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A HYBRID PROXIMAL EXTRAGRADIENT SELF-CONCORDANT
PRIMAL BARRIER METHOD FOR MONOTONE VARIATIONAL

INEQUALITIES∗

RENATO D. C. MONTEIRO† , MAURICIO R. SICRE‡ , AND B. F. SVAITER§

Abstract. This paper presents a hybrid proximal extragradient (HPE) self-concordant primal
barrier method for solving a monotone variational inequality over a closed convex set endowed with
a self-concordant barrier and with an underlying map that has Lipschitz continuous derivative. In
contrast to the iteration of a previous method developed by the first and third authors that has to
compute an approximate solution of a linearized variational inequality, the one of the present method
solves a simpler Newton system of linear equations. The method performs two types of iterations,
namely, those that follow ever changing interior paths and those that correspond to large-step HPE
iterations. Due to its first-order nature, the present method is shown to have a better iteration-
complexity than its zeroth order counterparts such as Korpelevich’s algorithm and Tseng’s modified
forward-backward splitting method, although its work per iteration is larger than the one for the
latter methods.
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1. Introduction. Throughout this paper, we denote the set of real numbers by
R and the set of nonnegative and positive real numbers by R+ and R++, respectively.
We use R

n to denote the set of real n-dimensional column vectors, and R
n
+ and R

n
++

to denote the subsets of Rn consisting of the component-wise nonnegative and positive
vectors, respectively. Also, E denotes a finite-dimensional real inner product space
with inner product and induced norm denoted by 〈·, ·〉 and ‖ · ‖, respectively.

Some earlier related works dealing with iteration-complexity analysis of methods
for variational inequality (VI) problems are as follows. Nemirovski [10] studied the
complexity of Korpelevich’s extragradient method under the assumption that the
feasible set is bounded and an upper bound on its diameter is known. Nesterov [13]
proposed a dual extrapolation algorithm for solving VI problems whose termination
criterion depends on the guess of a ball centered at the initial iterate and presumably
containing a solution.

A broad class of optimization, saddle-point, equilibrium, and VI problems can be
posed as the monotone inclusion (MI) problem, namely, finding x such that 0 ∈ T (x),
where T is a maximal monotone point-to-set operator. The proximal point method
(PPM) proposed by Martinet [4] and further generalized by Rockafellar [18, 19] is a
classical iterative method for solving the MI problem. It generates a sequence {xk}
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according to

xk = (λkT + I)−1(xk−1),

where {λk} is a sequence of positive proximal stepsizes. It has been used as a frame-
work for the design and analysis of several implementable algorithms. The classical
inexact version of the PPM allows for the presence of a sequence of summable errors
in the above iteration according to

‖xk − (λkT + I)−1(xk−1)‖ ≤ ek,

∞∑
k=1

ek <∞.

Convergence results under the above error condition have been established in [18] and
have been used in the convergence analysis of other methods that can be recast in the
above framework [19].

New inexact versions of the PPM with relative error tolerance were proposed
by Solodov and Svaiter [21, 22, 23, 24]. Iteration-complexity results for one of
these inexact versions introduced in [21], namely, the hybrid proximal extragradi-
ent (HPE) method, were established in [5]. Application of this framework to the
iteration-complexity analysis of several zeroth-order (or, in the context of optimiza-
tion, first-order) methods for solving monotone VI, MI, and saddle-point problems
were discussed in [5] and in the subsequent papers [6, 8].

The HPE framework was also used to study the iteration-complexities of first-
order (or, in the context of optimization, second-order) methods for solving either a
monotone nonlinear equation (see section 7 of [5]) and, more generally, a monotone
VI (see [7]). It is well known that a monotone VI determined by a monotone operator
F and a closed convex set X is equivalent to the MI problem

(1.1) 0 ∈ T (x) = (F +NX)(x),

where

(1.2) NX(x) :=

{∅, x /∈ X,
{v ∈ E : 〈v, y − x〉 ≤ 0, ∀y ∈ X} , x ∈ X.

The paper [7] presents a first-order inexact (Newton-like) version of the PPM which
requires at each iteration the approximate solution of a first-order approximation
(obtained by linearizing F ) of the current proximal point inclusion and uses it to per-
form an extragradient step as prescribed by the HPE method. Pointwise and ergodic
iteration-complexity results are derived for the aforementioned first-order method us-
ing general results obtained also in [7] for a large-step variant of the HPE method.

The present paper deals with an inexact proximal point self-concordant (SC)
barrier method for solving (1.1) in which each iteration can be viewed as performing
an approximate proximal point iteration to the system of nonlinear equations 0 =
F (x) + μ−1∇h(x), where μ > 0 is a dynamic parameter (converging to ∞) and h is a
self-concordant barrier for X . The corresponding proximal equation

(1.3) 0 = λ[F (x) + μ−1∇h(x)] + x− z,

whose solution is denoted (in this introduction only) by x(μ, λ, z), then yields a system
of nonlinear equations parametrized by μ, the proximal stepsize λ > 0, and the base
point z. At each iteration, an approximate solution for the above proximal system is
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obtained by performing a Newton step and the triple of parameters (μ, λ, z) is then
updated. The resulting method performs two types of iterations which depend on
the way (μ, λ, z) is updated. On the path-following iterations, only the parameters μ
and λ are updated and the method can be viewed as following a certain curve within
the surface {x(μ, λ, z) : μ > 0, λ > 0} for a fixed base point z. On the other hand,
the other iterations update all three parameters simultaneously and can be viewed
as large-step HPE iterations applied to the original inclusion 0 ∈ F (x) +NX(x). We
establish that the complexity of the resulting method is about the same order of mag-
nitude as the one of the method presented in [7]. Moreover, while the method of [7]
(approximately) solves a linearized VI subproblem at every iteration, the method pre-
sented in this paper solves a Newton system of linear equations with respect to (1.3).

It should be noted that prior to this work, [20] presented an inexact proximal
point primal-dual interior-point method based on similar ideas. The main differences
between the latter algorithm and the one presented in this paper are that (1) the
algorithm of [20] deals with the special class of VIs in which X = R

n
+ × R

m and (2)
the algorithm here is a primal one while the one in [20] uses the logarithmic barrier
for the latter set X in the context of a primal-dual setting.

There have been other Newton-type methods in the context of degenerate uncon-
strained convex optimization problems for which complexity results have been derived.
In [16], a Newton-type method for unconstrained convex programs based on subprob-
lems with a cubic regularization term is proposed and iteration-complexity results are
obtained. An accelerated version of this method is studied in [14]. Also, [9] presents
an accelerated inexact proximal point method for (possibly constrained) convex op-
timization problems based on quadratic regularized subproblems and establishes a
better iteration complexity than the one derived in [14]. It should be mentioned that
these methods are specifically designed for convex optimization problems and hence
do not apply to the monotone VI problems studied in this paper.

This paper is organized as follows. Section 2 contains three subsections. Subsec-
tion 2.1 reviews some basic properties of the ε-enlargement of a point-to-set mono-
tone operator. Subsection 2.2 reviews an underelaxed HPE method for finding a zero
of a maximal monotone operator and presents its corresponding convergence rates
bounds. Subsection 2.3 reviews some basic properties of SC functions and barriers.
Section 3 contains two subsections. Subsection 3.1 introduces the proximal interior
surface {x(μ, λ, z) : (μ, λ, z) ∈ R++ × R++ × R

n} and gives conditions for points of
this surface to approach the solution of the VI problem. Subsection 3.2 introduces a
neighborhood of the point x(μ, λ, z) and shows that it has the quadratic convergence
property with respect to a Newton step applied to (1.3). Section 4 also contains
two subsections. Subsection 4.1 states the HPE-IP method and derives preliminaries
results about the behavior of its two types of iterations. Subsection 4.2 estimates
the iteration-complexity of the HPE-IP method. Section 5 discusses a Phase I pro-
cedure for computing the required input for the HPE-IP method and establishes its
iteration-complexity. The appendix states and proves some technical results.

1.1. Notation. In addition to the notation introduced at the beginning of sec-
tion 1, we will also use the following notation throughout the paper. The domain of
definition of a point-to-point function F is denoted by DomF . The effective domain
of a function f : E → (−∞,∞] is denoted as dom f := {x ∈ E : f(x) < +∞}. The
range and null spaces of a linear operator A : E → E are denoted by Range (A) :=
{Ah : h ∈ E} and N (A) := {u ∈ E : Au = 0}, respectively. The space of self-
adjoint linear operators in E is denoted by SE and the cone of self-adjoint positive
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semidefinite linear operators in E by SE+ , that is,

SE := {A : E→ E : A linear, 〈Ax, x〉 = 〈x,Ax〉 ∀x ∈ E},
SE+ := {A ∈ SE : 〈Ax, x〉 ≥ 0 ∀x ∈ E}.

For A,B ∈ SE, we write A  B (or B � A) whenever B − A ∈ SE+ . The orthogonal
projection of a point x ∈ E onto a closed convex set S ⊂ E is denoted by

PS(x) := argmin {‖x− y‖ : y ∈ S} .
The cardinality of a finite set A is denoted by #A. For t > 0, we let log+(t) :=
max {log(t), 0}. For t ∈ R, �t� stands for the smallest integer grater or equal than t.

2. Technical background. This section contains three subsections. The first
subsection reviews the basic definition and properties of the ε-enlargement of a point-
to-set monotone operator. The second one reviews an underelaxed large-step HPE
method studied in [20] together with its corresponding convergence rate bounds. The
third subsection reviews the definitions and some properties of SC functions and
barriers.

2.1. The ε-enlargement of monotone operators. In this subsection, we
give the definition of the ε-enlargement of a monotone operator and review some of
its properties.

A point-to-set operator T : E ⇒ E is a relation T ⊂ E×E and

T (x) := {v ∈ E : (x, v) ∈ T }.
Alternatively, one can consider T as a multivalued function of E into the family
℘(E) = 2(E) of subsets of E. Regardless of the approach, it is usual to identify T with
its graph

Gr(T ) := {(x, v) ∈ E×E : v ∈ T (x)}.
An operator T : E ⇒ E is monotone if

〈v − ṽ, x− x̃〉 ≥ 0 ∀(x, v), (x̃, ṽ) ∈ Gr(T ),

and it is maximal monotone if it is monotone and maximal in the family of monotone
operators with respect to the partial order of inclusion, i.e., S : E ⇒ E monotone and
Gr(T ) ⊂ Gr(S) imply that S = T .

In [1], Burachik, Iusem, and Svaiter introduced the ε-enlargement of maximal
monotone operators. Here, we extend this concept to a generic point-to-set operator
in E. Given T : E ⇒ E and a scalar ε, define T ε : E ⇒ E as

(2.1) T ε(x) := {v ∈ E : 〈x− x̃, v − ṽ〉 ≥ −ε ∀x̃ ∈ E, ∀ṽ ∈ T (x̃)} ∀x ∈ E.

We now state a few useful properties of the operator T ε that will be needed in
our presentation.

Proposition 2.1. Let T, T ′ : E ⇒ E. Then,
(a) if ε1 ≤ ε2, then T ε1(x) ⊂ T ε2(x) for every x ∈ E;
(b) T ε(x) + (T ′)ε

′
(x) ⊂ (T + T ′)ε+ε′ (x) for every x ∈ E and ε, ε′ ∈ R+;

(c) T is monotone if and only if T ⊂ T 0;
(d) T is maximal monotone if and only if T = T 0;
(e) if T is maximal monotone, {(xk, vk, εk)} ⊂ E×E×R+ converges to (x̄, v̄, ε̄),

and vk ∈ T εk(xk) for every k, then v̄ ∈ T ε̄(x̄).
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Proof. Statements (a), (b), (c), and (d) follow directly from Definition 2.1 and
the definition of (maximal) monotonicity. For a proof of statement (e), see [2].

We now make two remarks about Proposition 2.1. If T is a monotone operator
and ε ≥ 0, it follows from (a) and (d) that T (x) ⊂ T ε(x) for every x ∈ E and hence
that T ε is really an enlargement of T . Moreover, if T is maximal monotone, then (e)
says that T and T ε coincide when ε = 0.

Finally, if T = NX , where NX is the normal cone operator defined in (1.2), then
its ε-enlargement (NX)ε is simply denoted by Nε

X .

2.2. The underelaxed large-step HPE method. This subsection reviews
an underelaxed version of the large-step HPE method presented in [20] and its corre-
sponding convergence rate bounds.

Let T : E ⇒ E be a maximal monotone operator. The monotone inclusion
problem for T consists of finding x ∈ E such that

(2.2) 0 ∈ T (x).

The underelaxed large-step HPE method for solving (2.2) is as follows:
(0) Let z0 ∈ E, c > 0, ξ ∈ (0, 1], and σ ∈ [0, 1) be given and set k = 1;
(1) if 0 ∈ T (zk−1), then stop; else, compute stepsize λk and (xk, vk, εk) ∈ E ×

E× R+ such that

(2.3) vk ∈ T εk(xk), ‖λkvk + xk − zk−1‖2 + 2λkεk ≤ σ2‖xk − zk−1‖2

and

(2.4) λk‖xk − zk−1‖ ≥ c > 0;

(2) choose a relaxation parameter ξk ∈ [ξ, 1], define zk = zk−1 − ξkλkvk, set
k ← k + 1, and go to step 1.
end

We now make a few remarks about the underelaxed large-step HPE method.
First, the special case in which ξ = 1, and hence ξk = 1 for all k, corresponds to
the large-step HPE method introduced in [7], which in turn is a generalization of a
large-step HPE method for smooth operators presented in [5]. Second, the iteration-
complexities of the HPE method and its large-step counterpart were established in [5]
and [7], respectively. Third, similar to the large-step HPE method of [7], its un-
derelaxed version stated above does not specify how to compute λk and (xk, vk, εk)
satisfying (2.3) and (2.4). The particular choice of λk and the algorithm used to
compute (xk, vk, εk) will depend on the particular instance of the method and the
properties of the operator T . Fourth, instances of the underelaxed HPE method are
assumed to be able to (either implicitly or explicitly) compute the above quantities
(and in particular the two residuals vk and εk which measures the accuracy of xk

as as approximate solution of (2.2)) a posteriori, i.e., using information gathered up
to the current iteration. Hence, it is assumed that the sequence of tolerances {εk}
is computed as the method progresses instead of being specified by the user a priori
(e.g., [18] assumes that {εk} is a summable sequence given a priori).

The following result presents global pointwise and ergodic convergence rates for
the underelaxed large-step HPE method.
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Proposition 2.2. For every k ≥ 1, define

Λk :=
k∑

i=1

ξiλi, v̄k :=
k∑

i=1

ξiλi

Λk
vi,

x̄k :=
k∑

i=1

ξiλi

Λk
xi, ε̄k :=

k∑
i=1

ξiλi

Λk
[εi + 〈xi − x̄k, vi〉].

If T−1(0) is nonempty and d0 denotes the distance of z0 to T−1(0), then the following
statements hold for every k ≥ 1:

(a) There exists i0 ≤ k such that

‖vi0‖ ≤
d20

cξ(1− σ)k
, εi0 ≤

σ2d30
2cξ3/2(1− σ2)3/2k3/2

.

(b) v̄k ∈ T ε̄k(x̄k),

‖v̄k‖ ≤ 2d20
cξ3/2(1− σ2)1/2k3/2

, ε̄k ≤ 2d30
cξ3/2(1− σ)2(1− σ2)1/2k3/2

.

Proof. For a proof of this result, see Proposition 3.4 of [20].

2.3. Basic properties of self-concordant functions and barriers. In this
subsection, we review some basic properties of SC functions and barriers which will
be useful in our presentation. A detailed treatment of this topic can be found for
example in [12] and [15].

Given A ∈ SE+ , we consider two types of seminorms induced by A. The first one
is the seminorm in E defined as

(2.5) ‖u‖A := 〈Au, u〉1/2 = ‖A1/2u‖ ∀u ∈ E.

The second one is defined as

(2.6) ‖u‖∗A := sup {2〈u, h〉 − 〈Ah, h〉 : h ∈ E}1/2 ∀u ∈ E.

Some basic properties of these seminorms are presented in Lemma A.1 of the appendix.
We observe that ‖·‖∗A is a nonnegative function which may take value +∞, and hence
is not a norm on E. However, the third statement of Lemma A.1 justifies the use of
a norm notation for ‖ · ‖∗A.

Definition 2.3. A proper closed convex function h : E→ (−∞,∞] is said to be
SC if domh is open, h is three-times continuously differentiable and

h′′′(x)[u, u, u] ≤ 2‖u‖3/2∇2h(x) ∀x ∈ domh, ∀u ∈ E.

Additionally, if ∇2h(x) is nonsingular for every x ∈ domh, then h is said to be a
nondegenerate SC-function.

Definition 2.4. For some scalar η ≥ 0, an SC-function h is said to be a η-SC
barrier whenever

‖∇h(x)‖∗∇2h(x) ≤
√
η ∀x ∈ domh.

It is easy to see that any constant function h : E→ R is an η-SC barrier for any
η ≥ 0. Also, it is well known that if h is an η-SC barrier which is not constant, then
η ≥ 1 (see, for example, Remark 2.3.1 of [15]).
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The next result gives some basic properties of an SC-function.
Proposition 2.5. If h is an SC-function and x ∈ domh is such that ‖∇h(x)‖∗∇2h(x)

< 1, then the following statements hold:
(a) ∇h(x) ∈ Range(∇2h(x)) and, for every x+ such that ∇h(x) +∇2h(x)(x+ −

x) = 0, we have x+ ∈ domh and

‖∇h(x+)‖∗∇2h(x+) ≤
( ‖∇h(x)‖∗∇2h(x)

1− ‖∇h(x)‖∗∇2h(x)

)2

.

(b) h has a minimizer x∗ over E satisfying

‖x∗ − x‖∇2h(x) ≤
‖∇h(x)‖∗∇2h(x)

1− ‖∇h(x)‖∗∇2h(x)

.

Proof. The first inclusion in (a) follows from the assumption that ‖∇h(x)‖∗∇2h(x) <

1 and Lemma A.1(b) with A = ∇2h(x). Moreover, the second inclusion and the in-
equality in (a) follow from Lemma A.1(b) and Theorems 2.1.1(ii) and 2.2.1 with s = 1
of [15]. Also, the first part of (b) follows from Theorem 2.2.2 of [15]. We also observe
that the inequality in (b) has already been established in Theorem 4.1.13 of [12] under
the assumption that h is a nondegenerate SC-function (see also [11]). We now prove
this inequality for the case in which h is a degenerate SC-function. Define the function
hν as

hν(x̃) = h(x̃) +
ν

2
‖x̃− x‖2 ∀x̃ ∈ E.

Then, ∇hν(x) = ∇h(x) and ∇2hν(x) = ∇2h(x) + νI � ∇2h(x), and hence

‖∇hν(x)‖∗∇2hν(x)
= ‖∇h(x)‖∗∇2hν(x)

≤ ‖∇h(x)‖∗∇2h(x) < 1,

where the first inequality follows from Lemma A.1(a). In view of the observation made
at the beginning of this proof and the fact that hν is a nondegenerate SC-function, it
follows that hν has a unique minimizer x∗

ν in E satisfying

‖x∗
ν − x‖∇2h(x) ≤ ‖x∗

ν − x‖∇2hν(x) ≤
‖∇hν(x)‖∗∇2hν(x)

1− ‖∇hν(x)‖∗∇2hν(x)

≤
‖∇h(x)‖∗∇2h(x)

1− ‖∇h(x)‖∗∇2h(x)

,

where the first and third inequalities follow from Lemma A.1(a). The result now
follows by noting that Lemma A.2 implies that x∗

ν converges to the minimizer x∗ of
h closest to x with respect to ‖ · ‖ as ν → 0.

The following result is equivalent to Proposition 2.5(a), but it is in a form which
is more suitable for our analysis in this paper. For every x ∈ domh and y ∈ E, define

(2.7) Lh,x(y) := ∇h(x) +∇2h(x)(y − x).

Proposition 2.6. If h is an SC-function and x ∈ domh and y ∈ E are points
such that r := ‖y − x‖∇2h(x) < 1, then y ∈ domh and

(2.8) ‖∇h(y)− Lh,x(y)‖∗∇2h(y) ≤
(

r

1− r

)2

.
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Proof. Let x ∈ domh and y ∈ E be points such that r := ‖y − x‖∇2h(x) < 1 and
define the function

φ(x̃) = h(x̃)− 〈Lh,x(y), x̃〉 ∀x̃ ∈ E.

Then, for every x̃ ∈ domh, it follows from (2.7) that

(2.9) ∇φ(x̃) = ∇h(x̃)−∇h(x)−∇2h(x)(y − x), ∇2φ(x̃) = ∇2h(x̃),

and hence

(2.10) ‖∇φ(x)‖∗∇2φ(x) = ‖∇2h(x)(y − x)‖∗∇2h(x) = ‖y − x‖∇2h(x) < 1,

where the last equality follows from Lemma A.1(b). Since φ is also an SC-function
and (2.9) implies that

∇φ(x) +∇2φ(x)(y − x) = 0,

it follows from (2.10) and Proposition 2.5(a) that y ∈ domh and

‖∇φ(y)‖∗∇2φ(y) ≤
( ‖∇φ(x)‖∗∇2φ(x)

1− ‖∇φ(x)‖∗∇2φ(x)

)2

and hence that (2.8) holds in view of (2.9) and (2.10).
It is shown in Proposition 2.3.2(i.2) of [15] that 〈∇h(y), u − y〉 ≤ η for every

y, u ∈ domh, or, equivalently, ∇h(y) ∈ Nη
D(y) for every y ∈ domh, where D :=

cl(domh). The proposition below extends this result to vectors close to ∇h(y) with
respect to ‖·‖∗∇2h(y). Its proof closely follows that of Theorem 4.2.7 of [12] except that

Proposition 2.5(b) is used in order to circumvent the restrictive assumption made in
[12] that h is a nondegenerate η-SC barrier with bounded domain.

Proposition 2.7. Let h be an η-SC barrier and let y ∈ domh and q ∈ E satisfy
‖q −∇h(y)‖∗∇2h(y) ≤ a < 1. Then, 〈q, u− y〉 ≤ δ for every u ∈ domh, where

δ := η +
(
√
η + a)a

1− a
.

As a consequence, q ∈ N δ
D(y), where D := cl (domh).

Proof. Define the function φ as

φ(x) = −〈q, x〉+ h(x) ∀x ∈ E.

Since ∇φ(x) = −q+∇h(x) and ∇2φ(x) = ∇2h(x) for every x ∈ domφ, the proximity
assumption of the proposition, Definition 2.4, and Lemma A.1(e) imply that

(2.11) ‖∇φ(y)‖∗∇2h(y) ≤ a, ‖q‖∗∇2h(y) ≤
√
η + a.

Since φ is an SC-function, it follows from (2.11) and Proposition 2.5(b) with h = φ
and x = y that function φ has a minimizer x∗ satisfying

‖x∗ − y‖∇2h(y) ≤ a

1− a
.

This conclusion together with (2.11) and Lemma A.1(f) yield

〈q, x∗ − y〉 ≤ ‖q‖∗∇2h(y)‖x∗ − y‖∇2h(y) ≤
(
√
η + a)a

1− a
.
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Since ∇φ(x∗) = 0, or, equivalently q = ∇h(x∗), it follows from the special case of this
proposition with a = 0 and y = x∗ (see the first remark on the paragraph preceding
the proposition) that

〈q, u− x∗〉 = 〈∇h(x∗), u− x∗〉 ≤ η ∀u ∈ domh.

The first part of the proposition now follows by combining the last two inequalities.
The second part follows from the first one and the definition of D and N δ

D(·).
3. The main problem and preliminary technical results. This section

motivates our approach toward obtaining a solution of the main problem, namely,
the MI problem (1.1), and establishes some important preliminary technical results
related to it. It contains two subsections. The first one introduces a family of proximal
interior nonlinear equations Gμ,ν,z(x) = 0 parametrized by (μ, ν, z) ∈ R++×R++×E
whose unique solution x(μ, ν, z) is shown to approach a solution of (1.1) under suitable
conditions on the triple of parameters (μ, ν, z). The second subsection introduces
a neighborhood Nμ,ν,z(β) of x(μ, ν, z) whose size depends on a specified constant
β ∈ (0, 1) and shows that it enjoys a useful quadratic convergence property, i.e., the
full Newton step with respect to the system Gμ,ν,z(x) = 0 from any point in Nμ,ν,z(β)
belongs to the smaller neighborhood Nμ,ν,z(β

2).
Our problem of interest in this paper is the MI problem (1.1), where X ⊂ E and

F : DomF ⊂ E→ E satisfy the following conditions:
(C.1) X is closed convex and is endowed with an η-SC barrier h such that cl (domh) =

X .
(C.2) F is monotone and differentiable on X ⊂ DomF .
(C.3) F ′ is L-Lipschitz continuous on X , i.e.,

‖F ′(x̃)− F ′(x)‖ ≤ L‖x̃− x‖ ∀x, x̃ ∈ X,

where the norm on the left-hand side is the operator norm.
(C.4) The solution set X∗ of problem (1.1) is nonempty.

Observe that assumptions C.1 and C.2 imply that the operator T = F + NX is
maximal monotone (see, for example, Proposition 12.3.6 of [3]). Also, assumption
C.3 implies that

(3.1) ‖F (y)− F (x)− F ′(x)(y − x)‖ ≤ L

2
‖y − x‖2 ∀x, y ∈ X.

3.1. Proximal interior map. This subsection introduces a proximal interior
map whose argument is a triple (μ, ν, z) ∈ R++ × R++ × E and gives conditions on
these parameters under which the corresponding image point x(μ, ν, z) approaches a
solution of problem (1.1).

The classical central path for (1.1) assigns to each μ > 0 the solution xμ of

(3.2) μF (x) +∇h(x) = 0.

Under some regularity conditions, it can be shown that the path μ > 0 �→ xμ is well-
defined and xμ approaches the solution set of (1.1) as μ goes to ∞ (see, for example,
[15]). Interior-point methods for (1.1) which follow this path have been proposed in
[15] under the assumption that h satisfies C.1 and F is β-compactible with h for some
β ≥ 0 (see Definition 7.3.1 in [15]). It is worth noting that assumptions C.1–C.3 do
not imply that F is β-compactible with h for any β ≥ 0 even when F is an analytic
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map. Hence, it is not clear how the interior-point path-following methods of [15] can
be used to solve (1.1) under assumptions C.1–C.3.

This paper pursues a different strategy based on the following two ideas: (i) a
parametrized proximal term is added to∇h, and (ii) path-following steps are combined
with proximal extragradient steps. Next, we discuss idea (i). Instead of the perturbed
equation (3.2), our approach is based on the regularized perturbed equation

(3.3) Gμ,ν,z(x) = 0

parametrized by (μ, ν, z) ∈ R++ × R++ × E, where Gμ,ν,z : domh ⊂ E → E is the
map defined as

(3.4) Gμ,ν,z(x) := μF (x) +∇h(x) + ν(x − z) ∀x ∈ domh.

As opposed to (3.2), (3.4) has a (unique) solution even when the solution set of (1.1)
is empty or unbounded. Throughout this section, we refer to this solution, which we
denote by x(μ, ν, z), as the proximal interior point associated with (μ, ν, z). Moreover,
we refer to the map (μ, ν, z) ∈ R++ × R++ × E �→ x(μ, ν, z) as the proximal interior
map.

The following result describes sufficient conditions on the parameter (μ, ν, z) that
guarantee that x(μ, ν, z) approaches the solution set of (1.1).

Proposition 3.1. If {(μk, νk, zk)} ⊂ R++ × R++ × E is a sequence such that
{zk} is bounded and limk→∞ μk/νk =∞ and

(3.5) νk ≥ ν̄ > 0 ∀k ≥ 0

for some ν̄ > 0, then {x(μk, νk, zk)} is bounded and every accumulation point of
{x(μk, νk, zk)} is a solution of (1.1).

Proof. For any k ≥ 0, define

(3.6) xk := x(μk, νk, zk), vk := F (xk) +
1

μk
∇h(xk), λk :=

μk

νk
, εk :=

η

μk
,

where η is the SC parameter of h (see Definition 2.4). Note that the assumptions of
the proposition imply that

(3.7) lim
k→∞

λk =∞, lim
k→∞

εk = 0.

Using (3.6) and the fact that xk satisfies (3.3) with (μ, ν, z) = (μk, νk, zk), we conclude
that

(3.8) vk =
zk − xk

λk
.

Also, the definition of vk in (3.6) implies

(3.9) vk ∈ (F +Nεk
X ) (xk) ⊂ T εk(xk),

where the first inclusion is due to the last claim of Proposition 2.7 with y = xk,

q = ∇h(xk), and a = 0 and the fact that (1/μk)N
η
X(·) = N

η/μk

X (·), and the second
inclusion follows from Proposition 2.1 and the definition of T in (1.1). Now, let
x̂k := (I + λkT )

−1(zk). Using the fact that (I + λkT )
−1 is nonexpansive (see, for
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example, Proposition 12.3.1 of [3]), we easily see that {x̂k} is bounded. Also, the
definition of x̂k implies that

(3.10) v̂k :=
zk − x̂k

λk
∈ T (x̂k).

The latter conclusion together with (3.9) and (2.1) then imply that

−εk ≤ 〈v̂k − vk, x̂k − xk〉 = −‖x̂k − xk‖2
λk

,

where the equality is due to (3.8) and (3.10). Hence,

‖x̂k − xk‖ ≤
√
λkεk =

√
η

νk
≤
√

η

ν̄
,

where the equality follows from (3.6) and the second inequality follows from (3.5). The
latter two conclusions then imply that the sequence {xk} is bounded and hence that
the first assertion of the proposition holds. In view of (3.7), (3.8), and the boundedness
of {xk} and {zk}, we then conclude that limk→∞ vk = 0. This conclusion together
with (3.7) and Proposition 2.1(e) then imply that any accumulation point x∗ of {xk}
satisfies 0 ∈ T (x∗). Hence, the last assertion of the proposition follows.

3.2. A neighborhood of a proximal interior point. This subsection intro-
duces a neighborhood, denoted by Nμ,ν,z(β), of x(μ, ν, z) whose size depends on a
specified constant β ∈ (0, 1). These neighborhoods will play an important role in the
method of section 4. The main result of this subsection shows that a Newton itera-
tion with respect to (3.3) from a point x in Nμ,ν,z(β) yields a point x+ ∈ Nμ,ν,z(β

2),
thereby showing that these neighborhoods possess the quadratic convergence property
with respect to a Newton iteration. It also shows that the above Newton iteration
can be used to generate an inexact solution of a prox inclusion corresponding to (1.1)
with explicit error bounds on its residuals.

We first introduce some preliminary notation and results. For x ∈ domh and
ν > 0, define the norms

‖u‖ν,x := ‖u‖∇2h(x)+νI , ‖u‖∗ν,x := ‖u‖∗∇2h(x)+νI ∀u ∈ E.

When ν = 0, we denote the above (semi)norms simply by ‖·‖x and ‖·‖∗x, respectively.
We have the following simple results.
Lemma 3.2. For any x ∈ domh, ν > 0, and u, v ∈ E, we have

(3.11)

‖u‖ν,x =
√
ν‖u‖2 + ‖u‖2x, ‖u‖∗ν,x ≤ min

{
‖u‖∗x,

‖u‖√
ν

}
, |〈u, v〉| ≤ ‖u‖ν,x‖v‖∗ν,x.

Proof. The proof of this result follows immediately from the definition of the
above norms and Proposition A.1.

Lemma 3.3. For any x ∈ domh, ν′, ν > 0, and u ∈ E, we have

‖u‖ν′,x ≤ max

{
1,

√
ν′

ν

}
‖u‖ν,x, ‖u‖∗ν′,x ≤ max

{
1,

√
ν

ν′

}
‖u‖∗ν,x.

Proof. This result follows from the definition of the above norms and the fact
that the assumption ν < ν′ implies that

ν

ν′
(∇2h(x) + ν′I)  ∇2h(x) + νI  ∇2h(x) + ν′I.
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The following result gives a simple but crucial estimate for the size of the Newton
direction of the map Gμ,ν,z defined in (3.4) at x, i.e., the vector satisfying

(3.12) G′
μ,ν,z(x)dx +Gμ,ν,z(x) = 0,

in terms of the size of Gμ,ν,z(x).
Lemma 3.4. Let x ∈ domh, z ∈ E, and μ, ν > 0 be given and let dx denote the

Newton direction of Gμ,ν,z at x. Then, ‖dx‖ν,x ≤ ‖Gμ,ν,z(x)‖∗ν,x.
Proof. Using the definition of Gμ,ν,z , relation (3.12), the fact that F ′(x) is positive

semidefinite, and the definition of the norm ‖ · ‖ν,x, we have

‖dx‖2ν,x = 〈dx, (∇2h(x) + νI)dx〉 ≤ 〈dx, (μF ′(x) +∇2h(x) + νI)dx〉
= 〈dx, G′

μ,ν,z(x)dx〉 = −〈dx, Gμ,ν,z(x)〉 ≤ ‖dx‖ν,x‖Gμ,ν,z(x)‖∗ν,x,

where the last inequality follows from (3.11). The result now trivially follows from
the above relation.

The following result provides some important estimates of a Newton iteration
with respect to Gμ,ν,z .

Proposition 3.5. Let x ∈ domh, z ∈ E, and μ, ν > 0 be given and consider
the map Lh,x(·) defined in (2.7). Assume that the Newton direction dx of Gμ,ν,z at x
satisfies ‖dx‖x < 1 and define x+ = x+ dx. Then, x+ ∈ domh,

‖∇h(x+)− Lh,x(x
+)‖∗x+ ≤

( ‖dx‖x
1− ‖dx‖x

)2

,(3.13)

‖μF (x+) + Lh,x(x
+) + ν(x+ − z)‖ ≤ μL

2
‖dx‖2,(3.14)

and

‖Gμ,ν,z(x
+)‖∗ν,x+ ≤ max

{
μL

2ν3/2
,

1

(1− ‖dx‖x)2
}
‖dx‖2ν,x.(3.15)

Proof. Since ‖x+ − x‖x = ‖dx‖x < 1, the inclusion x+ ∈ domh and (3.13) follow
from Proposition 2.6 with y = x+. Using the definition of Lh,x(·) in (2.7) and relation
(3.12), it is easy to see that

μF (x+) + Lh,x(x
+) + ν(x+ − z) = μ

(
F (x+)− [F (x) + F ′(x)(x+ − x)

] )
,

which combined with (3.1) and the fact that x+ = x + dx yields (3.14). Now, using
the definition of Gμ,ν,z , the triangle inequality for norms, the first inequality in (3.11),
and relations (3.13) and (3.14), we conclude that

‖Gμ,ν,z(x
+)‖∗ν,x+

≤ ‖μF (x+) + Lh,x(x
+) + ν(x+ − z)‖∗ν,x+ + ‖∇h(x+)− Lh,x(x

+)‖∗ν,x+

≤ ν−1/2‖μF (x+) + Lh,x(x
+) + ν(x+ − z)‖+ ‖∇h(x+)− Lh,x(x

+)‖∗x+

≤ μL

2ν3/2
(ν‖dx‖2) + 1

(1− ‖dx‖x)2 ‖dx‖
2
x,

which together with the equality in (3.11) immediately imply (3.15).
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The following result introduces the measure which has the desired quadratic be-
havior under a Newton step with respect to Gμ,ν,z .

Proposition 3.6. Let θ ∈ [0, 1), μ, ν > 0, x ∈ domh, and z ∈ E be given and
define

(3.16) γμ,ν(θ) = max

{
μL

2ν3/2
,

1

(1− θ)2

}
.

Let dx denote the Newton direction of Gμ,ν,z at x and define x+ = x+ dx. Then, the
condition

‖Gμ,ν,z(x)‖∗ν,x ≤ θ

implies that x+ ∈ domh and

γμ,ν(θ)‖Gμ,ν,z(x
+)‖∗ν,x+ ≤

[
γμ,ν(θ)‖Gμ,ν,z(x)‖∗ν,x

]2
.

Proof. To prove the proposition, assume that ‖Gμ,ν,z(x)‖∗ν,x ≤ θ. This assump-
tion, Lemma 3.4, and the first relation in (3.11) yield

‖dx‖x ≤ ‖dx‖ν,x ≤ ‖Gμ,ν,z(x)‖∗ν,x ≤ θ < 1,

which together with Proposition 3.5 then imply that x+ ∈ domh and

γμ,ν(θ)‖Gμ,ν,z(x
+)‖∗ν,x+ ≤ γμ,ν(θ)

2‖dx‖2ν,x ≤
[
γμ,ν(θ)‖Gμ,ν,z(x)‖∗ν,x

]2
.

We now introduce the neighborhood Nμ,ν,z(β) of the proximal interior point
x(μ, ν, z) with a scalar β ≥ 0 which will play an important role in the method of
section 4. Indeed, for a given scalar β ≥ 0, define the β-neighborhood of x(μ, ν, z)

(3.17) Nμ,ν,z(β) := {x ∈ domh : γμ,ν‖Gμ,ν,z(x)‖∗ν,x ≤ β},
where

(3.18) γμ,ν = max

{
μL

2ν3/2
, 4

}
.

The main result of this section stated below shows that the Newton iterate x+ =
x+ dx with x ∈ Nμ,ν,z(β) belongs to the smaller neighborhood Nμ,ν,z(β

2) and gener-

ates a residual pair (v+, ε+) for x+ (in the strong sense that v+ ∈ (F+Nε+

X )(x+)) with
explicit bounds on its size (see (3.22)). It also quantifies the quality of (x+, v+, ε+)
as an approximate solution of the proximal system

v ∈ (F +NX)(x), λv + x− z = 0,

where λ = μ/ν. (See the inequality in (3.21).)
Proposition 3.7. Let β ∈ [0, 1), (μ, ν, z) ∈ R++ × R++ × E, and x ∈ Nμ,ν,z(β)

be given and consider the map Lh,x(·) defined in (2.7). Also, let dx denote the Newton
direction of Gμ,ν,z at x and define x+ = x+dx. Then, the following statements hold:

(a) x+ ∈ Nμ,ν,z(β
2) and

(3.19) ‖∇h(x+)− Lh,x(x
+)‖∗x+ ≤ β2

γμ,ν
.
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(b) The point x+ and the triple (λ+, v+, ε+) defined as

(3.20) λ+ :=
μ

ν
, v+ := F (x+) +

1

μ
Lh,x(x

+), ε+ :=
1

μ

(
η +

ax(ax +
√
η)

1− ax

)
,

where

ax :=

( ‖dx‖x
1− ‖dx‖x

)2

,

satisfy

v+ ∈ (F +Nε+

X )(x+), ‖λ+v+ + x+ − z‖2 + 2λ+ε+ ≤ 2

ν

(√
η +

β2

2

)2

(3.21)

and

(3.22) ‖v+‖ ≤
√
ν

μ

[
β2

4
+
√
ν‖x+ − z‖

]
, ε+ ≤ 1

μ

[
η +

β2

3

(
β2

4
+
√
η

)]
.

Proof. Noting that the definition of γμ,ν in (3.18) implies that γμ,ν ≥ 4 and using
Lemma 3.4, the first relation in (3.11), definition (3.17), and the assumptions that
β < 1 and x ∈ Nμ,ν,z(β), we conclude that

(3.23) ‖dx‖x ≤ ‖dx‖ν,x ≤ ‖Gμ,ν,z(x)‖∗ν,x ≤
β

γμ,ν
≤ β

4
≤ 1

2

and hence that

(3.24) ax =

( ‖dx‖x
1− ‖dx‖x

)2

≤ 4‖dx‖2x ≤
β2

γμ,ν
≤ β2

4
< 1.

Now, relation (3.23), Proposition 3.6 with θ = 1/2, definition (3.17), and the fact that
γμ,ν(1/2) = γμ,ν in view of (3.16) and (3.18) imply the inclusion in (a). Moreover,
relations (3.23) and (3.24) together with conclusion (3.13) of Proposition 3.5 then
imply that (3.19) holds. Also, the conclusion that ax < 1, (3.13) and Proposition 2.7
with y = x+ imply that

(3.25) Lh,x(x
+) ∈ N δ

X(x+),

where

(3.26) δ := η +
ax(ax +

√
η)

1− ax
≤ η+

(β2/4)[(β2/4) +
√
η]

1− (β2/4)
≤ η +

β2

3

[
β2

4
+
√
η

]
,

due to (3.24) and the fact that β < 1. The above two relations together with the
definitions of v+ and ε+ in (3.20), relations (3.25) and (3.26), and the definition of
Nε

X imply the inclusion in (3.21) and the second inequality in (3.22). Moreover, using
the definitions of v+ and λ+ in (3.20), definition (3.18), inequalities (3.14) and (3.23),
and the first relation in (3.11), we have

‖λ+v+ + x+ − z‖ = 1

ν
‖μF (x+) + Lh,x(x

+) + ν(x+ − z)‖(3.27)

≤ μL

2ν
‖dx‖2 ≤ μL

2ν2
‖dx‖2ν,x ≤

γμ,ν√
ν
‖dx‖2ν,x ≤

β2

4
√
ν
,
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which together with the definition of ε+ in (3.20) and relation (3.26) then imply that

‖λ+v+ + x+ − z‖2+2λ+ε+ ≤ 1

ν

{
β4

16
+ 2

[
η +

β2

3

(
β2

4
+
√
η

)]}
≤ 2

ν

(√
η +

β2

2

)2

.

To end the proof of the proposition, observe that the first inequality in (3.22) follows
from (3.27), the triangle inequality, and the definition of λ+ in (3.20).

The iteration-complexity results derived in subsection 4.2 for the method pre-
sented in subsection 4.1 are based on the following two notions of approximate solu-
tions for (1.1). Given a pair of tolerances (ρ̄, ε̄) ∈ R++×R++, the first notion consists
of a triple (x, v, ε) ∈ X ×E× R++ satisfying

(3.28) v ∈ (F +Nε
X)(x), ‖v‖ ≤ ρ̄, ε ≤ ε̄,

while the second one consists of a triple (x, v, ε) ∈ X ×E× R++ satisfying

(3.29) v ∈ (F +NX)ε(x), ‖v‖ ≤ ρ̄, ε ≤ ε̄.

Since (F+Nε
X)(x) ⊂ (F+NX)ε(x) for every x ∈ E, we observe that the first condition

implies the second one.
Note that the inclusion in (3.21) shows that the triple (x+, v+, ε+) generated

according to Proposition 3.7 satisfies the inclusion in (3.28). If in addition the quantity

max

{√
ν

μ
,
1

μ
,
ν

μ
‖x+ − z‖

}

is sufficiently small, then the inequalities in (3.28) also hold in view of (3.22).

4. The HPE self-concordant primal barrier method. This section presents
an underelaxed HPE SC primal barrier method, referred simply to as the HPE interior-
point (HPE-IP) method, for solving the monotone variational inequality problem
(1.1). The HPE-IP method is a hybrid algorithm whose iterations can be viewed as
either path-following ones or large-step HPE iterations as described in subsection 2.2.

This section is divided in two subsections. The first one states the HPE-IP method
and analyzes basic properties of the aforementioned iterations. The second one es-
tablishes the iteration-complexity of the HPE-IP method using the convergence rate
results of subsection 2.2 and the results of the first subsection.

4.1. The method and preliminary results. This subsection states the HPE-
IP method and derives preliminary results about the behavior of its two types of
iterations.

We start by stating the HPE-IP method, which is then followed by several remarks
whose goal is to motivate and explain the main ideas behind it:

(0) Let σ, β ∈ (0, 1) and a quadruple (x0, z0, μ0, ν0) ∈ domh × E× R++ × R++

such that

(4.1) x0 ∈ Nμ0,ν0,z0(β)

be given, set k = 1, and define
(4.2)

γ0 := max

{
μ0L

2ν
3/2
0

, 4

}
, τ1 :=

β(1 − β)

γ0(
√
η + 1)

(
4 +

√
2

σ

)−1

, τ2 :=
β(1− β)

3γ0
√
η + 1

;
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(1) set (x, z, μ, ν) = (xk−1, zk−1, μk−1, νk−1), compute the Newton direction dx
of the map Gμ,ν,z defined in (3.4) at x, and set x+ = x+ dx;

(2.a) if
√
ν‖x+ − z‖ ≤ √2(√η + 1)/σ, then

(4.3) μ+ = μ(1 + τ1)
3, ν+ = ν(1 + τ1)

2, z+ = z;

(2.b) else

(4.4) μ+ =
μ

(1 + τ2)3
, ν+ =

ν

(1 + τ2)2
, z+ = z − τ2

1 + τ2

(μ
ν

)
v+,

where v+ is as in (3.20);
(3) set (xk, zk, μk, νk) = (x+, z+, μ+, ν+) and (vk, εk) = (v+, ε+), where ε+ is as

in (3.20);
(4) set k ← k + 1 and go to step 1.

end
We now make a several remarks about the HPE-IP method. First, in view of the

update rule for {μk} and {νk} in step 2.a or 2.b, it follows that μk/ν
3/2
k = μk−1/ν

3/2
k−1

for every k ≥ 1 and hence that the sequence {(μk, νk)} belongs to the one-dimensional
curve

(4.5) C(μ0, ν0) :=

{
(μ, ν) ∈ R

2
++ :

μ

ν3/2
=

μ0

ν
3/2
0

}
.

Second, the curve C(μ0, ν0) can be parametrized by a single parameter t > 0 as

(4.6) C(μ0, ν0) :=
{
(μ, ν) = (t3μ0, t

2ν0) : t > 0
}
.

Clearly, the parameter tk corresponding to (μk, νk) is given by

(4.7) tk :=
μk

νk

(
μ0

ν0

)−1

∀k ≥ 0.

Third, for every (μ, ν) ∈ C(μ0, ν0) and z ∈ E, the neighborhood Nμ,ν,z(β) defined in
(3.17) simplifies to

Nμ,ν,z(β) =
{
x ∈ domh : ‖Gμ,ν,z(x)‖∗ν,x ≤ β/γ0

}
due to (4.5) and the definition of γμ,ν and γ0 in (3.18) and (4.2), respectively. Fourth,
we have

tk =

{
(1 + τ1)tk−1 if step 2.a is performed;
tk−1/(1 + τ2) if step 2.b is performed.

Fifth, noting that x0 is chosen so that (4.1) holds, Proposition 4.4(a) below shows that
the condition xk ∈ Nμk,νk,zk(β) ⊂ domh is maintained for every k ≥ 1 and hence that
the Newton direction in step 1 of the HPE-IP method is always well-defined at every
iteration. Sixth, observe that the above method assumes that an initial quadruple
(x0, z0, μ0, ν0) ∈ domh×E×R++×R++ satisfying (4.1) is known. Section 5 describes
a Phase I procedure, and its corresponding iteration-complexity, for finding such a
quadruple.

Before starting the analysis of the HPE-IP method, we first give two additional
remarks to motivate its two types of iteration depending on which of the steps 2.a
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or step 2.b is performed. First, consecutive iterations j ≤ · · · ≤ l in which step 2.a
occurs can be viewed as following the path defined as

(4.8)
{
w(t) = w(t;μ0, ν0, z) := x(t3μ0, t

2ν0, z) : t > 0
}

from t = tj−1 to t = tl, where z = zj−1. Indeed, first note that (4.6) implies that
Nμk,νk,z(β) is a β-neighborhood of the point w(tk) for every k = j−1, . . . , l. Proposi-
tion 3.7(a) shows that xk−1 ∈ Nμk−1,νk−1,z(β) implies that the next iterate xk belongs
to the smaller neighborhood Nμk−1,νk−1,z(β

2) of w(tk−1). Moreover, Proposition 4.2
below then shows that xk lies in the larger neighborhood Nμk,νk,z(β) of w(tk) as long
as μk and νk are computed according to (4.3) (or, equivalently, tk = (1 + τ1)tk−1

under the parametrization (4.7)). Hence, given that xk−1 is close to x(tk−1) in the
sense that xk−1 ∈ Nμk−1,νk−1,z(β), the Newton iterate xk with respect to the map
Gμk−1,νk−1,z from xk−1 is close to x(tk) as long as tk = (1 + τ1)tk−1. Thus, the path
(4.8) is closely followed by the above iterations in a manner that resembles other
well-known path-following methods (see, for example, [15, 17]). In view of the above
discussion, we refer to iterations in which step 2.a occur as path-following iterations.

Second, Proposition 4.3 below shows that for the iterations in which step 2.b oc-
curs (i) the computation of (zk, xk) = (z+, x+) corresponds to performing an undere-
laxed large-step HPE iteration to the operator F +NX with stepsize λk = μk/νk and
underelaxation factor ξk = τ2/(1 + τ2) and (ii) the update of the parameters (μ, ν, z)
to (μ+, ν+, z+) keeps x+ in the β-neighborhood of the updated triple (μ+, ν+, z+).
Note that these iterations are updating the path (i.e., the variable z) and are followed
by a sequence (if any) of consecutive path-following iterations. We refer to iterations
in which step 2.b occurs as large-step HPE iterations.

The following result studies how the function ‖Gμ,ν,z(x)‖∗ν,x changes in terms of
the scalars μ and ν (and a possible update of z).

Proposition 4.1. Let x ∈ domh, z, p ∈ E, and scalars α ≥ 0 and μ, μ+, ν, ν+ >
0 be given and define

(4.9) z+ = z − α
(μ
ν

) (
F (x) + μ−1p

)
.

Then, we have

‖Gμ+,ν+,z+(x)‖∗ν+,x ≤
(
μ+

μ
+ α

ν+

ν

)
max

{
1,

√
ν

ν+

}
‖Gμ,ν,z(x)‖∗ν,x +

∣∣∣∣μ+

μ
− 1

∣∣∣∣√η
+α

ν+

ν
‖p−∇h(x)‖∗x +

√
ν

ν+

∣∣∣∣(1− α)
ν+

ν
− μ+

μ

∣∣∣∣ √ν‖x− z‖.

Proof. Let x ∈ domh be given. By (3.4) and (4.9), we have

Gμ+,ν+,z+(x) = μ+F (x) +∇h(x) + ν+(x− z+)

= μ+F (x) +∇h(x) + ν+
[
x− z + α

(μ
ν

) (
F (x) + μ−1p

)]
=

(
μ+

μ
+ α

ν+

ν

)
μF (x) +∇h(x) + ν+(x− z) +

ν+

ν
αp

=

(
μ+

μ
+ α

ν+

ν

)
Gμ,ν,z(x) +

(
1− μ+

μ

)
∇h(x) + ν+

ν
α(p−∇h(x))

+

[
(1− α)

ν+

ν
−
(
μ+

μ

)]
ν(x− z).
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Using the triangle inequality and Lemma 3.2, we then conclude that

‖Gμ+,ν+,z+(x)‖∗ν+,x ≤
(
μ+

μ
+ α

ν+

ν

)
‖Gμ,ν,z(x)‖∗ν+,x

+

∣∣∣∣μ+

μ
− 1

∣∣∣∣ ‖∇h(x)‖∗x + α
ν+

ν
‖p−∇h(x)‖∗x

+

∣∣∣∣(1− α)
ν+

ν
− μ+

μ

∣∣∣∣ ν√
ν+
‖x− z‖,

which together with Lemma 3.3, Definition 2.4, and the definition of the seminorm
‖ · ‖∗x preceding Lemma 3.2 imply the conclusion of the proposition.

The following result analyzes an iteration of the HPE-IP method in which a path-
following step is performed. (See the second-to-last remark preceding Proposition
4.1.)

Proposition 4.2. Let β ∈ (0, 1) and σ, μ0, ν0 > 0 be given and assume that
μ, ν > 0 and x, z ∈ E are such that

(4.10) x ∈ Nμ,ν,z(β),
μ

ν3/2
=

μ0

ν
3/2
0

.

Let dx be the Newton direction of Gμ,ν,z at x, and define x+ = x + dx and the triple
(μ+, ν+, z+) according to (4.3). Then, the condition

(4.11)
√
ν‖x+ − z‖ ≤

√
2(
√
η + 1)

σ

implies the following statements:
(a) x+ ∈ Nμ,ν,z(β

2) and x+ ∈ Nμ+,ν+,z+(β).

(b) If (v+, ε+) is as in (3.20), then v+ ∈ (F +Nε+

X )(x+) and

‖v+‖ ≤ (1 + τ1)
2

ν+

(
ν
3/2
0

μ0

)[
β2

4
+

√
2(
√
η + 1)

σ

]
,

ε+ ≤ (1 + τ1)
3

(ν+)3/2

(
ν
3/2
0

μ0

)[
η +

β2

3

(
β2

4
+
√
η

)]
.

Proof. The first inclusion in (a) follows from Proposition 3.7(a). Note that the
definition of τ1 in (4.2) and the fact that γ0 ≥ 4 and η ≥ 1 imply that
(4.12)

τ1 =

(
4 +

√
2

σ

)−1
β(1− β)

γ0(
√
η + 1)

≤
(
4 +

√
2

σ

)−1
β(1 − β)

8
≤ 1

32

(
4 +

√
2

σ

)−1

.

Moreover, the definition of γμ,ν in (3.18), the second condition in (4.10), and the
first two identities in (4.3) imply that γμ+,ν+ = γμ,ν = γ0. These two observations,
Proposition 4.1 with x = x+, α = 0, and p = 0, relations (4.3) and (3.17), and the
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first inclusion in (a) then imply that

γ0‖Gμ+,ν+,z+(x+)‖∗ν+,x+

≤ μ+

μ

[
γ0‖Gμ,ν,z(x

+)‖∗ν,x+

]
+

∣∣∣∣μ+

μ
− 1

∣∣∣∣ γ0√η
+

√
ν

ν+

∣∣∣∣μ+

μ
− ν+

ν

∣∣∣∣ γ0(√ν‖x+ − z‖)

≤ (1 + τ1)
3β2 + [(1 + τ1)

3 − 1]γ0
√
η

+
1

1 + τ1
[(1 + τ1)

3 − (1 + τ1)
2]
γ0
√
2(
√
η + 1)

σ

= β2 + [(1 + τ1)
3 − 1](β2 + γ0

√
η) + (1 + τ1)τ1

γ0
√
2(
√
η + 1)

σ

≤ β2 +

[
(1 + τ1)

3 − 1 + (1 + τ1)τ1

√
2

σ

]
γ0(
√
η + 1)

= β2 + τ1

[
τ21 +

(
3 +

√
2

σ

)
τ1 +

(
3 +

√
2

σ

)]
γ0(
√
η + 1)

≤ β2 + τ1

[
1 +

(
3 +

√
2

σ

)]
γ0(
√
η + 1) = β,

where the second-to-last inequality is due to the fact that β2 ≤ 1 ≤ γ0, the last
inequality is due to (4.12), and the last equality follows from the definition of τ1 in
(4.2). The second inclusion in (a) follows from the above inequality, definition (3.17),
and the fact that γ0 = γμ+,ν+ .

Statement (b) follows from conclusions (3.21) and (3.22) of Proposition 3.7, the
update formula for ν+ in (4.4), the identity in (4.10), and assumption (4.11).

The following result analyzes an iteration of the HPE-IP method in which a large-
step HPE step is performed. (See the last remark preceding Proposition 4.1.)

Proposition 4.3. Let β ∈ (0, 1) and σ, μ0, ν0 > 0 be given and assume that
μ, ν > 0 and x, z ∈ E are such that (4.10) holds. Let dx be the Newton direction of
Gμ,ν,z at x and define x+ = x+ dx, (λ

+, v+, ε+) as in (3.20) and (μ+, ν+, z+) as in
(4.4). Then, the following statements hold:

(a) x+ ∈ Nμ,ν,z(β
2), x+ ∈ Nμ+,ν+,z+(β), and v+ ∈ (F +Nε+

X )(x+).

(b) If, in addition, the condition
√
ν‖x+ − z‖ > √2(√η + 1)/σ holds, then

‖λ+v+ + x+ − z‖2 + 2λ+ε+ ≤ σ2‖x+ − z‖2,

λ+‖x+ − z‖ ≥
(

μ0

ν
3/2
0

) √
2(
√
η + 1)

σ
.

Proof. The first inclusion in (a) follows from Proposition 3.7(a). Note that the
definition of γμ,ν in (3.18), the second condition in (4.10), and the first two identities
in (4.4) imply that γμ+,ν+ = γμ,ν = γ0. Using this observation, Proposition 4.1 with
x = x+, α = τ2/(1 + τ2), and p = Lh,x(x

+) (see (2.7)), and relation (4.4), and noting
that

max

{
1,

√
ν

ν+

}
= 1 + τ2,

μ+

μ
+ α

ν+

ν
=

1

(1 + τ2)2
, (1− α)

ν+

ν
− μ+

μ
= 0,
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we conclude that

γμ+,ν+‖Gμ+,ν+,z+(x+)‖∗ν+,x+

≤ 1

1 + τ2

[
γμ,ν‖Gμ,ν,z(x

+)‖∗ν,x+

]
+

(
1− 1

(1 + τ2)3

)
γ0
√
η

+
τ2

(1 + τ2)3
γμ,ν‖∇h(x+)− Lh,x(x

+)‖∗x+

≤ 1

1 + τ2
β2 +

(
1− 1

(1 + τ2)3

)
γ0
√
η +

τ2
(1 + τ2)3

β2

≤ β2 + 3τ2γ0
√
η ≤ β,

where the second inequality follows from (a), definition (3.17), and conclusion (3.19)
of Proposition 3.7, the third inequality follows from relations 1/(1+ t)+ t/(1+ t)3 ≤ 1
and 1 − 1/(1 + t)3 ≤ 3t for every t > 0, and the last inequality follows from the
definition of τ2 in (4.2). The second inclusion in (a) now immediately follows from
the above relation and definition (3.17). Finally, the third inclusion in (a) is exactly
the inclusion in (3.21).

In order to prove (b), assume now that
√
ν‖x+ − z‖ > √2(√η + 1)/σ. Using the

inequality in (3.21) and the latter assumption, we conclude that

σ2‖x+ − z‖2 > 2(
√
η + 1)2

ν
≥ 2

ν

(√
η +

β2

2

)2

≥ ‖λ+v+ + x+ − z‖2 + 2λ+ε+.

Also, the definition of λ in (3.20), the above assumption, and (4.10) imply that

λ+‖x+ − z‖ =
( μ

ν3/2

)√
ν‖x+ − z‖ >

( μ

ν3/2

) √2(√η + 1)

σ
=

(
μ0

ν
3/2
0

) √
2(
√
η + 1)

σ
.

We have thus shown (b).
The following result follows immediately from Propositions 4.2 and 4.3.
Proposition 4.4. The HPE-IP method is well-defined and the following state-

ments hold for every k ≥ 0:
(a) xk ∈ Nμk,νk,zk(β) and xk+1 ∈ Nμk,νk,zk(β

2).
(b) vk ∈ (F +Nεk

X )(xk).
(c) If step 2.a occurs at iteration k, then zk = zk−1,

‖vk‖ ≤ (1 + τ1)
2

νk

(
ν
3/2
0

μ0

)[
β2

4
+

√
2(
√
η + 1)

σ

]
,

εk ≤ (1 + τ1)
3

ν
3/2
k

(
ν
3/2
0

μ0

)[
η +

β2

3

(
β2

4
+
√
η

)]
.

(d) If step 2.b occurs at iteration k, then

‖λkvk + xk − zk−1‖2 + 2λkεk ≤ σ2‖xk − zk−1‖2,

λk‖xk − zk−1‖ ≥
√
2(
√
η + 1)

σ

(
μ0

ν
3/2
0

)
,

zk = zk−1 − τ2
1 + τ2

λkvk,
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where

(4.13) λk :=
μk−1

νk−1
∀k ≥ 1.

Observe that statements (b) and (d) of Proposition 4.4 imply that iterations in
which step 2.b is performed can be regarded as underelaxed large-step HPE iterations
with respect to the monotone inclusion (1.1) with relaxation parameter τ2/(1 + τ2).

4.2. Iteration-complexity analysis of the HPE-IP method. This subsec-
tion establishes the iteration-complexity of the HPE-IP method using the convergence
rate results of subsection 2.2 and Proposition 4.4.

For every k ≥ 1, let

Ak := {i ≤ k : step 2.a is executed at iteration i}, ak := #Ak,

Bk := {i ≤ k : step 2.b is executed at iteration i}, bk := #Bk,

where the notation #Ak and #Bk stand for the number of elements of Ak and Bk,
respectively.

Lemma 4.5. The following relations hold for every k ≥ 1:

k = ak + bk, μk = μ0
(1 + τ1)

3ak

(1 + τ2)3bk
, νk = ν0

(1 + τ1)
2ak

(1 + τ2)2bk
.

Proof. The above identities follow immediately from the above definitions of Ak,
Bk, ak, and bk and the update formulas (4.3) and (4.4).

The next result describes two threshold values, expressed in terms of the Lipschitz
constant L, the SC parameter η, the tolerance pair (ρ̄, ε̄), and the quantities

(4.14) d0 := min{‖z0 − x∗‖ : x∗ ∈ X∗}, φ0 :=
Lμ0

2ν
3/2
0

,

which have the following properties: if the number bk of large-step HPE iterations
performed by the HPE-IP method ever becomes larger than or equal to the first (resp.,
second) threshold value, then the method yields a triple (x, v, ε) ∈ X×E×R++ satis-
fying (3.28) (resp., (3.29)). We observe, however, that there exists the possibility that
the HPE-IP method never performs that many large-step HPE iterations, and instead
computes the desired approximate solution triple due it performing a sufficiently large
number of path-following iterations. The latter situation will be analyzed within the
proof of Theorem 4.7.

For those k such that Bk �= ∅, define

Λk :=
∑
i∈Bk

λi, x̄k :=
∑
i∈Bk

λi

Λk
xi,(4.15)

v̄k :=
∑
i∈Bk

λi

Λk
vi, ε̄k :=

∑
i∈Bk

λi

Λk
[εi + 〈xi − x̄k, vi − v̄k〉],(4.16)

where λi is defined in (4.13).
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Lemma 4.6. Let a pair (ρ̄, ε̄) ∈ R++ × R++ be given. Then, there exist indices
Kb

1 and Kb
2 such that

(4.17)

Kb
1 = O

(
d
4/3
0 �φ0�L2/3(η + 1)1/6

φ
2/3
0

max

{(
Ld20

φ0(
√
η + 1)

)1/3
1

ρ̄
,

(
d0
ε̄

)2/3
}

+ 1

)
1,

Kb
2 = O

(
d
4/3
0 �φ0�L2/3(η + 1)1/6

φ
2/3
0

max

{
1

ρ̄
,
d0
ε̄

}2/3

+ 1

)

and the following statements hold:
(a) If k0 is an iteration index satisfying bk0 ≥ Kb

1, then there is an index i ∈ Bk0

such that the triple of (x, v, ε) = (xi, vi, εi) satisfies (3.28).
(b) If k0 is an iteration index satisfying bk0 ≥ Kb

2, then the triple of (x, v, ε) =
(x̄k, v̄k, ε̄k) satisfies (3.29) for every k ≥ k0.

Proof. (a) Define
(4.18)

Kb
1 :=

⎡
⎢⎢⎢
d20(1 + τ2)

(1− σ)τ2
max

⎧⎨
⎩1

ρ̄

(
σν

3/2
0√

2(
√
η + 1)μ0

)
,

1

ε̄2/3

(
σ3ν

3/2
0

23/2(
√
η + 1)μ0

)2/3
⎫⎬
⎭
⎤
⎥⎥⎥

and observe that (4.17) holds due to the definitions of τ2 in (4.2) and φ0 in (4.14). Let
k0 be an iteration index satisfying bk0 ≥ Kb

1. In view of (b) and (d) of Proposition 4.4
and the fact that zk = zk−1 whenever k ∈ Ak0 (and hence k /∈ Bk0), the (finite) set of
iterates {(zi, xi, vi, εi), i ∈ Bk0} satisfies the rules of the underelaxed large-step HPE
method described in subsection 2.2 with

T = F +NX , c =

√
2(
√
η + 1)μ0

σν
3/2
0

, ξk = ξ =
τ2

1 + τ2
∀k ≥ 1.

Hence, from Proposition 2.2(a) with T , c, and ξ as above and k = bk0 , it follows that
there exists an index i ∈ Bk0 such that

‖vi‖ ≤ σ(1 + τ2)ν
3/2
0√

2(1 − σ)τ2(
√
η + 1)μ0

d20
bk0

, εi ≤ σ3(1 + τ2)
3/2ν

3/2
0

23/2(1 − σ)3/2τ
3/2
2 (
√
η + 1)μ0

d30

b
3/2
k0

.

The above two inequalities, the assumption that bk0 ≥ Kb
1, and the definition of

Kb
1 easily imply that (x, v, ε) = (xi, vi, εi) satisfies the two inequalities in (3.28).

Moreover, Proposition 4.4(b) implies that this triple satisfies the inclusion in (3.28).
Hence, (a) follows.

(b) Define

(4.19) Kb
2 :=

⌈
d
4/3
0 2σ2/3ν0(1 + τ2)

(1 − σ2)1/3μ
2/3
0 (
√
η + 1)2/3τ2

max

{
1

ρ̄
,
1

ε̄

d0
(1 − σ)2

}2/3
⌉

and observe that (4.18) is satisfied in view of the definition of τ2 in (4.2) and φ0 in
(4.14). Let k0 be an iteration index satisfying bk0 ≥ Kb

2. Using the definition of v̄k
and ε̄k in (4.16), the fact that ξi = ξ for every i ≥ 1, and Proposition 2.2(b) with

1Notation f = O(t) means that there exists a constant C > 0 such that |f(t)| ≤ Ct ∀ t > 0.
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T , c, and ξ as above, we conclude that for any k ≥ 1 such that Bk �= ∅, we have
v̄k ∈ T ε̄k(x̄k) and

‖v̄k‖ ≤ 23/2σν
3/2
0 (1 + τ2)

3/2

(1− σ2)1/2(
√
η + 1)μ0τ

3/2
2

d20

b
3/2
k

,

ε̄k ≤ 23/2σν
3/2
0 (1 + τ2)

3/2

(1− σ)2(1− σ2)1/2(
√
η + 1)μ0τ

3/2
2

d30

b
3/2
k

.

Statement (b) now follows from the last observation, the fact that k ≥ k0 implies
bk ≥ bk0 , the assumption that bk0 ≥ Kb

2, and the definition of Kb
2.

The following results present iteration-complexity bounds for the HPE-IP method
to obtain approximate solutions of (1.1) satisfying either (3.28) or (3.29). For simplic-
ity, we ignore the dependence of these bounds on the parameter σ and other universal
constants and express them only in terms of L, d0, η, the initialization parameters μ0

and ν0, and the tolerances ρ̄ and ε̄.
The first result gives the pointwise iteration-complexity of the HPE-IP method.
Theorem 4.7. Let a pair (ρ̄, ε̄) ∈ R++ × R++ be given. Then, there exists an

index

i = O
(
d20�φ0�L2/3(η + 1)1/6

φ
2/3
0

max

{(
L

φ0(η + 1)

)1/6
1

ρ̄
,

1

ε̄2/3

}
+ 1

)
(4.20)

+ O
(
�φ0�

√
η + 1max

{
log+

(
L(η + 1)

φ0ν0ρ̄

)
, log+

(
L(η + 1)

φ0ν0ε̄

)})

such that the triple of (x, v, ε) = (xi, vi, εi) satisfies (3.28).
Proof. Define the constants

C1 := (1 + τ1)
2

(
β2

4
+

√
2(
√
η + 1)

σ

)(
ν
3/2
0

μ0

)
,(4.21)

C2 := (1 + τ1)
3

(
η +

β2

3

(
β2

4
+
√
η

))(
ν
3/2
0

μ0

)

and

K1 :=

⌈
Kb

1

(
1 +

log(1 + τ1)

log(1 + τ2)

)

+
1

log(1 + τ2)
max

{
1

2
log+

(
C1

ν0ρ̄

)
,
1

3
log+

(
C2

ν
3/2
0 ε̄

)}⌉
,

where Kb
1 is defined in (4.18). Now, using the fact that t/(1 + t) ≤ log(1 + t) ≤ t for

every t > −1 and the definitions of τ1 and τ2 in (4.2), we easily see that

(4.22)
log(1 + τ1)

log(1 + τ2)
= O(1), 1

log(1 + τ2)
= O(�φ0�

√
η + 1).

This observation together with (4.2), (4.17), and (4.21) then imply that K1 can be
estimated according to the right-hand side of (4.20). To end the proof, it suffices to
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show the existence of an index i ≤ K1 such that the triple of (x, v, ε) = (xi, vi, εi)
satisfies (3.28).

Indeed, to prove the latter claim, we consider the following two cases: bK1 ≥ Kb
1

and bK1 < Kb
1. If bK1 ≥ Kb

1, then the claim follows immediately from Lemma 4.6(a)
with k0 = K1. Consider now the case in which bK1 < Kb

1. Since Kb
1 < K1, we have

that bK1 < K1. This together with the first identity in Lemma 4.5 then imply that
aK1 > 0 and hence that AK1 �= ∅. Let i be the largest index in AK1 . Observe that
i ≤ K1 and we clearly have

bi ≤ bK1 < Kb
1, ai = aK1 = K1 − bK1 > K1 −Kb

1,

where the last equality is due to the first identity in Lemma 4.5. These inequalities
together with Proposition 4.4, Lemma 4.5, and the definition of K1 can now be easily
seen to imply that

‖vi‖ ≤ C1

νi
=

(1 + τ2)
2biC1

ν0(1 + τ1)2ai
≤ (1 + τ2)

2Kb
1C1

ν0(1 + τ1)2(K1−Kb
1)
≤ ρ̄

and

εi ≤ C2

ν
3/2
i

=
(1 + τ2)

3biC2

ν
3/2
0 (1 + τ1)3ai

≤ (1 + τ2)
3Kb

1C2

ν
3/2
0 (1 + τ1)3(K1−Kb

1)
≤ ε̄.

The last conclusion together with Proposition 4.4(b) then imply that (x, v, ε) =
(xi, vi, εi) satisfies (3.28).

The next result presents the iteration-complexity of the HPE-IP method for the
sequences of ergodic means defined in (4.15)-(4.16).

Theorem 4.8. Let a pair (ρ̄, ε̄) ∈ R++ × R++ be given. Then, there exists an
index

K2 = O
(
d
4/3
0 �φ0�L2/3(η + 1)1/6

φ
2/3
0

max

{
1

ρ̄
,
d0
ε̄

}2/3

+ 1

)
(4.23)

+ O
(
�φ0�

√
η + 1max

{
log+

(
L(η + 1)

φ0ν0ρ̄

)
, log+

(
L(η + 1)

φ0ν0ε̄

)})

such that at least one of the following statements hold:
(a) There exists an index i ≤ K2 such that the triple (xi, vi, εi) satisfies (3.28).
(b) For every index k ≥ K2, the triple (x̄k, v̄k, ε̄k) satisfies (3.29).
Proof. Define

K2 :=

⌈
Kb

2

(
1 +

log(1 + τ1)

log(1 + τ2)

)

+
1

log(1 + τ2)
max

{
1

2
log+

(
C1

ν0ρ̄

)
,
1

3
log+

(
C2

ν
3/2
0 ε̄

)}⌉
,

where C1 and C2 are defined in (4.21) and Kb
2 is defined in (4.19). Now, (4.2), (4.17),

(4.21), and (4.22) imply that K2 satisfies (4.23).
It remains to show that either (a) or (b) holds. Indeed, as in the proof of Theo-

rem 4.7, we consider the following two cases: bK2 ≥ Kb
2 and bK2 < Kb

2. If bK2 ≥ Kb
2,
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then (b) holds in view of Lemma 4.6(b) with k0 = K2. If, on the other hand, bK2 < Kb
2,

it can be shown using similar arguments as in the proof of Theorem 4.7 that the largest
index i in AK2 �= ∅ satisfies (a).

The complexity bounds of Theorems 4.7 and 4.8 suggest that the choice of an

initial pair (μ0, ν0) such that φ0 := Lμ0/2ν
3/2
0 is close to 1 (e.g., φ0 ∈ [1, 4]) is a good

strategy. The next section presents a Phase I procedure which generates an initial
quadruple (x0, z0, μ0, ν0) ∈ domh×E×R++×R++ for the HPE-IP method satisfying
the condition that

(4.24)
φ0

min{1, L} ∈ [1, 4] .

Note that φ0 is divided by the factor min{1, L}. Its goal is to prevent the iteration-
complexity of the Phase I procedure from growing as L becomes small. Finally, observe
that the choice of the interval [1, 4] is completely arbitrary and that the procedure
can be easily modify for other choices of this interval.

5. A Phase I procedure. In this section, we discuss a Phase I procedure which,
given a pair (ν̃0, z0) ∈ R++×E, finds a triple (μ0, ν0, x0) ∈ R++×R++× domh such
that the quadruple (x0, z0, μ0, ν0) satisfies conditions (4.1) and (4.24), and we also
establish its iteration-complexity in terms of its input (z0, ν̃0). As a result, we will
derive the iteration-complexity of the overall method consisting of first applying the
Phase I procedure and then the HPE-IP method.

We start by describing the Phase I procedure:
(0) Let β ∈ (0, 1) and (ν̃0, z0) ∈ R++ × E be given, define the point x̃0 =

x̃0(ν̃0, z0) as the unique solution of

(5.1) ∇h(x̃0) + ν̃0(x̃0 − z0) = 0,

define

L̃ := max {L, 1} , μ̃0 := min

{
8ν̃

3/2
0

L̃
,

β

4‖F (x̃0)‖∗x̃0,ν̃0

}
,(5.2)

φ̃0 :=
Lμ̃0

2ν̃
3/2
0

, t̂ :=
β(1 − β)

4
√
η + 1

,(5.3)

and set k = 1;
(1) if φ̃k−1/min{L, 1} ≥ 1, then stop and output (x0, μ0, ν0) := (x̃k−1, μ̃k−1, ν̃k−1);
(2) else, set (x, μ, ν, φ) = (x̃k−1, μ̃k−1, ν̃k−1, φ̃k−1) and compute the Newton di-

rection dx of Gμ,ν,z0 at x and set

(5.4) x+ := x+ dx, μ+ := μ(1− t̂ ), ν+ := ν(1 − t̂ ), φ+ :=
μ+L

2 (ν+)
3/2

;

(3) let (x̃k, μ̃k, ν̃k, φ̃k) = (x+, μ+, ν+, φ+), set k ← k + 1, and go to step 1.
end

We now make a few remarks about the above procedure. First, (5.2) and the
first relation in (5.3) imply that φ̃0/min{L, 1} ≤ 4 but most likely will be very small.
Second, (5.4) implies that

(5.5) φ̃k =
φ̃k−1

(1− t̂ )1/2
.
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Hence, after a finite number of iterations of the Phase I procedure, its stopping
criterion will eventually be satisfied. The following result establishes the iteration-
complexity of the Phase I procedure and shows that its output (x0, μ0, ν0) satisfies
φ0/min{L, 1} ∈ [1, 4], where φ0 is defined in (4.14).

Proposition 5.1. The following statements hold for the Phase I procedure:
(a) For every iteration index k, we have x̃k−1 ∈ Nμ̃k−1,ν̃k−1,z0(β) and φ̃k−1/

min{1, L} ≤ 4.
(b) The procedure terminates in at most

(5.6) O
(√

η + 1 log+

(
8ν̃

3/2
0 ‖F (x̃0)‖∗ν̃0,x̃0

max{L, 1}

)
+ 1

)

iterations with a triple (μ0, ν0, x0) ∈ R++×R++×domh satisfying (4.1), (4.24), and
the estimate

(5.7) log
ν̃0
ν0

= O
(
log+

(
ν̃
3/2
0 ‖F (x̃0)‖∗ν̃0,x̃0

max{L, 1}

)
+ 1

)
.

Proof. We prove (a) by induction on k. We first prove that (a) holds for k = 1.
Indeed, it follows from (5.2), the first relation in (5.3), and (3.18) that

φ̃0 :=
Lμ̃0

2ν̃
3/2
0

≤ 4L

L̃
≤ 4min{1, L} ≤ 4, γμ̃0,ν̃0 := max

{
Lμ̃0

2ν̃
3/2
0

, 4

}
= 4,

which together with (3.4) and (5.1) then imply that

γμ̃0,ν̃0‖Gμ̃0,ν̃0,z0(x̃0)‖∗x̃0,ν̃0 = 4μ̃0‖F (x̃0)‖∗x̃0,ν̃0 ≤ β

and hence that x̃0 ∈ Nμ̃0,ν̃0,z0(β) in view of (3.17). We have thus shown that (a)
holds for k = 1.

Assume now that statement (a) holds for the kth iteration and hence that x̃k−1 ∈
Nμ̃k−1,ν̃k−1,z0(β) and φ̃k−1 ≤ 4min{1, L}. We will now show that statement (a) also

holds for the (k+1)-st iteration. Let (x, μ, ν, φ) = (x̃k−1, μ̃k−1, ν̃k−1, φ̃k−1) and define
(μ+, ν+, x+, φ+) as in (5.4). Observe that Proposition 3.7(a) with z = z0 implies that
x+ ∈ Nμ,ν,z0(β

2). Since φ ≤ 4min{1, L} and the procedure did not stop at the kth
iteration (see step 1 of the procedure), we must have φ = Lμ/(2ν3/2) < min{L, 1} ≤ 1,
and hence γμ,ν = 4 in view of (3.18). Using the fact that φ+ = φ/(1 − t̂)1/2 and
t̂ ≤ 1/4 due to the definition of t̂ in step 0 of the procedure, we conclude that
φ+ ≤ 4min{L, 1} ≤ 4 and hence that γμ+,ν+ ≤ 4 in view of (3.18). Now, using

Proposition 4.1 with x = x+, z = z0, p = 0, and α = 0 and the definition of t̂ in (5.3),
we conclude that

γμ+,ν+‖Gμ+,ν+,z0(x
+)‖∗ν+,x+ ≤ 4

(
(1− t̂)‖Gμ,ν,z0(x

+)‖∗ν,x+ + t̂
√
η
)

≤ γμ,ν‖Gμ,ν,z0(x
+)‖∗ν,x+ + 4t̂

√
η ≤ β2 + 4t̂

√
η ≤ β

and hence that x+ ∈ Nμ+,ν+,z0(β). Hence, due to the definition of (x̃k, μ̃k, ν̃k) in step
3 of the procedure, we conclude that (a) holds for k + 1. We have thus proved (a).

To prove (b), let K denote the last iteration of the Phase I procedure, i.e., the first
iteration index for which φ̃K−1 ≥ min{1, L}. Note that, since φ̃K−1/min{1, L} ≤ 4
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by statement (a), it follows that the output of the procedure satisfies (4.24). We will
now show that

(5.8) K ≤ 2 +

(
8
√
η + 1

β(1− β)

)
log+

(
min{L, 1}

φ̃0

)
.

Assume without any loss of generality that K ≥ 2. In view of the inequality in (a)
with k = K − 1 and the fact that the procedure did not stop at iteration K − 1, we
conclude that

(5.9) min{L, 1} > φ̃K−2 =
φ̃0

(1− t̂)(K−2)/2
≥ φ̃0,

where the equality is due to (5.5). Taking logarithms on both sides and using the
inequality log(1 − t̂) ≤ −t̂, we then conclude that

(5.10) K ≤ 2 +
2

t̂
log

(
min{L, 1}

φ̃0

)
≤ 2 +

2

t̂
log+

(
min{L, 1}

φ̃0

)
,

which clearly implies (5.8) due to the definition of t̂ in (5.3). Now, using (5.9), (5.2),
and the first relation in (5.3), we easily see that

(5.11) φ̃0 = min

{
4min{L, 1} , Lβ

8ν̃
3/2
0 ‖F (x̃0)‖∗x̃0,ν̃0

}
=

Lβ

8ν̃
3/2
0 ‖F (x̃0)‖∗x̃0,ν̃0

,

which together with (5.8) can be easily seen to imply (5.6). To complete the proof, it
remains to show that (5.7) holds. First note that the update rule and the definition
of K implies that ν0 = ν̃0(1− t̂)K−1 and hence that

log
ν̃0
ν0

= (K − 1) log

(
1

1− t̂

)
≤ (K − 1)

t̂

1− t̂

≤ 4(K − 1)t̂

3
≤ 4t̂

3
+

8

3
log+

(
min{L, 1}

φ̃0

)
,

where the last two inequalities follow from the fact that t̂ ≤ 1/4 and (5.10). Relation
(5.7) now follows from the last conclusion, relation (5.11), and the definition of t̂ in
(5.3).

The following result gives the overall complexity of the combined method in which
the Phase I procedure is started from an input pair (ν̃0, z0) ∈ R++×E and is followed
by the HPE-IP method started from (x0, z0, μ0, ν0), where (x0, μ0, ν0) is the output
of the Phase I procedure. Recall from (4.14) that d0 denotes the distance of z0 to the
solution set of problem (1.1).

Theorem 5.2. Let a pair (ρ̄, ε̄) ∈ R++ × R++ be given. Consider the combined
method in which the Phase I procedure is started from an input pair (ν̃0, z0) ∈ R++×E
and is followed by the HPE-IP method started from (x0, z0, μ0, ν0), where (x0, μ0, ν0)
is the output of the Phase I procedure. Then, the method computes the following:
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(i) a triple (x, v, ε) satisfying (3.28) in at most

O
(√

η + 1 log+

(
8ν̃

3/2
0 ‖F (x̃0)‖∗ν̃0,x̃0

max{L, 1}

)
+
√
η + 1

)(5.12)

+ O
(
d20 max{L, 1}2/3(η + 1)1/6 max

{(
max{L, 1}√

η + 1

)1/3
1

ρ̄
,

1

ε̄2/3

}
+ 1

)

+ O
(√

η + 1max

{
log+

(
max{L, 1}(η + 1)

ν̃0ρ̄

)
, log+

(
max{L, 1}(η + 1)

ν̃0ε̄

)})
,

iterations, where x̃0 is the point determined by (5.1);
(ii) a triple (x, v, ε) satisfying either (3.28) or (3.29) in at most

O
(√

η + 1 log+

(
8ν̃

3/2
0 ‖F (x̃0)‖∗ν̃0,x̃0

max{L, 1}

)
+
√
η + 1

)(5.13)

+ O
(
d
4/3
0 max{L, 1}2/3(η + 1)1/6 max

{
1

ρ̄
,
d0
ε̄

}2/3

+ 1

)

+ O
(√

η + 1max

{
log+

(
max{L, 1}(η + 1)

ν̃0ρ̄

)
, log+

(
max{L, 1}(η + 1)

ν̃0ε̄

)})

iterations.
Proof. First we prove (i). It is shown in Proposition 5.1 and Theorem 4.7 that

the number of iterations performed by the Phase I procedure is bounded by (5.6)
and that the number of iterations necessary for the HPE-IP method to compute a
triple (x, v, ε) satisfying (3.28) is bounded by (4.20). The estimate (5.12) now follows
from these two observations, relation (4.24), and estimate (5.7). (Note that the latter
relation is needed due to the fact that (4.20) is expressed in terms of ν0 instead of
ν̃0.)

Using a similar argument with Theorem 4.8 replacing Theorem 4.7, we conclude
that (ii) also holds.

We now discuss the complexity bounds of Theorem 5.2 in light of the ones obtained
in [5, 7]. For the sake of brevity, we focus our discussion on the ergodic complexity
bounds. Recall that [5, 7] present first-order inexact (Newton-like) versions of the
PPM which require at each iteration the approximate solution of a first-order approx-
imation (obtained by linearizing F ) of the current proximal point equation/inclusion
and use it to perform an extragradient step as prescribed by the large-step HPE
method of section 2.2. Moreover, the ergodic complexity derived in [7] is{

log log
[
Ld0 + (Lρ̄)−1 + ε̄−1

]} C,
where

C := O
(
d
4/3
0 max{L, 1}2/3max

{
1

ρ̄
,
d0
ε̄

}2/3
)
.

On the other hand, for small values of the tolerances ρ̄ and ε̄, the dominant term in
(5.13) is the second one, i.e., (η + 1)1/6C. Hence, the ergodic complexity bound of
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Theorem 5.2 differs from the ergodic one of [7] by an

O
(

(η + 1)1/6

log log
[
Ld0 + (Lρ̄)−1 + ε̄−1

]
)

factor. Note that for the case in which X = R
n and hence η = 0, the ergodic complex-

ity bound of Theorem 5.2 is better than the one obtained in [7]. Moreover, while the
method of [7] (approximately) solves a linearized VI subproblem at every iteration,
the method presented in this paper solves a Newton system of linear equations with
respect to (1.3), and hence its iterations are cheaper than the ones of the method of
[7].

The complexity bounds of Theorem 5.2 depend on ‖F (x̃0)‖∗ν̃0,z0 , where (ν̃0, z0)
is the input for the Phase I procedure and x̃0 is determined by (5.1). The next
results provides a bound on ‖F (x̃0)‖∗ν̃0,z0 in terms of the quantities ν̃0, ‖F (zP0 )‖,
and ‖F ′(zP0 )‖, where zP0 is the projection of z0 onto X . This bound clearly implies
alternative complexity bounds for the combined Phase I/HPE-IP method.

Proposition 5.3. Let β ∈ (0, 1), (ν̃0, z0) ∈ ×R++ × E be given and let x̃0 ∈
domh be as in the statement of Phase I procedure. Then,

‖F (x̃0)‖∗ν̃0,x̃0
≤ Lη

2ν̃
3/2
0

+
‖F (zP0 )‖
ν̃
1/2
0

+

√
η‖F ′(zP0 )‖

ν̃0
,

where zP0 := PX(z0).
Proof. It follows from (5.1) and Proposition 2.7 with y = x̃0, q = ∇h(x̃0), and

a = 0 that

〈z0 − x̃0, z
P
0 − x̃0〉 = 〈∇h(x̃0), z

P
0 − x̃0〉

ν̃0
≤ η

ν̃0
.

Also, using a well-known property of the projection onto a closed convex set, we have

〈z0 − x̃0, z
P
0 − x̃0〉 = 〈z0 − zP0 , z

P
0 − x̃0〉+ 〈zP0 − x̃0, z

P
0 − x̃0〉 ≥ ‖zP0 − x̃0‖2.

Hence, from the above two conclusions, we conclude that

‖zP0 − x̃0‖ ≤
√

η

ν̃0
.

The result now follows from the above relation, the fact that (3.1) and the triangle
inequality for norms imply that

‖F (x̃0)‖ ≤ ‖F (x̃0)− F (zP0 )− F ′(zP0 )(x̃0 − zP0 )‖+ ‖F (zP0 ) + F ′(zP0 )(x̃0 − zP0 )‖
≤ L

2
‖zP0 − x̃0‖2 + ‖F (zP0 )‖+ ‖F ′(zP0 )‖‖x̃0 − zP0 ‖,

and the second relation in (3.11) of Lemma 3.2.

Appendix A. Technical lemmas.
Lemma A.1. The following statements hold:
(a) If A−B ∈ SE+ , then ‖ · ‖A ≥ ‖ · ‖B and ‖ · ‖∗A ≤ ‖ · ‖∗B.
(b) dom ‖·‖∗A = Range (A) and, for every u ∈ E and h ∈ E such that Ah = u,

there holds

(A.1) ‖u‖∗A =
√
〈u, h〉 =

√
〈h,Ah〉 = ‖h‖A.
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(c) If A is nonsingular, then dom ‖·‖∗A = E and ‖u‖∗A = ‖u‖A−1 for every u ∈
R

n.
(d) If {Ak} ⊂ SE+ is a sequence converging to A and such that the matrix Ak−A ∈

SE+ for every k ≥ 1, then

lim
k→+∞

‖u‖∗Ak
= ‖u‖∗A ∀u ∈ E.

(e) The function ‖·‖∗A restricted to Range(A) is a norm.
(f) For every u ∈ Range(A) and v ∈ E, we have 〈u, v〉 ≤ ‖u‖∗A‖v‖A.
Proof. (a) The proof of this statement follows directly from the definitions of the

seminorms in (2.5) and (2.6).
(b) Assume first that u ∈ Range(A), i.e., u = Ah ∈ Range(A) for some h ∈ E.

Since h satisfies the first-order optimality condition of the maximization problem (2.6)
and the objective function of this problem is concave, we conclude that h is an optimal
solution of (2.6). Hence, the optimal value ‖u‖∗A of (2.6) is finite and (A.1) holds.
Assume now that u /∈ Range(A) and consider the decomposition u = u0 + ur, where
u0 ∈ N (A) and ur ∈ Range(A). Clearly, 〈u0, ur〉 = 0 and u0 �= 0. In view of the
definition of ‖u‖∗A in (2.6), for every t ∈ R, the vector ht := tu0 satisfies

(‖u‖∗A)2 ≥ 2〈u, ht〉 − 〈Aht, ht〉 = 2t‖u0‖2,
where the equality follows from the definition of ht and fact that u0 ∈ N (A), 〈u0, ur〉 =
0 and u = u0 + ur. Letting t ↑ ∞ in the above inequality and noting that u0 �= 0, we
then conclude that ‖u‖∗A =∞. We have thus shown that (b) holds.

(c) This statement follows directly from (b) and (2.5).
(d) For every h ∈ E, define the function ph : E× SE :→ R

ph(u,A) = 2〈u, h〉 − 〈Ah, h〉.
Since ph is a linear function for every h ∈ E, the function p : E× SE :→ (−∞,+∞]
defined as

p(u,A) = sup {ph(u,A) : h ∈ E}
is lower semicontinuous. This implies that

‖u‖∗A = p(u,A) ≤ lim inf
k→+∞

p(u,Ak) = lim inf
k→+∞

‖u‖∗Ak
∀u ∈ E.

The assumption that Ak − A ∈ SE+ and statement (c) imply that ‖u‖∗Ak
≤ ‖u‖∗A for

every k ≥ 1 and u ∈ E and hence that lim supk→+∞ ‖u‖∗Ak
≤ ‖u‖∗A for every u ∈ E.

We have thus shown that (d) holds.
(e) Choosing Ak = A + (1/k)I for every k ≥ 1, it follows from (d) that the

function ‖ · ‖∗A is the pointwise limit of the norms ‖ · ‖∗Ak
, and hence it is easily seen

to be a seminorm on its domain Range(A). Now, let u ∈ Range(A) be such that
‖u‖∗A = 0. Also, let hu ∈ E be such that Ahu = u. Then, it follows by (b) that
‖A1/2hu‖ = ‖u‖∗A = 0. This implies that A1/2hu = 0 and hence that u = Ahu = 0.
Thus, (e) follows.

(f) Let u ∈ Range(A) and v ∈ E be given. Assume first that ‖v‖A = 0. Clearly,
this implies that v ∈ N (A). Since the subspaces N (A) and Range(A) are orthogonal,
we conclude that 〈u, v〉 = 0 and hence that (f) holds in this case. Assume now that
‖v‖A > 0 and define

h̃ :=
〈u, v〉
‖v‖2A

v.
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Since the objective function of (2.6) evaluated at h̃ is equal to [〈u, v〉]/‖v‖A]2 and the
optimal value (‖u‖∗A)2 of (2.6) exceeds this value, we conclude that (f) holds for this
case too.

Lemma A.2. Let h be a closed convex function such that the set of minimizers
S∗ of h is nonempty. Then, for every ν > 0 and x̄ ∈ E, the function hν defined as
hν(x) := h(x) + (ν/2)‖x− x̄‖2 for every x ∈ E has a unique minimizer x∗

ν and

lim
ν→0

x∗
ν = PS∗(x̄).

Proof. The assumptions clearly imply that S∗ is a closed convex set. Since hν is
a strongly convex function, it has a unique minimizer x∗

ν over E and in particular

h(x∗
ν) +

ν

2
‖x∗

ν − x̄‖2 ≤ h(x∗) +
ν

2
‖x∗ − x̄‖2,

where x∗ := PS∗(x̄). Since x∗ ∈ S∗, and hence x∗ is a minimizer of h, we have
h(x∗) ≤ h(x∗

ν), which together with the above relation then imply that

‖x∗
ν − x̄‖ ≤ ‖x∗ − x̄‖, lim

ν→0+
h(x∗

ν) = h(x∗).

Thus, it follows that the set {x∗
ν : ν > 0} is bounded and hence that every accumu-

lation point x̂ of any sequence {xνk} such that νk → 0 as k → +∞ satisfies

‖x̂− x̄‖ ≤ ‖x∗ − x̄‖, x̂ ∈ S∗,

and hence that x̂ = x∗ due to the definition of x∗. We have thus shown that
limν→0 x

∗
ν = PS∗(x̄).
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