 

solution, say d~, then minimum ratio tests are performed as follows. If (dr > 0 for all 

i, let t+ := z ;  otherwise, let 

,+:= ,ran{- ( , ;  )I (20) 

Similarly, if (dr])s ~< 0 for all i, let t_ := - m: otherwise, let 

, := ), ), > 0}. (21) 

The interval [r_, r ] is ttlen a nontrivial estimate of the optimality interval [t2, t~_ ], 

since a ;  > 0. Observe that if P is an optimal basis, then tile above procedure reduces to 

the optimal basis approach. 

Two approaches for computing d ;  are given be]ow. The first approach is based on 

factoring a submatrix of the constraint matrix. The second approach is based on 

computing the affine scaling direction. 

3.1.1. LU facrorization approach 

If the optimal partition is generated by tile approach discussed in [8] then a suitable 
factorization of P is already available. In this factorization, P is written as 

where the rows of [Q:  R] are linearly dependent on the rows of [ B : N ] ,  and the 
columns of N are linearly dependent on the columns of B. In addition, LU factors of B 

are also assumed to be available. 
If the components of the vector df~ corresponding to die colunms of the matrix N are 

set to zero in system (19), the LU factors of  B can be used to solve for the remaining 
components of dp. Note that the computational requirement in this approach is 

comparable to the optimal basis approach. 

If  w is in the range of P, then (19) can have either a unique solution or multiple 

solutions. System (19) will have a unique solutions if and only if P has full colunm 
rank. Clearly, if P is an optimal basis generated by the simplex method then (19) has a 
unique solution, namely d~ = P-* w, and the ranges determined by the LU factorization 

and the optimal basis approaches coincide. 

3.1.2. Affine scaling approach 

An alternative approach based on the computation of affine scaling directions is 

described in this section. Since the solution obtained by an interior point algorithm is 

usually in the relative interior of the optimal face (and this is assumed to be the case 

here), it is a natural idea to use the affine scaling direction to obtain estimates of the 

optimal values of the linear programs (17) and (18). 
First note that the point (xr  t) - ( x ~ ,  0) is feasible for the linear programs (17) and 
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(18). The affine scaling direction for (17) at (xt~:, 0) is given by the solution of the 
following problem 

nlax(d~.a~ A 

s.t. Pd~ - hw = 0 (23) 

liD -~ d~3 l] 2 ~< 1. 

where D is the diagonal matrix whose elements are given by the components of xt; =. 
After writing the optimality conditions for this problem and doing some elementary 

algebraic manipulation, one can show that the optimal solution (ct"t~, h) of problem (23) 
is determined by the relations [I D-Id~ II = 1 and c~r = AD2PTv, where v is a solution 
of pD2pTv = w. Note that 3. > 0 since Pdr~ = w has a solution. The scaled direction 

d~ = d~/A = D2PTv is a solution of (19). The vector d~ can also be computed by 
solving the system of linear equations 

p v ' 

and then taking d~" = D2pTv. Here u and v are vectors of appropriate dimensions. The 

above augmented system may be useful if P has some dense columns (e.g., see [2]). 

3.2. Marginal analysis 

By the proof of Proposition 3. we know that 4;_(0) < wTy ~ < ++(0)  whenever 0 is a 

breakpoint. In this case, approaches for estimating 4;-(0) and 4~+(0) are given in this 
subsection. Clearly, wTy* is a straightforward (or trivial) estimate for both 4;-(0) and 
qS"(0). In fact, this is the only estimate that is usually provided by the optimal basis 
approach. 

The relations (6) a~d (7) imply that ~b+(0) and 4/_(0) can be obtained by solving 

qb+(0) = sup{wTyl ATy + S = c, S/~ = 0, s > 0}, (24) 

and 

qS'_ (0) = inf{wVy I ASy + s = c, sr = 0. s >~ 0}. (25) 

Clearly, y* is a feasible solution for problems (24) and (25). Nontrivial estimates for 
qS'+(0) and 4)'_(0) can be obtained as follows. We first compute a direction d;7 which is 
a solution of the system 

p rd,. = 0, wTdy = 1, (26) 

and then compute d(  = -AVd~ =. Next, minimum ratio tests are performed as follows. If 
(d])i > 0 for all i E ~ then 4+(0)  = :c; otherwise, let 

v + =  m i n { - s [ / ( d ( ) ; l i ~  ~, (d , ? ) i  < 0}, (27) 

and take 4,'+ (0) = wr( 3' * + v+ dy ) as an estimate for 4~+ (0). Similarly, if ( d ] ) i  ~ 0 for 
all i ~  ~,  then 4 /_ (0 )=  -zc ;  otherwise let 

v - =  m i n { s [ / ( d ; ) i l  i ~  ~, ( d : ) ; >  0}, (28) 

and take ~h'- (0) = wr( y * - v- d~i ) as an estimate for oh'_ (0). 
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As in Subsection 3.1, we next describe two approaches for computing d] satisfying 
(26), namely the LU factorization approach and the affine scaling approach. 

3.2.1. LU.factorizat ion approach 

As in Subsection 3.1.1, assume that tile factorization of P given by (22) is available. 
After deleting the linearly dependent colunms from P, (26) reduces to 

QT 
/0/ 

w~ w~ d : =  / 1 ) "  (29) 

Here w is partitioned according to the row partition of P. Since B is a nonsingular 
matrix, in order to solve (29) we only need one additional column from [Q we] r which 
is linearly independent from the columns of [ B wu ]T. The components of the solution of 

(29) corresponding to the other colunms in [Q wo] T are then set to zero. 
Let q~ be the ith column of QT and the corresponding element in w be (wo) i. The 

inversion formula for bordered matrices gives, 

B r  q i C u 

( w o ) ,  = I / , S  ' 

where 

C = B - T  - T  , B q?*'~B , 6 =  (WQ) i 

u =  - ( l / 6 ) B - r q i  . u v =  - - ( l / a ) w T B  -T. 

Clearly, the inverse above exists if 6 + 0. Therefore. to identify a linearly independent 

column it is sufficient to find an i such that 

( wo)  i - wT B- '"  q, 4= O. 

This computation can be done efficiently by first computing B -  ~ w e. In fact, B-  ~ w B is 
computed as part of the computations for estimating the right hand side ranges. After a 
linearly independent colunm is identified, a solution of (29) can be computed by using 
the formulae given above. Note that this requires the computation of B-Tq~,  which can 
be obtained by using the LU factors of B. 

3.2.2. Aj f ine  scaling approach 

It is also possible to compute dy as the search direction in the affine scaling method. 
Let Z i denote the ith column of Z. The affine scaling direction is given by the solution 
of the following problem: 

max wT d,. 

s.t. pTdy = 0 

1 v 2 
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Define D i i -  1/si* for every i ~ fl and let D denote the diagonal matrix with the 

elements Di~, i ~ fl, on its diagonal. The affine scaling direction can be computed by 

solving the system of equations 

(3O) 

and then taking a positive scalar multiple of cl'y. The vector d ~ is of  appropriate 

dimension. Alternatively, the augmented system 

0 - D  --~ d 2 = , (31) 

P Z ~ w 

can be solved. Here d j and d z are vectors of appropriate dimensions. The solutions of 

(30) and (31) require factorization of a symmetric indefinite matrix. 

4. Parametric and sensitivity analyses for the cost vector 

In this section we describe approaches for the parametric and sensitivity analyses 

with respect to the cost vector. The results given here are analogous to the ones 

developed in Sections 2 and 3 for RHS parametric and sensitivity analyses and are stated 
without proofs. 

4.1. Cost parantetric analysis 

Consider the following cost parametric linear program CLP(t): 

~ ( t )  - min ( c + t h ) V x  (32) 
s.t. Ax= b, x >~ O, 

and its dual CLD(t):  

max b T y 

s.t. A T y + s = c + t h ,  s>~O, 

where A E NmX",c,h,x,s ~ N",b,y  ~ ~"~ and t E N. The purpose of the cost paramet- 
ric analysis is to find optimal solutions of CLP(t)  for all values of t in a prespecified 
interval. 

The following notation is used to develop the approach for the cost parametric 

analysis. If x ~ is an optimal solution of  CLP(t  ~ for some t o ~ It~, then the optimality 
interval of x ~ is defined as 

~'~( x ~ -= {t ~ ~ [ x  ~ is an optimal solution of CLP( t)}. (33) 
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For /3  c . / f ' ,  let 

I ' ~ ( [ 3 ) = - { ( y . s , t ) ~ " • 2 1 5  s>.~O,s~=O}, (34) 

3 " ( , 8 )  ~- {t lY(y ,  s) ~ ~ '"  • [R " such that ( y. s, t) E F " ( / 3 ) } ,  

and, for any t E 9"-'( [4 ). define 

: ; ' ( , 8 ) -=  { (y ,  s) ~ ~'" x ~'~ I (y ,  :. t) ~ r ' ( ~ ) } .  

Clearly, ~ : ( , 8 )  is an interval (possibly' empty). If .U" ( /3 )  is nonempty, then its 
endpoints are determined by the optimal values of the two linear programs 

inf{tl(y,  s, t) ~ F"( /3)}  and sup{t l (y ,  s. t) ~ 1"([3)}.  
The following proposition is similar to Proposition 1. 

Proposi t ion 4. For some t ~ 1 6 2  ~, let x ~ be an optimal solution o/" CLP(t~ Let 

= o '(x~ Then, 

(i) : C ( x ~  = .Y  ~( `8); 
(ii) f o r  eve1?, t ~ ~9"- "( ~ ), F / (  [3 ) is equal to the set of  optimal solutions o f  CLD(t) .  

It is well known that t/J(t) defined in (32) is a concave piecewise linear function with 
a finite number of breakpoints (e.g., see [10]). The next proposition expresses the left 
and right slopes of ~/J(t) as optimal values of certain linear programs (see Shapiro [12] 
for a proof of this result). 

Proposi t ion 5. Let t~ E ~ be such that CLP(t ~ has an optimal solution. Let S(t ~ 

denote the set o f  all optimal solutions ~ o f  CLP(t~ Then, the left and the right 

derivatives of  ~b(t) at t=  t ~ are gi~,e~t by 

,/,'_ ( t  ~ = sup{ hh,-I ,+ ~ s ( t ~  (35) 

and 

t//+ ( t ~ = inf{hTx I x ~ S( t~ (36) 

respectively. 

The derivatives ~[/(t ~ or g/+(t ~)) may take the values ~ and -.=c, respectively. If the 
left derivative is :c then CLP(t)  is unbounded for every t < t ~ Similarly, if the right 
derivative is -~c,  then CLP(t)  is unbounded for every t > t ~ 

We call the intewal between two consecutive breakpoints of ~(t)  an interval o f  

linearib, of q~(t). The next theorem is analogous to Theorem 1 and is stated wiflaout 

proof. 

The o rem 2. Let t o ~ ~ be such that CLP(t  ~ has an optimal solution. Let x ~ be an 

optimal solution of  CLP(t~ Then, 

(i) if t o is not a breakpoint, then C ' ( x  ~ is the interval of  linearity o f  ~[~(t) 

containing t~ 
(ii) if t o is a breakpoint, then there are three possibilities: 

(a) it" ~ts'_(t ~) > hrx ~ > r176 then : ' (  x ~ = (to}; 
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(b) (f t p ' ( t  ~ = hT x ~ then c~C(x ~ is the interval o f  linearity lying to the left q[" 

t~ 

(c) i f  ~'+ (t  ~ = hV x ~ then G((  x ~ is the interval o f  linearity lying to the right of  

t~ 

These 

rithm. As 
algorithm 

results are now translated into the following cost parametric analysis algo- 

in Algorithm 2.1, we describe the method only for increasing values of t. The 

can be validated in the same way as Algorithm 2.1. 

An algorithm for the cost parametric analysis 
hTput. Solutions x ~ and (y0, s 0) which are optimal for CLP(0) and CLD(0), 

respectively. Set k = 0, and t o =  0. 

Step 1. Let /3 = o'(xk).  Solve the linear program 

t* +'  = sup{t [ A "ry + s -  th = c , s  ~> 0, .s'~ = 0}. 

If t k+t is ~,  stop. Otherwise, let (y*~-~, s k+ ~, t k+~) be an optimal solution of this 

problem. Then, (yk+ ~, s~+l) is an optimal solution of CLD(t  *+ i) and (3.y k + ( 1 -  
A)y t+ ~. hs ~ + (1 - h)s k+ l) is an optimal solution of CLD(h t  k + (1 - A)t ~+ l) for 

every )t E [0, 1]. 

Step 2. Let c~ -= o-(s k+ ~). Solve the linear program 

inf{hrx [ A x =  b, x ,  = 0, x >~ 0}. (37) 

If this problem is unbounded, CLP(t)  is unbounded for all t > t k+ ~; stop. Otherwise, let 
x k+ ~ be an optimal solution of this problem. 

Step 3. Set k = k + 1, return to Step 1. 

4.2. Cost sensitivi O, analysis in interior point methods 

In this subsection, we assume that x ~ and (y* s ~ ) are given strongly complemen- 

tary optimal solutions for problems CLP(0) and CLD(0). We also let /3 = or(x*)  and 

A = [ P ' Z ]  where the columns of P correspond to variables with indices in ]3. 

4.2.1. Estimating the cost ranges 

By Proposition 4, we know that the optimality interval [ t*,  t ~ ] - C ' ( x  ~) of  the 

optimal solution x* is determined by solving file linear programs: 

t + = s u p { t l A V y + s - t h = c . s > ~ 0 ,  s e = 0 }  

and 

t 2 = i n f { t l A T y + s - t h = c ,  s>~0, s e = 0 } .  

To obtain estimates of the interval [t2, tS ], we solve the following system of linear 
equations: 

p r  d). = h#. (38) 

If (38) has no solution then GL(X ~ ) = (0}, Otherwise, if (38) has a solution, say d~, 
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W * then we perform the minimum ratio tests as follows. Let d(  - h - A d,.. If  (d.,7)~ >/0 
for all i, let t+ := :c; otherwise, let 

t+:= min{-si* / (  d,~ ) i]( d,: )i < O, i r ~}. 

Similarly, if (d,7)~ 4 0 for all i, let t := - x ;  otherwise, let 

t_ := m a x { - s ' i ~ / ( d ( ) , i ( d . ( ) ,  > O, i e ~}. 

The interval [t_,  t+] is then a nontrivial estimate of the optimality interval It2, t+], 
since .r~ > 0. 

Note that if P is an optimal basis then the above procedure reduces to the optimal 
basis approach. Observe also that if h is equal to the /-unit vector with i ~ ~,  then 

h~ = 0 and d>~ =-0 is a solution of (38). In this case, the above scheme yields the 
estimates t_= -si* and t+=  ~. 

An LU factorization approach similar to the one described in Subsection 3.1.1 can be 
used to compute a solution of (38). Another possibility is to use an affine scaling 
approach in which a solution for the problem 

nlax ( a.,l ,.,l, ) A 

s.t. And, + d. , -  ah = 0 

II O(d.,.)N II 2 ~< 1, (d.,.)e = O, 

(39) 

is computed, where D is the diagonal matrix with the elements (s ,*)-~,  i ~  ~,  on its 

= d ; / a  diagonal. If  (A*, dT, d( )  denotes an optimal solution of (39), then ct'y 
together with some vector d I solve the linear system of equations 

Z D 2 Z  T j d.~, ZD2h~ ] 
(40) 

The aT,,-component of a solution of (40) is then a solution of (38) determined by the 
affine scaling approach. 

4.2.2. Cost marginal analysis 
If 0 is a breakpoint then ~ ] / _ ( O ) > h T x * >  t/J+(0). In this case, we can use the 

procedure described next to obtain estimates for the derivatives ~p' (0) and t/,+(0). 

Relations (35) and (36) show that ~ ' ( 0 )  and 4J'_(0) can be obtained by solving 

tp ' (O)=inf{hVxlAx=b,x~=O,x>~O}=inf (h~xr3]Pxr~=b,x~>~O} (41) 

and 

(0)  = sup(hTxl  A x =  ,), = 0, 7 0}  = sup{h  I,'x  = b,  >_- 0) ,  

(42) 

Clearly, x* is a feasible solution for tile first LP problems in relations (41) and (42). 
Therefore, hVx * iS a trivial estimate for q/(O) and t/,'+(0). Better estimates for ~'_(0) 

' 0 and t/,+( ) can be obtained as follows. A direction d~ which is a solution of the system 

Pdt~ = 0, h~ d~ = 1 (43) 
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is computed. If (d~)  i ~ 0 for all i ~ / 3  then 4 , ' ( 0 ) =  ~:; otherwise, let 

t ' - :  m i n { -  ( A'~ ) i / (  d~ ) i [ i ~ /3, ( ds ) i < O }, 

and take ~/J' ( 0 )=  hr~(x~ + v - d  o) = hTcx~ + v -  as an estinaate for 4/ (0). Similarly, if 

(d~) i <~ 0 for all i ~/3,  then t)~_(0) = -~c, otherwise, let 

v + :  rain{( ,'~ ) / ( 4  ) ; I ; ~ / 3 ,  ( ~ ) ; >  0} 

+ ' 0 and take ~[x+(0) = h~(x~  - v+d~) = hT~x~ -- v as an estinaate for 4 '+( ) .  

An approach similar to the LU factorization approach of Section 3.2.1 can be used to 
compute a solution of (43). Another possibility is the affine scaling approach in which 

the (scaled) affine scaling direction c)" 0 for the second LP problem in (41) is computed. 
Namely, we solve the system ( P D 2 p T ) u  = pD2h~ for u and set cl'r = D2h[3 - D2pTu .  
Then, d~ - (]o/h;  c[r is solution of (43). 

5. Numerical experiences with sensitivity analysis 

We end this paper by summarizing our numerical experience with the sensitivity 
analysis approach described in Sections 3 and 4. 

The computational results indicate that the affine scaling approach generally provides 
better range and slope estimates than the LU approach. 

A comparison between the range and slope estimates generated by the optimal basis 
approach and interior point approach provides mixed indications. The optimal basis 
approach provided better RHS range estimates than the interior point approach even 
when t = 0 is not a breakpoint. The RHS slope estimates obtained by the interior point 
approach are however more accurate when t = 0 is a breakpoint. The conclusions are 
mixed with respect to the cost range estimates. 

We should remark that the above conclusions are very limited since it is based on the 
results obtained for just a few small problems. It would be necessary to conduct the 
experiments in a more extensive set of problems involving large scale linear programs to 
obtain better conclusions about the two approaches. 

We have not performed any computational analysis for the parametric analysis 
approach described in this paper in which an interior point code is used to solve the 
subproblems. However, we think that such an approach would be a valuable alternative 
to the parametric simplex algorithm for analyzing the solution of highly degenerate LP 
problems. Indeed, for these problems the parametric simplex algorithm generally 
performs many (degenerate) pivots without making substantial progress while an interior 
point method performs a certain number of iterations that depends little on the problem 
size and its degree of degeneracy. 

For the interior point parametric analysis approach to be successful, the interior point 
code used to solve the subproblems should be able to solve LP problems with any type 
of linear constraints without having the need to change them to an equivalent set of 
linear constraints in standard form and/or  dual form. In this respect, the approach and 
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the linear algebra machinery  descr ibed in the paper [2] would  be useful. Without  giving 

any details, we observe that after one subproblem is solved,  it is easy to show that its 

primal and dual optimal  solutions can be used to construct  a point lying in the relative 

interior of  the feasible region of  next subproblem.  The next subproblem could then be 

solved by an interior point code (having the above requirements)  starting f rom this point. 

This approach for solving the subproblem el iminates  the potential compl ica t ion  o f  

guessing a good warm start and of  using an infeasible point as a starting point. 
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