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ACCELERATING BLOCK-DECOMPOSITION FIRST-ORDER
METHODS FOR SOLVING COMPOSITE SADDLE-POINT AND

TWO-PLAYER NASH EQUILIBRIUM PROBLEMS∗
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Abstract. This article considers the (two-player) composite Nash equilibrium (CNE) problem
with a separable nonsmooth part, which is known to include the composite saddle-point (CSP)
problem as a special case. Due to its two-block structure, this problem can be solved by any algorithm
belonging to the block-decomposition hybrid proximal-extragradient (BD-HPE) framework proposed
in [R. D. C. Monteiro and B. F. Svaiter, SIAM J. Optim., 23 (2013), pp. 475–507]. The framework
consists of a family of inexact proximal point methods for solving a more general two-block structured
monotone inclusion problem which, at every iteration, solves two prox subinclusions according to a
certain relative error criterion. By exploiting the fact that the two prox subinclusions in the context
of the CNE problem are equivalent to two composite convex programs, this article proposes a new
instance of the BD-HPE framework that approximately solves them using an accelerated gradient
method. It is shown that the new instance is able to take significantly larger prox stepsizes than
other instances from this framework that perform single composite gradient steps for solving the
subinclusions. As a result, it is shown that the first instance has better iteration-complexity than
the latter ones. Finally, it is also shown that the new accelerated BD-HPE instance computationally
outperforms several state-of-the-art algorithms on many relevant classes of CSP and CNE instances.
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1. Introduction. The proximal point (PP) method proposed by Rockafellar [20]
is a classical iterative scheme for solving the monotone inclusion problem, namely,
finding x such that 0 ∈ T (x), where T is a maximal monotone point-to-set operator.
Its exact version generates a sequence {zk} according to zk = (λkT + I)−1(zk−1) or,
equivalently, zk as the unique solution of the inclusion 0 ∈ λkT (z)+ z− zk−1. Inexact
versions of the PP method have also been studied first by Rockafellar [20] based on
an absolute error criterion and later by Solodov and Svaiter [22, 23, 24, 25] based on
different relative error criteria. In particular, the variant studied in [22], namely, the
hybrid proximal-extragradient (HPE) framework, was used to develop and analyze
block-decomposition (BD) algorithms in [13]. The main purpose of this paper is to
present and study the computational complexity of a special class of BD algorithms for
solving the composite Nash equilibrium (CNE) problem in which the two prox inner
subproblems are approximately solved at every iteration by an accelerated gradient
method (e.g., one of the methods studied in [15, 17, 27]).

Given proper closed convex functions g1 and g2, and differentiable real functions
Ψ1 and Ψ2 on X × Y := dom g1 × dom g2, the (two-player) CNE problem consists of
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finding a pair (x, y) ∈ X × Y such that

x ∈ Argmin{Ψ1(x̃, y) + g1(x̃) : x̃ ∈ X}, y ∈ Argmin{Ψ2(x, ỹ) + g2(ỹ) : ỹ ∈ Y }.
When Ψ1 = −Ψ2, the CNE problem reduces to the more familiar composite saddle-
point (CSP) problem. Clearly, the above CNE problem is equivalent to the two-block
structured inclusion problem

(1.1)

(
0
0

)
∈
( ∇xΨ1(x, y) + ∂g1(x)
∇yΨ2(x, y) + ∂g2(y)

)
.

A framework of BD-HPE algorithms for solving the above problem was introduced
in [13]. Given an iterate ((xk−1, yk−1) and stepsize λk > 0, the exact version of the
BD-HPE framework applied to problem (1.1) computes the next iterate (xk, yk) by
solving the two decoupled inclusions

0 ∈ λk [∇xΨ1(x̃k, yk−1) + ∂g1(x̃k)] + x̃k − xk−1,(1.2)

0 ∈ λk [∇yΨ2(x̃k, yk) + ∂g2(yk)] + yk − yk−1(1.3)

sequentially for x̃k and yk, and then setting xk = x̃k−λ∇xΨ1(x̃k, ỹk)+λ∇xΨ1(x̃k, yk−1).
Clearly, inclusion (1.2) (resp., (1.3)) is a special case of the inclusion

(1.4) 0 ∈ λ
[
∇f̃(z) +∇h̃(z)

]
+ z − w0,

or equivalently the optimality condition for the composite (strongly) convex optimiza-
tion problem

(1.5) min
z∈Z

{
1

2
‖z − w0‖2 + λ[f̃(z) + h̃(z)]

}
,

where λ = λk, f̃ = Ψ1(·, yk−1) (resp., f̃ = Ψ2(x̃k, ·)), h̃ = g1 (resp., h̃ = g2), and
w0 = xk−1 (resp., w0 = yk−1). When both prox subinclusions are viewed in this
manner, inexact versions of the BD-HPE method inexactly solve them by computing
an approximate solution of (1.5), i.e., a triple (z̃, s̃, ε̃) satisfying the relative error
criterion

(1.6) s̃ ∈ ∂ε̃h̃(z̃), ‖λ(∇f̃(z̃) + s̃) + z̃ − w0‖2 + 2λε̃ ≤ σ2
z‖z̃ − w0‖2,

for some constant σz ∈ (0, 1). In regards to solving (1.4) according to (1.6), we
make the following two important observations under the assumption that f̃ has L̃-
Lipschitz continuous gradient (see (1.8)). First, a triple (z̃, s̃, ε̃) satisfying (1.6) can
be computed by performing a single composite gradient step from w0 with respect to
(1.5) whenever the prox stepsize λ is sufficiently small, i.e., it satisfies λL̃ ≤ σz (see
Proposition 2.4). Second, for an arbitrary stepsize λ > 0, we show in this paper that
an accelerated gradient method applied to (1.5) and started from w0 can find a triple
(z̃, s̃, ε̃) satisfying (1.6) in O((λL̃ + 1)1/2 log(λL̃+ 1)) iterations (see Corollary 3.6).

Based on the first observation above, we review a BD-HPE method for solving
(1.1) which was essentially introduced in subsection 5.2 of [13]. We note that this
BD-HPE instance chooses the prox stepsize as λ = 1/O(max{Lxx, Lyy, Lxy}), where
Lxx (resp., Lxy) denotes the uniform Lipschitz constant of ∇xΨ1(x, y) with respect
to x (resp., y) and Lyy denotes the uniform Lipschitz constant of ∇yΨ2(x, y) with
respect to y.
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2184 YUNLONG HE AND RENATO D. C. MONTEIRO

Our main contribution in this paper is to present an accelerated instance of the
BD-HPE framework which solves the two prox subinclusions by means of an acceler-
ated gradient method (see the second observation above). The resulting accelerated
BD-HPE method is able to choose the prox stepsize as large as allowed by the BD-
HPE framework, i.e., as λ = 1/O(Lxy), and as a result performs substantially fewer
HPE (outer) iterations than the first BD-HPE method for instances of (1.1) in which
max{Lxx, Lyy} >> Lxy. Moreover, for these same instances of (1.1), it is also shown
here both theoretically (see section 4) and computationally (see section 5) that the
overall number of accelerated gradient (inner) iterations performed by the accelerated
method is substantially smaller than the number of HPE iterations performed by the
first BD-HPE method.

Our paper is organized as follows. Section 2 contains two subsections. The first
one describes the two-player Nash equilibrium problem and the notion of a (ρ, ε)-
Nash equilibrium. The second one describes the CNE problem and a specialization
of the BD-HPE framework, referred to as the CNE-BD-HPE framework, to the CNE
context together with iteration-complexity bounds for it to obtain a (ρ, ε)-Nash equi-
librium. Sections 3 and 4 develop an instance of the CNE-BD-HPE framework which
uses an accelerated gradient method to approximately solve the subproblems. The
iteration-complexity for solving the subproblems is derived in section 3. The result-
ing accelerated BD-HPE instance and its complexity in terms of gradient, projection,
and resolvent evaluations are described in section 4. Finally, section 5 evaluates the
performance of the new accelerated instance on four classes of CSP and/or CNE
problems.

1.1. Previous most related works. Development and analysis of splitting
and BD methods is by now a well-developed area, although algorithms which allow a
relative error tolerance in the solution of the proximal subproblems have been studied
in just a few papers. In particular, Ouorou [18] discusses an ε-proximal decomposition
using the ε-subdifferential and a relative error criterion on ε. Projection splitting
methods for the sum of arbitrary maximal monotone operators using a particular
case of the HPE error tolerance for solving the proximal subproblems were presented
in [5, 6]. The use of the HPE method for studying BD methods was first presented
in [21]. We observe, however, that none of these works deal with the derivation of
iteration-complexity bounds. More recently, Chambolle and Pock [3] have developed
and established iteration-complexity bounds for a splitting method, which solves the
proximal subproblems exactly, in the context of saddle-point problems with a bilinear
coupling.

Special instances of the HPE framework for solving monotone variational inequali-
ties and monotone inclusions (resp., saddle-point problems) are discussed in [11] and in
the subsequent papers [12, 13]. More specifically, by viewing Korpelevich’s method [7]
as well as Tseng’s modified forward-backward splitting (MFBS) method [26] as special
cases of the HPE method, papers [11, 12] established in the pointwise and ergodic
iteration-complexities of these methods applied to either monotone variational in-
equalities, monotone inclusions consisting of the sum of a Lipschitz continuous mono-
tone map and a maximal monotone operator with an easily computable resolvent, and
convex-concave saddle-point problems. In the context of variational inequalities, we
should mention that prior to [11, 12], Nemirovski [14] established the ergodic iteration-
complexity of his mirror-prox algorithm, which includes Korpelevich’s method as a
special case, under the assumption that the feasible set of the problem is bounded.
Moreover, Nesterov [16] has established the ergodic iteration-complexity of a new dual
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extrapolation algorithm whose termination depends on the guess of a ball centered at
the initial iterate and containing a solution of the problem.

1.2. Notation and basic definitions. We denote the sets of real numbers
by �, nonnegative numbers by �+, and positive numbers by �++. For a matrix
W ∈ �m×n, we denote its Frobenius norm by ‖W‖F , the sum of the absolute values
of its entries by ‖W‖1, and the sum of its singular values by ‖W‖∗. Let Sn denote
the space of n×n real symmetric matrices and Sn+ denote the subset of Sn consisting
of the positive semidefinite matrices. We denote the largest eigenvalue of a matrix
W ∈ Sn by θmax(W ). For any z > 0, define log+(z) := max(0, log(z)). Let �z� denote
the smallest integer not less than z ∈ �. The nth unit simplex Δn ⊆ �n is defined
as

(1.7) Δn :=

{
z ∈ �n :

n∑
i=1

zi = 1, zi ≥ 0, i = 1, . . . , n

}
.

Let Z denote a finite dimensional inner product space with inner product and
associated norm denoted by 〈·, ·〉 and ‖ · ‖. The effective domain of a function f :
Z → [−∞,∞] is defined as dom f := {z ∈ Z : f(z) < ∞}. The conjugate f∗ of f is
the function f∗ : Z → [−∞,∞] defined as

f∗(v) := sup
z∈Z
〈v, z〉 − f(z) ∀v ∈ Z.

The indicator function IΩ : Z → (−∞,∞] is defined as

IΩ(z) :=
{
0, z ∈ Ω,

∞, z /∈ Ω.

The orthogonal projection PΩ : Z → Z onto Ω is defined as

PΩ(z) := argminz̃∈Ω‖z̃ − z‖ ∀z ∈ Z.

The domain of a point-to-point map F is denoted by DomF . For a constant
L ≥ 0, a map F : DomF ⊆ Z → Z is said to be L-Lipschitz continuous on Ω ⊆ DomF
if

(1.8) ‖F (z)− F (z̃)‖ ≤ L‖z − z̃‖ ∀z, z̃ ∈ Ω;

moreover, if in addition Ω = DomF , we will simply say that F is L-Lipschitz contin-
uous. Also, a map F : DomF ⊆ Z → Z is said to be L-co-coercive on Ω ⊆ DomF
if

L〈z − z̃, F (z)− F (z̃)〉 ≥ ‖F (z)− F (z̃)‖2 ∀z, z̃ ∈ Ω.

Clearly, in view of the Cauchy–Schwarz inequality, every L-co-coercive map F on
Ω ⊆ DomF is L-Lipschitz continuous on Ω.

A relation T ⊆ Z × Z can be identified with a point-to-set operator T : Z ⇒ Z
in which

T (z) := {v ∈ Z : (z, v) ∈ T } ∀z ∈ Z.
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2186 YUNLONG HE AND RENATO D. C. MONTEIRO

Note that the relation T is then the same as the graph of the point-to-set operator T
defined as

Gr(T ) := {(z, v) ∈ Z × Z : v ∈ T (z)}.
The domain of T , denoted by DomT , is defined as

DomT := {z ∈ Z : T (z) �= ∅}.
An operator T : Z ⇒ Z is monotone if

〈v − ṽ, z − z̃〉 ≥ 0 ∀(z, v), (z̃, ṽ) ∈ Gr(T ).

Moreover, T is maximal monotone if it is monotone and maximal in the family of
monotone operators with respect to the partial order of inclusion, i.e., S : Z ⇒ Z
monotone and Gr(S) ⊇ Gr(T ) implies that S = T .

For a scalar ε ≥ 0, the ε-subdifferential of a function f : Z → [−∞,+∞] is the
operator ∂εf : Z ⇒ Z defined as

(1.9) ∂εf(z) := {v | f(z̃) ≥ f(z) + 〈z̃ − z, v〉 − ε, ∀z̃ ∈ Z} ∀z ∈ Z.
When ε = 0, the operator ∂εf is simply denoted by ∂f and is referred to as the
subdifferential of f . The operator ∂f is trivially monotone if f is proper. If f is a
proper lower semicontinuous convex function, then ∂f is maximal monotone [19].

2. BD-HPE framework for CNE problems. This section contains two sub-
sections. The first one describes the two-player Nash equilibrium problem and the
notion of a (ρ, ε)-Nash equilibrium. The second subsection introduces the CNE prob-
lem and a specialization of the BD-HPE framework [13] to its context and describes
iteration-complexity bounds for an instance of the specialized framework to obtain
a (ρ, ε)-Nash equilibrium. It also briefly reviews a specific instance of the BD-HPE
framework in the context of the CNE problem which was proposed in subsection 5.2
of [13].

2.1. Nash equilibrium and saddle-point problems. Let X and Y denote
finite dimensional inner product spaces with associated inner products both denoted
by 〈·, ·〉 and associated norms both denoted by ‖ · ‖. We endow the product space
X × Y with the canonical inner product defined as

〈(x, y), (x̃, ỹ)〉 := 〈x, x̃〉+ 〈y, ỹ〉 ∀(x, y), (x̃, ỹ) ∈ X × Y.
The associated norm, also denoted by ‖ · ‖ for shortness, is then given by

‖(x, y)‖ :=
√
‖x‖2 + ‖y‖2 ∀(x, y) ∈ X × Y.

We next introduce the Nash equilibrium problem. Let nonempty closed convex
sets X ⊆ X and Y ⊆ Y be given and consider functions Ψ̂1 : X × Y → � and
Ψ̂2 : X×Y → �. The (two-player) Nash equilibrium problem determined by (Ψ̂1, Ψ̂2),

denoted by NE(Ψ̂1, Ψ̂2), consists of finding a pair (x, y) ∈ X × Y such that

(2.1) Ψ̂1(x, y) ≤ Ψ̂1(x̃, y), Ψ̂2(x, y) ≤ Ψ̂2(x, ỹ) ∀(x̃, ỹ) ∈ X × Y.

Clearly, (x, y) is a Nash equilibrium of NE(Ψ̂1, Ψ̂2) if and only if (x, y) ∈ X × Y and

(2.2) (0, 0) ∈ ∂[Ψ̂1(·, y) + Ψ̂2(x, ·)](x, y).

D
ow

nl
oa

de
d 

02
/1

3/
16

 to
 1

43
.2

15
.3

3.
35

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ACCELERATED BD METHOD FOR NASH EQUILIBRIUM PROBLEM 2187

Let φ1 : Y → [−∞,∞) and φ2 : X → [−∞,∞) be defined as

(2.3) φ1(y) := inf
x̃∈X

Ψ̂1(x̃, y), φ2(x) := inf
ỹ∈Y

Ψ̂2(x, ỹ) ∀(x, y) ∈ X × Y.

Clearly,

(2.4) gap(x, y) := Ψ̂1(x, y) + Ψ̂2(x, y)− φ1(y)− φ2(x) ≥ 0 ∀(x, y) ∈ X × Y.

Moreover, (x, y) is a Nash equilibrium if and only if gap(x, y) = 0 or, equivalently,
(x, y) is an optimal solution with optimal value equal zero for the problem of mini-
mizing the gap function gap(x̃, ỹ) on X × Y .

Now we introduce the following definition of an approximate Nash equilibrium
for NE(Ψ̂1, Ψ̂2).

Definition 2.1. Given (ρ, ε) ∈ �+ × �+, z = (x, y) ∈ X × Y , v ∈ X × Y,
and ε̃ ∈ �+, the triple (z, v, ε̃) is called a (ρ, ε)-Nash equilibrium of NE(Ψ̂1, Ψ̂2) if
‖v‖ ≤ ρ, ε̃ ≤ ε and

(2.5) v ∈ ∂ε̃[Ψ̂1(·, y) + Ψ̂2(x, ·)](x, y).
Moreover, any such pair (v, ε̃) will be called an NE-residual for (x, y) with respect to

NE(Ψ̂1, Ψ̂2).
It is worth pointing out the relationship between a (ρ, ε)-Nash equilibrium and

the more popular notion of an ε-Nash equilibrium. Recall that z = (x, y) ∈ X × Y is
called an ε-Nash equilibrium if it satisfies (2.5) with (v, ε̃) = (0, ε). Clearly, z = (x, y)
is an ε-Nash equilibrium if and only if gap(x, y) ≤ ε. Note that the use of the latter
condition as a means of determining whether a pair (x, y) is an ε-Nash equilibrium
assumes that the functions φ1 and φ2 defined in (2.3) can be easily evaluated at
(x, y). However, there are many applications for which the latter two functions are
not necessarily easy to evaluate (see, for example, subsections 5.1, 5.2, and 5.3). On
the other hand, under the assumption that X × Y is bounded, the following result
shows that an algorithm which generates a sequence of iterates {(zk, vk, ε̃k)} such
that (z, v, ε̃) = (zk, vk, ε̃k) satisfies (2.5) and {(vk, ε̃k)} converges to zero can easily
compute and detect an ε-Nash equilibrium.

Lemma 2.2. Assume that X × Y is bounded and that z = (x, y) ∈ X × Y ,
v ∈ X × Y, and ε̃ ∈ �+ are such that (z, v, ε̃) satisfies (2.5). Then, z is an ε′-Nash
equilibrium of NE(Ψ̂1, Ψ̂2), where

ε′ = ε′(z, v, ε̃) := ε̃+ max
(x̃,ỹ)∈X×Y

〈v, (x− x̃, y − ỹ)〉.

Hence, under the assumption that X×Y is bounded, it follows from Lemma 2.2 that if
the goal is to compute an ε-Nash equilibrium, then one can evaluate εk := ε′(zk, vk, ε̃k)
and terminate the aforementioned hypothetical algorithm whenever εk ≤ ε. Note
that the assumption that X × Y is bounded guarantees that εk is finite for every k.
Moreover, since the hypothetical algorithm generates {(zk, vk, ε̃k)} in such a way that
{(vk, ε̃k)} converges to zero, it will always find an ε-Nash equilibrium in this manner.

We now make some comments about the notion of a (ρ, ε)-Nash equilibrium and
its specialization to the context of saddle-point problems (see, for example, subsec-
tion 3.2 of [12]), which also pertains to the case where X × Y is unbounded. First,
being weaker than the notion of an ε-Nash equilibrium in the sense that v can be
nonzero, it is suitable for analyzing many algorithms for solving saddle-point and
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Nash equilibrium problems. In particular, it is a natural notion to consider in the
context of HPE-type algorithms such as the ones studied in this paper since they gen-
erate a sequence {(zk, vk, ε̃k)} such that (z, v, ε̃) = (zk, vk, ε̃k) satisfies (2.5) for every
k. Second, although it is based on two errors, namely, v and ε̃, instead of just one
single scalar error, these errors naturally arise in the sense that v usually expresses
the infeasibility error while ε expresses some sort of functional gap (see, for example,
section 3 of [11]).

We observe that the more familiar saddle-point problem is the special case of
the Nash equilibrium problem in which Ψ̂1 = −Ψ̂2. Naturally, a Nash equilibrium
is referred to as a saddle point in this context. Observe that in such a case, (2.4)
reduces to −φ2(x) ≥ φ1(y) for every (x, y) ∈ X × Y , which is the well-known weak
duality result that says that the primal value p(x) := −φ2(x) is greater than or equal
to the dual value d(y) := φ1(y) for any (x, y) ∈ X × Y . Moreover, (x, y) is a saddle
point (resp., ε-saddle point) if and only if (x, y) ∈ X × Y and p(x) = d(y) (resp.,
p(x) − d(y) ≤ ε). In view of the weak duality, the latter condition is equivalent to
x ∈ X and y ∈ Y being optimal solutions of p∗ := inf x̃∈X p(x̃) and d∗ := supỹ∈Y d(ỹ),
respectively, and the optimal duality gap p∗ − d∗ being equal to zero.

2.2. A BD framework for CNE problems. This subsection describes the
CNE problem and a specialization of the BD-HPE framework of [13] to the CNE
context, which we refer to as the CNE-BD-HPE framework. It also establishes the
iteration-complexity for the latter framework to find a (ρ, ε)-Nash equilibrium. More-
over, it briefly discusses the generic problem underlying the prox subinclusions of the
CNE-BD-HPE framework and describes a recipe for solving it, when the stepsize is
sufficiently small, based on performing a single composite gradient step on (1.5). Fi-
nally, it briefly describes a specific CNE-BD-HPE instance based on this recipe and
its corresponding ergodic iteration-complexity. This instance can be viewed as a BD
version of Tseng’s MFBS algorithm in [26] (see also [12, 11]). Except for our slightly
more general way of choosing the stepsize, this instance is the same as the method
stated in subsection 5.2 of [13] when the latter one is specialized to the context of
(1.1).

We start by describing our problem of interest in this paper, namely, the Nash
equilibrium problem endowed with a composite structure. More specifically, consider
a Nash equilibrium problem NE(Ψ̂1, Ψ̂2), where Dom Ψ̂1 = DomΨ̂2 = X × Y (see
subsection 2.1). The composite structure consists of the existence of proper closed
convex functions gi : X → (−∞,∞], i = 1, 2, and functions Ψi : DomΨi ⊆ X × Y →
�, i = 1, 2, satisfying

dom g1 × dom g2 = X × Y ⊆ DomΨ1 ∩DomΨ2,(2.6)

Ψ̂1(x, y) = Ψ1(x, y) + g1(x) − g2(y),

Ψ̂2(x, y) = Ψ2(x, y) + g2(y)− g1(x) ∀(x, y) ∈ X × Y

and (or some of) the following additional conditions:
A.1. There exists a closed convex set Ωx × Ωy ⊇ dom g1 × dom g2 such that Ψ1

and Ψ2 are differentiable on Ωx × Ωy.
A.2. There exists Lxy > 0 such that

‖∇xΨ1(x, ỹ)−∇xΨ1(x, y)‖ ≤ Lxy‖ỹ − y‖ ∀x ∈ Ωx, ∀y, ỹ ∈ Ωy.

A.3. The map (x, y) �→ (∇xΨ1(x, y),∇yΨ2(x, y)) ∈ X ×Y is monotone on X × Y .
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A.3′. Ψ1(x, ·) +Ψ2(·, y) is concave on X × Y for every (x, y) ∈ X × Y and Ψ1 +Ψ2

is convex on X × Y .
For the sake of future reference, we denote the Nash equilibrium problem

NE(Ψ̂1, Ψ̂2) endowed with the above composite structure by CNE(Ψ1,Ψ2; g1, g2)
and refer to it as the CNE problem.

We now make some remarks about the above conditions. First, if condition A.1
holds, then A.3′ implies A.3 (see Proposition A.1 in Appendix A) but the reverse
implication does not hold, as the following example shows: Ψ1(x, y) = x2 − xy and
Ψ2(x, y) = −3xy + y2 for every (x, y) ∈ �2. Hence, A.3′ is a stronger condition than
A.3 and it will be used in the derivation of ergodic complexity bounds for the CNE-
BD-HPE framework discussed later in this subsection. Second, the aforementioned
reverse implication holds in the special case of CSP problems (i.e., when Ψ1 = −Ψ2).

In view of (2.2), CNE(Ψ1,Ψ2; g1, g2) is equivalent to (1.1), which is a maxi-
mal monotone inclusion of the same type considered in [13] with the exception that
F1(x, y) := ∇xΨ1(x, y) and F2(x, y) := ∇yΨ2(x, y) are defined in Ωx × Ωy instead of
Ωx×Y as in [13]. This issue can be resolved by extending Fi(x, y), i = 1, 2, to Ωx×Y
as (x, y) ∈ Ωx×Y �→ Fi(x, PΩy (y)). The latter extension can then be shown to satisfy
all the conditions assumed in [13] and, as a consequence, we can use the BD-HPE
framework studied in [13] to solve (1.1), and hence CNE(Ψ1,Ψ2; g1, g2).

We next state a special case of the BD-HPE framework of [13], referred to as
the CNE-BD-HPE framework, specialized to the context of (1.1). In contrast to [13],
it assumes for simplicity that the proximal stepsizes are constant and denoted by λ.
Also, in contrast to the BD-HPE framework of [13] which uses the ε-enlargement of
∂gi, the CNE-BD-HPE framework works with the ε-subdifferential of ∂gi, which is
known to be a smaller enlargement than the first one.

(CNE-BD-HPE) BD-HPE framework for solving CNE(Ψ1,Ψ2;g1,g2).
0. Let (x0, y0) ∈ X × Y, σ ∈ (0, 1], and σx, σy ∈ [0, σ) be given, choose λ > 0

such that

(2.7) λ ≤
√
(σ2 − σ2

x)(σ
2 − σ2

y)

σLxy
,

and set k = 1;
1. compute a triple (x̃, ã, εx) ∈ X × X × �+ such that

(2.8)
ã ∈ ∂εxg1(x̃), ‖λ(∇xΨ1(x̃, y

′
k−1)+ ã)+ x̃−xk−1‖2+2λεx ≤ σ2

x‖x̃−xk−1‖2,

where y′k−1 = PΩy (yk−1), and set (x̃k, ãk, ε
x
k) = (x̃, ã, εx);

2. compute a triple (ỹ, b̃, εy) ∈ Y × Y × �+ such that

(2.9) b̃ ∈ ∂εyg2(ỹ), ‖λ(∇yΨ2(x̃k, ỹ)+b̃)+ỹ−yk−1‖2+2λεy ≤ σ2
y‖ỹ−yk−1‖2,

and set (ỹk, b̃k, ε
y
k) = (ỹ, b̃, εy);

3. let (ṽxk , ṽ
y
k) = (∇xΨ1(x̃k, ỹk) + ãk,∇yΨ2(x̃k, ỹk) + b̃k), set

(xk, yk) = (xk−1, yk−1)− λ(ṽxk , ṽ
y
k),

and k ← k + 1, and go to step 1.
end
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We now state the convergence rate result for the CNE-BD-HPE framework whose
proof uses Theorems 3.2 and 3.3 of [13] and arguments similar to (but more general
than) the ones used in section 5 of [12]. For the sake of completeness, its proof is
given in Appendix B.

Theorem 2.3. Assume that conditions A.1 and A.2 hold and consider the se-
quences {(x̃k, ỹk)}, {(ṽxk , ṽyk)}, and {(εxk, εyk)} generated by the CNE-BD-HPE frame-
work. For every k ∈ N, define

(2.10) (x̃a
k, ỹ

a
k) :=

1

k

k∑
i=1

(x̃i, ỹi), ṽak :=
1

k

k∑
i=1

(ṽxi , ṽ
y
i ),

and

ε̃ak :=
1

k

k∑
i=1

[εxi + εyi + 〈(x̃i − x̃a
k, ỹi − ỹak), (ṽ

x
i , ṽ

y
i )〉],(2.11)

and let d0 denote the distance of (x0, y0) to the set of Nash equilibriums of
CNE(Ψ1,Ψ2; g1, g2). Then, for every k ∈ N, the following statements hold:

(a) if A.3 holds, then the pair ((ṽxk , ṽ
y
k), ε

x
k + εyk) is an NE-residual for (x̃k, ỹk)

and there exists i ≤ k such that

(2.12) ‖(ṽxi , ṽyi )‖ ≤
d0
λ

√
1 + σ

k(1− σ)
, εxi + εyi ≤

σ2d20
2(1− σ2)kλ

;

(b) if A.3′ holds, then the pair (ṽak , ε̃
a
k) is an NE-residual for (x̃a

k, ỹ
a
k) and

(2.13) ‖ṽak‖ ≤
2d0
kλ

, ε̃ak ≤
2d20
kλ

(1 + η̄),

where

(2.14) η̄ :=
2
√
2σ

1−max(σx, σy)

(
1 +

1

(1− σy)2

)1/2

.

We end this section by describing a generic problem underlying the computation
of the triples as in steps 1 and 2 of the CNE-BD-HPE framework. Let Z be an inner
product space and f̃ : Dom f̃ → � and h̃ : Z → (−∞,∞] be functions such that

B.1. h̃ is a proper closed convex function;
B.2. f̃ is differentiable and convex on a nonempty closed convex set Ω ⊇ dom h̃.
The generic problem mentioned above is as follows:

(P0) Given w0 ∈ Z, λ > 0, and σz ≥ 0, find a triple (z̃, s̃, ε̃) such that (1.6)
is satisfied.

We now make two remarks about (P0). First, steps 1 and 2 of the CNE-BD-HPE
framework are clearly special cases of the above generic problem. Indeed, steps 1 and
2 are special cases of (P0) in which

f̃(·) := Ψ1(·, y′k−1) : Ωx �→ �, h̃ = g1, Ω = Ωx,(2.15)

f̃(·) := Ψ2(x̃k, ·) : Ωy �→ �, h̃ = g2, Ω = Ωy,(2.16)
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respectively. Second, the above problem is related to the problem of finding an ap-
proximate solution of the (strongly) convex optimization problem (1.5). Clearly, an
exact solution z̃ of (1.5) satisfies 0 ∈ z̃−w0 + λ(∇f̃(z̃) + ∂h̃(z̃)), and hence the triple
(z̃, s̃, ε̃), where s̃ = (w0 − z̃)/λ−∇f̃(z̃) and ε = 0 satisfies (1.6) with σz = 0. There-
fore, the situation in which (1.5) can be solved exactly immediately yields a solution
of problem (P0).

The following result, whose proof can be found in Proposition 4.3 of [13], shows
that a single composite gradient step from w0 with respect to (1.5) yields a solution
of (P0) when ∇f̃ is Lipschitz continuous on Ω, λ > 0 is sufficiently small, and the
resolvents of ∂h̃, i.e., vectors of the form

(I + λ∂h̃)−1(z) = argminu∈Z

{
h̃(u) +

1

2λ
‖u− z‖2

}
∀z ∈ Z,

can be easily computed. Clearly, when h̃ is the indicator of a nonempty closed convex
set Ω ⊆ Z, we have (I + λ∂h̃)−1(·) = PΩ(·) for any λ > 0.

Proposition 2.4. For some L̃ ≥ 0, assume that ∇f̃ is L̃-Lipschitz continuous
on Ω. Then, for any w0 ∈ Z, σz ≥ 0, and λ > 0 such that λL̃ ≤ σz, the triple (z̃, s̃, ε̃)
given by

(2.17)

z̃ := (I + λ∂h̃)−1
(
w0 − λ∇f̃(PΩ(w0))

)
, s̃ :=

1

λ
(w0 − z̃)−∇f̃(PΩ(w0)), ε̃ := 0,

solves problem (P0).
In addition to conditions A.1, A.2, and A.3′, we further assume that the following

two additional conditions hold:
A.4. There exists Lxx ≥ 0 such that ∇xΨ1(·, y) is Lxx-co-coercive on Ωx for every

y ∈ Ωy.
A.5. There exists Lyy ≥ 0 such that ∇yΨ2(x, ·) is Lyy-co-coercive on Ωy for every

x ∈ Ωx.
Since L-co-coercive maps are L-Lipschitz continuous, it follows from A.4. and A.5.
that the maps f̃ in (2.15) and (2.16) satisfy the assumption of Proposition 2.4. As a
result, if we set

(2.18) λ = λ̄(σx, σy) := min

⎧⎨⎩ σx

Lxx
,
σy

Lyy
,

√
(σ2 − σ2

x)(σ
2 − σ2

y)

σLxy

⎫⎬⎭ ,

we can use the constructive recipe of Proposition 2.4 to obtain the triples (x̃k, ãk, ε
x
k)

and (ỹk, b̃k, ε
y
k) as in steps 1 and 2 of the CNE-BD-HPE framework. For the sake

of future reference, we refer to the special instance of the CNE-BD-HPE framework
which generates the triples (x̃k, ãk, ε

x
k) and (ỹk, b̃k, ε

y
k) in this manner as the Tseng-BD

algorithm. Using Definition 2.1 and Theorem 2.3(b), we easily see that for every pair
of positive scalars (ρ, ε), there exists an index

(2.19) k0 = O
(
max{Lxx, Lxy, Lyy}max

[
d20
ε
,
d0
ρ

])
such that for every k ≥ k0, the kth ergodic iterate (x̃a

k, ỹ
a
k) generated by the Tseng-BD

algorithm is a (ρ, ε)-Nash equilibrium of CNE(Ψ1,Ψ2; g1, g2) and the pair (ṽak , ε̃
a
k) is

a NE residual for (x̃a
k, ỹ

a
k).
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Observe that the third bound in (2.18) is due to condition (2.7), while the first
two bounds guarantee that λ satisfies the assumption of Proposition 2.4 for the two
(P0) instances described in (2.15) and (2.16). Clearly, the stepsize λ given by (2.18)
is 1/O(M), where M := max{Lxx, Lxy, Lyy}. On the other hand, the largest step-
size λ that can be chosen in the context of the CNE-BD-HPE framework, i.e., the
right-hand side of (2.7), is 1/O(Lxy). Clearly, when M >> Lxy, or equivalently
max{Lxx, Lyy} >> Lxy, the latter stepsize is considerably larger than the first one.
As a consequence, the number of iterations performed by a CNE-BD-HPE instance
which sets λ equal to the right-hand side of (2.7) can be considerably smaller than
the number of iterations performed by the Tseng-BD algorithm which chooses λ as
in (2.18). Clearly, a CNE-BD-HPE instance which sets λ equal to the right-hand side
of (2.7) requires an approach for solving (P0) that is different from the one described
in Proposition 2.4. This alternative approach will be the subject of our study in the
next section.

3. An accelerated method for problem (P0). The main goal of this sec-
tion is to derive the iteration-complexity of solving problem (P0) using a variant of
the Nesterov’s accelerated method [17] applied to (1.5). This section contains three
subsections. The first subsection introduces two new problems and discusses their
relationship with (P0). The second subsection discusses a variant of the accelerated
method introduced by Nesterov in [17] for minimizing a general convex composite
function. Finally, the third subsection establishes the iteration-complexities of solv-
ing the two problems related to (P0) and, as a consequence, problem (P0) itself, using
the aforementioned variant applied to (1.5).

Let Z denote a finite dimensional inner product space with inner product and
associated norm denoted by 〈·, ·〉 and ‖ · ‖. Throughout this section, we assume that
f and h are functions satisfying the following conditions:

C.1. h is a proper closed convex function.
C.2. f is differentiable on a closed convex set Ω ⊇ domh.
C.3. There exists L > 0 such that ∇f is L-co-coercive on Ω.

Note that C.3 implies that ∇f is L-Lipschitz continuous on Ω, which in turn implies
that

(3.1) 0 ≤ f(u′)− f(u)− 〈∇f(u), u′ − u〉 ≤ L

2
‖u′ − u‖2 ∀u, u′ ∈ Ω.

3.1. Generalization and related formulations of problem (P0). This sub-
section introduces a more general version of (P0), as well as a relaxed version of the
new problem. It also discusses the relationship between these three problems and, in
particular, how solutions to the relaxed version yield solutions to (P0).

We start by introducing the following generalization of (P0):

(P1) Given w0 ∈ Z and τ1 > 0, find a triple (z, v, ε) ∈ Z ×Z ×R+ such that

v ∈ ∇f(z) + ∂εh(z), ‖v‖2 + 2ε ≤ τ1‖z − w0‖2.(3.2)

The following simple result shows that a solution of a specific instance of (P1)
yields a solution of (P0).

Proposition 3.1. Let f̃ and h̃ satisfy conditions B.1 and B.2 and (w0, λ, σz) ∈
Z × R++ × R++ determine an instance of (P0) and define the functions f and h as

(3.3) f(u) := λf̃(u) +
1

2
‖u− w0‖2, h(u) := λh̃(u) ∀u ∈ Z.
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Then, if (z, v, ε) is a solution of the instance of (P1) with f and h as above and
τ1 = σ2

z , then the triple (z̃, s̃, ε̃) defined as

z̃ := z, s̃ :=
v − (z − w0)

λ
−∇f̃(z), ε̃ :=

ε

λ
,

is a solution of the above instance of (P0).
Proof. The proof follows immediately from the definition of f and h and the fact

that λ∂ε̃h̃(u) = ∂λε̃(λh̃)(u) for every u ∈ Z.
It follows from the above result that any algorithm that solves (P1) can also be

used to solve (P0). On the other hand, problem (P1) is naturally related to the
following weaker problem:

(P2) Given w0 ∈ Z and τ2 > 0, find a triple (z, r, ε) ∈ Z ×Z ×R+ such that

r ∈ ∂ε(f + h)(z), ‖r‖2 + 2ε ≤ τ2‖z − w0‖2.(3.4)

Due to the inclusion ∇f(z)+∂εh(z) ⊆ ∂ε(f +h)(z), any solution of (P1) is also a
solution of (P2) with τ2 = τ1, thereby showing that (P2) is a weaker version of (P1).
However, we will show below that a solution of (P2) with τ2 sufficiently small can be
used to construct a solution of (P1).

Lemma 3.2. Assume that f and h satisfy C.1, C.2, and C.3. Then, if (z, r, ε) ∈
Z × Z × �+ satisfy

(3.5) r ∈ ∂ε(f + h)(z),

then for any positive scalar c > L/2, the vector

(3.6) δc = δ(z, r, c) := c[z − (I + c−1∂h)−1(z − c−1∇f(z) + c−1r)]

satisfies

(3.7) r + δc ∈ (∇f + ∂εh)(z), ‖δc‖ ≤ c

√
2ε

2c− L
.

Proof. First note that the assumptions imply that z ∈ domh ⊆ Ω. It is easy to
see that (3.6) implies that

z − c−1δc ∈ domh, r + δc −∇f(z) ∈ ∂h(z − c−1δc).

The above inclusion implies

(3.8) h(u)− h(z − c−1δc) ≥ 〈r + δc −∇f(z), u− z + c−1δc〉 ∀u ∈ Z.
On the other hand, it follows from (3.5) that

f(u) + h(u) ≥ f(z) + h(z) + 〈r, u− z〉 − ε ∀u ∈ Z.
This inequality with u = z− c−1δc and (3.1) with u′ = z and u = z− c−1δ then imply
that

h(z − c−1δc)− h(z) ≥ −[f(z − c−1δc)− f(z)− 〈∇f(z),−c−1δc〉]
+ 〈r −∇f(z),−c−1δc〉 − ε

≥ −L

2
‖c−1δc‖2 + 〈r −∇f(z),−c−1δc〉 − ε.(3.9)
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Adding up (3.8) and (3.9), we conclude that

h(u)− h(z) ≥ 〈r + δc −∇f(z), u− z〉+ c−2

(
c− L

2

)
‖δc‖2 − ε ∀u ∈ Z,

which clearly implies the inclusion in (3.7) when c ≥ L/2. Moreover, this same
inequality with u = z implies the inequality in (3.7) when c > L/2.

Proposition 3.3. If (z, r, ε) is a solution of problem (P2), then the triple (z, v, ε)
where

(3.10) v := r + δ, δ := δ(z, r, L)

is a solution of problem (P1) with τ1 = 2(L+ 1)τ2.
Proof. The assumption of the proposition implies that (3.4) holds. It then follows

from Lemma 3.2 with c = L and the definition of v that the inclusion in (3.2) holds
and δ ≤ √2Lε. Hence, we conclude that

‖v‖2 + 2ε = ‖r + δ‖2 + 2ε ≤ 2
(‖r‖2 + ‖δ‖2)+ 2ε ≤ 2(‖r‖2 + 2Lε) + 2ε

≤ 2(L+ 1)τ2‖z − w0‖2,

where the last inequality is due to (3.4). We have thus proved that (z, v, ε) is a
solution of problem (P1) with τ1 = 2(L+ 1)τ2.

Proposition 3.3 implies that a solution of (P1) can be obtained by a suitable
solution of (P2) and an additional evaluation of the resolvent (I + L−1∂h)−1 of ∂h.
In the next subsection, we discuss how an accelerated gradient variant applied to the
composite optimization problem

(3.11) φ∗ := min
u∈Z

φ(u) := f(u) + h(u)

immediately yields a solution of (P2) and hence (P1) in view of Proposition 3.3.

3.2. Accelerated method for minimizing strongly convex composite
functions. This subsection describes a variant of the accelerated method introduced
by Nesterov in [17] for minimizing a (possibly, strongly) convex composite function,
i.e., a function of the form (3.11).

In what follows, we refer to convex functions as 0-strongly convex functions. This
terminology has the benefit of allowing us to treat both the convex and strongly
convex cases simultaneously. In addition to assuming that conditions C.1–C.3 hold,
we also assume the following condition:

C.4. For some known constant μ ≥ 0, the function φ is μ-strongly convex.
We now study a variant of the accelerated algorithm introduced by Nesterov

in [17]. Similar to the variant in [17], it is based on an aggressive update of the
accelerated parameters (see (3.12) below). However, in contrast to the first one, the
latter one performs one less resolvent per iteration and can start from an arbitrary
(instead of feasible) initial point. The last feature is important when the new variant
is used in the context of the accelerated BD-HPE presented in section 4.
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Algorithm 1. A variant of the accelerated algorithm of [17].
0. Let w0 ∈ Z be given and set A0 = 0, z0 = u0 = PΩ(w0) and k = 1;
1. let Ak > Ak−1 be such that

(3.12) 2Ak(Ak−1μ+ 1) = L(Ak −Ak−1)
2

and compute

(3.13) ũk :=
Ak−1

Ak
zk−1 +

(
1− Ak−1

Ak

)
uk−1,

(3.14)

zk := argminu∈Z

{
f(ũk) + 〈∇f(ũk), u− ũk〉+ h(u) +

L

2
‖u− ũk‖2

}
,

qk := L(ũk − zk) +∇f(zk)−∇f(ũk),(3.15)

wk :=
Ak−1μ+ 1

Akμ+ 1
wk−1 +

Ak −Ak−1

Akμ+ 1
(μzk − qk),(3.16)

uk := PΩ(wk);(3.17)

2. compute

rk :=
1

Ak
(w0 − uk), δk := δ(zk, rk, L),(3.18)

εk :=
1

2Ak
‖zk − w0‖2 − 1

2Ak
‖zk − uk‖2, vk := rk + δk,(3.19)

where δ(·, ·, ·) is defined in (3.6);
3. set k ← k + 1 and go to step 1.

end

We now make a few remarks about Algorithm 1. First, if one is interested in
finding an ε-solution of (3.11), i.e., a point z ∈ Z such that 0 ∈ ∂ε(f + h)(z), then
there is no need to perform step 2, whose only purpose is to generate a solution of
(P1). Second, Algorithm 1 (with step 2 included) requires two gradient evaluations
(see (3.15)), two resolvent evaluations, i.e., one in (3.14) and one in (3.18), and one
projection onto Ω. Third, step 2 can be performed every fixed number of iterations
in order to save one resolvent evaluation at those iterations which skip this step.

It is also worthwhile comparing Algorithm 1 (without step 2 included) with Nes-
terov’s accelerated method in [17]. First, while both methods require two gradient
evaluations per iteration, the first one requires one resolvent evaluation, while the lat-
ter one requires two resolvent evaluations. Note, however, that Algorithm 1 requires
a projection evaluation onto Ω, which is not required by the method in [17]. Hence,
an iteration of Algorithm 1 should be cheaper than that of the method in [17] in those
instances of (3.11) for which Ω is a simple set, e.g., Ω = Z, or Ω is a closed ball in
Z. Second, both methods update Ak by means of (3.12), which is better than the
update formula used by other accelerated methods (see, for example, [1, 4, 8, 27]),
namely, (3.12) without the constant 2. As a result, both methods update Ak more
aggressively than ones in the latter list of papers. Third, while the method in [17]
assumes that the strong convexity of φ is entirely contained in h, Algorithm 1 does
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not make such an assumption. We note, however, that the extra assumption that the
strong convexity of φ is all in h is not at all restrictive since it can be easily enforced by
moving any strong convexity of f to the function h (e.g., by subtracting from and/or
adding to these functions a suitable positive multiple of the quadratic function ‖ · ‖2).

The following result describes the convergence rate of Algorithm 1. Its proof
closely follows the one given in [17] and is included in the online version of this work.1

Theorem 3.4. Consider the sequences {uk}, {zk}, and {Ak} generated by Algo-
rithm 1. Then, for every k ≥ 1,

(3.20) Akφ(zk) +
Akμ+ 1

2
‖u− uk‖2 ≤ Akφ(u) +

1

2
‖u− w0‖2 ∀u ∈ Z

and

(3.21) Ak ≥ 1

L
max

{
k2

2
, 2

(
1 +

√
μ

2L

)2(k−1)
}
.

In regards to the third observation in the paragraph preceding Theorem 3.4, we
conclude from (3.21) that the convergence rate of Algorithm 1 improves by moving
the strong convexity (if any) from f to h since the latter preprocessing reduces the
value of L and hence forces the sequence {Ak} to be updated more aggressively.

3.3. Iteration-complexity bounds for solving (P0), (P1), and (P2). In
this subsection, we derive the iteration-complexity of Algorithm 1 for solving problem
(P2). As a consequence, its iteration-complexity for solving (P1) is established with
the aid of Proposition 3.3. Moreover, by applying Algorithm 1 to a specific instance
of (3.11), we also derive with the aid of Proposition 3.1 the iteration-complexity of
solving (P0).

We start by deriving the iteration-complexity of Algorithm 1 to obtain solutions
for problems (P1) and (P2).

Proposition 3.5. Let w0 ∈ Z, τ1 > 0, and τ2 > 0 be given and consider the
sequences {zk}, {rk}, {vk}, and {εk} generated by Algorithm 1. Then, the following
statements hold:

(a) for every k ≥ 1, the triples (z, r, ε) = (zk, rk, εk) and (z, v, ε) = (zk, vk, εk)
satisfy the inclusion in (3.4) and the inclusion in (3.2), respectively;

(b) there exists an index

(3.22) k0 = O
(⌈

min

{√
L
⌈
τ−1
2

⌉
, 1 +

(
1 +

√
L

μ

)
log+

(
L
⌈
τ−1
2

⌉)}⌉)

such that, for every k ≥ k0, the triple (z, r, ε) = (zk, rk, εk) also satisfies the
inequality in (3.4) and hence is a solution of problem (P2);

(c) there exists an index

(3.23)

k̂0

= O
(⌈

min

{√
L(L+ 1)

⌈
τ−1
1

⌉
, 1 +

(
1 +

√
L

μ

)
log+

(
L(L+ 1)

⌈
τ−1
1

⌉)}⌉)
1http://www.optimization-online.org/DB_HTML/2013/10/4101.html.
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such that, for every k ≥ k̂0, the triple (z, v, ε) = (zk, vk, εk) also satisfies the
inequality in (3.2) and hence is a solution of problem (P1).

Proof. (a) It follows from (3.20) that for any u ∈ Z and k ≥ 1,

φ(u)− φ(zk) ≥ 1

2Ak

(‖u− uk‖2 − ‖u− w0‖2
)

=
1

Ak
〈w0 − uk, u− zk〉 − 1

2Ak
(‖zk − w0‖2 − ‖zk − uk‖2).

The above inequality together with (3.19) and the definition of ε-subdifferential in
(1.9) then imply that rk ∈ ∂εkφ(zk) = ∂εk(f + h)(zk) for every k ≥ 1. Now, the
last conclusion, the definition of vk in (3.19), and Lemma 3.2 with c = L, imply that
(z, v, ε) = (zk, vk, εk) satisfies the inclusion in (3.2) for every k ≥ 1.

(b) We now claim that for every k ≥ 1 such that

(3.24) Ak ≥ max{2, 2τ−1
2 },

the triple (z, r, ε) = (zk, rk, εk) also satisfies the inequality in (3.4). Indeed, by (3.18)
and the inequality ‖a+ b‖2 ≤ 2(‖a‖2 + ‖b‖2), we have

‖rk‖2 =
1

A2
k

‖uk − w0‖2 ≤ 2

A2
k

‖zk − w0‖2 + 2

A2
k

‖zk − uk‖2

and hence that

‖rk‖2 + 2εk ≤
(

2

A2
k

+
1

Ak

)
‖zk − w0‖2 +

(
2

A2
k

− 1

Ak

)
‖zk − uk‖2.(3.25)

Since condition (3.24) is easily seen to imply that

2

A2
k

+
1

Ak
≤ τ2,

2

A2
k

− 1

Ak
≤ 0,

we conclude from (3.25) that the triple (z, r, ε) = (zk, rk, εk) satisfies the inequality
in (3.4) for every k ≥ 1 satisfying (3.24). We have thus shown that the above claim
holds. Now, define

(3.26) k0 :=

⌈
min

{
2
√
L
⌈
τ−1
2

⌉
, 1 +

1 +
√
μ/(2L)

2
√
μ/(2L)

log+
(
L
⌈
τ−1
2

⌉)}⌉
and note that k0 clearly satisfies (3.22) and k0 ≥ 1. To end the proof, it suffices to
show in view of the above claim that k ≥ k0 implies (3.24). Indeed, in view of the
inequality t/(1 + t) ≤ log(1 + t) for t > −1, we have

1 +
√
μ/(2L)√

μ/(2L)
≥ 1

log(1 +
√
μ/(2L))

.

Thus, k ≥ k0 implies that either

k ≥ 2
√
L
⌈
τ−1
2

⌉
or k ≥ 1 +

log
(
L
⌈
τ−1
2

⌉)
2 log(1 +

√
μ/(2L))

and hence that

Ak ≥ max

{
k2

2L
,
2

L

(
1 +

√
μ

2L

)2(k−1)
}
≥ 2

⌈
τ−1
2

⌉ ≥ max{2, 2τ−1
2 },

where the first inequality is due to (3.21).
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(c) Letting τ2 := τ1/[2(L + 1)] and using the fact that �τ−1
2 � ≤ 2(L + 1)�τ−1

1 �,
statement (c) follows immediately from statement (b), the definition of vk in (3.19),
and Proposition 3.3.

We now make some remarks about two possible termination criteria for Algorithm
1 which guarantee the computation of a triple (zk, rk, εk) (resp., (zk, vk, εk)) which
is a solution of problem (P2) (resp., (P1)). The first, and less efficient, one is to

simply perform k0 (resp., k̂0) iterations where k0 (resp., k̂0) is given by (3.26) (resp.,
(3.26) with τ2 set to τ2 = τ1/[2(L + 1)]). The second, and most efficient, one is
to terminate Algorithm 1 at the first iteration k such that (z, r, ε) = (zk, rk, εk)
(resp., (z, v, ε) = (zk, vk, εk)) satisfies the inequality in (3.4) (resp., (3.2)). Note
that for a general triple (z, r, ε) (resp., (z, v, ε)), it is not easy to check whether
the inclusion in (3.4) (resp., (3.2)) is satisfied. However, when this triple is one of
the triples (zk, rk, εk) (resp., (zk, rk, εk)) generated by Algorithm 1, then Proposition
3.5(a) guarantees that (z, r, ε) (resp., (z, v, ε)) automatically satisfies the inclusion in
(3.4) (resp., (3.2)).

The following result, which follows as an immediate consequence of Propositions
3.1 and 3.5, establishes the iteration-complexity of a specialization of Algorithm 1 for
solving problem (P0).

Corollary 3.6. Let f̃ and h̃ satisfying conditions B.1 and B.2 and (w0, λ, σz) ∈
Z×R++×(0, 1] determine an instance of (P0) and define the functions f and h as in
(3.3). Assume also that, for some constant L̃ ≥ 0, ∇f̃ is L̃-co-coercive on Ω, where
Ω is as in B.2. Consider the sequence {(zk, vk, εk)} generated by Algorithm 1 with
functions f and h as above and initial point w0, and define

(3.27) (z̃k, s̃k, ε̃k) :=

(
zk,

vk − (zk − w0)

λ
−∇f̃(zk), εk

λ

)
∀k ≥ 1.

Then, the following statements hold:
(a) for every k ≥ 1, the triple (z̃, s̃, ε̃) = (z̃k, s̃k, ε̃k) satisfies the inclusion in

(1.6);
(b) there exists

(3.28) k1 = O
(
1 +

√
λL̃ + 1 log

(
(λL̃+ 1)σ−1

z

))
such that, for every k ≥ k1, the triple (z̃, s̃, ε̃) = (z̃k, s̃k, ε̃k) satisfies the
inequality in (1.6) and hence is a solution of (P0).

Proof. (a) This follows straightforwardly from Proposition 3.5(a), relation (3.27),
and the observations made in the proof of Proposition 3.1.

(b) It is easy to verify that the assumptions of the corollary imply that f and
h defined in (3.3) satisfy conditions C.1–C.4 with μ = 1 and L = λL̃ + 1. Hence,
from Proposition 3.5(c), the second bound in (3.23), and the fact that σ−1

z ≥ 1, we
conclude that there exists an index k1 satisfying (3.23) such that the triple (zk, vk, εk)
is a solution of (P1) with τ1 = σ2

z for any k ≥ k1. The conclusion of the corollary
now follows immediately from Proposition 3.1.

We end this section by making two remarks about Corollary 3.6. First, when
σz ∈ (0, 1] is such that σ−1

z = O(1), the iteration-complexity of solving (P0) by means
of the special case of Algorithm 1 described in Corollary 3.6 reduces to O(1 + (λL̃+
1)1/2 log(λL̃+ 1)). Second, an observation similar to the one made after Proposition
3.5 can be made with respect to termination criteria for the special case of Algorithm
1 of Corollary 3.6 for solving (P0). Third, our computational experiments use the
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second termination criterion, i.e., the one which verifies whether the triple (z̃k, s̃k, ε̃k)
defined in (3.27) satisfies the inequality in (1.6).

4. Accelerated BD algorithm for the CNE problem. This section consid-
ers a special accelerated instance of the CNE-BD-HPE framework for solving the CNE
problem CNE(Ψ1,Ψ2; g1, g2) in which the triples (x̃k, ãk, ε

x
k) and (ỹk, b̃k, ε

y
k) in steps

1 and 2 are obtained with the aid of the scheme described in Corollary 3.6 applied
to specific instances of problem (P0). It also establishes the complexity of the result-
ing accelerated instance in terms of gradient, projection, and resolvent evaluations
and shows that it is substantially better than that of the Tseng-BD algorithm when
max{Lxx, Lyy} >> Lxy.

We now describe the aforementioned accelerated instance of the CNE-BD-HPE
framework for solving the CNE problem CNE(Ψ1,Ψ2; g1, g2).

(Acc-BD) An accelerated BD-HPE algorithm for CNE(Ψ1,Ψ2;g1,g2).
0. Let (x0, y0) ∈ X × Y, σ ∈ (0, 1], and σx, σy ∈ (0, σ) be given. Set k = 1 and

(4.1) λ =

√
(σ2 − σ2

x)(σ
2 − σ2

y)

σLxy
;

1. invoke Algorithm 1 with w0 = xk−1, Z = X ,

Ω = Ωx, h(·) = λg1(·). f(·) = λΨ1(·, y′k−1) +
1

2
‖ · −xk−1‖2,

where y′k−1 = PΩy (yk−1) to obtain a triple (z, v, ε) ∈ X ×X ×�+ as in (3.14)
and (3.19) such that

(4.2) (x̃, ã, εx) :=

(
z,

v − (z − xk−1)

λ
−∇xΨ1(z, y

′
k−1) ,

ε

λ

)
satisfies (2.8), and set (x̃k, ãk, ε

x
k) = (x̃, ã, εx);

2. invoke Algorithm 1 with w0 = yk−1, Z = Y,

Ω = Ωy, h(·) = λg2(·), f(·) = λΨ2(x̃k, ·) + 1

2
‖ · −yk−1‖2

to obtain a triple (z, v, ε) ∈ Y × Y × �+ as in (3.14) and (3.19) such that

(4.3) (ỹ, b̃, εy) :=

(
z,

v − (z − yk−1)

λ
−∇yΨ2(x̃k, z) ,

ε

λ

)
satisfies (2.9), and set (ỹk, b̃k, ε

y
k) = (ỹ, b̃, εy);

3. set (ṽxk , ṽ
y
k) = (∇xΨ1(x̃k, ỹk) + ãk,∇yΨ2(x̃k, ỹk) + b̃k),

(4.4) (xk, yk) = (xk−1, yk−1)− λ(ṽxk , ṽ
y
k),

and k ← k + 1, and go to step 1.
end

The following result establishes convergence rate bounds for the Acc-BD
algorithm.

Theorem 4.1. Algorithm Acc-BD is a special instance of the CNE-BD-HPE
framework for solving CNE(Ψ1,Ψ2; g1, g2). Moreover, assume that conditions A.1,
A.2, A.4, and A.5 hold and consider the sequences {(xk, yk)}, {(x̃k, ỹk)}, {(εxk, εyk)},
and {(ṽxk , ṽyk)} generated by the Acc-BD algorithm and define {(x̃a

k, ỹ
a
k)}, {ṽak}, {ε̃ak},

d0, and η̄ as in Theorem 2.3. Then, the following statements hold for every k ∈ N:
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(a) if A.3 holds, then the pair ((ṽxk , ṽ
y
k), ε

x
k + εyk) is an NE-residual for (x̃k, ỹk)

and there exists i ≤ k such that

‖(ṽxi , ṽyi )‖ ≤
Lxyσd0√

(σ2 − σ2
x)(σ

2 − σ2
y)

√
1 + σ

k(1− σ)
,

εxi + εyi ≤
Lxyσ

3d20

2k(1− σ2)
√
(σ2 − σ2

x)(σ
2 − σ2

y)
;

(b) if A.3′ holds, then the pair (ṽak , ε̃
a
k) is an NE-residual for (x̃a

k, ỹ
a
k) and

‖ṽak‖ ≤
2Lxyσd0

k
√
(σ2 − σ2

x)(σ
2 − σ2

y)
, ε̃ak ≤

2Lxyσd
2
0

k
√
(σ2 − σ2

x)(σ
2 − σ2

y)
(1 + η̄).

Proof. The Acc-BD algorithm is clearly a special case of the CNE-BD-HPE
framework in which (2.7) holds as an equality and the triples of steps 1 and 2 are
found by means of Algorithm 1.

(a) This statement follows immediately from Theorem 2.3(a) with λ as in (4.1).
(b) This statement follows immediately from Theorem 2.3(b) with λ as in

(4.1).
The following corollary, which for the sake of brevity gives only ergodic complexity

bounds for the Acc-BD algorithm, follows immediately from (4.1), Corollary 3.6,
Theorem 4.1(b), and the fact that each iteration of Algorithm 1 performs at most two
gradient evaluations, two resolvent evaluations of ∂h, and one projection onto Ω. The
bounds derived on it are obtained under the assumption that the parameters σ, σx,
and σy are chosen so that the inverses of σx, σy, σ

2 − σ2
x, and σ2 − σ2

y are all O(1).
Corollary 4.2. At each iteration of the Acc-BD algorithm, the number of

evaluations of ∇xΨ1(·, ·) and the number of resolvent evaluations of ∂g1 and ∂IΩx

are both bounded by

O
(
1 +

√
Lxx/Lxy + 1 log(Lxx/Lxy + 1)

)
,

and the number of evaluations of ∇yΨ2(·, ·) and the number of resolvent evaluations
of ∂g2 and ∂IΩy are bounded by

O
(
1 +

√
Lyy/Lxy + 1 log(Lyy/Lxy + 1)

)
.

As a consequence, for every pair of positive scalars (ρ, ε), the Acc-BD algorithm finds
a (ρ, ε)-Nash equilibrium of CNE(Ψ1,Ψ2; g1, g2) by performing no more than

(4.5) O
([

1 +
√
Lxx/Lxy + 1 log(Lxx/Lxy + 1)

]
max

{
Lxyd

2
0

ε
,
Lxyd0

ρ

})
evaluations of ∇xΨ1(·, ·) and resolvent evaluations of ∂g1 and ∂IΩx and no more than

(4.6) O
([

1 +
√
Lyy/Lxy + 1 log(Lyy/Lxy + 1)

]
max

{
Lxyd

2
0

ε
,
Lxyd0

ρ

})
evaluations of ∇yΨ2(·, ·) and resolvent evaluations of ∂g2 and ∂IΩy .
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It is worthwhile to compare the iteration-complexity bound (2.19) obtained for
the Tseng-BD algorithm with the bounds (4.5) and (4.6) obtained for the Acc-BD
algorithm in Corollary 4.2. Indeed, when max{Lxx, Lyy} ≈ Lxy, the two bounds in
(4.5) and (4.6) are of the same order of magnitude as the one in (2.19). Consider now
the relevant case in which max{Lxx, Lyy} >> Lxy and for the sake of concreteness
assume that Lxx = max{Lxx, Lyy}. Then, bound (2.19) is larger than (4.5) by a
factor of

Θ(
√
ξx/ log(ξx)),

where ξx := Lxx/Lxy >> 1. Also, the bound (2.19) is significantly larger than (4.6),
i.e., by a factor

τ =

{
Θ(ξx) when Lyy = O(Lxy),

Θ
(
ξx/[log(ξy)

√
ξy]
)

when Lyy >> Lxy,

where ξy := Lyy/Lxy.
In subsection 5.1, we describe a relevant class of convex optimization problems

corresponding to CSP problems with Lyy = 0 and the ratio chosen ξx := Lxx/Lxy

arbitrarily large. Moreover, the resolvent evaluations of ∂g2 are much more expensive
than the ones for ∂g1. Note that this class of problems is particularly suitable for
Acc-BD in view of the fact that the bound (4.6) on the number of expensive resolvent
evaluations of ∂g2 is significantly smaller than the bound (4.5) on the number of cheap
resolvent evaluations of ∂g1.

5. Numerical experiments. In this section, we conduct experiments to eval-
uate the performance of the Acc-BD algorithm on a collection of CSP and/or CNE
problems.

The numerical performance of the new method is compared with several previous
methods, including the Tseng-BD algorithm in section 2.2 (see also subsection 5.2
of [13]), Tseng’s MFBS algorithm (Tseng-MFBS) [26], and Korpelevich’s extragradi-
ent method (Korp) [7]. Since the latter three methods, as well as Acc-BD, are special
cases of the HPE framework first proposed in [22], we have used in their implemen-
tation an adaptive stepsize strategy (see [10]) which takes the largest extragradient
stepsize satisfying the HPE relative error criteria. It is worth noting that this step-
size can be obtained by solving an easy quadratic equation. All four methods can
be further accelerated by using a dynamic scaling technique discussed in [9, 10] to
properly balance the magnitude of the primal and dual residuals. However, we have
not included this technique in our implementation of these four methods (except in
the extremely unbalanced CSP problem considered in subsection 5.1) since its imple-
mentation is complex and time-consuming. The true values of the Lipschitz constants
Lxx, Lyy, and Lxy, all computed with respect to the Euclidean norm, are used for
these four methods. We also note our implementation of Acc-BD incorporates the
safeguard that the subproblems (2.8) and (2.9) are solved (exactly) using the recipe
of Proposition 2.4 whenever Lxx = 0 and/or Lyy = 0, respectively.

We have also compared the four methods above with two other well-known meth-
ods, namely, Nemirovski’s prox-method (referred to as Nemi-prox) [14, 27] and Nes-
terov’s smooth approximation scheme [15] (referred to as Nest-app), where the smooth
approximation is solved by a variant of Nesterov’s optimal method due to Tseng,
namely, Algorithm 3 of [27], based on the update formula (18) there. We observe that
Nemi-prox is an extension of Korpelevich’s extragradient method which is based on a
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general distance-generating function (e.g., the entropy function
∑

i xi log xi) instead
of the standard one, namely, ‖ · ‖2/2, used by Korpelevich’s method. Our implemen-
tation of Nemi-prox uses the L1-norm on X ×Y and the entropy distance-generating
function (see pp. 15–16 of [14]). Nest-app approximates the nonsmooth max com-
ponent of the objective function by adding a small positive multiple of the entropy
function to the max objective function and then applies the aforementioned Tseng’s
variant based on the entropy function to solve the resulting smooth approximation.
The latter method endows both X and Y with the L1-norm (see pp. 149–150 of [15]).
To improve the performance of these two methods, their implementation follows the
recipe given in [27], i.e., the initial value of the Lipschitz constant is set to a fraction
(1/8 was used in [27] and also in our experiments) of its true value and is increased
by a factor of 2 whenever a certain convergence criterion (see (23) and (45) of [27]) is
not satisfied.

We now make some observations about the way our computational results are
presented. First, for problems with bounded feasible sets X × Y such as the ones
considered in subsections 5.1, 5.2, and 5.3, we have used the duality gap criterion of
finding (x, y) ∈ X × Y such that gap(x, y) ≤ ε (see (2.4)) to terminate all methods
due to the fact that Nest-app and Nemi-prox were originally designed for the latter
termination criterion. Second, we have excluded Nest-app from the comparison in
subsection 5.2 due to the fact that it has to solve the perturbed max subproblem
exactly in order to compute the gradient of the smooth approximation of the orig-
inal objective function and the fact that this subproblem is expensive for the CSP
problem considered in this subsection. Third, we have also excluded Nest-app from
the comparison in subsection 5.3 since it was not designed for the two-player Nash
equilibrium problem. Fourth, we have excluded both Nest-app and Nemi-prox from
the comparison in subsection 5.4 since the methods considered there are terminated
based on the notion of approximate Nash equilibrium of Definition 2.1. The reason
for changing the termination criterion in this subsection is due to the fact that its
CSP problem has an unbounded feasible set and the fact that none of the six methods
compared in this paper has been shown to converge based on the (stronger) duality
gap criterion in this situation.

Finally, all the computational results were obtained in MATLAB R2013a on a
quad-core Linux machine with 8GB memory.

5.1. A vector-matrix CSP problem. This subsection compares Acc-BD with
Tseng-BD, Tseng-MFBS, Korp, Nemi-prox, and Nest-app for solving a collection of
instances of the minimization problem

min
x∈Δm

1

2
‖Cx− b‖2 + θmax(A(x)),(5.1)

where C ∈ �m×m, b ∈ �m, A1, . . . , Am ∈ Sn, and A(x) =
∑m

i=1 xiAi ∈ Sn×n. It
is easy to verify that the above problem is equivalent to the following vector-matrix
CSP problem:

min
x∈Δm

max
y∈Ω

Ψ1(x, y) :=
1

2
‖Cx− b‖2 + 〈A(x), y〉,(5.2)

where Ω = {y ∈ Sn : tr(y) = 1, y � 0}.
Hence, we can apply the above methods on the CSP problem (5.2). In the nu-

merical experiment, the matrices A1, . . . , Am and C are randomly generated such
that each entry is generated independently and uniformly in the interval [−1, 1] and
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A1, . . . , Am are then symmetrized. All methods are terminated whenever the duality
gap at a candidate solution (x̃, ỹ) is less than a given tolerance ε, i.e.,

(5.3)
1

2
‖Cx̃− b‖2 + θmax(A(x̃))− min

x∈Δm

{
1

2
‖Cx− b‖2 + 〈A(x), ỹ〉

}
≤ ε.

Both the current pointwise iterate (x̃k, ỹk) and the current ergodic iterate (x̃a
k, ỹ

a
k)

defined in (2.10) are used to check the stopping criterion (5.3) for the methods Acc-
BD, Tseng-BD, Tseng-MFBS, Korp, and Nemi-prox. As described in Theorem 3 of
[15] (see also Corollary 3 of [27]), the usual dual sequence generated by Nest-app
is obtained by taking a weighted average of a sequence of dual maximizers for the
perturbed max subproblems. In our experiment, we evaluate the max term of (5.3)
at the current (usual) primal iterate and the min term of (5.3) at both the current
weighted average dual iterate and the current dual maximizer and choose the largest
of the two values in order to obtain the smallest value for (5.3).

Table 1 reports the CPU time and the number of eigen-decompositions (in order
to evaluate the resolvent of ∂IΩ) for each method. The CPU times reported in this
table do not include the time spent to evaluate the left-hand side of stopping criterion
(5.3), which is checked every five iterations. Due to space limitations, Table 1 does
not specify the number of iterations performed by each method. We note, however,
that the number of iterations performed by Tseng-BD, Tseng-MFBS, Korp, Nemi-
prox, and Nest-app can be obtained by dividing the corresponding number of eigen-
decompositions by 1, 1, 2, 2, and 2, respectively. Also, the number of outer (HPE)
iterations performed by Acc-BD is equal to the number of eigen-decompositions due
to the fact that Lyy = 0 for the CSP considered in this subsection and the fact that
the safeguard used in our implementation ensures that the proximal subproblem in
the y-variable is solved by means of a single resolvent evaluation of ∂IΩ.

Observe from the results reported in Table 1 that the four HPE methods per-
formed better than both Nemi-prox and Nest-app on this collection of CSP problems.
We believe that this might be due to the fact that the implementation of these meth-
ods incorporates both the adaptive stepsize and scaling strategies mentioned above
(see [9] and [10] for details on these strategies). Also, Acc-BD was by far the fastest
of the six methods on this collection of CSP instances.

5.2. Quadratic game problem. This subsection compares Acc-BD with Tseng-
BD, Tseng-MFBS, Korp, and Nemi-prox for solving a collection of instances of the
quadratic game problem

min
x∈Δm

max
y∈Δn

Ψ1(x, y) :=
1

2
‖Bx‖2 + x�Ay − 1

2
‖Cy‖2,(5.4)

where A ∈ �m×n, B ∈ �m×m, and C ∈ �n×n.
For this comparison, the matrices A, B, and C are randomly generated such that

each entry is nonzero with probability p and each nonzero entry is generated inde-
pendently and uniformly in the interval [0, 1]. The above five methods are terminated
whenever the duality gap at the candidate solution (x̃, ỹ) is less than a given tolerance
ε, i.e.,

(5.5)

max
y∈Δn

{
1

2
‖Bx̃‖2 + x̃�Ay − 1

2
‖Cy‖2

}
− min

x∈Δm

{
1

2
‖Bx‖2 + x�Aỹ − 1

2
‖Cỹ‖2

}
≤ ε.
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Table 2

Computational results for the methods Acc-BD, Tseng-BD, Tseng-MFBS, and Korp on two-
player quadratic games with different sizes and sparsities. All methods are terminated using criterion
(5.5) with ε = 10−3 and 10−6. CPU time in seconds and number of gradient evaluations are reported
for each method.

Tol. Problem size Lip. ratio Acc-BD Tseng-BD Tseng-MFBS Korp Nemi-prox

ε m/n/p Lxx
Lxy

Lyy
Lxy

Time #grad./iter. Time #grad. Time #grad. Time #grad. Time #grad.

10−3

1000/1000/0.1 48.11 48.03 0.37 276/7 0.86 700 0.90 720 0.94 720 1.68 1220

1000/1000/0.2 91.11 91.46 0.74 378/8 2.92 1520 2.81 1500 3.05 1540 1.72 780

1000/2000/0.1 34.37 135.67 0.85 347/7 4.85 2080 4.82 2080 4.98 2080 4.76 1880

1000/2000/0.2 64.61 257.13 2.22 569/9 20.22 5120 20.04 5120 20.53 5120 5.93 1420

2000/1000/0.1 135.28 34.18 0.77 307/7 4.93 2160 4.99 2160 5.20 2180 4.78 1920

2000/1000/0.2 256.76 64.77 2.00 508/8 19.23 4900 18.95 4900 19.55 4900 5.80 1440

2000/2000/0.1 95.65 96.04 0.93 286/6 4.49 1220 4.52 1240 4.57 1240 4.64 1220

2000/2000/0.2 181.91 181.75 2.25 406/6 15.12 2480 15.29 2480 15.64 2500 4.98 780

10−6

1000/1000/0.1 48.11 48.03 0.91 802/32 2.47 2120 2.52 2140 2.69 2140 14.24 10840

1000/1000/0.2 91.11 91.46 2.07 1058/28 7.64 4000 7.72 4020 8.15 4020 12.49 6060

1000/2000/0.1 34.37 135.67 2.86 1188/38 17.87 7780 17.94 7780 18.67 7780 36.25 14740

1000/2000/0.2 64.61 257.13 5.52 1400/30 56.91 14540 57.02 14540 58.89 14540 42.69 10100

2000/1000/0.1 135.28 34.18 2.07 844/24 17.07 7480 17.10 7480 17.90 3740 37.28 15120

2000/1000/0.2 256.76 64.77 5.10 1256/26 49.00 15300 59.67 15300 60.81 15300 39.65 9700

2000/2000/0.1 95.65 96.04 2.80 790/20 13.34 3700 13.39 3720 14.11 3720 42.72 11020

2000/2000/0.2 181.91 181.75 5.85 1029/19 41.73 6760 41.54 6780 42.57 6800 37.56 5880

Both the iterate sequence {(x̃k, ỹk)} and the ergodic sequence {(x̃a
k, ỹ

a
k)} are used to

check the stopping criterion (5.5) for the five methods considered in this section.

Table 2 reports the CPU time and the number of gradient evaluations (i.e., eval-
uations of ∇xΨ1(·, ·) and ∇yΨ1(·, ·), each counted separately) for each method. This
table also reports the number of outer (HPE) iterations for the Acc-BD method.
The CPU times reported in this table do not include the time spent to evaluate the
left-hand side of stopping criterion (5.5), which is checked every outer iteration for
Acc-BD and every five iterations for the other four methods. Due to space limita-
tions, Table 2 does not specify the number of iterations performed by the methods
Tseng-BD, Tseng-MFBS, Korp, and Nemi-prox. We note, however, that the num-
ber of iterations performed by these four methods can be obtained by dividing the
corresponding number of gradient evaluations by 4.

Table 2 shows that Tseng-BD had almost the same numerical performance as
Tseng-MFBS and Korp on this collection of quadratic game instances and they are
outperformed by Nemi-prox on several instances of this collection. Acc-BD was by far
the fastest among the four methods on all instances of this collection. The results also
confirm our conclusion in the paragraph following Corollary 4.2 that the performance
of Acc-BD improves as the ratio max{Lxx, Lyy}/Lxy increases.

5.3. CNE problem. This subsection compares Acc-BD with Tseng-BD, Tseng-
MFBS, Korp, and Nemi-prox for solving a collection of instances of CNE(Ψ1,Ψ2, g1,
g2), where

X := Δm, Y := Δn, g1 := IX(x), g2(y) := IY (y),
Ψ1(x, y) :=

1

2
x�A1x+ 〈x,B1y〉, Ψ2(x, y) :=

1

2
y�A2y + 〈x,B2y〉,(5.6)

and the matrices A1 ∈ Sm, A2 ∈ Sn, and B1, B2 ∈ �m×n satisfy the condition that

(5.7) C :=

(
A1 B1 +B2

(B1 +B2)
� A2

)
� 0.
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Table 3

Computational results for the methods Acc-BD, Tseng-BD, Tseng-MFBS, and Korp on CNE
problems (5.6) with different sizes. All methods are terminated whenever the gap function (2.4) at
the candidate solution is less than ε = 10−3 and 10−6. CPU time in seconds and number of gradient
evaluations are reported for each method.

Tol. Problem size Lip. ratio Acc-BD Tseng-BD Tseng-MFBS Korp Nemi-prox

ε m/n Lxx
Lxy

Lyy
Lxy

Time #grad./it. Time #grad. Time #grad. Time #grad. Time #grad.

10−3

500/500 44.77 45.19 0.13 90/4 0.21 180 0.21 180 0.20 180 4.85 6960

500/1000 53.63 54.39 0.13 94/4 0.21 120 0.21 120 0.25 140 22.46 12240

1000/500 53.67 53.68 0.23 140/6 0.48 300 0.48 300 0.54 320 4.85 6960

1000/1000 63.08 63.65 0.29 104/4 0.49 180 0.48 180 0.56 200 40.41 13400

2000/2000 76.97 75.94 0.63 112/4 1.12 200 1.00 180 1.12 200 218.84 34120

2000/1000 76.21 75.49 0.75 135/5 1.53 280 1.66 280 1.66 300 220.43 34120

2000/2000 89.28 89.05 1.45 153/5 1.68 180 1.68 180 1.89 200 187.85 16680

10−6

500/500 44.77 45.19 0.23 253/11 0.62 640 0.58 640 0.61 680 45.88 22740

500/1000 53.63 54.39 0.48 290/12 1.79 1060 1.68 1040 1.91 1100 265.66 67160

1000/500 53.67 53.68 3.19 1832/56 8.41 4960 8.49 4920 9.17 5080 540.10 137400

1000/1000 63.08 63.65 0.92 270/10 2.20 740 2.36 720 2.34 780 259.71 41160

2000/2000 76.97 75.94 4.23 655/19 15.85 2840 15.87 2840 15.98 2860 1790.0 155000

2000/1000 76.21 75.49 9.95 1664/46 32.31 5900 32.81 5840 33.04 5920 1217.1 173520

2000/2000 89.28 89.05 3.59 380/12 6.50 680 6.73 700 7.28 740 738.71 61760

In the numerical experiment, the matrices B1 and B2 have their entries generated
independently according to the standard normal distribution and the matrices A1

and A2 are then set A1 = B1B
�
1 + Im and A2 = B�

2 B2 + In, which guarantees
that condition (5.7) holds. It is easy to verify that the above randomly generated
CNE(Ψ1,Ψ2, g1, g2) problem satisfies all conditions required by the Tseng-BD and
Acc-BD methods.

The five methods considered in this section are terminated whenever the gap
function (2.4) at the candidate solution (x̃, ỹ) is less than a given tolerance ε. Both
the iterate sequence {(x̃k, ỹk)} and the ergodic sequence {(x̃a

k, ỹ
a
k)} are used as the

candidate solutions for all five methods.
Table 3 reports the CPU time and the number of gradient evaluations (i.e., evalu-

ations of ∇xΨ1(·, ·) and ∇yΨ2(·, ·), each counted separately) for each method and the
number of outer (HPE) iterations for the Acc-BD method. The CPU times reported
in this table do not include the time spent to evaluate the gap function (2.4), which
is done every outer iteration for Acc-BD and every five iterations for the other four
methods. Due to space limitations, Table 3 does not specify the number of itera-
tions performed by the methods Tseng-BD, Tseng-MFBS, Korp, and Nemi-prox. We
note, however, that the number of iterations performed by these four methods can be
obtained by dividing the corresponding number of gradient evaluations by 4.

The computational results show that the methods Tseng-BD, Tseng-MFBS, and
Korp had comparable numerical performance on this collection of NE instances. Acc-
BD was by far the fastest among the five methods on all instances of this collection.

5.4. A regularized least-square problem. This subsection compares Acc-BD
with Tseng-BD, Tseng-MFBS, and Korp for solving a collection of instances of the
following regularized least-square problem:

min
x∈�k×n

1

2
‖Ax−B‖2F + β‖x‖1 + γ‖x‖∗,(5.8)

where the matrices A ∈ �m×k, B ∈ �m×n and the regularization parameters β > 0
and γ > 0 are given. Note that the purpose of the regularization term β‖x‖1+ γ‖x‖∗
in (5.8) is to simultaneously induce sparsity and low-rankness on x.
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Table 4

Computational results for the methods Acc-BD and Tseng-BD on the regularized least-square
problems (5.8) with different problem sizes. The two methods are terminated using criterion (5.11)
with ε = 10−3. CPU time in seconds and the number of SVD computations are reported for each
method.

Problem Acc-BD Tseng-BD Tseng-MFBS Korp

m k n Lxx
Lxy

Time #svd Time #svd Time #svd Time #svd

100 100 100 2.40 0.31 35 0.35 72 0.37 81 1.23 276
100 200 200 4.14 1.70 36 1.88 93 2.00 96 5.96 356
100 500 500 4.92 62.71 99 191.43 465 192.02 479 265.85 752
200 100 100 3.79 0.61 50 0.87 165 1.05 174 3.62 636
200 200 200 5.44 1.60 39 2.65 106 2.67 108 8.64 398
200 500 500 7.14 44.63 100 175.11 682 386.59 1577 376.03 1350
500 100 100 5.70 0.28 26 0.61 91 0.67 93 2.48 350
500 200 200 6.61 1.72 38 3.23 108 3.32 110 10.85 414
500 500 500 9.49 57.06 126 169.56 681 170.18 679 577.10 2558

Clearly, problem (5.8) is a special instance of the class of structured convex opti-
mization problem (see (16) in [9])

(5.9) min
x∈X

f(x) + h1(x) + h2(x),

where X = �k×n, f(x) = 1
2‖Ax − B‖2F , h1(x) = β‖x‖1, and h2(x) = γ‖x‖∗, and

the resolvents of ∂h1 and ∂h2 can be evaluated in closed form (see [2], for example).
Problem (5.9) is shown in [9] to be equivalent to the inclusion problem

0 ∈ ∇f(x) + ∂h1(x) + y, 0 ∈ ∂h∗
2(y)− x,

or, equivalently, to the CSP problem,

(5.10) min
x∈X

max
y∈Y

f(x) + 〈x, y〉+ h1(x)− h∗
2(y).

Hence we can apply the above four methods to solve problem (5.8). In the nu-
merical experiment, the matrices A and B are generated as sparse matrices with
1% nonzero entries that are independently and uniformly distributed in the interval
[−1, 1]. The regularization parameters β and γ are set to 0.0005n. In view of (2.19)
and Theorem 4.1, both Tseng-BD and Acc-BD generate an easily computable NE-
residual ((ṽxk , ṽ

y
k), ε

x
k + εyk) at each iteration. We have also implemented versions of

Tseng-MFBS and Korp (see, for example, [11]) that generate the above easily com-
putable NE-residuals. The above four methods are then terminated whenever

(5.11) max

{ ‖(ṽxk , ṽyk)‖
max{1, ‖x̃k‖, ‖ỹk‖} , ε

x
k + εyk

}
< ε.

Table 4 reports the CPU time and the number of SVD computations (in order to
evaluate the resolvent of ∂h∗

2) for the above four methods. Due to space limitations,
Table 4 does not specify the number of iterations performed by each method. We note,
however, that the number of iterations performed by Tseng-BD, Tseng-MFBS, and
Korp can be obtained by dividing the corresponding number of SVD computations
by 1, 1, and 2, respectively. Also, the number of outer (HPE) iterations performed by
Acc-BD is equal to the number of SVD computations due to the fact that Lyy = 0
for the CSP considered in this subsection and the fact that the safeguard used in our
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implementation ensures that the proximal subproblem in the y-variable is solved by
means of a single resolvent evaluation of ∂h∗

2.
Table 4 shows that the methods Tseng-BD and Tseng-MFBS had comparable

numerical performance on this collection of regularized least-square problem instances
and Korp was the slowest among the four methods on eight of nine instances. The
computational results also show that Acc-BD was the fastest in this collection, and it
performed especially well when the computational cost of computing an SVD is much
larger than that of a matrix-vector multiplication.

Appendix A. A remark about condition A.3′.
Proposition A.1. Assume condition A.1 holds; then A.3′ implies A.3.
Proof. Let (x, y), (x̃, ỹ) ∈ X×Y be given. The assumption that A.3′ holds implies

that Ψ := Ψ1 +Ψ2 is convex and hence that

Ψ(x̃, ỹ) ≥ Ψ(x, y) + 〈∇xΨ(x, y), x̃− x〉+ 〈∇yΨ(x, y), ỹ − y〉.

Also, A.3′ implies that Ψ1(x, ·) + Ψ2(·, y) is concave and hence that

Ψ(x, y) + 〈∇yΨ1(x, y), ỹ − y〉+ 〈∇xΨ2(x, y), x̃− x〉 ≥ Ψ1(x, ỹ) + Ψ2(x̃, y).

Now, the fact that Ψ convex implies that Ψ(·, ỹ) + Ψ(x̃, ·) is convex, which, together
with the fact that Ψ1(x̃, ·) + Ψ2(·, ỹ) is concave, then implies that Ψ1(·, ỹ) + Ψ2(x̃, ·)
is convex. Hence,

Ψ1(x, ỹ) + Ψ2(x̃, y) ≥ Ψ(x̃, ỹ) + 〈∇xΨ1(x̃, ỹ), x− x̃〉+ 〈∇yΨ2(x̃, ỹ), y − ỹ〉.

Combining the above three inequalities, we then conclude that

〈∇xΨ1(x̃, ỹ)−∇xΨ1(x, y), x− x̃〉+ 〈∇yΨ2(x̃, ỹ)−∇yΨ2(x, y), y − ỹ〉 ≥ 0.

We have thus shown that A.3 holds.

Appendix B. Proof of Theorem 2.3. The technical result below will be used
to show that the corresponding ergodic sequence (ṽak , ε̃

a
k) (see (2.10) and (2.11)) is

an NE-residual for the ergodic iterate (x̃a
k, ỹ

a
k) (see (2.10)). It is a generalization of

Proposition 5.1 of [12].
Lemma B.1. Let X ⊆ X and Y ⊆ Y be given convex sets and let Γi : X × Y →

�, i = 1, 2, be functions such that the following assumptions are satisfied:
(a) for each pair (x, y) ∈ X × Y , the function Γ1(x, ·) + Γ2(·, y) : X × Y → � is

concave;
(b) Γ1(·, ·) + Γ2(·, ·) : X × Y → � is convex.

Suppose that, for i = 1, . . . , k, (xi, yi) ∈ X × Y and (vx,i, vy,i) ∈ X × Y satisfy

(B.1) (vx,i, vy,i) ∈ ∂εi

(
Γ1(·, yi) + Γ2(xi, ·)

)
(xi, yi).

Let α1, . . . , αk ≥ 0 be such that
∑k

i=1 αi = 1 and define

(B.2) (xa, ya) =

k∑
i=1

αi(xi, yi), (vax, v
a
y ) =

k∑
i=1

αi(vx,i, vy,i),D
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(B.3) εa :=
k∑

i=1

αi[εi + 〈xi − xa, vx,i〉+ 〈yi − ya, vy,i〉].

Then, εa ≥ 0 and

(B.4) (vax, v
a
y) ∈ ∂εa

(
Γ1(·, ya) + Γ2(x

a, ·)
)
(xa, ya).

Proof. By (B.1), we have

Γ1(x, yi) + Γ2(xi, y) ≥ Γ1(xi, yi) + Γ2(xi, yi) + 〈vx,i, x− xi〉+ 〈vy,i, y − yi〉 − εi

∀(x, y) ∈ X × Y.

Using the assumption that Γ1(x, ·) + Γ2(·, y) is concave for every (x, y) ∈ X × Y ,

Γ1(·, ·)+Γ2(·, ·) is convex, the assumption that
∑k

i=1 αi = 1 and αi ≥ 0 for i = 1, . . . , k,
and relations (B.2) and (B.3), we conclude that

Γ1(x, y
a) + Γ2(x

a, y) ≥
k∑

i=1

αi[Γ1(x, yi) + Γ2(xi, y)]

≥
k∑

i=1

αi (Γ1(xi, yi) + Γ2(xi, yi) + 〈vx,i, x− xi〉+ 〈vy,i, y − yi〉 − εi)

≥ Γ1(x
a, ya) + Γ2(x

a, ya) +

k∑
i=1

αi (〈vx,i, x− xa〉+ 〈vy,i, y − ya〉)

−
k∑

i=1

αi (〈vx,i, xi − xa〉+ 〈vy,i, yi − ya〉+ εi)

= Γ1(x
a, ya) + Γ2(x

a, ya) + 〈vax, x− xa〉+ 〈vay , y − ya〉 − εa

for every (x, y) ∈ X × Y . We have thus shown that (B.4) holds. The nonnegativity
of εa follows from the above relation with (x, y) = (xa, ya).

With the aid of the Lemma B.1, we now give the proof of Theorem 2.3.
Proof of Theorem 2.3. In view of step 3 of the CNE-BD-HPE framework, we have

ṽxk ∈ ∇xΨ1(x̃k, ỹk) + ∂εx
k
g1(x̃k) ⊆ ∂εx

k
[Ψ̂1(·, ỹk)](x̃k),

ṽyk ∈ ∇yΨ2(x̃k, ỹk) + ∂εykg2(ỹk) ⊆ ∂εyk [Ψ̂2(x̃k, ·)](ỹk),
from which we conclude that

(ṽxk , ṽ
y
k) ∈

[
∂εx

k
[Ψ̂1(·, ỹk)](x̃k)

]
×
[
∂εyk [Ψ̂2(x̃k, ·)](ỹk)

]
(B.5)

⊆ ∂εxk+εyk
[Ψ̂1(·, ỹk) + Ψ̂2(x̃k, ·)](x̃k, ỹk),

where the last inclusion follows from the definition of ε-subdifferential. Moreover,
(2.12) follows directly from Theorem 3.2 of [13] and the fact that the CNE-BD-HPE
framework is a special case of the BD-HPE framework in which λk = λ for all k.

It follows from statement (a) and Lemma B.1 with Γ1 = Ψ̂1|X×Y and Γ2 =

Ψ̂2|X×Y , and (xi, yi) = (x̃i, ỹi) and (vx,i, vy,i) = (ṽxi , ṽ
y
i ) for i = 1, . . . , k, that

ṽak ∈ ∂ε̃a
k
[Ψ1(·, ỹak) + Ψ2(x̃

a
k, ·)](x̃a

k, ỹ
a
k).
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Moreover, (2.13) follows directly from Theorem 3.3 of [13] and the fact that the CNE-
BD-HPE framework is a special case of the BD-HPE framework in which λk = λ for
all k.
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