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ABSTRACT
This paper studies the iteration-complexity of a new primal-
dual algorithm based on Rockafellar’s proximal method of
multipliers (PMM) for solving smooth convex programming
problems with inequality constraints. In each step, either
a step of Rockafellar’s PMM for a second-order model of
the problem is computed or a relaxed extragradient step is
performed. The resulting algorithm is a (large-step) relaxed
hybrid proximal extragradient (r-HPE) method of multipliers,
which combines Rockafellar’s PMM with the r-HPE method.
We obtain pointwise O(1/k) and ergodic O(1/k3/2) global
convergence rates at the price of solving, at each itera-
tion, quadratic quadratically constrained convex program-
ming problems. These convergence rates are superior to the
corresponding pointwise O(1/

√
k) and ergodic O(1/k) cur-

rently known for standard proximal-point methods, thanks to
the incorporation of second-order information. To the best of
our knowledge, this is the first time that the abovementioned
rates and results are obtained for solving the smooth convex
programming problems with inequality constraints.
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Introduction

The smooth convex programming problem with (for the sake of simplicity) only
inequality constraints is

min f (x) s.t. g(x) ≤ 0, (1)

where f : R
n→ R and the components of g = (g1, . . . , gm) : R

n→ R
m are

smooth convex functions. Dual methods for this problem solve the associated
dual problem

max
(
inf
x∈Rn

f (x)+ 〈y, g(x)〉
)

s.t. y ≥ 0
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and, en passant, find a solution of the original (primal) problem.Notice that a pair
(x, y) satisfies the Karush–Kuhn–Tucker conditions for problem (1) if and only if
x is a solution of this problem, y is a solution of the associated dual problem, and
there is no duality gap. There are many practical methods for solving (1), e.g. the
method of multipliers, sequential quadratic programming, stabilized sequential
quadratic programming, semi-smoothNewtonmethods, active setmethods, and
barrier/penalization methods, to cite some of them.

Themethod ofmultipliers, whichwas proposed byHestenes [1,2] andPowel [3]
for equality constrained optimization problems and extended by Rockafellar [4]
(see also [5]) to inequality constrained convex programming problems, is a typ-
ical example of a dual method. It generates iteratively sequences (xk) and (yk) as
follows:

xk ≈ arg min
x∈Rn

L (x, yk−1, λk), yk = yk−1 + λk∇yL (xk, yk−1, λk),

where ≈ stands for approximate solution, λk > 0, and L (x, y, λ) is the aug-
mented Lagrangian

L (x, y, λ) = f (x)+ 1
2λ

[‖(y+ λg(x))+‖2 − ‖y‖2]

= max
y′≥0

f (x)+ 〈y′, g(x)〉 − 1
2λ
‖y′ − y‖2.

The method of multipliers is also called the augmented Lagrangian method. In
the seminal article [5], Rockafellar proved that the method of multipliers is an
instance of his proximal-point method (hereafter PPM) [6] applied to the dual
objective function. Still in [5], Rockafellar proposed a new primal-dual method
for (1), which we discuss next and that we will use in this paper to design a new
primal-dual method for this problem.

Rockafellar’s proximalmethod ofmultipliers (hereafter PMM) [5] generates, for
any starting point (x0, y0), a sequence ((xk, yk))k∈N as the approximate solution
of a regularized saddle-point problem

(xk, yk) ≈ arg min
x∈Rn

max
y∈Rm+

f (x)+ 〈y, g(x)〉 + 1
2λ
[‖x− ◦x‖2 − ‖y− ◦y‖2] , (2)

where ( ◦x, ◦y) = (xk−1, yk−1) is the current iterate and λ = λk > 0 is a stepsize
parameter. Notice that the objective function of the above saddle-point prob-
lem is obtained by adding to the augmented Lagrangian a proximal term for the
primal variable x. If inf λk > 0 and

∞∑
k=1
‖(xk, yk)− (x∗k , y∗k)‖ <∞, (3)

where (x∗k , y
∗
k) is the (exact) solution of (2), then

(
(xk, yk)

)
k∈N converges to a solu-

tion of the Karush–Kuhn–Tucker conditions for (1) provided that there exist a
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pair satisfying these conditions. This result follows from the facts that the sat-
isfaction of KKT conditions for (1) can be formulated as a monotone inclusion
problem and (2) is the Rockafellar’s PPM iteration for this inclusion problem (see
comments after Proposition 2.2). Although (2) is a (strongly) convex-concave
problem – and hence has a unique solution – the computation of its exact or an
approximate solution can be very hard.

We assume in this paper that f and gi (i = 1, . . . ,m) are C 2 convex func-
tions with Lipschitz continuous Hessians. The method proposed in this paper
either solves a second-order model of (2) in which second-order approximations
of f and gi (i = 1, . . . ,m) replace these functions in (2) or performs a (relaxed)
extragradient step. In its general form, PMM is an inexact PPM in that each itera-
tion approximately solves (2) according to the summable error criterion (3). The
method proposed in this paper can also be viewed as an inexact PPM but one
based on a relative error criterion instead of the one in (3).More specifically, it can
be viewed as an instance of the (large-step) relaxed hybrid proximal extragradient
(r-HPE) method [7–9] which we briefly discuss next.

Given a point-to-set maximal monotone operator T : R
p ⇒ R

p, the large-
step r-HPEmethod computes approximate solutions for the monotone inclusion
problem 0 ∈ T(z) as extragradient steps

zk = zk−1 − τλkvk, (4)

where zk−1 is the current iterate, τ ∈ (0, 1] is a relaxation parameter, λk >
0 is the stepsize and vk together with the pair (z̃k, εk) satisfy the following
conditions

vk ∈ T[εk](z̃k), ‖λkvk + z̃k − zk−1‖2 + 2λkεk ≤ σ 2‖z̃k − zk−1‖2,
λk‖z̃k − zk−1‖ ≥ η, (5)

whereσ ∈ [0, 1) andη > 0 are given constants andTε denotes the ε-enlargement
of T. (It has the property that Tε(z) ⊃ T(z) for every z.) Themethod proposed in
this paper for solving theminimization problem (1) can be viewed as a realization
of the above framework where the operator T is the standard saddle-point oper-
ator defined as T(z) := (∇f (x)+ ∇g(x)y,−g(x)+ NR

m+(y)) for every z = (x, y).
More specifically, the method consists of two type of iterations. The ones which
perform extragradient steps can be viewed as a realization of (5). On the other
hand, each one of the other iterations updates the stepsize by increasing it by
a multiplicative factor larger than one and then solves a suitable second-order
model of (2). After a few of these iterations, an approximate solution satisfying (5)
is then obtained. Hence, in contrast to the PMM which does not specify how
to obtain an approximate solution (xk, yk) of (2), or equivalently the prox inclu-
sion 0 ∈ λkT(z)+ z − zk−1 with T as above, these iterations provide a concrete
scheme for computing an approximate solution of this prox inclusion according
to the relative criterion in (5). Pointwise and ergodic iteration-complexity bounds
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are then derived for our method using the fact that the large-step r-HPE method
has pointwise and ergodic global convergence rates of O(1/k) and O(1/k3/2),
respectively.

We emphasize that to the best of our knowledge this is the first time that
global (pointwise and ergodic) convergence rates are obtained for a second-
order type algorithm for solving (1). The proposed method (Algorithm 1)
combines two distinct approaches for solving optimization problems: proximal-
point type and second-order methods. The latter is known to have good local
performance but, even in an unconstrained instance of (1), some sort of regular-
ization is needed to guarantee that the corresponding iteration is well-defined
along the whole iterative process (see, e.g. [10]). On the other hand, a stan-
dard proximal-point algorithm (e.g. PMM) for solving (1), while globally well-
defined, would require at each iteration the solution of potentially numerically
expensive subproblems (e.g. (2)). This approach would lead to global point-
wise O(1/√k) and ergodic O(1/k) convergence rates. Note that Dong [11,12]
proved that the exact PPM with fixed stepsize has asymptotic convergence
o(1/
√
k). Hence, this approach would led to an asymptotic convergence rate

of o(1/
√
k). Summarizing, we combine the both just mentioned approaches

to obtain a proximal-point second-order type algorithm (Algorithm 1) with
superior pointwise O(1/k) and ergodic O(1/k3/2) global convergence rates
at the price of solving, at each iteration, quadratic quadratically constrained
subproblems.

The paper is organized as follows. Section 1 reviews some basic properties
of ε-enlargements of maximal monotone operators and briefly reviews the basic
properties of PPM and the large-step r-HPE method. Section 2 presents the
basic properties of the minimization problem of interest and some equivalences
between certain saddle-point, complementarity and monotone inclusion prob-
lems, as well as of its regularized versions. Section 3 introduces an error measure,
shows some of its properties and how it is related to the relative error criterion
for the large-step r-HPE method. Section 4 studies the smooth convex program-
ming problem (1) and its second-order approximations. The proposed method
(Algorithm 1) is presented in Section 5 and its iteration-complexities (pointwise
and ergodic) are studied in Section 6.

1. Rockafellar’s proximal method and the hybrid proximal
extragradient method

Thiswork is based onRockafellar’s PPM.Thenewmethodpresented in this paper
is a particular instance of the (large-step) relaxed hybrid proximal extragradient
(r-HPE) method [13]. For these reasons, in this section we review Rockafellar’s
PPM, the large-step r-HPE method, and review some convergence properties of
these methods.
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1.1. Maximalmonotone operators, themonotone inclusion problem, and
Rockafellar’s PPM

A point-to-set operator in R
p, T : R

p ⇒ R
p, is a relation T ⊂ R

p × R
p and

T(z) := {v | (z, v) ∈ T}, z ∈ R
p.

The inverse of T is T−1 : R
p ⇒ R

p, T−1 := {(v, z) | (z, v) ∈ T}. The domain and
the range of T are, respectively,

D(T) := {z | T(z) �= ∅}, R(T) := {v | ∃z ∈ R
p, v ∈ T(z)}.

When T(z) is a singleton for all z ∈ D(T), it is usual to identify T with the map
D(T) � z �→ v ∈ R

p where T(z) = {v}. If T1,T2 : R
p ⇒ R

p and λ ∈ R, then
T1 + T2 : R

p ⇒ R
p and λT1 : R

p ⇒ R
p are defined as

(T1 + T2)(z) := {v1 + v2 | v1 ∈ T1(z), v2 ∈ T2(z)},
(λT1)(z) := {λv | v ∈ T1(z)}.

A point-to-set operator T : R
p ⇒ R

p ismonotone if

〈z − z′, v − v′〉 ≥ 0, ∀ (z, v), (z′, v′) ∈ T

and it ismaximal monotone if it is a maximal element in the family of monotone
point-to-set operators in R

p with respect to the partial order of set inclusion.
The subdifferential of a proper closed convex function is a classical example of
a maximal monotone operator. Minty’s theorem [14] states that if T is maxi-
mal monotone and λ > 0, then the proximal map (λT + I)−1 is a point-to-point
nonexpansive operator with domain R

p.
The monotone inclusion problem is: given T : R

p ⇒ R
p maximal monotone,

find z such that

0 ∈ T(z). (6)

Rockafellar’s PPM [6] generates, for any starting z0 ∈ R
p, a sequence (zk) by the

approximate rule

zk ≈ (λkT + I)−1zk−1,

where (λk) is a sequence of strictly positive stepsizes. Rockafellar proved [6] that
if (6) has a solution and

∥∥zk − (λkT + I)−1(zk−1)
∥∥ ≤ ek,

∞∑
k=1

ek <∞, inf λk > 0, (7)

then (zk) converges to a solution of (6).
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In each step of the PPM, computation of the proximal map (λT + I)−1z
amounts to solving the proximal (sub) problem

0 ∈ λT(z+)+ z+ − z,

a regularized inclusion problem which, although well-posed, is almost as hard
as (6). From this fact stems the necessity of using approximations of the prox-
imal map, for example, as prescribed in (7). Moreover, since each new iterate
is, hopefully, just a better approximation to the solution than the old one, if it
was computed with high accuracy, then the computational cost of each itera-
tion would be too high (or even prohibitive) and this would impair the overall
performance of the method (or even make it infeasible).

So, it seems natural to try to improve Rockafellar’s PPMby devising a variant of
this method that would accept a relative error tolerance and wherein the progress
of the iterates towards the solution set could be estimated. In the next subsection
we discuss the hybrid proximal extragradient (HPE) method, a variant of the
PPM which aims to satisfy these goals.

1.2. Enlargements ofmaximalmonotone operators and the hybrid proximal
extragradientmethod

The HPE method [8,15] is a modification of Rockafellar’s PPM wherein: (a) the
proximal subproblem, in each iteration, is to be solved within a relative error tol-
erance and (b) the update rule is modified so as to guarantee that the next iterate
is closer to the solution set by a quantifiable amount.

An additional feature of (a) is that, in some sense, errors in the inclusion on
the proximal subproblems are allowed. Recall that the ε-enlargement [16] of a
maximal monotone operator T : R

p ⇒ R
p is

T[ε](z) := {v | 〈z − z′, v − v′〉 ≥ −ε ∀ (z′, v′) ∈ T}, z ∈ R
p, ε ≥ 0. (8)

From now on in this section T : R
p ⇒ R

p is a maximal monotone operator. The
r-HPE method [17] for the monotone inclusion problem (6) proceed as follows:
choose z0 ∈ R

p and σ ∈ [0, 1); for i = 1, 2, . . .

compute z̃i, vi, λi > 0, εi ≥ 0 such that vi ∈ T[εi](z̃i), ‖λivi + z̃i − zi−1‖2
+2λiεi ≤ σ 2‖z̃i − zi−1‖2,

choose τi ∈ (0, 1] and set zi = zi−1 − τiλivi.
(9)

In practical applications, each problem has a particular structure whichmay ren-
der feasible the computation of λi, z̃i, vi, and εi as prescribed above. For example,
T may be Lipschitz continuous, it may be differentiable, or it may be a sum of an
operator which has a proximal map easily computable with others with some of
these properties. Prescription for computing λi, z̃i, vi, and εi under each one of
these assumptions were presented in [7,8,18–22].
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Computation of (λT + I)−1(z) is equivalent to the resolution of an inclusion-
equation system:

z+ = (λT + I)−1(z) ⇐⇒ ∃v ∈ T(z+), λv + z+ − z = 0.

Whence, the error criterion in the first line of (9) relaxes both the inclusion and
the equality at the right-hand side of the above equivalence. Altogether, each
r-HPE iteration consists in: (1) solving (with a relative error tolerance) a ‘proxi-
mal’ inclusion-equation system; (2) updating zi−1 to zi by means of an extragra-
dient step, that is, using vi ∈ T[εi](z̃i).

In the remainder part of this section we present some convergence properties
of the r-HPE Method which were essentially proved in [13] and revised in [9].
The next proposition shows that zi is closer than zi−1 to the solution set with
respect to the square of the norm, by a quantifiable amount, and present some
useful estimations.

Proposition 1.1 ([9, Proposition 2.2]): For any i ≥ 1 and z∗ ∈ T−1(0),

(a) (1− σ)‖z̃i − zi−1‖ ≤ ‖λivi‖ ≤ (1+ σ)‖z̃i − zi−1‖ and 2λiεi ≤ σ 2

‖z̃i − zi−1‖2;
(b) ‖z∗ − zi−1‖2 ≥ ‖z∗ − zi‖2 + τi(1− σ 2)‖z̃i − zi−1‖2 ≥ ‖z∗ − zi‖2;
(c) ‖z∗ − z0‖2 ≥ ‖z∗ − zi‖2 + (1− σ 2)

∑i
j=1 τj‖z̃j − zj−1‖2;

(d) ‖z∗ − z̃i‖ ≤ ‖z∗ − zi−1‖/
√
1− σ 2 and ‖z̃i − zi−1‖ ≤ ‖z∗ − zi−1‖/√

1− σ 2.

The aggregate stepsize�i and the ergodic sequences (z̃ai ), (ṽ
a
i ), (ε

a
i ) associated

with the sequences (λi), (z̃i), (vi), and (εi) are, respectively,

�i :=
i∑

j=1
τjλj,

z̃ ai := 1
�i

i∑
j=1

τjλjz̃j, v a
i := 1

�i

i∑
j=1

τjλjvj,

ε ai := 1
�i

i∑
j=1

τjλj(εj + 〈z̃j − z̃ ai , vj − v a
i 〉). (10)

Next we present the pointwise and ergodic iteration-complexities of the large-
step r-HPE method, i.e. the r-HPE method with a large-step condition [7,19].
We also assume that the sequence of relaxation parameters (τi) is bounded away
from zero.
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Theorem 1.2 ([9, Theorem 2.4]): If d0 is the distance from z0 to T−1(0) �= ∅ and

λi‖z̃i − zi−1‖ ≥ η > 0, τi ≥ τ > 0 i = 1, 2, . . .

then, for any i ≥ 1,

(a) there exists j ∈ {1, . . . , i} such that vj ∈ T[εj](z̃j) and

‖vj‖ ≤ d20
iτ(1− σ)η , εj ≤ σ 2d30

(iτ)3/2(1− σ 2)3/22η
;

(b) vai ∈ T[εai ](z̃ai ), ‖vai ‖ ≤ 2d20
(iτ)3/2(

√
1−σ 2)η , and ε

a
i ≤ 2d30

(iτ)3/2(1−σ 2)η .

Remark: We mention that the inclusion in Item (a) of Theorem 1.2 is in the
enlargement of T which appears in the inclusion in (9). To be more precise, in
some applications the operator T may have a special structure, like for instance
T = S+ NX , where S is point-to-point and NX is the normal cone operator of a
closed convex set X , and the inclusion in (9), in this case, is vi ∈ (S+ N[εi]

X )(z̃i),
which is stronger than vi ∈ T[εi](z̃i). In such a case, Item (a) would guarantee that
vj ∈ (S+ N[εj]

X )(z̃j). Unfortunately, the observation is not true for the Item (b).
The next result was proved in [23, Corollary 1]

Lemma 1.3: If ◦z ∈ R
p, λ > 0, and v ∈ T[ε](z), then

‖λv + z − ◦z‖2 + 2λε ≥ ∥∥z − (λT + I)−1 ◦z
∥∥2 + ∥∥λv − (◦z − (λT + I)−1 ◦z

)∥∥2 .
2. The smooth convex programming problem

Consider the smooth convex optimization problem (1), i.e.

(P) min f (x) s.t. g(x) ≤ 0, (11)

where f : R
n→ R and g = (g1, . . . , gm) : R

n→ R
m. From now on we assume

that:

(O.1) f , g1, . . . , gm are convex C 2 functions;
(O.2) the Hessians of f and g1, . . . , gm are Lipschitz continuous with Lipschitz

constants L0 and L1, . . . , Lm, respectively, with Li �= 0 for some i ≥ 1;
(O.3) there exists (x, y) ∈ R

n × R
m satisfying Karush–Kuhn–Tucker conditions

for (11),

∇f (x)+ ∇g(x)y = 0, g(x) ≤ 0, y ≥ 0, 〈y, g(x)〉 = 0. (12)
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The canonical Lagrangian of problem (11) L : R
n × R

m→ R and the corre-
sponding saddle-point operator S : R

n × R
m→ R

n × R
m are, respectively,

L (x, y) := f (x)+ 〈y, g(x)〉, S(x, y) :=
[ ∇xL (x, y)
−∇yL (x, y)

]
=
[∇f (x)+ ∇g(x)y

−g(x)
]
.

(13)
The normal cone operator of R

n × R
m+, NRn×R

m+ : R
n × R

m ⇒ R
n × R

m, is the
subdifferential of the indicator function of this set δRn×R

m+ : R
n × R

m→ R, that
is,

δRn×R
m+(x, y) :=

{
0, if y ≥ 0;
∞ otherwise,

NRn×R
m+ := ∂δRn×R

m+ . (14)

Next we review some reformulations of (12).

Proposition 2.1: The point-to-set operator S+NRn×R
m+ is maximal monotone

and for any (x, y) ∈ R
n × R

m the following conditions are equivalent:

(a) ∇f (x)+ ∇g(x)y = 0, g(x) ≤ 0, y ≥ 0, and 〈y, g(x)〉 = 0;
(b) (x, y) is a solution of the saddle-point problem maxy∈Rm+ minx∈Rn f (x)+
〈y, g(x)〉;

(c) (x, y) is a solution of the complementarity problem

(x, y) ∈ R
n × R

m; w ∈ R
m; S(x, y)− (0,w) = 0; y,w ≥ 0; 〈y,w〉 = 0;

(d) (x, y) is a solution of themonotone inclusion problem 0 ∈ (S+NRn×R
m+)(x, y).

Next we review some reformulations of the saddle-point problem in (2).

Proposition 2.2: Take ( ◦x, ◦y) ∈ R
n × R

m and λ > 0. The following conditions are
equivalent:

(a) (x, y) is the solution of the regularized saddle-point problem

min
x∈Rn

max
y∈Rm+

f (x)+ 〈y, g(x)〉 + 1
2λ
(‖x− ◦x‖2 − ‖y− ◦y‖2);

(b) (x, y) is the solution of the regularized complementarity problem

(x, y) ∈ R
n × R

m; λ
(
S(x, y)− (0,w))+ (x, y)− (◦x, ◦y) = 0;

y,w ≥ 0; 〈y,w〉 = 0;

(c) (x, y) = (λ(S+NRn×R
m+)+ I)−1(◦x, ◦y).
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It follows fromPropositions 2.1 and 2.2 that (12) is equivalent to themonotone
inclusion problem

0 ∈ (S+NRn×R
m+)(x, y)

and that (2) is the PPM iteration for this inclusion problem. Therefore, the con-
vergence analysis of the Rockafellar’s Proximal Method of Multipliers (PMM)
follows from Rockafellar’s classical convergence analysis of the PPM.

3. An error measure for regularized saddle-point problems

We will present a modification of Rockafellar’s PMM which uses approximate
solutions of the regularized saddle-point problem (2) satisfying a relative error
tolerance. To that effect, in this section we define a generic instance of prob-
lem (2), define an error measure for approximate solutions of this generic
instance, and analyse some properties of the proposed error measure.

Consider, for λ > 0 and ( ◦x, ◦y) ∈ R
n × R

m, a generic instance of the reg-
ularized saddle-point problem to be solved in each iteration of Rockafellar’s
PMM,

min
x∈Rn

max
y∈Rm+

f (x)+ 〈y, g(x)〉 + 1
2λ
(‖x− ◦x‖2 − ‖y− ◦y‖2). (15)

Define for λ ∈ R and ( ◦x, ◦y) ∈ R
n × R

m


S,(◦x,◦y),λ : R
n × R

m
+ → R,


S,(◦x,◦y),λ(x, y) := min
w∈Rm+

∥∥λ (S(x, y)− (0,w))+ (x, y)− ( ◦x, ◦y)∥∥2 + 2λ〈y,w〉.
(16)

For λ > 0, this function is trivially an error measure for the complementar-
ity problem on Proposition 2.2(b), a problem which is equivalent to (15), by
Proposition 2.2(a); hence,
S,(◦x,◦y),λ(x, y) is an error measure for (15).

In the context of complementarity problems, the quantity 〈y,w〉 in (16) is ref-
ered to as the complementarity gap. Next we show that the complementarity gap
is related to the ε-subdifferential of δRn×R

m+ and to the ε-enlargement of the nor-
mal cone operator of R

n × R
m+. Direct use of (8) and of the definition of the

ε-subdifferential [24] yields

∀ (x, y) ∈ R
n × R

m
+, ε ≥ 0

∂εδRn×R
m+(x, y) = N[ε]

Rn×R
m+
(x, y) = {−(0,w) | w ∈ R

m
+, 〈y,w〉 ≤ ε

}
. (17)

Since

argminw∈Rm+‖λ
(
S(x, y)− (0,w))+ (x, y)− (◦x, ◦y)‖2

+ 2λ〈y,w〉 = (g(x)+ λ−1 ◦y)−, (18)
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it follows from definition (16) that


S,(◦x,◦y),λ(x, y) = ‖λ(∇f (x)+ ∇g(x)y)+ x− ◦x‖2 + ‖y− (λg(x)+ ◦y)+‖2

+ 2〈y, (λg(x)+ ◦y)−〉
= ∥∥λS(x, y)+ (x, y)− ( ◦x, ◦y)∥∥2 − ‖(λg(x)+ ◦y)−‖2 (19)

for any (x, y) ∈ R
n × R

m+.

Lemma 3.1: If λ > 0, ◦z = ( ◦x, ◦y) ∈ R
n × R

m, z = (x, y) ∈ R
m × R

m+ and w, v, ε
are defined as

w := (g(x)+ λ−1 ◦y)−, v := S(z)− (0,w), ε := 〈y,w〉,

then

(a) −(0,w) ∈ ∂εδRn×R
m+(z) = N[ε]

Rn×R
m+
(z);

(b) v ∈ (S+N[ε]
Rn×R

m+
)(z) ⊂ (S+NRn×R

m+)
[ε](z),

‖λv + z − ◦z‖2 + 2λε = 
S,◦z,λ(z);

(c)
∥∥∥z − (λ(S+NRn×R

m+)+ I)−1(◦z)
∥∥∥ ≤ √
S,◦z,λ(z).

Proof: Item (a) follows trivially from the definitions of w and ε, and (17).
The first inclusion in item (b) follows from the definition of v and item (a); the

second inclusion follows from direct calculations and (8); the identity in item (b)
follows from the definitions of w and ε, (16) and (18). Finally, item (c) follows
from item (b) and Lemma 1.3. �

Now we will show how to update λ so that
S,◦z,λ(x, y) does not increase when◦z is updated like zk−1 is updated to zk in (9).

Proposition 3.2: Suppose that λ > 0, ◦z = ( ◦x, ◦y) ∈ R
n × R

m, z = (x, y) ∈ R
n ×

R
m+ and define

w := (g(x)+ λ−1 ◦y)−, v := S(z)− (0,w), ◦z(τ ) := ◦z − τλv =: ( ◦x(τ ), ◦y(τ )).

For any τ ∈ [0, 1],

◦x(τ ) = ◦x− τλ(∇f (x)+ ∇g(x)y), ◦y(τ ) = ◦y+ τλ(g(x)+ (g(x)+ λ−1 ◦y)−),

S,◦z(τ ),(1−τ)λ(z) ≤ 
S,◦z,λ(z).

If, additionally, ◦y ≥ 0 then, for any τ ∈ [0, 1], ◦y(τ ) ≥ 0.
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Proof: Direct use of the definitions of w, v and ◦z(τ ) yields the expressions for
◦x(τ ) and ◦y(τ ) as well as the identity

(1− τ)λ (S(z)− (0,w))+ z − ◦z(τ ) = λ (S(z)− (0,w))+ z − ◦z,

which, in turn, combined with (16) gives, for any τ ∈ [0, 1],


S,◦z(τ ),(1−τ)λ(z) ≤ ‖(1− τ)λ (S(z)− (0,w))+ z − ◦z(τ )‖2 + 2(1− τ)λ〈y,w〉
= ‖λ (S(z)− (0,w))+ z − ◦z‖2 + 2(1− τ)λ〈y,w〉 ≤ 
S,◦z,λ(z),

where the second inequality follows from (16), (18), the assumption τ ∈ [0, 1]
and the definition of w. To prove the second part of the proposition, observe
that, for any τ ∈ [0, 1], ◦y(τ ) is a convex combination of ◦y and ◦y(1) = (λg(x)+
◦y)+. �

The next lemma and the next proposition provide quantitative and qualitative
estimations of the dependence of
S,(◦x,◦y),λ(x, y) on λ.

Lemma 3.3: If ψ(λ) := 
S,◦z,λ(z) for λ ∈ R, where ◦z = ( ◦x, ◦y) ∈ R
n × R

m, and
z = (x, y) ∈ R

n × R
m+, then

(a) ψ is convex, differentiable and piecewise quadratic;
(b) d/dλψ(λ) = 2(

〈
S(z), λ(S(z)− (0,w))+ z − ◦z〉) where w = (g(x)+

λ−1 ◦y)−;
(c) ψ(λ) ≤ (‖λS(z)‖ + ‖z − ◦z‖)2;
(d) limλ→∞ ψ(λ) <∞ if and only if (x, y) is a solution of (12).

Proof: The proof follows trivially from (19). �

Proposition 3.4: If ◦z = ( ◦x, ◦y) ∈ R
n × R

m dλ, z = (x, y) ∈ R
n × R

m+ and 0 <
μ ≤ λ then √


S,◦z,λ(z) ≤
λ

μ

√

S,◦z,μ(z)+

λ− μ
μ
‖z − ◦z‖.

Proof: Let w := (g(x)+ μ−1 ◦y)− and

rμ := μ (S(z)− (0,w))+ z − ◦z, rλ := λ (S(z)− (0,w))+ z − ◦z.
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It follows from the latter definitions, (16) and (18) that 
S,◦z,μ(z) = ‖rμ‖2 +
2μ〈y,w〉 and


S,◦z,λ(z) ≤ ‖rλ‖2 + 2λ〈y,w〉

=
∥∥∥∥ λμrμ + μ− λμ (z − ◦z)

∥∥∥∥2 + λ

μ
2μ〈y,w〉

≤
(
λ

μ

)2 (‖rμ‖2 + 2μ〈y,w〉)+ 2
λ

μ

λ− μ
μ
‖rμ‖‖z − ◦z‖ +

(
λ− μ
μ
‖z − ◦z‖

)2

≤
(
λ

μ

)2

S,◦z,μ(z)+ 2

λ

μ

√

S,◦z,μ(z)

λ− μ
μ
‖z − ◦z‖ +

(
λ− μ
μ
‖z − ◦z‖

)2
,

where the first inequality follows from the assumption 0 < μ ≤ λ. The conclu-
sion follows trivially from the latter inequality. �

4. Quadratic approximations of the smooth convex programming
problem

In this section we use second-order approximations of f and g around a point
x̃ ∈ R

n to define a second-order approximation of problem (11) around such a
point. We also define a local model of (2), where second-order approximations
of f and g around x̃ substitute these functions, and give conditions on a point
(x̃, ỹ) under which a solution of the local model is a better approximation to the
solution of (2) than this point.

For x̃ ∈ R
n, let f[x̃] and g[x̃] = (g1,[x̃], . . . , gm,[x̃]) be the quadratic approxima-

tions of f and g = (g1, . . . , gm) around x̃, that is,

f[x̃](x) := f (x̃)+ ∇f (x̃)T(x− x̃)+ 1
2
(x− x̃)T∇2f (x̃)(x− x̃)

gi,[x̃](x) := gi(x̃)+ ∇gi(x̃)T(x− x̃)+ 1
2
(x− x̃)T∇2gi(x̃)(x− x̃), i = 1, . . . ,m.

(20)

We define

(P[ x̃ ]) min f[x̃](x) s.t. g[x̃](x) ≤ 0 (21)

as the quadratic approximation of problem (11) around x̃. The canonical
Lagrangian of (21), L[x̃] : R

n × R
m→ R, and the corresponding saddle-point

operator, S[x̃] : R
n × R

m→ R
n × R

m, are, respectively,

L[x̃](x, y) := f[x̃](x)+ 〈y, g[x̃](x)〉,

S[x̃](x, y) :=
[
∇xL[x̃](x, y)
−∇yL[x̃](x, y)

]
=
[
∇f[x̃](x)+∇g[x̃](x)y

−g[x̃](x)

]
. (22)
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Since L[x̃](x, y) is a 3rd-degree polynomial in (x, y) and the components of
S[x̃](x, y) are 2nd-degree polynomials in (x, y), neitherL[x̃] is a quadratic approx-
imation of L nor S[x̃] is a linear approximation of S; nevertheless, this 3-rd
degree functional and that componentwise quadratic operator are, respectively,
the canonical Lagrangian and the associated saddle-point operator of a quadratic
approximation of (P) around x̃, namely, (P[x̃]). So, we may say that L[x̃] and S[x̃]
are approximations of L and S based on quadratic approximations of f and g.

Each iteration of Rockafellar’s PMM applied to problem (P[x̃]) requires the
solution of an instance of the generic regularized saddle-point problem

min
x∈Rn

max
y∈Rm+

f[x̃](x)+
〈
y, g[x̃](x)

〉+ 1
2λ
(‖x− ◦x‖2 − ‖y− ◦y‖2), (23)

where λ > 0 and ( ◦x, ◦y) ∈ R
n × R

m. It follows from Proposition 2.2 that this
problem is equivalent to the complementarity problem

(x, y) ∈ R
n × R

m
+; λS[x̃](x, y)+ (x, y)− ( ◦x, ◦y) = (0,w); y,w ≥ 0; 〈y,w〉 = 0.

To analyse the error of substituting S by S[x̃] we introduce the notation:

Lg = (L1, . . . , Lm); |(y1, . . . , ym)| = (|y1|, . . . , |ym|), (y1, . . . , ym) ∈ R
m.
(24)

Lemma 4.1: For any (x, y) ∈ R
n × R

m and x̃ ∈ R
n

∥∥S(x, y)− S[x̃](x, y)
∥∥ ≤ L0 + 〈Lg , |y|〉

2
‖x− x̃‖2 + ‖Lg‖

6
‖x− x̃‖3.

Proof: It follows from triangle inequality, (20) and assumption (O.2) that

‖∇xL[x̃](x, y)− ∇xL (x, y)‖ ≤ ‖∇f[x̃](x)− ∇f (x)‖ + ‖(∇g[x̃](x)− ∇g(x))y‖

≤
(
L0
2
+

m∑
i=1
|yi|Li2

)
‖x− x̃‖2

and

‖g[x̃](x)− g(x)‖ =
√√√√ m∑

i=1

(
gi,[x̃](x)− gi(x)

)2

≤
√√√√ m∑

i=1

(
Li
6
‖x− x̃‖3

)2
= ‖Lg‖

6
‖x− x̃‖3.

To end the proof, use the above inequalities, (13) and (22). �
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Define, for ( ◦x, ◦y) ∈ R
n × R

m and λ > 0,

Nθ ((
◦x, ◦y), λ) :=

⎧⎪⎨⎪⎩(x, y) ∈ R
n × R

m
+

∣∣∣∣∣∣∣
λ

(
L0 + 〈Lg , |y|〉

2
+ 2‖Lg‖

3
ρ

)
ρ ≤ θ ,

where ρ =
√

S,(◦x,◦y),λ(x, y)

.

⎫⎪⎬⎪⎭
(25)

The next proposition shows that, if (x̃, ỹ) ∈ Nθ ((
◦x, ◦y), λ) with θ ≤ 1/4, then the

solution of the regularized saddle-point problem (23) is a better approximation
than (x̃, ỹ) to the solution of the regularized saddle-point problem (15), with
respect to the merit function
S,(x,y),λ.

Proposition 4.2: If λ > 0, ( ◦x, ◦y) ∈ R
n × R

m, (x̃, ỹ) ∈ R
n × R

m+ and

(x, y) = arg min
x∈Rn

max
y∈Rm+

f[x̃](x)+
〈
y, g[x̃](x)

〉+ 1
2λ
(‖x− ◦x‖2 − ‖y− ◦y‖2) ,

then

‖(x̃, ỹ)− (x, y)‖ ≤
√

S,(◦x,◦y),λ(x̃, ỹ).

If, additionally, (x̃, ỹ) ∈ Nθ ((
◦x, ◦y), λ) with 0 ≤ θ ≤ 1/4, then√


S,(◦x,◦y),λ(x, y) ≤ θ
√

S,(◦x,◦y)λ(x̃, ỹ)

and (x, y) ∈ Nθ2((
◦x, ◦y), λ).

Proof: Applying Lemma 3.1 to (23) and using (22) we conclude that

‖(x̃, ỹ)− (x, y)‖ ≤
√

S[x̃],(

◦x,◦y),λ(x̃, ỹ).

It follows from (20), (22), and (13) that S[x̃](x̃, ỹ) = S(x̃, ỹ), which, combined
with (16), implies that 
S[x̃],(

◦x,◦y),λ(x̃, ỹ) = 
S(◦x,◦y),λ(x̃, ỹ). To prove the first part
of the proposition, combine this result with the above inequality.

To simplify the proof of the second part of the proposition, define

ρ̃ =
√

S[x̃],(

◦x,◦y),λ(x̃, ỹ), w = (g(x)+ λ−1 ◦y)−,
r = λ (S(x, y)− (0,w))+ (x, y)− (◦x, ◦y),

Since (x, y) is the solution of (23),

λ
(
S[x̃](x, y)− (0,w)

)+ (x, y)− ( ◦x, ◦y) = 0, y,w ≥ 0, 〈y,w〉 = 0.

Therefore, r = λ(S(x, y)− S[x̃](x, y)). Using also (16), Lemma 4.1 and the first
part of the proposition we conclude that√


S,(◦x,◦y),λ(x, y) ≤
√
‖r‖2 + 2λ〈y,w〉 = λ ∥∥S(x, y)− S[x̃](x, y)

∥∥
≤ λ

(
L0 + 〈Lg , |y|〉

2
+ ‖Lg‖

6
ρ̃

)
ρ̃2.
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Moreover, it follows from the Cauchy-Schwarz inequality, the first part of the
proposition and the definition of ρ̃ that

〈Lg , |y|〉 ≤ 〈Lg , |ỹ|〉 + ‖Lg‖‖y− ỹ‖ ≤ 〈Lg , |ỹ|〉 + ‖Lg‖ρ̃.
Therefore √


S,(◦x,◦y),λ(x, y) ≤ λ
(
L0 + 〈Lg , |ỹ|〉

2
+ 2‖Lg‖

3
ρ̃

)
ρ̃2.

Suppose that (x̃, ỹ) ∈ Nθ ((
◦x, ◦y), λ) with 0 ≤ θ ≤ 1/4. It follows trivially from

this assumption, (25), the definition of ρ̃, and the above inequality, that the
inequality in the second part of the proposition holds. To end the proof of
the second part, let ρ =

√

S[x̃],(

◦x,◦y),λ(x, y). Since ρ ≤ θρ̃ ≤ ρ̃/4 and 〈Lg , |y|〉 ≤
〈Lg , |ỹ|〉 + ‖Lg‖ρ̃,

λ

(
L0 + 〈Lg , |y|〉

2
+ 2‖Lg‖

3
ρ

)
ρ ≤ λ

(
L0 + 〈Lg , |ỹ|〉 + ‖Lg‖ρ̃

2
+ 2‖Lg‖

3
ρ̃

4

)
θρ

= λ
(
L0 + 〈Lg , |ỹ|〉

2
+ 2‖Lg‖

3
ρ̃

)
θρ̃ ≤ θ2,

where the last inequality follows from the assumption (x̃, ỹ) ∈ Nθ ((
◦x, ◦y), λ)

and (25). To end the proof use the definition of ρ, the above inequality
and (25). �

In view of the preceding proposition, for a given ( ◦x, ◦y) ∈ R
n × R

m and θ > 0,
it is natural to search for λ > 0 and (x, y) ∈ Nθ ((

◦x, ◦y), λ).

Proposition 4.3: For any ( ◦x, ◦y) ∈ R
n × R

m, (x, y) ∈ R
n × R

m+, and θ > 0 there
exists λ̄ > 0 such that (x, y) ∈ Nθ ((

◦x, ◦y), λ) for any λ ∈ (0, λ̄].

Proof: The proof follows from the definition (25) and Lemma 3.3(c). �

The neighbourhoods Nθ as well as the next defined function will be instru-
mental in the definition and analysis of Algorithm 1, to be presented in the next
section.

Definition 4.4: For α > 0 and y ∈ R
m, ρ(y,α) stands for the largest root of(

L0 + 〈Lg , |y|〉
2

+ 2‖Lg‖
3

ρ

)
ρ = α.

Observe that for any λ, θ > 0 and ( ◦x, ◦y) ∈ R
n × R

m,

Nθ ((
◦x, ◦y), λ) =

{
(x, y) ∈ R

n × R
m
+
∣∣∣√
S,(◦x,◦y),λ(x, y) ≤ ρ

(
y, θ/λ

)}
. (26)

Moreover, since ρ(y,α) is the largest root of a quadratic it follows that it has an
explicit formula.
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5. A relaxed hybrid proximal extragradient method of multipliers
based on second-order approximations

In this section we consider the smooth convex programming problem (11)
where assumptions (O.1), (O.2) and (O.3) are assumed to hold. Aiming at find-
ing approximate solutions of the latter problem, we propose a new method,
called (relaxed) hybrid proximal extragradient method of multipliers based on
quadratic approximations (hereafter rHPEMM-2o), which is a modification of
Rockafellar’s PMMin the following senses: in each iteration either a relaxed extra-
gradient step is executed or a second-order approximation of (15) is solved.More
specifically, each iteration k uses the (available) variables

(xk−1, yk−1), (x̃k, ỹk) ∈ R
n × R

m
+, and λk > 0

to generate

(xk, yk), (x̃k+1, ỹk+1) ∈ R
n × R

m
+, and λk+1 > 0

in one of two ways. Either

(1) (xk, yk) is obtained from (xk−1, yk−1) via a relaxed extragradient step,

(xk, yk) = (xk−1, yk−1)− τλkvk, vk ∈ (S+NRn×R
m+)
εk(x̃k, ỹk)

in which case (x̃k+1, ỹk+1) = (x̃k, ỹk) and λk+1 < λk; or
(2) (xk, yk) = (xk−1, yk−1) and the point (x̃k+1, ỹk+1) is the outcome of one iter-

ation (at (xk, yk)) of Rockafellar’s PMM for problem (21) with x̃ = x̃k and
λ = λk+1.

Next we present our algorithm, where Nθ , f[x̃], g[x̃] and ρ(y,α) are as
in (25), (20), and Definition 4.4, respectively.

To simplify the presentation of Algorithm 1, we have omitted a stopping test.
First we discuss its initialization. In the absence of additional information on the
dual variables y, one shall consider the initialization

(x0, y0) = (x̃1, ỹ1) = (x, 0), (27)

where x is ‘close’ to the feasible set. If (x, y) ∈ R
n × R

m+ an approximated solu-
tion of (12) is available, one can do a ‘warm start’ by setting (x0, y0) = (x̃1, ỹ1) =
(x, y). Note that h>0 and 0 < τ < 1. Existence of λ1 > 0 as prescribed in this
step follows from the inclusion (x̃1, ỹ1) ∈ R

n × R
m+ and from Proposition 4.3.
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Algorithm 1: Relaxed hybrid proximal extragradient method of multi-
pliers based on 2nd ord. approx. (r-HPEMM-2o)
initialization: choose (x0, y0) = (x̃1, ỹ1) ∈ R

n × R
m+, 0 < σ < 1,

0 < θ ≤ 1/4;
define h := positive root of θ(1+ h′)

(
1+ h′ (1+ 1/σ)

)2 = 1,
τ = h/(1+ h);
choose λ1 > 0 such that (x̃1, ỹ1) ∈ Nθ2((x0, y0), λ1) and set k← 1

1 if ρ(ỹk, θ2/λk) ≤ σ‖(x̃k, ỹk)− (xk−1, yk−1)‖ then
2 λk+1 := (1− τ)λk;
3 (x̃k+1, ỹk+1) := (x̃k, ỹk);
4 xk := xk−1 − τλk[∇f (x̃k)+ ∇g(x̃k)ỹk], yk :=

yk−1 + τ [λkg(x̃k)+ (λkg(x̃k)+ yk−1)−];

5 else

6 λk+1 := (1− τ)−1λk;
7 (xk, yk) := (xk−1, yk−1);
8 (x̃k+1, ỹk+1) :=

arg min
x∈Rn

max
y∈Rm+

f[x̃k](x)+
〈
yg[x̃k](x)

〉+ ‖x− xk‖2 − ‖y− yk‖2
2λk+1

;

9 end if
10 set k← k+ 1 and go to step 1;

Moreover, if we compute λ = λ1 > 0 satisfying the inequality(
2‖Lg‖‖S(x0, y0)‖2

3

)
λ3 +

(
L0 + 〈Lg , |y0|〉

2
‖S(x0, y0)‖

)
λ2 − θ2 ≤ 0,

where the operator S is defined in (13), use Lemma 3.3(c) and Definition 4.4 we
find

√

S,(x0,y0),λ1(x0, y0) ≤ λ1‖S(x0, y0)‖ ≤ ρ(y0, θ2/λ1), which, in turn, com-

bined with the fact that (x̃1, ỹ1) = (x0, y0), gives the inclusion in the initialization
of Algorithm 1.

The computational cost of block of steps [2,3,4] is negligible. The initializa-
tion λ1 > 0, together with the update of λk by step 2 or 6 guarantee that λk > 0
for all k. Therefore, the saddle-point problem to be solved in step 8 is strongly
convex-concave and hence has a unique solution. The computational burden of
the algorithm is in the computation of the solution of this problem.

We will assume that (x̃1, ỹ1) does not satisfy (12), i.e. the KKT conditions
for (11), otherwise we would already have a solution for the KKT system and
x̃1 would be a solution of (11). For the sake of conciseness we introduce, for
k = 1, . . ., the notation

zk−1 = (xk−1, yk−1), z̃k = (x̃k, ỹk), ρk = ρ(ỹk, θ2/λk). (28)
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Since there are two kinds of iterations in Algorithm 1, its is convenient to have a
notation for them. Define

A := {k ∈ N \ {0}|ρk ≤ σ‖z̃k − zk−1‖}, (1)

B := {k ∈ N \ {0}|ρk > σ‖z̃k − zk−1‖}. (29)

Observe that in iteration k, either k ∈ A and steps 2, 3, 4 are executed, or k ∈ B
and steps 6, 7, 8 are executed.

Proposition 5.1: For k = 1, . . . ,

(a) z̃k ∈ Nθ2(zk−1, λk);
(b)

√

S,zk−1,λk(z̃k) ≤ ρk.

(c) zk−1 ∈ R
n × R

m+.

Proof: Wewill use induction on k ≥ 1 for proving (a). In viewof the initialization
of Algorithm 1, this inclusion holds trivially for k=1. Suppose that this inclusion
holds for k = k0. We shall consider two possibilities.

(i) k0 ∈ A: It follows from Proposition 3.2 and the update rules in steps 2 and 4
that√

S,zk0 ,λk0+1(z̃k0) ≤

√

S,zk0−1,λk0 (z̃k0) ≤ ρ(ỹk0 , θ2/λk0) ≤ ρ(ỹk0 , θ2/λk0+1)

where the second inequality follows from the inclusion z̃k0 ∈ Nθ2(zk0−1, λk0)
and (26); and the third inequality follows from step 2 and Definition 4.4. It
follows from the above inequalities and (26) that z̃k0 ∈ Nθ2(zk0 , λk0+1). By
step 3, z̃k0+1 = z̃k0 . Therefore, the inclusion of Item (a) holds for k = k0 + 1
in case (i).

(ii) k0 ∈ B: In this case, by step 7, zk0 = zk0−1 and, using definition (29), the
notation (28), and the assumption that the inclusion in Item (a) holds for
k = k0 we conclude that

‖z̃k0 − zk0‖ < ρk0/σ , z̃k0 ∈ Nθ2(zk0 , λk0),
√

S,zk0 ,λk0 (z̃k0) ≤ ρk0 .

Direct use of the definitions of h, τ , and step 6 gives λk0+1 = (1+ h)λk0 .
Defining ρ′ =

√

S,zk0 ,λk0+1(z̃k0), it follows from the above inequalities and from

Proposition 3.4 that,

ρ′ ≤ (1+ h)
√

S,zk0 ,λk0 (z̃k0)+ h‖z̃k0 − zk0‖ ≤ (1+ h(1+ 1/σ))ρk0 .
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Therefore,

λk0+1
(
L0 + 〈Lg , |ỹk0 |〉

2
+ 2‖Lg‖

3
ρ′
)
ρ′

≤ (1+ h)
(
1+ h

(
1+ 1

σ

))2

× λk0
(
L0 + 〈Lg , |ỹk0 |〉

2
+ 2‖Lg‖

3
ρk0

)
ρk0

= (1+ h)
(
1+ h

(
1+ 1

σ

))2
θ2 = θ ,

wherewe also have usedDefinition 4.4 and the definition of h (in the initialization
of Algorithm 1). It follows from the above inequality, the definition of ρ′ and (25)
that

z̃k0 ∈ Nθ (zk0 , λk0+1).

Using this inclusion, step 8 and Proposition 4.2 we conclude that the inclusion in
Item (a) also holds for k = k0 + 1.

Item (b) follows trivially from Item (a), (26) and (28). Item (c) follows from the
fact that y0 ≥ 0, the definitions of steps 3, 4, and the last part of Proposition 3.2.

�

Algorithm 1 as a realization of the large-step r-HPEMethod

In this subsection, we will show that a subsequence generated by Algorithm 1
happens to be a sequence generated by the large-step r-HPE Method described
in (9) for solving a monotone inclusion problem associated with (11). This result
will be instrumental for evaluating (in the next section) the iteration-complexity
of Algorithm 1. In fact, wewill prove that iterations with k ∈ A, where steps 2, 3, 4
are executed, are large-step r-HPE iterations for themonotone inclusion problem

0 ∈ T(z) :=
(
S+NRn×R

m+

)
(z), z = (x, y) ∈ R

n × R
m, (30)

where the operator S is defined in (13).
Define, for k = 1, 2, . . .,

wk = (g(x̃k)+ λ−1k yk−1)−, vk = S(z̃k)− (0,wk), εk = 〈ỹk,wk〉, (31)

where z̃k is defined in (28). We will show that, whenever k ∈ A, the variables z̃k,
vk, and εk provide an approximated solution of the proximal inclusion-equation
system

v ∈ (S+NRn×R
m+)(z), λkv + z − zk−1 = 0,

as required in the first line of (9). We divided the proof of this fact in two parts,
the next proposition and the subsequent lemma.
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Proposition 5.2: For k = 1, 2, . . . ,

(a) −(0,wk) ∈ ∂εkδRn×R
m+(z̃k) = N[εk]

Rn×R
m+
(z̃k);

(b) vk ∈ (S+N[εk]
Rn×R

m+
)(z̃k) ⊂ (S+NRn×R

m+)
[εk](z̃k);

(c) ‖λkvk + z̃k − zk−1‖2 + 2λkεk = 
S,zk−1,λk(z̃k) ≤ ρ2k .

Proof: Items (a), (b) and the equality in Item (c) follow fromdefinitions (28), (31)
and Items (a) and (b) of Lemma 3.1. The inequality in Item (c) follows from
Proposition 5.1(b). �

Define

Ak := {j ∈ N|j ≤ k, steps 2, 3, 4 are executed at iteration j},
Bk := {j ∈ N | j ≤ k, steps 6, 7, 8 are executed at iteration j} (32)

and observe that

A =
⋃
k∈N

Ak, B =
⋃
k∈N

Bk.

From now on, #C stands for the number of elements of a set C. To further
simplify the converge analysis, define

I = {i ∈ N|1 ≤ i ≤ #A}, k0 = 0, ki = i− th element of A. (33)

Note that k0 < k1 < k2 · · · , A = {ki | i ∈ I} and, in view of (29) and step 7 of
Algorithm 1,

zk = zki−1 , for ki−1 ≤ k < ki, ∀ i ∈ I. (34)

In particular, we have

zki−1 = zki−1 ∀ i ∈ I. (35)

In the next lemmawe show that for indexes in the setA, Algorithm 1 generates
a subsequence which can be regarded as a realization of the large-step r-HPE
Method described in (9), for solving the problem (30).

Lemma 5.3: The sequences (zki)i∈I , (z̃ki)i∈I , (vki)i∈I , (εki)i∈I , (λki)i∈I are gener-
ated by a realization of the r-HPE Method described in (9) for solving (30), that is,
0 ∈ (S+NRn×R

m+)(z), in the following sense: for all i ∈ I,

vki ∈
(
S+N

[εki ]
Rn×R

m+

)
(z̃ki) ⊂

(
S+NRn×R

m+

)[εki ]
(z̃ki),

‖λkivki + z̃ki − zki−1‖2 + 2λkiεki ≤ ρ2ki ≤ σ 2‖z̃ki − zki−1‖2,
zki = zki−1 − τλkivki . (36)

Moreover, if I is finite and iM := max I then zk = zkiM for k ≥ kiM .



1542 M. MARQUES ALVES ET AL.

Proof: The two inclusions in the first line of (36) follow trivially from Proposi-
tion 5.2(b). The first inequality in the second line of (36) follows from (35) and
Proposition 5.2(c); the second inequality follows from the inclusion ki ∈ A, (29),
step 1 of Algorithm 1 and (35). The equality in the last line of (36) follows
from the inclusion ki ∈ A, (29) step 4 of Algorithm 1, (35) and (31). Finally, the
last statement of the lemma is a direct consequence of (28), (29) and step 7 of
Algorithm 1. �

As we already observed in Proposition 2.1, (30) and (12) are equivalent, in the
sense that both problems have the same solution set. From now on we will use
the notation K for this solution set, that is,

K =
(
S+NRn×R

m+

)−1
(0)

= {(x, y) ∈ R
n × R

m ∣∣ ∇f (x)+ ∇g(x)y = 0,

×g(x) ≤ 0, y ≥ 0, 〈y, g(x)〉 = 0
}
. (37)

We assumed in (O.3) that this set is nonempty. Let z∗ = (x∗, y∗) be the projection
of z0 = (x0, y0) ontoK and d0 the distance from z0 toK,

z∗ ∈ K, d0 = ‖z∗ − z0‖ = min
z∈K
‖z − z0‖. (38)

To complement Lemma 5.3, we will prove that the large-step condition for the
large-step r-HPE Method (stated in Theorem 1.2) is satisfied for the realization
of the method presented in Lemma 5.3. Define

c := L0 + 〈Lg , |y0|〉
2

+
[
1
2
+ 1/2+ 2σ/3√

1− σ 2

]
d0‖Lg‖, η := θ2

σ c
. (39)

Proposition 5.4: Let z∗ ∈ K and d0, and η as in (38), and (39), respectively. For
all i ∈ I,

‖z∗ − zki‖ ≤ d0, ‖z∗ − z̃ki‖ ≤
d0√

1− σ 2
, ‖z̃ki − zki−1‖ ≤

d0√
1− σ 2

. (40)

As a consequence,

λki‖z̃ki − zki−1‖ ≥ η. (41)

Proof: Note first that (40) follows from Lemma 5.3, items (c) and (d) of Propo-
sition 1.1, (35) and (38). Using (28), (29), (33) and step 1 of Algorithm 1 we
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obtain

σ‖z̃ki − zki−1‖ ≥ ρ(ỹki , θ2/λki) ∀ i ∈ I,

which, in turn, combined with the definition of ρ(·, ·) (see Definition 4.4) yields(
L0 + 〈Lg , |ỹki |〉

2
+ 2‖Lg‖

3
σ‖z̃ki − zki−1‖

)
σ‖z̃ki − zki−1‖ ≥

θ2

λki
∀ i ∈ I.

(42)
Using the triangle inequality, (38) and the second inequality in (40) we obtain

‖z0 − z̃ki‖ ≤ d0 + ‖z∗ − z̃ki‖ ≤ d0
(
1+ 1√

1− σ 2

)
.

Now, using the latter inequality, the fact that ‖z0 − z̃ki‖ ≥ ‖y0 − ỹki‖ (∀i ∈ I) and
the triangle inequality we find

〈Lg , |ỹki |〉 ≤ ‖Lg‖‖z0 − z̃ki‖ + 〈Lg , |y0|〉

≤ d0‖Lg‖
(
1+ 1√

1− σ 2

)
+ 〈Lg , |y0|〉 ∀ i ∈ I. (43)

To finish the proof of (41), use (35), substitute the terms in the right-hand side
of the last inequalities in (40) and (43) in the term inside the parentheses in (42)
and use (39). �

6. Complexity analysis

In this section we study the pointwise and ergodic iteration-complexity of
Algorithm 1. The main results are (essentially) a consequence of Lemma 5.3 and
Proposition 5.4 which guarantee that the (sub)sequences (zki)i∈I , (z̃ki)i∈I , . . . can
be regarded as realizations of the large-step r-HPEmethod of Section 2, for which
pointwise and ergodic iteration-complexity results are known.

To study the ergodic iteration-complexity of Algorithm 1we need to define the
ergodic sequences associated to (λki)i∈I , (z̃ki)i∈I , (vki)i∈I and (εki)i∈I , respectively
(see (10)), namely

�i := τ
i∑

j=1
λkj , z̃ ai = (x̃ai , ỹai ) :=

1
�i

τ

i∑
j=1

λkj z̃kj , v a
i := 1

�i
τ

i∑
j=1

λkjvkj ,

ε ai := 1
�i

τ

i∑
j=1

λkj(εkj + 〈z̃kj − z̃ ai , vkj − v a
i 〉). (44)

Define also

L (x, y) :=
{
f (x)+ 〈y, g(x)〉, y ≥ 0
−∞, otherwise.

(45)

Observe that that a pair (x, y) ∈ K, i.e. it is a solution of the KKT system (12) if
and only if (0, 0) ∈ ∂(L (·, y)−L (x, ·))(x, y). Since (30) and (12) are equivalent,
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the latter observation leads us to consider in this section the notion of approx-
imate solution for (30) which consists in: for given tolerances δ > 0 and ε > 0
find ((x, y), v, ε) such that

v ∈ ∂ε(L (·, y)−L (x, ·))(x, y), ‖v‖ ≤ δ, ε ≤ ε. (46)

Wewill also consider as approximate solution of (30) any triple ((x, y), (p, q), ε)
such that ‖(p, q)‖ ≤ δ, ε ≤ ε and

p = ∇f (x)+ ∇g(x)y, g(x)+ q ≤ 0, y ≥ 0, 〈y, g(x)+ q〉 = −ε (47)

or

p ∈ ∂x,ε′L (x, y), g(x)+ q ≤ 0, y ≥ 0, 〈y, g(x)+ q〉 ≥ −ε, (48)

where ε′ := ε + 〈y, g(x)+ q〉.
It is worthing to compare the latter two conditions with (12) and also note

that whenever ε′ = 0 then (48) reduces to (47), that is, the latter condition is a
special case of (48). Moreover, as Theorems 6.3 and 6.4 will show, (47) and (48)
are related to the pointwise and ergodic iteration-complexity of Algorithm 1,
respectively.

We start by studying rates of convergence of Algorithm 1.

Theorem 6.1: Let (z̃ki)i∈I = ((x̃ki , ỹki))i∈I , (vki)i∈I and (εki)i∈I be (sub)sequences
generated by Algorithm 1 where the the set of indexes I is defined in (33). Let also
(z̃ai )i∈I = ((x̃ai , ỹai ))i∈I , (vai )i∈I and (εai )i∈I be as in (44). Then, for any i ∈ I,

(a) [pointwise] there exists j ∈ {1, . . . , i} such that

vkj ∈ ∂εkj
(
L (·, ỹkj)−L (x̃kj , ·)

)
(x̃kj , ỹkj) (49)

and ∥∥∥vkj∥∥∥ ≤ d20
iτ(1− σ)η , εkj ≤

σ 2d30
(iτ)3/2(1− σ 2)3/22η

; (50)

(b) [pointwise] there exists j ∈ {1, . . . , i} and (pj, qj) ∈ R
n × R

m such that

pj = ∇f (x̃kj)+ ∇g(x̃kj)ỹkj , g(x̃kj)+ qj ≤ 0,

ỹkj ≥ 0, 〈ỹkj , g(x̃kj)+ qj〉 = −εkj (51)

and

∥∥(pj, qj)∥∥ ≤ d20
iτ(1− σ)η , εkj ≤

σ 2d30
(iτ)3/2(1− σ 2)3/22η

; (52)
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(c) [ergodic] we have

vai ∈ ∂εai
(
L (·, ỹai )−L (x̃ai , ·)

)
(x̃ai , ỹ

a
i ) (53)

and

‖vai ‖ ≤
2d20

(iτ)3/2(
√
1− σ 2)η

, εai ≤
2d30

(iτ)3/2(1− σ 2)η
; (54)

(d) [ergodic] there exists (pai , q
a
i ) ∈ R

n × R
m such that

pai ∈ ∂x,ε′i L (x̃ai , ỹ
a
i ), g(x̃ai )+ qai ≤ 0, ỹai ≥ 0, 〈ỹai , g(x̃ai )+ qai 〉 ≥ −εai

(55)
and

‖(pai , qai )‖ ≤
2d20

(iτ)3/2(
√
1− σ 2)η

, εai ≤
2d30

(iτ)3/2(1− σ 2)η
, (56)

where ε′i := εai + 〈ỹai , g(x̃ai )+ qai 〉.

Proof: We first prove Items (a) and (c). Using Lemma 5.3, the last statement in
Proposition 5.4 and (30) we have that Items (a) and (b) of Theorem 1.2 hold
for the sequences (z̃ki)i∈I , (vki)i∈I and (εki)i∈I . As a consequence, to finish the
proof of Items (a) and (c) of the theorem, it remains to prove the inclusions (49)
and (53). To this end, note first that from the equivalence between Items (a) and
(c) of Proposition A.5 (with ε′ = 0) we have the equivalence

vki ∈ (S+N
[εki ]
Rn×R

m+
)(x̃ki , ỹki)

⇐⇒ vki ∈ ∂εki
(

L (·, ỹki)−L (x̃ki , ·)
)
(x̃ki , ỹki) ∀i ∈ I.

Hence, using the latter equivalence, the first inclusion in (the first line) of (36),
the inclusion in Theorem 1.2(a), the remark after the latter theorem, and (30) we
obtain (49). Likewise, using an analogous reasoning and Proposition A.6 we also
obtain (53), which finishes the proof of Items (a) and (c).

We claim that Item (b) follows from Item (a). Indeed, letting (pi, qi) := vki (for
all i ∈ I), using the definition of vkj and εkj in (31), the definition of S in (13) and
the equivalence between Items (a) and (b) of Proposition A.5 (with ε′ = 0) we
obtain that (pj, qj) := vkj satisfies (51) and (52). Using an analogous reasoning
we obtain that Item (d) follows from Item (c). �

Next we analyse the sequence generated by Algorithm 1 for the set of indexes
k ∈ B. Direct use of Algorithm 1’s definition shows that

λk+1 =
(

1
1− τ

)#Bk−#Ak

λ1 ∀ k ≥ 1. (57)
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Define

ρ = 2θ2

λ1

(
L0
2 +

√(
L0
2

)2 + 8‖Lg‖θ2
3λ1

) . (58)

In the next proposition we obtain a rate of convergence result for the sequence
generated by Algorithm 1 with k ∈ B.

Proposition 6.2: Let ρk for all k ≥ 1 be as in (28) and let also ρ̄ > 0 be as in (58).
Then, for all k ∈ B,

vk ∈ ∂εk
(
L (·, ỹk)−L (x̃k, ·)

)
(x̃k, ỹk)

and

‖vk‖ ≤ (1+ 1/σ)ρk
λk

, εk ≤
ρ2k
2λk

.

Moreover, if λk ≥ λ1 then ρk ≤ ρ.

Proof: First note that the desired inclusion follows from Proposition 5.2(b) and
the equivalence between items (a) and (c) of Proposition A.5. Moreover, by
Proposition 5.2(c) we have

‖λkvk + z̃k − zk−1‖2 + 2λkεk ≤ ρ2k ∀ k ≥ 1.

Note that the desired bound on εk is a direct consequence of the latter inequal-
ity. Moreover, this inequality combined with the definition of B (see (29))
gives ‖λkvk‖ ≤ ‖λkvk + z̃k − zk−1‖ + ‖z̃k − zk−1‖ ≤ (1+ 1/σ)ρk for all k ∈ B,
which proves the desired bound on ‖vk‖.

Assume now that λk ≥ λ1. Using Definition 4.4 and (28) we obtain

ρk = ρ(ỹk, θ2/λk) = 2θ2

λk

(
L0+〈Lg ,|ỹk|〉

2 +
√(

L0+〈Lg |ỹk|〉
2

)2 + 8‖Lg‖θ2
3λk

) ∀ k ≥ 1,

which, in turn, combined with (58), the assumption that λk ≥ λ1 and the fact
that 〈Lg , |ỹk|〉 ≥ 0 gives ρk ≤ ρ̄. �

Next we present the two main results of this paper, namely, the pointwise and
ergodic iteration-complexities of Algorithm 1.
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Theorem 6.3 (pointwise iteration-complexity): For given tolerances δ > 0 and
ε > 0, after at most

M := 2

⌈
max

{
d20

δτ(1− σ)η ,
σ 4/3d20

ε2/3τ(1− σ 2)(2η)2/3

}⌉

+
⌈
max

{
log+

(
(1+ 1/σ)ρ/(δλ1)

)
, log+

(
ρ2/(2ελ1)

)}
log(1/(1− τ))

⌉
(59)

iterations, Algorithm 1 finds ((x, y), v, ε) satisfying (46) with the property that
((x, y), (p, q), ε) where (p, q) := v also satisfies

p = ∇f (x)+ ∇g(x)y, g(x)+ q ≤ 0, y ≥ 0, 〈y, g(x)+ q〉 = −ε,
‖(p, q)‖ ≤ δ, ε ≤ ε. (60)

Proof: First define

M1 :=
⌈
max

{
d20

δτ(1− σ)η ,
σ 4/3d20

ε2/3τ(1− σ 2)(2η)2/3

}⌉
andM2 := M − 2M1.

(61)
The proof is divided in two cases: (i) #A ≥ M1 and (ii) #A < M1. In the first case,
the existence of ((x, y), v, ε) (resp. ((x, y), (p, q), ε)) satisfying (46) (resp. (60)) in
at mostM1 iterations follows from Theorem 6.1(a) (resp. Theorem 6.1(b)). Since
M = 2M1 +M2 ≥ M1, it follows that, in this case, the number of iterations is not
bigger thanM.

Consider now the case (ii) and let k∗ ≥ 1 be such that #A = #Ak∗ = #Ak for
all k ≥ k∗. As a consequence of the latter property and the fact that #A < M1 we
conclude that if #Bk ≥ M1 +M2, for some k ≥ k∗, then

βk := #Bk − #Ak ≥ #Bk −M1 ≥ M2. (62)

Using the latter inequality, (59) and (61) we find

βk ≥ M2 ≥
max

{
log+

(
(1+ 1/σ)ρ/(δλ1)

)
, log+

(
ρ2/(2ελ1)

)}
log(1/(1− τ)) ,

which is clearly equivalent to

log

((
1

1− τ
)βk

λ1

)
+ log

(
1

(1+ 1/σ)ρ̄

)
≥ log

(
1
δ̄

)
, (63)

log

((
1

1− τ
)βk

λ1

)
+ log

(
2
ρ̄2

)
≥ log

(
1
ε̄

)
. (64)
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Now using the definition in (62), (63) (resp. (64)) and (57) we obtain
log(λk/[(1+ 1/σ)ρ̄]) ≥ log(1/δ̄) (resp. log(2λk/ρ̄2) ≥ log(1/ε̄)) which yields

(1+ 1/σ)ρ̄
λk

≤ δ̄
(
resp.

ρ̄2

2λk
≤ ε̄
)
.

It follows from the latter inequality and Proposition 6.2 that ((x, y), v, ε) :=
((x̃k, ỹk), vk, εk) satisfies (46) and, due to Proposition A.5, that ((x, y), (p, q), ε) :=
((x̃k, ỹk), vk, εk) satisfies (60). Since the index k has been chosen to satisfy #Ak <

M1 and #Bk ≥ M1 +M2 we conclude that the total number of iterations is at
mostM1 + (M1 +M2) = M. �

Theorem 6.4 (ergodic iteration-complexity): For given tolerances δ > 0 and
ε > 0, after at most

M̃ := 2

⌈
max

{
22/3d4/30

δ
2/3
τ
(
η
√
1− σ )2/3 , 22/3d20

ε2/3τ
(
η(1− σ 2)

)2/3
}⌉

+
⌈
max

{
log+

(
(1+ 1/σ)ρ/(δλ1)

)
, log+

(
ρ2/(2ελ1)

)}
log(1/(1− τ))

⌉
(65)

iterations, Algorithm 1 finds ((x, y), v, ε) satisfying (46) with the property that
((x, y), (p, q), ε) where (p, q) := v also satisfies

p ∈ ∂x,ε′L (x, y), g(x)+ q ≤ 0, y ≥ 0, 〈y, g(x)+ q〉 ≥ −ε,
‖(p, q)‖ ≤ δ, ε ≤ ε, (66)

where ε′ := ε + 〈y, g(x)+ q〉.

Proof: The proof follows the same outline of Theorem 6.3’s proof. �
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Appendix

PropositionA.5: Let (x̃, ỹ) ∈ Rn ×R
m+, v = (p, q) ∈ Rn ×Rm and ε ≥ 0 be given and define

w := −(g(x̃)+ q), ε′ := ε − 〈ỹ,w〉. (A1)

The following conditions are equivalent:

(a) v ∈ ∂ε(L (·, ỹ)−L (x̃, ·))(x̃, ỹ);
(b) w ≥ 0, 〈ỹ,w〉 ≤ ε, p ∈ ∂x,ε′L (x̃, ỹ);
(c) 0 ≤ ε′ ≤ ε and−w ∈ N[ε−ε′]

R
m+

(ỹ), p ∈ ∂x,ε′L (x̃, ỹ).

Proof: (a) ⇐⇒ (b). Note that the inclusion in (a) is equivalent to

L (x, ỹ)−L (x̃, y) ≥ 〈p, x− x̃〉 + 〈q, y− ỹ〉 − ε ∀(x, y) ∈ R
n ×R

m
+, (A2)

which, in view of (45) and (A1), is equivalent to

L (x, ỹ)−L (x̃, ỹ)+ inf
y≥0 〈w, y〉 ≥ 〈p, x− x̃〉 − ε′ ∀ x ∈ R

n.

The latter inequality is clearly equivalent to (b).
(b) ⇐⇒ (c). Using (17), the fact that ỹ ≥ 0 and the definition of ε′ in (A1) we obtain that

the first inequality in (b) is equivalent to ε′ ≤ ε and the second inequality in (c). To finish the
proof note that the second inequality in (b) is equivalent to ε′ ≥ 0. �

Proposition A.6: Let X ⊂ Rn and Y ⊂ Rm be given convex sets and � : X × Y → R be
a function such that, for each (x, y) ∈ X × Y , the function �(·, y)− �(x, ·) : X × Y → R is
convex. Suppose that, for j = 1, . . . , i, (x̃j, ỹj) ∈ X × Y and (pj, qj) ∈ Rn ×Rm satisfy

(pj, qj) ∈ ∂εj
(
�(·, ỹj)− �(x̃j, ·)

)
(x̃j, ỹj).

Let α1, . . . ,αi ≥ 0 be such that
∑i

j=1 αj = 1, and define

(x̃ai , ỹ
a
i ) =

i∑
j=1

αj(x̃j, ỹj), (pai , q
a
i ) =

i∑
j=1

αj(pj, qj),

εai =
i∑

j=1
αj

[
εj + 〈x̃j − x̃ai , pj〉 + 〈ỹj − ỹai , qj〉

]
.

Then, εai ≥ 0 and
(pai , q

a
i ) ∈ ∂εai

(
�(·, ỹai )− �(x̃ai , ·)

)
(x̃ai , ỹ

a
i ).

Proof: See [18, Proposition 5.1]. �
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