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Abstract. In this paper, we survey the most recent methods that have been developed for the solution of semi-
definite programs. We first concentrate on the methods that have been primarily motivated by the interior point
(IP) algorithms for linear programming, putting special emphasis in the class of primal-dual path-following
algorithms. We also survey methods that have been developed for solving large-scale SDP problems. These
include first-order nonlinear programming (NLP) methods and more specialized path-following IP methods
which use the (preconditioned) conjugate gradient or residual scheme to compute the Newton direction and
the notion of matrix completion to exploit data sparsity.
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1. Introduction

One form of describing a (linear) semidefinite programming (SDP) problem is as the
problem of minimizing a linear function of a symmetric matrix variable X subject to lin-
ear equality constraints on X and the essential constraint that X be positive semidefinite
(see (1)). The last constraint is nonlinear and nonsmooth, but convex, so semidefinite
programs are convex optimization problems. In this paper, we survey the most recent
methods that have been developed for the solution of this important class of problems.
We first concentrate on the methods that have been primarily motivated by the inte-
rior point (IP) algorithms for linear programming, putting special emphasis in the class
of primal-dual path-following algorithms (Sections 3 and 4). Since these methods are
based on Newton steps, we refer to them as second-order methods. We also survey
methods that have been developed for solving large-scale SDP problems (Section 5).
These include first-order nonlinear programming (NLP) methods and more specialized
second-order methods which use the (preconditioned) conjugate gradient or residual
scheme to compute the Newton direction and the notion of matrix completion to exploit
data sparsity.
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Prior to the development of IP methods for SDP, there has been a somewhat scattered
and slow development but relatively long history of SDP. Very early works in solution
stability of linear differential equations and control theory has demonstrated the model-
ing power of linear matrix inequalities (LMI) (see Boyd et al. [11] for a detailed historic
account on this). Early approaches to graph theory involving SDP problems have been
proposed in Cullum et al. [21], Donath and Hoffman [22, 23] and Lovász [54]. Also,
SDP was studied very early by the nonlinear programming community [27, 28, 80, 87,
88, 91]. Despite these early developments, SDP has become a central focus and excit-
ing area in the field of optimization only in the last twelve years or so. A major factor
behind this explosive interest in SDP was the the development of efficient algorithms
for their solution and subsequently the discovery of SDP as a powerful modeling tool.
Landmark works by Nesterov and Nemirovskii [72–74] develop a deep and unified the-
ory of IP methods for solving convex programs based on the notion of self-concordant
barrier functions. (See their book [75] for a comprehensive treatment of this subject.)
In particular, they and, independently Alizadeh in his breakthrough work [1], showed
that primal-only and/or dual-only IP methods for LP can all be extended to SDP. Other
primal-only methods have also been proposed by Freund [30] and Jarre [43].

Since (small to medium sized) SDP problems can be efficiently solved by IP methods,
several applications in convex constrained optimization, control theory and combinato-
rial optimization, which could not be easily handled before, can now be routinely solved.
Many problems can be cast in the form of an semidefinite program. For example, LP,
optimizing a convex quadratic form subject to convex quadratic inequality constraints,
minimizing the volume of an ellipsoid that covers a given set of points and ellipsoids,
maximizing the volume of an ellipsoid that is contained in a polytope, matrix norm
minimization, cluster analysis using ellipsoids, and a variety of maximum and mini-
mum eigenvalue problems can be cast as SDPs (see Vandenberghe and Boyd [103]). In
addition, SDP has applications in minimum trace factor analysis [10, 27, 28, 87, 106]
and optimal experiment design [84] in the area of statistics, and in engineering fields
such as structural design [6, 8] and control theory [11]. Another important application
of SDP is to the solution of NP-hard combinatorial optimization problems, for which
semidefinite programs serve as tractable relaxations (e.g., see Shor [91], Lovász and
Schrijver [55], Goemans and Williamson [34], Alizadeh [1], Kamath and Karmarkar
[44]) and also as the basis for polynomial-time approximation algorithms with strong
performance guarantees (e.g., [34]). In fact, the work [34] was another major factor in
the increased interest on SDP, specially by the “approximation algorithms” community.
Finally, a long list of SDP applications can be found in the Handbook of Semidefinite
Programming [85], the books by Bental and Nemirovskii [7] and Boyd et al. [11], as
well as the survey papers by Vandenberghe and Boyd [103] and Todd [95].

The first algorithms for SDP which are extensions of the well-known primal-dual
LP algorithms, such as the long-step path-following algorithm of Kojima, Mizuno and
Yoshise [47] and Tanabe [92, 93], the short-step path-following algorithm of Kojima,
Mizuno and Yoshise [46] and Monteiro and Adler [60, 61], and the predictor-corrector
algorithm of Mizuno, Todd and Ye [57], were only introduced approximately five years
after the works of Alizadeh [1] and Nesterov and Nemirovskii [72–74] on primal-only
IP algorithms. In contrast to primal-dual methods for LP, there are many ways one can
compute the Newton search directions used in primal-dual algorithms for SDP. For this
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reason, the polynomial (and superlinear) convergence theory of primal-dual methods
for SDP is substantially more difficult than for LP. Several Newton-type SDP directions
have been proposed which generalize the primal-dual Newton direction for LP. The first
three and most popular of them are: i) the Alizadeh, Haeberly and Overton (AHO) direc-
tion proposed in [2], ii) the Nesterov and Todd (NT) direction introduced in [76, 77], iii)
a direction independently proposed by Helmberg, Rendl, Vanderbei and Wolkowicz [41]
and Kojima, Shindoh and Hara [51], and later rediscovered by Monteiro [58], which we
refer to as the HRVW/KSH/M direction, iv) a direction which is the symmetric dual
of the HRVW/KSH/M direction, which we simply refer to as the dual HRVW/KSH/M
direction.

The first theoretical foundations for primal-dual SDP methods were given in [51, 77],
which deal exclusively with short-step algorithms and potential-reduction algorithms.
They left opened the question of whether a polynomially convergent long-step path-fol-
lowing method existed for SDP, which was affirmatively settled by Monteiro [58] for
feasible algorithms and subsequently by Zhang [107] for infeasible algorithms. Using a
scaling and symmetrization scheme, these two works also introduced a family of search
directions, usually referred to as the Monteiro and Zhang (MZ) family, which contains
all four directions mentioned above. Convergence analyses for primal-dual path-follow-
ing algorithms based on the whole MZ family (or a large subset of it) have been given
by Monteiro and Zhang [68] for long-step methods, and Monteiro [59] for short-step
methods.

Prior to the introduction of the MZ family, Kojima et al. [51] had already intro-
duced a family of directions, commonly referred to as the KSH family, which contained
all the directions mentioned above except for the AHO direction. Polynomial conver-
gence of short-step primal-dual path-following algorithms is established for the two
HRVW/KSH/M directions in [51] and for the whole KSH family in Monteiro and Tsu-
chiya [64]. Kojima et al. [51] also establishes the polynomiality of a potential-reduction
algorithm based on the whole KSH family. Other family of primal-dual search directions
have also been introduced by Monteiro and Tsuchiya [63], Tseng [100] and Burer and
Monteiro [16]. As for the KSH family, both the Monteiro and Tsuchiya (MT) and the
Tseng families contain the HRVW/KSH/M directions and the NT direction but not the
AHO direction. Also, a number of authors have proposed various primal-dual directions
for SDP (see for example Gu [36], Kruk et al. [52], Potra [89], Monteiro and Zanjácomo
[67], Todd [94]) and Toh [97]. Unified convergence analysis of short-step and long-step
path-following SDP methods are given in Kojima, Shida and Shindoh [50] and Bur-
er and Monteiro [14], respectively. The asymptotic convergence rates of primal-dual
path-following algorithms have been studied by several authors (see for example Luo
et al. [56], Potra and Sheng [82, 83] and Kojima et al. [49]). We provide a survey of
second-order methods, with special emphasis on primal-dual path-following feasible IP
methods, in Sections 3 and 4. Many of the approaches discussed in this survey paper
in the context of SDP have been generalized to other cone programming problems (see
for example Alizadeh and Schmieta [3], Faybusovich [25, 26, 24], Monteiro and Tsu-
chiya [65], Nesterov and Todd [76, 77], Schmieta and Alizadeh [86], Tsuchiya [101,
102]).

SDPs that arise as relaxations of combinatorial optimization problems are typically
large-scale, and it has become evident in the past few years that current second-order
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IP methods, in its most naive form, are largely unsuitable in practice when applied to
such SDPs due to an inherent high demand for computer time and storage. In attempt-
ing to address such issues for large-scale SDPs, several researchers have developed less
computationally intensive first-order NLP methods and implementations that have made
significant progress in this area (see Burer and Monteiro [16, 15], Burer, Monteiro and
Zhang [19, 17, 18] and Helmberg and Rendl [40]). Even though these types of methods
can find low accurate near optimal solutions relatively fast, they are not recommended
for problems in which high accuracy is a necessity. Also, as opposed to the primal-dual
IP methods mentioned above, these methods are primal- or dual-only methods and the
design of a universal set of termination conditions that works well for all classes of
SDP problems is not obvious, and might not be feasible. Other promising approaches
for solving large-scale problems are second-order methods that use iterative methods to
compute their corresponding search direction and/or efficiently exploit data sparsity in
the primal and/or dual spaces (see for example Burer [12], Choi and Ye [20], Fukuda
et al. [33], Nakata et al. [69], Toh and Kojima [99] and Toh [98]). We survey the methods
mentioned on this paragraph in Section 5.

The organization of this chapter is as follows. In Section 2, we introduce the pair
of dual SDP problems which will be the subject of our study and discuss some of the
duality results that hold for it. We also describe the associated central path which plays
an important role on the algorithms presented in the subsequent sections. Section 3
describes the main Newton-type directions that have been proposed in the context of
primal-dual interior-point algorithms for SDP. Section 4 describes the convergence prop-
erties of primal-dual path-following (feasible only) IP algorithms based on three families
of search directions, namely: the MZ, MT and KSH families. Section 5 describes several
methods which are particularly suitable for the solution of large-scale SDP problems.
Finally, Section 6 discusses the computational complexity of a single iteration of some
of the methods presented in this paper.

1.1. Notation

In this subsection, we introduce some notation that will be used throughout our presen-
tation.

Sn denotes the space of n × n symmetric matrices, and X � 0 indicates that X is
positive semidefinite. We also write Sn+ for {X ∈ Sn : X � 0}, and Sn++ for its interior,
the set of positive definite matrices in Sn. For X ∈ Sn+, X1/2 denotes its positive semi-
definite square root. If X ∈ Sn++, we write X−1/2 for the inverse of X1/2, or equivalently
the positive semidefinite square root of X−1. We use A • B to denote the inner product
trace AT B = ∑

i,j aij bij of two m × n matrices A = (aij ) and B = (bij ). We write
Sn

⊥ for the space of n × n skew-symmetric matrices; this is the orthogonal complement,
with respect to the inner product above, of Sn in �n×n.

Given a linear operator F : E → F between two finite dimensional inner product
spaces (E, 〈·, ·〉E) and (F, 〈·, ·〉F ), its adjoint is the unique operator F∗ : F → E satis-
fying 〈F(u), v〉F = 〈u, F∗(v)〉E for all u ∈ E and v ∈ F . A linear operator G : E → E

is called self-ajoint if G = G∗. Moreover, G is said to be positive semidefinite (res.
positive definite) if 〈G(u), u〉E ≥ 0 (resp., 〈G(u), u〉E > 0) for all u ∈ E.
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2. The SDP problem, duality and the central path

In this section, we introduce the pair of dual SDP problems which will be the subject
of our study and discuss some of the duality results that hold for it. We also describe
the associated central path which plays an important role in the algorithms presented in
Sections 4 and 5.

We consider the SDP given in the following standard form:

(P ) minX C • X

Ai • X = bi, i = 1, . . . , m,

X � 0,

(1)

where each Ai ∈ Sn, b ∈ �m, and C ∈ Sn are given, and X ∈ Sn. Throughout this
article, we assume that the set of matrices {Ai} is linearly independent. The dual problem
associated with (P ) is:

(D) maxy,S bT y∑m
i=1 yiAi + S = C,

S � 0,

(2)

where y ∈ �m and S ∈ Sn. We write F(P ) and F(D) for the sets of feasible solutions
to (P ) and (D) respectively, and correspondingly F 0(P ) and F 0(D) for the sets of
strictly feasible solutions to (P ) and (D) respectively; here “strictly” means that X or S

is required to be positive definite. Hence

F(P ) := {X ∈ Sn
+ : Ai • X = bi, i = 1, · · · , m},

F 0(P ) := {X ∈ F(P ) : X ∈ Sn
++},

F (D) := {(y, S) ∈ �m × Sn
+ :

m∑

i=1

yiAi + S = C},

F 0(D) := {(y, S) ∈ F(D) : S ∈ Sn
++}.

The optimal values for (P ) and (D) will be denoted by val (P ) and val (D), respectively.
We start by giving the following simple result commonly referred to as the “weak

duality lemma”.

Proposition 2.1. If X and (y, S) are feasible in (P ) and (D) respectively, then

C • X − bT y = X • S ≥ 0.

Thus, the quantity X •S is the “excess” of the primal objective function value C •X

over the dual value bT y. It is commonly referred to as the duality gap at (X, y, S).

Corollary 2.1. Suppose that X and (y, S) are feasible solutions for (P ) and (D) respec-
tively, satisfying X • S = 0, or equivalently XS = 0. Then X and (y, S) are optimal in
their respective problems.
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We say that (P ) or (D) satisfies strong duality if there exist X and (S, y) satisfying
the assumptions of Corollary 2.1. Unfortunately, the optimal values of (P ) and (D) are
not necessarily equal for every SDP problem, and even if they are, strong duality does
not necessarily have to hold. The following result gives sufficient conditions for the
duality gap between (P ) and (D) to be zero and/or for strong duality to hold.

Proposition 2.2. The following statements hold:

a) If val (P ) > −∞ and F 0(P ) �= ∅ then the set of optimal solutions for (D) is
nonempty and bounded and val (P ) = val (D);

b) If val (D) < ∞ and F 0(D) �= ∅ then the set of optimal solutions for (P ) is nonempty
and bounded and val (P ) = val (D);

c) If F 0(P ) �= ∅ and F 0(D) �= ∅ then the set of optimal solutions of (P ) and (D) are
nonempty and bounded and val (P ) = val (D). (Hence, strong duality is satisfied.)

A proof of Proposition 2.2 can be found for example in Section 4.2 of [75]. By
Corollary 2.1, it is clear that the conditions below (together with X and S belonging to
Sn+) are sufficient for X and (y, S) to be optimal solutions:

m∑

i=1

yiAi + S = C,

Ai • X = bi, for i = 1, . . . , m, (3)

XS = 0.

To simplify the notation slightly, we introduced the operator A : Sn → �m defined as
(AX)i := Ai • X for all X ∈ Sn and i = 1, ..., m. Then the adjoint A∗ : �m → Sn of
this operator is given by A∗y = ∑m

i=1 yiAi for every y ∈ �m. Using this notation, we
can rewrite the equations above as

A∗y + S = C,

AX = b, (4)

XS = 0.

In both (3) and (4) we could replace the last equation equivalently by X1/2SX1/2 = 0,
or by S1/2XS1/2 = 0.

The central path is defined as the set of solutions (X, y, S) = (X(ν), y(ν), S(ν)) ∈
Sn+ × �m × Sn+ to

A∗y + S = C,

AX = b, (5)

XS = νI,

for all ν > 0. Clearly any solution to these equations gives strictly feasible solutions to
both (P ) and (D), since the last condition implies that X and S are nonsingular, hence
positive definite. It turns out that the existence of strictly feasible solutions for both
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(P ) and (D) is sufficient for the existence and uniqueness of solutions to (5) for every
positive ν.

The key to the proof of the above result is the analysis of a certain barrier prob-
lem associated with (P ) whose set of optimality conditions is exactly (5). Consider the
following barrier function for the cone of positive semidefinite matrices Sn+:

f (X) := − ln det X (6)

(by convention, we call this a barrier function for Sn+, even though it is defined only for
points in Sn++; it clearly tends to +∞ as X in Sn++ converges to a point on the boundary
of Sn+). We need to deal with the derivatives of f . The first derivative of f at X ∈ Sn++
is f ′(X) = −X−1, in the usual sense that

f (X + H) = f (X) + [−X−1] • H + o(‖H‖).
For the second derivative, we introduce the useful notation P � Q for n × n matrices P

and Q (usually P and Q are symmetric). This is an operator defined from Sn to Sn by

(P � Q)U := 1

2
(PUQT + QUP T ). (7)

Then it is not too hard to show that the second derivative of f is f ′′(X) = X−1 � X−1,
in the usual sense that

f (X + H) = f (X) + f ′(X) • H + 1

2
[(X−1 � X−1)H ] • H + o(‖H‖2).

Note that f ′′(X) is a self-adjoint and positive definite operator:

f ′′(X)U • V = [X−1UX−1] • V = trace X−1UX−1V

= trace X−1V X−1U = f ′′(X)V • U

and

f ′′(X)U • U = trace X−1UX−1U = trace (X−1/2UX−1/2)2 = ‖X−1/2UX−1/2‖2
F ,

where ‖ · ‖F denotes the Frobenius norm, the norm induced by the inner product we are
using; this quantity is nonnegative, and positive unless X−1/2UX−1/2 (and hence U ) is
zero.

Since f ′′ is positive definite everywhere, f is strictly convex. Now we consider the
primal barrier problem:

(Pν) minX C • X + νf (X)

AX = b,

X ∈ Sn++,

for positive ν. Note that the KKT (or Lagrange) conditions for this problem are necessary
and sufficient, since the objective function is convex and the constraints linear (apart
from the open set constraint). These optimality conditions can be written as

AX = b, C − νX−1 − A∗y = 0,

for X ∈ Sn++, which can alternatively be expressed as (5) by setting S := νX−1 ∈ Sn++.
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Let us note that (5) also gives the optimality conditions for the dual barrier problem:

(Dν) maxy,S bT y − νf (S)

A∗y + S = C,

S ∈ Sn++.

The next result shows that the central path is well-defined and is strongly related to
the optimal solutions of (Pν) and (Dν).

Theorem 2.1. Suppose that both (P ) and (D) have strictly feasible solutions. Then, for
every ν > 0, there is a unique solution (X(ν), y(ν), S(ν)) in Sn++ × �m × Sn++ to the
central path equations (5). Moreover, for every ν > 0, X(ν) and (y(ν), S(ν)) are the
unique optimal solutions of the barrier problems (Pν) and (Dν), respectively.

A proof of Theorem 2.1 can be found for example in Section 2 of [71]. The above
result guarantees the existence and uniqueness of points on the central path, but it does
not justify calling it a path. This fact will follow if we show that the equations defining it
are differentiable, with a derivative that is square and nonsingular at points on the path.
Unfortunately, while the equations of (5) are certainly differentiable, the derivative is not
even square since the left-hand side maps (X, y, S) ∈ Sn++×�m×Sn++ ⊆ Sn×�m×Sn

to a point in Sn × �m × �n×n; XS is usually not symmetric even if X and S are. We
therefore need to change the equations defining the central path. There are many possible
approaches, which as we shall see lead to different search directions for our algorithms,
but for now we choose a simple one: we replace XS = νI by −νX−1 + S = 0. As in
our discussion of the barrier function f , the function X → −νX−1 is differentiable,
with derivative ν(X−1 � X−1). So the central path is defined by the equations

�P (X, y, S) :=



A∗y + S

AX

−νX−1 + S



 =



C

b

0



 , (8)

whose derivative is

�′
P (X, y, S) :=




0 A∗ I
A 0 0

ν(X−1 � X−1) 0 I



 , (9)

where I denotes the identity operator on Sn. We have been rather loose in writing this
in matrix form, since the blocks are operators rather than matrices, but the meaning is
clear. We want to show that this derivative is nonsingular, and for this it suffices to prove
that its null-space is trivial. Since similar equations will occur frequently, let us derive
this from a more general result.

Theorem 2.2. Suppose the operators E and F map Sn to itself, and that E is nonsingular
and E−1F is positive definite. Then the solution to

A∗�y + �S = Rd,

A �X = rp, (10)

E �X + F �S = REF
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is uniquely given by

�y = (AE−1FA∗)−1(rp − AE−1(REF − FRd)),

�S = Rd − A∗�y,

�X = E−1(REF − F�S).

(11)

Proof. The formulae for �S and �X follow directly from the first and third equations.
Now substituting for �S in the formula for �X, and inserting this in the second equation,
we obtain after some manipulation

(AE−1FA∗)�y = rp − AE−1(REF − FRd).

Since E−1F is positive definite and the Ai’s are linearly independent, the m×m matrix
on the left is positive definite and hence nonsingular. This verifies that �y is uniquely
determined as given, and then so are �S and �X. Moreover, these values solve the
equations. ��

In our case, F is the identity, while E is ν(X−1 � X−1) with inverse ν−1(X � X).
This is easily seen to be positive definite, in the same way we showed that f ′′(X) was.
Hence the theorem applies, and so the derivative of the function �P is nonsingular on
the central path (and throughout Sn++ × �m × Sn++); thus the central path is indeed a
differentiable path.

By taking the trace of the last equation of (5), we obtain the last part of the following
theorem, which summarizes what we have observed.

Theorem 2.3. Assume that both (P ) and (D) have strictly feasible solutions. Then the
set of solutions to (5) for all positive ν forms a nonempty differentiable path, called the
central path. If (X(ν), y(ν), S(ν)) solve these equations for a particular positive ν, then
X(ν) is a strictly feasible solution to (P ) and (y(ν), S(ν)) a strictly feasible solution to
(D), with duality gap

C • X(ν) − bT y(ν) = X(ν) • S(ν) = nν. (12)

A rigorous proof of Theorem 2.3 can be found for example in Section 2 of [71]. It
has been shown that as ν tends to 0, the central path (X(ν), y(ν), S(ν)) converges to a
specific primal-dual optimal solution of (P ) and (D) (see Goldfarb and Scheinberg [35],
Kojima et al. [51] and Halicka et al. [37, 38]). Given that we start with strictly feasible
solutions to (P ) and (D), it is simple to maintain equality in the first two equations
of (5), but satisfying the last nonlinear equation exactly is hard. Hence path-following
methods require that the iterates satisfy these last equations in some approximate sense.
The requirement can be stated in terms of certain neighborhoods of the central path,
defined either in terms of norms or semi-norms of X1/2SX1/2 − νI or in terms of the
eigenvalues of this matrix. In fact, we will replace ν by µ := µ(X, S) := (X •S)/n (cf.
(12)). We then define the following centrality measures for X, S ∈ Sn+:

dF (X, S) := ‖X1/2SX1/2 − µI‖F = [
n∑

i=1

(λi(XS) − µ)2]1/2,

d∞(X, S) := ‖X1/2SX1/2 − µI‖ = max
1≤i≤n

|λi(XS) − µ|, (13)

d−∞(X, S) := ‖X1/2SX1/2 − µI‖−∞ := max
1≤i≤n

(µ − λi(XS)),
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where λ1(XS) ≤ . . . ≤ λn(XS) denote the eigenvalues of XS, µ := µ(X, S) and ‖·‖ for
a matrix denotes the operator norm with respect to the Euclidean norm on vectors. The
last equation basically defines ‖M‖−∞ for symmetric M as the negative of the smallest
eigenvalue of M; it is easy to check that this is a semi-norm on Sn. The equations hold
because X1/2SX1/2 and XS, being similar, have the same eigenvalues. It is easy to see
that these measures are zero, for strictly feasible iterates, only for points on the central
path. Also, for X, S ∈ Sn+,

d−∞(X, S) ≤ d∞(X, S) ≤ dF (X, S),

and d−∞(X, S) < µ(X, S) holds if and only if X and S are positive definite.
For a given 0 < γ < 1, we then define the neighborhoods

NF (γ ) := {(X, y, S) ∈ F 0(P ) × F 0(D) : dF (X, S) ≤ γµ(X, S)},
N∞(γ ) := {(X, y, S) ∈ F 0(P ) × F 0(D) : d∞(X, S) ≤ γµ(X, S)},

N−∞(γ ) := {(X, y, S) ∈ F 0(P ) × F 0(D) : d−∞(X, S) ≤ γµ(X, S)}.
The first and last are usually called the narrow and wide neighborhoods of the central
path.

3. Search directions for the second-order methods

In this section, we describe the main Newton-type directions that have been proposed in
the context of primal-dual interior-point algorithms for SDP.

At each iteration, a path-following algorithm has available an iterate (X, y, S) in
one of the neighborhoods above, and obtains another such iterate by taking a step in
some search direction (�X, �y, �S). Usually this direction is chosen so that (X +
�X, y + �y, S + �S) should be a good approximation to (X(σµ), y(σµ), Z(σµ)),
with µ := µ(X, S) and σ ∈ [0, 1], and then the step size is chosen so that the next iterate
lies in the appropriate neighborhood. Since the central path is defined by a system of
nonlinear equations, the direction is frequently taken as the Newton step for some such
system of equations, but choosing the appropriate system is not straightforward.

For simplicity, we are assuming that all our iterates are feasible. Thus our generic
feasible-interior-point path-following method can be described as follows:

Generic feasible-interior-point path-following method:
Choose L > 1, 0 < γ < 1, and an associated neighborhood N (γ ).
Let (X0, y0, S0) ∈ N (γ ) be given and set µ0 := (X0 • S0)/n.
Repeat until µk ≤ 2−Lµ0, do

(1) Choose a direction (�Xk, �yk, �Sk);
(2) Set (Xk+1, yk+1, Sk+1) := (Xk, yk, Sk) + αk(�Xk, �yk, �Sk)

for some αk > 0 such that (Xk+1, yk+1, Sk+1) ∈ N (γ );
(3) Set µk+1 := (Xk+1 • Sk+1)/n and increment k by 1.

End do
End
In this section, we are interested in the choice of the search direction. This would ap-

pear to be easy: merely take a Newton step for the central path equations (5) for ν := σµ.
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However, as we observed above (8), these equations map a point in Sn × �m × Sn to
a point in Sn × �m × �n×n, and thus a Newton step is not defined. Instead we can
use the equations (8), and the Newton step for these defines the so-called primal direc-
tion for SDP. Indeed, it is easy to see that the resulting �X is exactly the Newton step
for the primal barrier problem (Pν) from the current iterate X. Moreover, Theorem
2.2 and the discussion below it implies that this Newton step is well-defined for all
(X, y, S) ∈ N (γ ).

Such a primal Newton barrier method was proposed by Nesterov and Nemirovskii
[75] as an extension of the corresponding method for linear programming. However, it
does not seem to be as attractive, either theoretically or practically, as the primal-dual
methods (where �X, �y, and �S all depend on both the primal iterate X and the dual
iterate (y, S)) to be described below. Theoretical results have only been obtained for
short-step methods using the narrow neighborhood NF (γ ), and practically, these meth-
ods do not seem to allow as aggressive step sizes as primal-dual methods. The reason is
not too hard to see. These primal methods are based on taking Newton steps for systems
of equations involving the inverse map X → X−1, and this map is not as well-behaved
(particularly as the solution is approached, or after a long step) as the map (X, S) → XS

that appears in (5). Thus we would like to modify the equations (5) to allow a Newton
step to be taken without losing this nice behavior.

Because we are assuming our current iterates are feasible, the search directions we
consider below can all be obtained as solutions of (10) with rp and Rd both zero, and
suitable E , F , and REF . Computing the corresponding directions follows the scheme of
(11), but the details vary by method, and we refer to the original papers for elaboration.

The first method we consider is due to Alizadeh, Haeberly, and Overton [2], and is
motivated by symmetrizing the last equation of (5) directly; thus we replace XS = νI

by XS + SX = νI . Then the equations do indeed map Sn × �m × Sn to itself. Line-
arizing this gives the following equation for the direction (in addition to the feasibility
equations):

1

2
(�X S + S �X + X �S + �S X) = νI − 1

2
(XS + SX).

Thus the resulting Newton step (�X, �y, �S) solves (10) for

E = S � I, F = X � I, REF = νI − 1

2
(XS + SX).

We call this the AHO direction. Note that the last equation is symmetric between the
primal and dual: it is unchanged if we interchange X and S and correspondingly �X

and �S. We call directions obtained from such systems primal-dual symmetric, and if
a direction is not primal-dual symmetric, we call the direction resulting from such an
interchange its dual direction.

The AHO direction appears to be very natural, and indeed it does perform very well
in practice, obtaining highly accurate solutions in a small number of iterations in almost
all cases. However, it does have some drawbacks. From a theoretical point of view, it
does not have the attractive property of scale invariance (see Todd, Toh, and Tütüncü [96]
and [94]); polynomial-time convergence results seem much harder to obtain; and the
search directions may not be well-defined if the iterates do not lie in the neighborhood
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N∞(1/
√

2) (see [96], Monteiro and Zanjácomo [66] and Monteiro and Todd [62]). From
a practical point of view, obtaining E−1U for a symmetric matrix U as needed to solve
the system requires the solution of a Lyapunov system; while this is not too onerous,
the m×m matrix AE−1FA∗ that arises in the solution is not in general symmetric, and
this leads to operation counts (and times) that are up to twice as high per iteration as for
other methods.

The next method we describe, instead of symmetrizing the last equation, allows non-
symmetric search directions to make the dimensions match. Thus we initially allow �X

to be an arbitrary matrix (note that the dual feasibility equations imply that �S must be
symmetric), so that the central path equations map a point in �n×n × �m × Sn to one
in Sn × �m × �n×n. Then the resulting value for �X is symmetrized. Thus the first
linearization gives (the feasibility equations and)

�X S + X �S = νI − XS,

or equivalently
�X + X �S S−1 = νS−1 − X.

To symmetrize �X it suffices to symmetrize the second term, since the others are already
symmetric. Thus the resulting direction solves (10) for

E = I � I, F = X � S−1, REF = νS−1 − X.

This direction was obtained, by roughly the argument above, independently by Helm-
berg, Rendl,Vanderbei, andWolkowicz [41] and Kojima, Shindoh, and Hara [51]. Kojima
et al. also described its dual direction with

E = S � X−1, F = I � I, REF = νX−1 − S.

Later, Monteiro [58] gave another derivation of these directions. Each can be viewed
in a way very similar to the AHO approach as the Newton step for a symmetrized system
of equations, but before symmetrizing XS, a similarity transformation is applied. More
precisely, consider the following operator JP (·) mapping �n×n into Sn defined for every
U ∈ �n×n by

JP (U) = 1

2

[
PUP −1 + (PUP −1)T

]
,

where P is a given nonsingular matrix. (If P is the identity, JP is the usual projection
operator onto Sn.) The directions above are the Newton steps for the system of equations
(5) where the last equation is replaced by

JP (XS) = νI, (14)

where P = S1/2 for the first and P = X−1/2 for the second direction. Because of
these three contributions, the first direction is often called the HRVW/KSH/M direction.
Zhang [107] then generalized Monteiro’s work and analyzed the resulting directions
for arbitrary nonsingular P ; the resulting set of directions is called the Monteiro-Zhang
family. Clearly this family also contains the AHO direction, corresponding to P = I .
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Now let us consider the so-called Nesterov-Todd direction, which is the specializa-
tion to semidefinite programming of a symmetric primal-dual direction for a certain
class of convex programming problems studied in [76, 77]. We will derive this direction
as a way to make the primal direction primal-dual symmetric. Recall that the primal
direction is defined by the feasibility equations and

νX−1 �X X−1 + �S = νX−1 − S.

This last equation can be written equivalently as

�X + (ν−1/2X) �S (ν−1/2X) = X − ν−1XSX. (15)

On the other hand, its dual direction, which is the Newton step for the dual barrier
problem, solves the feasibility equations and

�X + (ν1/2S−1) �S (ν1/2S−1) = νS−1 − X, (16)

which coincides with the equation displayed above if the current iterate is exactly the
point on the central path corresponding to the parameter ν. We will therefore replace
the terms ν−1/2X and ν1/2S−1 by a matrix that is in some respects half way between
them (or halfway between X and S−1). Suppose we substitute for these two expressions
W ∈ Sn++, so that (15) and (16) become

W−1 �X W−1 + �S = νX−1 − S

�X + W �S W = νS−1 − X. (17)

These two equations are equivalent as long asWSW = X, which implies thatWX−1W =
S−1 also. By pre- and post-multiplying by S1/2, we find that

W = Wnt := S−1/2(S1/2XS1/2)1/2S−1/2; (18)

this matrix is called the metric geometric mean of X and S−1 [4]; it is similarly the
metric geometric mean of ν−1/2X and ν1/2S−1. In interior-point methods, it is called
the scaling matrix corresponding to the primal and dual iterates X and S.

The direction defined by the feasibility equations and (17), or equivalently by (10)
for

E = I � I, F = W � W, REF = νS−1 − X,

where W is the scaling matrix defined by (18), is called the Nesterov-Todd (NT) direc-
tion. Todd, Toh, and Tütüncü [96] also showed that the NT direction is a member of the
Monteiro-Zhang family, corresponding to P = W−1/2 in (14).

The AHO, HRVW/KSH/M, and NT directions are those most used in practice, as
well as being the ones most analyzed theoretically. Before ending this section, however,
we briefly mention several other directions which have been addressed in the literature.
First, in addition to the HRVW/KSH/M direction and its dual, Kojima, Shindoh, and
Hara [51] described a whole family of directions (including also the NT direction, but
not the AHO direction). Next, Monteiro and Tsuchiya [63] introduced and analyzed a
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family of directions called the Monteiro-Tsuchiya family, basically defined by taking a
Newton step for the central path equations (5) where the final equation is replaced by

X1/2SX1/2 = νI.

A whole family arises if this approach is applied to a scaled problem, involving a non-
singular matrix P as in the Monteiro-Zhang family. We refer to the original paper and
to [94] for more details. Tseng [100] introduced yet another family of search directions.
While the Tseng and Monteiro-Tsuchiya families differ from the Kojima-Shindoh-Hara
family, and from each other, all contain the HRVW/KSH/M direction, its dual, and the
NT direction, but exclude theAHO direction. Finally, Gu [36] and Toh [97] have recently
proposed two other members of the Monteiro-Zhang family which seem promising. Koj-
ima, Shida, and Shindoh [50] describe most of these directions and families and show
the relationships between them; Todd [94] describes twenty particular search directions
and analyzes their theoretical properties.

4. Primal-dual path-following methods

In this section we discuss the main convergence results that have been obtained for fea-
sible primal-dual path-following algorithms based on three families of search directions,
namely: the MZ, MT, and KSH families.

4.1. Algorithms based on the MZ family

In this subsection we discuss primal-dual path-following algorithms based on the MZ
family of search directions which was introduced by Monteiro and Zhang [58, 68, 107].

Given (X, y, S) ∈ Sn++ × �m × Sn++ and a nonsingular matrix P ∈ �n×n, consider
the linear system of equations

A∗�y + �S = C − S − A∗y,

A�X = b − AX, (19a)

JP (�XS + X�S) = σµI − JP (XS),

where (�X, �y, �S) ∈ Sn × �m × Sn, σ ∈ [0, 1] is the centering parameter and
µ = µ(X, S) := (X • S)/n is the normalized duality gap corresponding to (X, y, S).
This is the Newton system for the feasibility equations and the central path (14). Under
certain conditions (see Proposition 4.1) on (X, y, S), it can be shown that system (19a)
has a unique solution. As P varies over the set of nonsingular n × n-matrices, the set
of resulting directions gives rise to the MZ family of directions with parameter σ at the
point (X, y, S).

It can be shown that set of solutions to system (19a) remains invariant as long as the
matrix V = P T P does not change. Hence, for fixed V ∈ Sn++, it is enough to consider
only the matrix V 1/2 among all those scaling matrices P such that P T P = V . Hence,
there is no loss of generality in restricting our attention to those scaling matrices P that
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are in Sn++, since they yield all the possible directions that can be generated by system
(19a) as P varies over the set of nonsingular matrices.

We now describe a scaling procedure which allows us to view the MZ direction as
being the AHO direction in a certain scaled space. For a given P ∈ Sn++, consider the
following change of variables

X̃ := PXP, (ỹ, S̃) := (y, P −1SP −1). (20)

Letting

C̃ := P −1CP −1, (Ãi , b̃i ) := (P −1AiP
−1, bi), for i = 1, . . . , m,

we easily see that problems (P ) and (D) are equivalent to the pair of problems

(P̃ ) min
{
C̃ • X̃ : ÃX̃ = b̃, X̃ � 0

}
,

(D̃) max
{
b̃T ỹ : Ã∗ỹ + S̃ = C̃, S̃ � 0

}
,

where the operator Ã : Sn → �m is defined as (ÃX)i = Ãi•X for everyX ∈ Sn and i =
1, . . . , m. It can be easily verified that if (X, y, S) and (X̃, ỹ, S̃) in Sn++ ×�m ×Sn++ are
related according to (20), then (X̃, ỹ, S̃) is feasible in (P̃ ) and (D̃) if and only if (X, y, S)

is feasible in (P ) and (D); moreover, we have dF (X̃, S̃) = dF (X, S), d∞(X̃, S̃) =
d∞(X, S), d−∞(X̃, S̃) = d−∞(X, S), and µ = µ̃, where µ̃ := (X̃ • S̃)/n. Also, if
(X̃ν, ỹν, S̃ν) denotes the point on the central path with parameter ν > 0 for the pair of
problems (P̃ ) and (D̃), then (X̃ν, ỹν, S̃ν) = (PXνP, yν, P

−1SνP
−1).

A solution (�X, �y, �S) of the MZ system (19a) corresponds in the scaled space
to the scaled direction (�̃X, �̃y, �̃S) defined as

�̃X := P�XP, �̃S := P −1�SP −1, �̃y = �y. (21)

The direction (�̃X, �̃y, �̃S) is easily seen to be a solution of the AHO system:

Ã∗�̃y + �̃S = C̃ − S̃ − Ã∗ỹ,

Ã�̃X = b̃ − ÃX̃,

JI (�̃XS̃ + X̃�̃S) = JI (σ µ̃I − X̃S̃).

In other words, (�̃X, �̃y, �̃S) is the AHO direction (with parameter σ ) at the point
(X̃, ỹ, S̃) for the pair of problems (P̃ ) and (D̃).

The result stated next gives two sufficient conditions for the MZ direction to be
well-defined.

Proposition 4.1. Suppose that (X, y, S) ∈ Sn++ × �m × Sn++, σ ∈ � and P ∈ Sn++.
Then, system (19a) has a unique solution if either one of the following two conditions
hold:

a) d∞(X, S) = d∞(X̃, S̃) < µ/
√

2;
b) JP (XS) = JI (X̃S̃) � 0.
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Monteiro and Zanjácomo [66] established Proposition 4.1(a) with the factor 1/
√

2
replaced by 1/2 and Monteiro and Todd (Proposition 4.2 of [62]) subsequently extended
it for the factor 1/

√
2. Proposition 4.1(b) was established by Shida, Shindoh and Kojima

[90] for the case in which P = I and was subsequently extended for a general P ∈ Sn++
by Todd, Toh and Tütüncü (Theorem 3.1 of [96]).

The algorithms considered in this subsection are all special cases of the following
framework.

Framework MZ-PF:
Same as the Generic Algorithm of Section 3 but with step (1) replaced by

(1’) Choose a matrix P k ∈ Sn++ and a centrality parameter σk ∈ [0, 1];
compute the solution (�Xk, �yk, �Sk) of system (19a) with
P = P k , σ = σk and (X, y, S) = (Xk, yk, Sk).

End
In the remaining part of this subsection, we will state polynomial convergence results

for two special classes of algorithms from Framework MZ-PF, namely: short-step meth-
ods and long-step methods.

We start with short-step methods. These methods generate their sequence of iterates
within a neighborhood NF (γ ) with γ < 1

√
2, and hence the corresponding MZ direc-

tions are all well-defined in view of Proposition 4.1(a). Short-step methods (regardless
of the family of directions used) choose the sequences {σk} and {αk} according to the
following strategy.
Short-step strategy: for all k ≥ 0, let αk = 1 and σk be the smallest σ ∈ [0, 1] such
that (Xk, yk, Sk) + (�Xk(σ ), �yk(σ ), �Sk(σ )) ∈ NF (γ ), where (�Xk(σ ), �yk(σ ),

�Sk(σ )) denotes the search direction at (Xk, yk, Sk) as an affine function of σ .
The following convergence result for the short-step method based on the MZ family

is due to Monteiro [59].

Theorem 4.1 (Corollary 4.2 of [59]). Let γ ∈ (0, 1/
√

2) and (X0, y0, S0) ∈ NF (γ ) be
given. Then, the sequence of iterates {(Xk, yk, Sk)} ⊂ NF (γ ) generated by Framework
MZ-PF with the short-step strategy satisfies Xk •Sk ≤ (1 − δ/

√
n)k(X0 •S0), for every

δ > 0 satisfying
2 (γ 2 + δ2)

(1 − √
2 γ )2

(

1 − δ√
n

)−1

≤ γ.

As a consequence, the method terminates in at most O(
√

n L) iterations.

Monteiro [59] has also established an O(
√

n L) iteration-complexity bound for a
Mizuno-Todd-Ye predictor-corrector algorithm [57] based on the whole MZ family of
directions. Due to space constraints, we omit the details of this algorithm and instead
refer the reader to Section 4.2 of [59]. Convergence of the short-step methods based
on the NT direction and the two HRVW/KSH/M directions has been established earlier
by Nesterov and Todd [76, 77] and Kojima, Shindoh and Hara [51], respectively.
Theorem 4.1 generalizes these two results to the whole MZ family of directions. Since the
MZ family contains the AHO direction, the above result also implies that the short-step
method based on the AHO direction has an O(

√
n L) iteration-complexity bound.

We now describe the convergence results for long-step methods based on a subclass
of the MZ family of directions. Short-step methods have the best known theoretical iter-
ation-complexity bounds although in practice they are not effective due to the restrictive
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condition that the iterates have to remain in a relatively small central path neighborhood
NF (·), and hence generate small steps. A practical advantage of the long-step methods
is that they are based on the larger central path neighborhood N−∞(·), which allows for
more freedom in the choice of the next iterate and hence larger steps (hence, the name
long-step methods). However, long-step methods have worse theoretical iteration-com-
plexity bounds than short-step methods.

Since long-step methods are based on the central-path neighborhood N−∞(γ ) which
is generally wider than the neighborhood N∞(γ ) where the MZ direction is known to
be well-defined (if γ < 1/

√
2) regardless of the choice of the scaling matrix P (see

Theorem 4.1(a)), it is important to restrict the choice of P so as to guarantee that the MZ
direction is well-defined at any (X, y, S) ∈ N−∞(γ ). Indeed, consider the following
class of scaling matrices:

P(X, S) := {P ∈ Sn
++ : PXSP −1 = P −1SXP } = {P ∈ Sn

++ : X̃S̃ = S̃X̃}. (23)

Since the scaling matrices in P(X, S) make X̃ and S̃ commute, we will refer to P(X, S)

as the commutative class of scaling matrices at (X, S). Clearly, by Proposition 4.1(b),
the MZ direction is well-defined in the sense that (19a) has a unique solution whenever
P ∈ P(X, S). Indeed, if X̃ and S̃ commute, then JI (X̃S̃) = X̃S̃ = X̃1/2S̃X̃1/2, which
is positive definite.

Observe that the scaling matrices P = W
1/2
nt , P = S1/2 and P = X−1/2, corre-

sponding to the NT direction, the HRVW/KSH/M direction and the dual HRVW/KSH/M
direction, are contained in P(X, S), and hence our analysis applies to these directions.
However, P = I does not belong to P(X, S), except for the unlikely case when X and
S commute; hence, our analysis does not apply to the AHO direction.

Long-step methods (based on any family of directions) choose the sequences {σk}
and {αk} according to the following strategy.
Long-step strategy: Let γ, σ ∈ (0, 1) be given. For every k ≥ 0, let σk = σ and αk be
the largest α ≥ 0 such that (Xk, yk, Sk) + α(�Xk, �yk, �Sk) ∈ N−∞(γ ).

The main convergence result for long-step methods based on the MZ family of
directions establishes an iteration-complexity bound in terms of the quantity κ∞ defined
as

κ∞ := sup
{

cond
[
(X̃k)−1S̃k

]
: k = 0, 1, 2, . . .

}
, (24)

where X̃k := PXkP and S̃k := P −1SkP −1. Here, for a matrix W ∈ �n×n whose
eigenvalues are all positive real numbers, we denote by cond(W) the ratio between the
largest and the smallest eigenvalues of W . Clearly, κ∞ ≥ 1. The following convergence
result is due to Monteiro and Zhang [68].

Theorem 4.2 (Theorem 3.1 of [68]). Let γ, σ ∈ (0, 1) and (X0, y0, S0) ∈ N−∞(γ )

be given. Assume that the sequence of scaling matrices {P k} ⊂ Sn++ satisfies P k ∈
P(Xk, Sk) for all k ≥ 0 and κ∞ < ∞. Then the sequence of iterates {(Xk, yk, Sk)}
generated by Framework MZ-PF with the long-step strategy satisfies Xk • Sk ≤
(1 − (1 − σ)ᾱ)k(X0 • S0), where

ᾱ := min

(

1 ,
σγ

1 − 2σ + σ 2/(1 − γ )

1√
κ∞ n

)

.

Consequently, the long-step algorithm terminates in at most O(
√

κ∞ nL) iterations.
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The next result states the consequences of Theorem 4.2 for three special choices of
the sequence {P k} which lead to the NT direction, the HRVW/KSH/M direction and the
dual HRVW/KSH/M direction, respectively.

Corollary 4.1 (Theorem 3.2 of [68]). The long-step algorithms based on the NT direc-
tion, the HRVW/KSH/M direction and the dual HRVW/KSH/M direction have iteration-
complexity bounds equal to O(nL), O(n3/2L) and O(n3/2L), respectively.

We note that the iteration-complexity bounds obtained in Theorem 4.1 for the long-
step methods basd on the HRVW/KSH/M and the dual HRVW/KSH/M directions were
first obtained by Monteiro [58].Among all long-step algorithms based on the MZ family,
the one based on the Nesterov-Todd direction achieves the best possible iteration-com-
plexity bound, namely O(nL), that can be derived from Theorem 4.2. In this case, we
have X̃k = S̃k for all k ≥ 0, and hence κ∞ = 1 in view of (24).

4.2. Algorithms based on the MT family

In this subsection we discuss primal-dual path-following algorithms based on the MT
family of search directions which was introduced by Monteiro and Tsuchiya [63]. All
the results stated below for the MT family are due to Monteiro and Tsuchiya [63] and
proofs can be found there.

Recall that each direction of the MZ family can be transformed into the AHO direc-
tion in a certain scaled space obtained by a scaling transformation that depends on P (see
(20)). This property of the MZ family could in fact be used to describe it. More precisely,
given a scaling matrix P ∈ Sn++, a point (X, y, S) ∈ Sn++ ×�m ×Sn++ and a parameter
σ , the corresponding MZ direction (�X, �y, �S) can be obtained by performing the
following steps:
MZ construction:

i) map (X, y, S) into the point (X̃, ỹ, S̃) ∈ Sn++ × �m × Sn++ in the scaled space
computed by using (20);

ii) compute the Newton direction (�̃X, �̃y, �̃S) for the system JI (X̃S̃) − σµ̃I = 0,
ÃX̃ − b̃ = 0 and Ã∗ỹ + S̃ − C̃ = 0; and

iii) map the direction (�̃X, �̃y, �̃S) back into the original space using (21) to obtain
(�X, �y, �S).

A similar type of construction can be used to define a general direction of the MT
family. The only difference with respect to the above construction is that in ii) the equa-
tion JI (X̃S̃) = σµ̃I is replaced by the alternative central path equation X̃1/2S̃X̃1/2 −
σµ̃I = 0. (In [63], arbitrary nonsingular scaling matrices P can be chosen instead of
just symmetric positive definite ones as here; however, as with the MZ family, it can
be shown that the direction depends only on PP T , so without loss of generality we
restrict attention to Sn++.) To define the procedure more precisely, given a scaling matrix
P ∈ Sn++, a point (X, y, S) ∈ Sn++ × �m × Sn++ and a parameter σ , the corresponding
MT direction (�X, �y, �S) can be obtained by performing the following steps:
MT construction:

i’) same as i) as above;
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ii’) compute the Newton direction (�̃X, �̃y, �̃S) for the system X̃1/2S̃X̃1/2 −σµ̃I =
0, ÃX̃ − b̃ = 0 and Ã∗ỹ + S̃ − C̃ = 0; and

iii’) same as iii) above.

We now discuss how to compute the Newton direction at step ii’). For any A ∈ Sn++,
it can be shown that the operator 
A := A � I = I � A is positive definite, and hence
has an inverse. The following result expresses the directional derivative of the square
root function X → X1/2 in terms of the inverse of 
X1/2 . (For its proof, see Lemma 2.2
of [63] for example).

Lemma 4.1. Let θ : Sn++ → Sn++ denote the square root function θ(X) = X1/2. Then,
θ is an analytic function, and

θ ′(X)H = 1

2

(

X1/2

)−1
H, for every X ∈ Sn++ and H ∈ Sn,

where θ ′(X) is the derivative of θ at X and θ ′(X)H is the linear map θ ′(X) evaluated
at H .

Using Lemma 4.1, it is now easy to see that the Newton direction (�̃X, �̃y, �̃S)

for the system in ii’) is the solution of the following system of linear equations:

Ã∗�̃y + �̃S = C̃ − Ã∗ỹ − S̃, (25a)

Ã�̃X = b − ÃX̃, (25b)

JI

(

−1

X1/2(�̃X)S̃X̃1/2
)

+ X̃1/2�̃SX̃1/2 = σµ̃I − X̃1/2S̃X̃1/2. (25c)

As with step ii) of the MZ construction, step ii’) of the MT construction is not always
well-defined in that the coefficient matrix of system (25a) may be singular. The following
result gives two conditions which guarantee that this coefficient matrix is nonsingular.

Proposition 4.2 (Theorems 2.4 and 6.2 of [63]). Let (X, y, S) ∈ Sn++ × �m × Sn++,
σ ∈ � and P ∈ Sn++ be given and assume that one of the following conditions hold:

a) d∞(X, S) = d∞(X̃, S̃) < µ/
√

2;
b) X̃1/2S̃ + S̃X̃1/2 = (PXP)1/2(P −1SP −1) + (P −1SP −1)(PXP)1/2 � 0.

Then, the corresponding direction obtained from the MT construction is well-defined in
the sense that system (25a) has exactly one solution.

The algorithms considered in this subsection are all special cases of the following
framework.

Framework MT-PD:
Same as Framework MZ-PD but with step (2) replaced by

(2’) Compute the MT direction (�Xk, �yk, �Sk) according to the
MT construction with P = P k , σ = σk and (X, y, S) = (Xk, yk, Sk).

End
Condition a) of Proposition 4.2 gives the foundation for the first two classes of algo-

rithms that we consider, namely: short-step methods and semilong-step methods based
on the MT family of directions. These two methods, while not imposing any condition
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on the choice of the scaling matrix P , require that the iterates be generated inside cen-
tral-path neighborhoods which automatically enforce condition a) of Proposition 4.2,
namely: NF (γ ) and N∞(γ ), respectively, where γ ∈ (0, 1/

√
2).

The main results regarding the polynomial convergence of short-step methods and
semilong-step methods based on the MT family are stated in the next two theorems.
Their proofs can be found in Monteiro and Tsuchiya [63].

Theorem 4.3 (Corollary 4.2 of [63]). Let γ ∈ (0, 1/
√

2) and (X0, y0, S0) ∈ NF (γ ) be
given. Then, the sequence of iterates {(Xk, yk, Sk)} ⊂ NF (γ ) generated by Framework
MT-PF with the short-step strategy satisfies Xk •Sk ≤ (1 − δ/

√
n)k(X0 •S0), for every

δ > 0 satisfying
40 (γ 2 + δ2)

(1 − √
2 γ )2

(

1 − δ√
n

)−1

≤ γ.

As a consequence, short-step methods based on the whole MT family of directions ter-
minate in at most O(

√
n L) iterations.

Theorem 4.4 (Corollary 4.4 of [63]). Let γ ∈ (0, 1/
√

2), σ̄ ∈ (0, 1) and (X0, y0, S0) ∈
N∞(γ ) be given. Consider the class of semilong-step methods from the Framework MT-
PD where the sequences {σk} and {αk} are chosen according to

σk := σ̄ ,

αk := max
{
α ∈ [0, 1] : (Xk, yk, Sk) + α(�Xk, �yk, �Sk) ∈ N∞(γ )

}
,

Then, the sequence of iterates {(Xk, yk, Sk)} ⊂ N∞(γ ) generated by any algorithm of
this class satisfies Xk • Sk ≤ (1 − η̄)k(X0 • S0) for all k ≥ 0, where

η̄ := σ̄ (1 − σ̄ )γ (1 − √
2γ )2

40n
[
γ 2 + (1 − σ̄ )2

] .

As a consequence, semilong-step methods based on the whole MT family of directions
terminate in at most O(nL) iterations.

Note that the choice of the sequence {αk} for the semilong-step method described
in Theorem 4.4 is similar to that made for the long-step method except that N∞(γ )

replaces the larger neighborhood N−∞(γ ). An interesting open question is whether a
polynomial iteration-complexity bound can be established for semilong-step methods
based on the whole MZ family of directions.

Condition b) of Proposition 4.2 forms the foundation for the long-step algorithms.
Given (X, S) ∈ Sn++ ×Sn++, denote by P0(X, S) the class of scaling matrices satisfying
condition (b) of Proposition 4.2. We refer to the family of directions corresponding to
these scaling matrices as the MT∗ family. The following convergence result applies to
long-step methods based on the MT∗ family of directions.

Theorem 4.5 (Corollary 6.7 of [63]). Let γ, σ ∈ (0, 1) and (X0, y0, S0) ∈ N−∞(γ )

be given. Assume that the sequence of scaling matrices {P k} ⊂ Sn++ satisfies P k ∈
P0(X

k, Sk) for all k ≥ 0. Then the sequence of iterates {(Xk, yk, Sk)} ⊂ N−∞(γ )
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generated by Framework MT-PF with the long-step strategy satisfies Xk • Sk ≤ (1 −
η̄)k(X0 • S0) for all k ≥ 0, where

η̄ := σ̄ (1 − σ̄ )γ (1 − γ )1/2

30n3/2[1 − 2σ̄ + σ̄ 2/(1 − γ )]
.

As a consequence, semilong-step methods based on the MT∗ family of directions termi-
nate in at most O(n3/2L) iterations.

We end this subsection by giving a few remarks. It is possible to derive a symmet-
ric MT family based on the alternative central path equation S̃1/2X̃S̃1/2 − σµ̃I = 0,
obtained from the one used in this subsection by interchanging the role of X̃ and S̃. It
is easy to see that the symmetric MT family obtained by applying the Newton method
to this equation plus the feasibility equations (in the scaled space) has similar proper-
ties to the one studied in this subsection and that it contains the NT direction and the
HRVW/KSH/M direction.

We refer to the MT direction corresponding to P = I as the X1/2SX1/2-Newton
direction. Like the AHO direction, this is a pure Newton direction in the sense that it is
a Newton direction for a system of the form �(X, S) = σµI where the map �(·, ·) is
independent of the current iterate or any parameter such as the scaling matrix P . On the
basis of the results obtained so far, the X1/2SX1/2-Newton direction has clear theoreti-
cal advantages over the AHO direction in the sense that polynomial convergence of the
semilong-step path-following algorithm is only known for the former direction. So far
this is the only pure Newton path-following algorithm which is polynomially convergent
and is based on a central-path neighborhood wider than NF (·).

The MT∗ family also has theoretical advantages over the MZ∗ family based on the
results so far. While for the MZ∗ family the iteration-complexity bound depends on a
certain condition number associated with the sequence {P k} of scaling matrices, the
corresponding bound for the MT∗ family does not depend on this sequence.

Finally, Monteiro and Zanjácomo [67] have reported promising computational results
for algorithms based on the X1/2SX1/2-Newton direction and two other pure Newton
directions based on alternative central path equations, namely: S1/2XS1/2 = σµI and
LT

S XLS = σµI , where LS denotes the Cholesky lower triangular factor of S, that is
S = LSLT

S with LS lower triangular.

4.3. Algorithms based on the KSH family

In this section we describe primal-dual path-following algorithms based on the KSH
family of search directions which was introduced in Kojima, Shindoh and Hara [51].

In contrast to the MT and MZ families, whose directions are parametrized by a non-
singular scaling matrix P (in addition to a centrality parameter σ ), the directions of the
KSH family are parametrized by subspaces H ⊂ Sn

⊥ × Sn
⊥ having the property that

dim(H) = n(n − 1)/2 and H is monotone, that is U • V ≥ 0 for all (U, V ) ∈ H . In
what follows, we denote this set of subspaces by H. Given (X, y, S) ∈ Sn++×�m×Sn++
and H ∈ H, consider the following Newton-type system of linear equations

A�X = b − AX, A∗�y + �S = C − A∗y − S, (26a)
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X(�S + �S′) + (�X + �X′)S = σµI − XS, (26b)

(�X, �S) ∈ Sn × Sn, (�X′, �S′) ∈ H. (26c)

It has been shown in Theorem 4.2 of Kojima et al. [51] that, for every H ∈ H, system
(26a) always has a unique solution (�X, �y, �S, �X′, �S′) (see also Theorem 2.2 of
Monteiro and Tsuchiya [64] for a simpler proof). The component (�X, �y, �S) of this
solution is then the KSH search direction at (X, y, S) corresponding to H and σ .

Kojima [45] (see Lemma 2.1 of Monteiro [58]) has shown that the KSH search
directions corresponding to the subspaces H = Sn

⊥ × {0} and H = {0} × Sn
⊥ are

equal to the MZ directions with P = S1/2 and P = X−1/2, respectively (that is,
the HRVW/KSH/M direction and its dual direction, respectively). Also, it is shown in
Kojima, Shida and Shindoh [48] that the NT direction is a member of the KSH family
(the corresponding H is not so simple to describe). On the other hand, the AHO direction
is not in the KSH family since, as opposed to the directions of the KSH family, the AHO
direction does not necessarily exist at every point (X, y, S) ∈ Sn++ × �m × Sn++ (see
the discussion before Theorem 3.2 of Todd et al. [96]).

The HRVW/KSH/M direction can be equivalently obtained by first solving the New-
ton system

A∗�̂y + �̂S = C − A∗y − S, A�̂X = b − AX, (27)

X�̂S + �̂XS = σµI − XS, (28)

with the restriction that (�̂X, �̂y, �̂S) ∈ �n×n × �m × Sn. It is easily seen that this

system has a unique solution and that (�X, �y, �S) := ((�̂X + �̂X
T
)/2, �̂y, �̂S)

is the direction of the KSH family corresponding to H = Sn
⊥ × {0}, and hence the

HRVW/KSH/M direction according to the discussion in the previous paragraph.
We are now ready to state a general framework based on the KSH family.
Framework KSH-PD:

Same as Framework MZ-PD but with steps (1) and (2) replaced by
(1’) Choose a linear subspace Hk ∈ H and a centrality

parameter σk ∈ [0, 1];
(2’) Compute the KSH direction (�Xk, �yk, �Sk) at

(Xk, yk, Sk) corresponding to H = Hk and σ = σk .
End
Polynomial convergence results have been obtained for some variants of the above

framework. By taking Hk = Sn
⊥ × {0} or Hk = {0} × Sn

⊥ for all k, that is by selecting
the search directions to be either the HRVW/KSH/M direction or its dual direction at
every iteration, Kojima et al. [51] establish that the short-step path-following method
converges in O(

√
n L) iterations. (An alternative derivation of this result was also given

in Monteiro [58] by viewing these directions as members of the MZ family.) This result
was then generalized by Monteiro and Tsuchiya [64], who establish the same itera-
tion-complexity bound for a short-step path-following method and a predictor-corrector
method with no restriction on the subspaces Hk’s. Kojima et al. [51] have also estab-
lished the polynomial convergence of a primal-dual potential-reduction algorithm with
no restriction on the subspaces Hk’s.

Finally, we observe that it is an open question whether it is possible to establish the
polynomial convergence of path-following algorithms based on neighborhoods other
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than the Frobenius neighborhood NF (·) and whose search directions are from the KSH
family with no restriction on the Hk’s.

5. First- and second-order methods for large-scale SDPs

In this section, we present methods which are particularly suitable for the solution of
large-scale SDP problems.

The methods of Subsections 5.1 and 5.2 are based on replacing the matrix variable
of one of the problems (P ) or (D), i.e. either the variables X or S, by a factorization
of the form V V T where V is a (possibly specially structured) matrix with n rows. In
both cases, the resulting nonlinear optimization problems are then solved by means of
first-order nonlinear programming methods that can suitably handle problems with large
number of variables (e.g., limited memory quasi-Newton methods).

The method of Subsection 5.1 applies the above change of variables to the primal
SDP problem (P ) and restricts V to the set of matrices �n×r where r is a positive integer
number much smaller than n. The resulting formulation is then a nonlinear programming
with much smaller number of variables than the original problem (P ). The method of
Subsection 5.2 applies the above change of variables to (in fact, a special version of)
the dual SDP problem (D) and restricts V to the set of lower triangular matrices with
all positive diagonal elements. In addition, it considerably reduces the number of vari-
ables by eliminating variables, i.e. expressing some variables as functions of others.
The resulting formulation takes a particularly simple form, namely that of minimizing a
nonlinear function over an orthant of the form �m ×�n++, where m and n are as before.

Finally, Subsection 5.3 briefly describes the spectral bundle method for SDP while
Subsection 5.4 describes second-order methods that have been proposed to take advan-
tage of data sparsity and hence handle large-scale SDPs more effectively.

5.1. Low-rank factorization methods

In this subsection, we briefly discuss first-order SDP methods based on solving a refor-
mulation of the SDP problem (P ) that results after performing the change of variables
X = RRT where R ∈ �n×r and r ∈ {1, . . . , n}. Since the resulting reformulation is
nonconvex, no global convergence analysis is currently available for these methods. In
practice, however, these first-order methods are able to handle several classes of SDP
problems extremely fast and always generate a sequence of iterates which converge to
the optimal solution set of problem (P ).

The straightforward idea underlying the method in this subsection and the next one
is that a matrix X is in Sn+ if and only if X = V V T for some matrix V ∈ �n×n.
Applying this observation to problem (P ) yields the following equivalent nonconvex
programming formulation

min { C • (V V T ) : A(V V T ) = b, V ∈ �n×n }, (29)

which can be solved by a variety of nonlinear optimization methods. Even though (29)
is nonconvex, it can be shown that its set of local minima coincide with its set of global
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minima, although its set of stationary points is generally larger than its set of global min-
ima. A first-order algorithm based on the above formulation was developed by Homer
and Peinado in [42]. Another formulation related to (29) is obtained by assuming that
the matrix V is lower triangular, and a first-order algorithm based on this second for-
mulation was developed by Burer and Monteiro [15]. Both algorithms of [42, 15] have
been implemented only to solve the SDP relaxation of the maximum cut problem, for
which feasibility of the sequence of iterates is easy to enforce.

Another variation based on the ideas above has been pursued by Burer and Monteiro
[16]. Instead of the above factorization, they consider factorizations of X of the form
X = RRT , where R ∈ �n×r and r < n. Restricting X in (1) to matrices of the above
form, i.e., of rank less than or equal to r , yields the following formulation

min { C • (RRT ) : A(RRT ) = b, R ∈ �n×r }. (30)

The advantage of the resulting formulation is that it has relatively few variables when r

is small. The choice of r must be carefully made so as to guarantee that optimal solutions
R∗ of (30) yield optimal solutions R∗(R∗)T of (1). In this respect, the following result
due to Barvinok [5] and Pataki [81] is useful.

Proposition 5.1. If the primal SDP problem (P ) has an optimal solution then it has an
optimal solution X∗ whose rank r∗ satisfies the inequality r∗(r∗ + 1) ≤ 2 m.

Using this result, it is easy to see that if r ≥ �√2m� and R∗ is an optimal solution
of (30) then R∗(R∗)T is an optimal solution of (1). Burer and Monteiro [16] have then
used a slightly modified version of the augmented Lagrangian method (see Section 12.2
of [29]) to solve (30) with r as indicated and have obtained very good computational
results. Despite the fact that, like (29), the new formulation is nonconvex, extensive
computational experiments have shown that the method of [16] always converges to the
exact optimal value. However, in contrast to (29), it is still an open problem to establish
under the assumption that r ≥ �√2m� whether every local minimum of (30) is actually
a global minimum of (30).

Despite the lack of a global convergence proof, computational experiments have
shown that the above method substantially outperforms other available algorithms (e.g.,
second-order IP methods [31, 9] and the spectral bundle method [40]) when solving
certain classes of large-scale SDP problems. For example, the method can solve max-
imum cut semidefinite relaxations of graphs containing 20,000 nodes in less than 10
minutes. On the other hand, the algorithms of Subsections 5.2 and 5.3 take more than
60 hours to solve these problems, and second-order IP methods are not able to perform
one iteration due to their large time and memory requirements on such problems. The
above method has been implemented for several structured subclasses of SDPs by Burer
and Monteiro in a code called SDP-LR, which can be download freely from the website
http://www.isye.gatech.edu/˜monteiro/software.

Finally, Vanderbei and Y. Benson [104] have developed a method in which the pri-
mal variable X is factored as LX Diag(d(X))LX, where LX is unit lower triangular and
d(X) ∈ �n, and the constraint X � 0 is enforced by adding the nonlinear constraint
d(X) ≥ 0. They show that this last constraint is a convex type constraint in the sense
that d(X) is a concave function.
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5.2. A dual logarithmic barrier method

In this subsection, we discuss a log-barrier type method based on solving a sequence
of reformulations of problem (Dν). These reformulations are obtained by performing
the changing of variables S = LLT in problem (Dν), where L is the Cholesky lower
triangular factor of S, and some variables are subsequently expressed as functions of the
others.

Although the method can be described for the general dual problem (2), its most
simple description is obtained for the following special form of (2):

(D′) max
{
dT z + bT y : Diag(z) + A∗y + S = C, S � 0

}
, (31)

where d ∈ �n and Diag(z) is the diagonal matrix with the components of z along its
diagonal. Then, strict feasibility for this problem can expressed as

C − Diag(z) − A∗y =
(

Diag(w) + L̃
) (

Diag(w) + L̃
)T

, (32)

where w ∈ �n++ and L̃ ∈ �n×n is strictly lower triangular. Note that we have expressed
S as the product LLT where L = Diag(w)+ L̃ is its Cholesky lower triangular factor. A
key idea of the first-order method is then to use (32) to express (z, L̃) in terms of (w, y).
In this respect, we have the following result.

Theorem 5.1 (Theorem 4 of [18]). The following statements hold:

a) for each (w, y) ∈ �n++ × �m, there exists a unique pair (L̃, z), where L̃ is a strictly
lower triangular n × n matrix and z ∈ �n, satisfying (32);

(b) the functions L̃(w, y) and z(w, y) defined according to (32) are each infinitely dif-
ferentiable on their domain �n++ × �m;

(c) �n++ ×�m and the set of strictly feasible solutions of (31) are in bijective correspon-
dence according to the assignment (w, y) �→ (z, y, S) where z ≡ z(w, y), S ≡ LLT

and L ≡ Diag(w) + L̃(w, y).

Hence, the problem of maximizing dT z + bT y subject to the strict feasibility of
(z, y, S) is equivalent to the simple problem

(NLP) inf
{
f (w, y) ≡ −dT z(w, y) − bT y : w > 0

}
. (33)

The derivatives of the objective function f (w, y) can be effectively computed by
means of the following result which also introduces a primal estimate associated with
the point (w, y) ∈ �n++ × �m.

Proposition 5.2 (Proposition 7 of [18]). Let (w, y) ∈ �n++ × �m be given and define
L ≡ Diag(w) + L̃(w, y). Then, the system of linear equations

diag(X) = d, (XL)ij = 0, i > j, X ∈ Sn (34)

has a unique solution in Sn, which we will denote by X(w, y). Moreover:
a) ∇wf (w, y) = 2 diag(XL);
b) ∇yf (w, y) = A(X) − b.
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Note that the dual of (31) is the SDP

(P ′) min {C • X : diag(X) = d; A(X) = b; X � 0} . (35)

By (34), the primal estimate X = X(w, y) always satisfies the first constraint of (35).
Moreover, by Proposition 5.2(b), X(w, y) satisfies the second constraint if and only if
∇yf (w, y) = 0. The next result gives condition under which the third constraint of (35)
is satisfied.

Proposition 5.3 (Lemma 5 of [18]). Let (w, y) ∈ �n++ × �m be given and define
L ≡ Diag(w) + L̃(w, y), S = LLT , X ≡ X(w, y), and ∇wf ≡ ∇wf (w, y). Then,

a) X � 0 if and only if ∇wf ≥ 0; in addition, X � 0 if and only if ∇wf > 0;
b) w ◦ ∇wf (w, y) = 2 diag(LT XL), hence wT ∇wf (w, y) = 2 trace (LT XL) =

2 X • S, where “◦” denotes the Hadamard (component-wise) product.

We now discuss how problem (NLP) indirectly yields a solution for the pair of SDPs
(P ′) and (D′). Given a sequence of points {(wk, yk)}k≥0 ⊂ �n++ ×�m, we define Lk ≡
Diag(wk) + L̃(wk, yk), Sk ≡ Lk(Lk)T , Xk ≡ X(wk, yk), zk ≡ z(wk, yk), ∇wf k ≡
∇wf (wk, yk) and ∇yf

k ≡ ∇yf (wk, yk) for all k ≥ 0. The following result gives suf-
ficient conditions for the accumulation points of the sequences {Xk} and {(zk, yk, Sk)}
to be optimal solutions of problems (P ′) and (D′), respectively.

Theorem 5.2 (Theorem 6 of [18]). Let {(wk, yk)}k≥0 ⊂ �n++ × �m be a sequence of
points such that ∇wf k ≥ 0 for all k ≥ 0, the sequence {(wk)T ∇wf k} is bounded, and
limk→∞ ∇yf

k = 0. Then,

(a) the sequences {Xk}, {(zk, yk, Sk)}, {Lk}, {wk} and {∇wf k} are all bounded;
(b) if in addition limk→∞(wk)T ∇wf k = 0, then any accumulation points of {Xk} and

{(zk, yk, Sk)} are optimal solutions of (P ′) and (D′), respectively.

The first-order algorithm of this subsection generates a sequence satisfying the con-
ditions of the above theorem and therefore it asymptotically approaches a solution of
the pair of SDPs (P ′) and (D′). The basis of this algorithm is the following log-barrier
subproblem given by

(NLPν) min

{

f (w, y) − 2ν

n∑

i=1

log wi : (w, y) ∈ �n
++ × �m

}

,

where ν > 0 is a positive parameter. This subproblem will be successively solved for
a sequence of parameters {νk} converging to zero. The following result establishes the
connection of this log-barrier subproblem with the central path of the SDP problems
(P ′) and (D′).

Proposition 5.4 (Theorem 7 of [18]). For each ν > 0, (NLPν) has a unique mini-
mum point (wν, yν), which is also its unique stationary point. Moreover, if we define
zν ≡ z(wν, yν), Lν ≡ Diag(wν) + L̃(wν, yν), Sν ≡ LνL

T
ν , Xν ≡ X(wν, yν), then the

point (Xν, zν, yν, Sν) is the point on the central path corresponding to the parameter ν

for the pair of SDPs (P ′) and (D′).
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Since (wν, yν) is a stationary point of (NLPν), it satisfies the conditions

∇wf ◦ w = 2 νe, ∇yf = 0, (36)

where e ∈ �n is the vector of all ones. Thus, the sequence {(wk, yk)} defined as
(wk, yk) ≡ (wνk

, yνk
) for all k, where {νk} ⊂ �++ is a sequence converging to zero,

can be easily seen to satisfy the hypothesis of Theorem 5.2, and hence its accumulation
points yield optimal solutions for the pair of SDPs (P ′) and (D′).

It turns out that it suffices to solve (NLPν) only approximately. Indeed, let constants
γ1 ∈ [0, 1), γ2 > 1, and  > 0 be given, and, for each ν > 0, define

N (ν) ≡ {
(w, y) ∈ �n

++ × �m :

2γ1ν e ≤ w ◦ ∇wf (w, y) ≤ 2γ2ν e, ‖∇yf (w, y)‖ ≤ ν
}
. (37)

Note that each (w, y) ∈ N (ν) satisfies ∇wf (w, y) > 0 and that the unique minimizer
(wν, yν) of (NLPν) is in N (ν), as can be seen from equation (36). We are now ready
to state the log-barrier algorithm for solving the pair of SDPs (P ′) and (D′).

Log-Barrier Algorithm:
Let σ ∈ (0, 1) and ν0 > 0 be given, and set k = 0.
For = k = 0, 1, 2, . . .

1. Use a minimization method to solve (NLPνk
) approximately,

obtaining a point (wk, yk) ∈ N (νk).
2. Set νk+1 = σνk , increment k by 1, and return to step 1.

End

We stress that since (NLPνk
) has a unique stationary point (wν, yν) for all νk > 0 which

is also the unique minimum, step 1 of the algorithm will succeed using any reason-
able unconstrained minimization method. Specifically, any convergent, gradient-based
method will eventually produce a point in the set N (νk).

As shown in [17], slight modifications to the above log-barrier method allow one to
solve the general pair of SDP problems (1) and (2). In particular, under the assumption
that d < 0, it can be shown that any optimal solution (z∗, y∗, S∗) of the SDP problem
obtained by adding the constraint z ≥ 0 to (31) has the property that z∗ = 0 and (y∗, S∗)
is an optimal solution of (2). This modified SDP problem can be transformed, according
to the ideas of the previous paragraph, to a problem like (33) with the additional con-
straint that z(w, y) > 0, which can easily be handled by log-barrier type methods. One
disadvantage of this modified approach, however, is that knowledge of a strictly feasi-
ble solution for (2) is needed in order to have an immediately available initial feasible
solution for the transformed problem.

In [19], Burer et al. discuss an efficient implementation of the above log-barrier
algorithm and report computational results on semidefinite relaxations of three types of
combinatorial optimization problems, namely the maximum cut, the maximum stable
set, and the frequency assignment SDP relaxations. The computational results demon-
strate that the algorithm is very efficient for solving large-scale SDPs and is particularly
effective for problems with a large number of primal constraints, such as the maximum
stable set and the frequency assignment SDP relaxations.
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The nonlinear programming approach described in this subsection and the previous
might at first seem a little strange since it takes a convex programming problem, namely
the SDP problem (31), and transforms it into the nonconvex problem (33). However, the
approach described in this subsection preserves a lot of the nice properties inherent in a
convex programming problem. Indeed, Proposition 5.4 claims that even though the sub-
problem (NLPν) is nonconvex, it has a unique stationary point which is also its unique
global minimum. Hence, this global minimum can be easily approached by using stan-
dard first-order methods for unconstrained nonlinear programming. Moreover, it can be
proved that the Hessian of f (w, y) is positive definite at any point (w, y) ∈ �n++ × �m

such that ∇wf (w, y) � 0, and hence at any point in the neighborhood ∪ν>0N (ν) of
the central path of (33), that is the set of minimizers {(wν, yν) : ν > 0} (see Proposition
5.3(a) above and Theorem 2.4 of Burer et al. [17]). Motivated by this last observation,
Burer et al. (see Section 4 of [17]) develop a second-order potential-reduction algorithm
for the formulation (33).

5.3. The spectral bundle method for SDP

In this sebsection, we briefly discuss a method for solving large-scale SDPs based on
the bundle method for nonsmooth convex programming that have been proposed by
Helmberg and Rendl [40].

Consider first the following special form of (1):

(P ′′) min {C • X : A(X) = b, trace (X) = 1, X � 0} .

Note that, as opposed to (1), (P ′′) requires that the trace of X be equal to one, and hence
it is usually referred to as a constant trace problem. Its dual is the SDP:

(D′′) max
{
bT y + λ : C � A∗y + λI

}
.

Noting that (y, λ) is feasible to (D′′) if and only if −λ ≥ λmax(A∗y −C) and switching
the minimization to maximization by multiplying the objective function by minus one,
we see that (D′′) is equivalent to

min
{
g(y) := −bT y + λmax(A∗y − C) : y ∈ �m

}
.

This is a convex but nonsmooth unconstrained problem, to which standard nonsmooth
methods for convex programming can be applied. Helmberg and Rendl [40] develops
a variant of the bundle method, which they referred to as the spectral bundle method,
specially tailored to take advantage of the special form of the objective function. The
basic idea behind the bundle method is to build a cutting plane model of the objective
function by computing subgradients of the objective function at several iterates of the
algorithm. We refer the reader to [40] for further details on this algorithm.

Rendl and Helmberg [40] also shows how an SDP problem of the form of (1) with
a bounded feasible region can be put into the form (P ′′) by a sequence of elementary
transformations. They have also obtained very good computational results with their
spectral bundle in the solution of large-scale SDP problems which can not be handled
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by the methods of Section 4 due to their size. Finally, other variants of the above bundle
method which incorporates second-order information have been developed by Oustry
[78, 79] and Helmberg and Oustry [39].

5.4. Second-order methods for large scale SDPs

In this subsection, we briefly survey second-order methods that have been proposed in
the literature for handling large-scale SDP problems.

The first second-order methods proposed for solving large-scale SDPs work directly
in the space of y of the dual problem (2) in order to exploit sparsity in the data. More
precisely, consider the following barrier subproblem

max
y

{
h(y) := bT y + ν log det(C − A∗y) : C − A∗y � 0

}
,

which is essentially problem (Dν) without the dual slack S. The basic idea exploited
by these methods is that if the matrices C and Ai’s are all sparse, then the dual slack
C−A∗y will be sparse and hence evaluation of the function h(y) and its first and second
order derivatives will be relatively fast. Even though first derivatives of h(y) are rela-
tively easy to compute (see for example Vavasis [105]), at present there is no successful
implementation of a first order method based on the above subproblem. On the other
hand, a second order method based on the above subproblem has been developed by
Benson, Ye and Zhang [9]. The search direction of their algorithm is the Newton direc-
tion corresponding to equation (16). Hence, their method is closer to the ones described
in the previous section, the main difference being that their algorithm is a dual-only
instead of a primal-dual one. Even though their method can handle larger problems than
the the primal-dual algorithms discussed in Section 4, it is still not able to handle many
of the large-scale problems that the algorithms of Subsections 5.1, 5.2 and 5.3 can solve.
(As a side remark, we mention that Fukuda and Kojima [32] have proposed a first-order
interior-point method which also works in the space of y only in order to take advantage
of sparsity of the dual slack C − A∗y.)

The design of the first primal-dual IP algorithm which effectively exploits data spar-
sity in both the primal and dual space is due to Fukuda et al. [33]. The key idea used
in their algorithm is that of a matrix completion. Note that the primal variable X is
always dense, but that only the entries of X corresponding to the nonzero entries of
S = C − A∗y are really needed to evaluate the primal objective function and primal
constraints. The other entries of X are only needed to ensure that X is positive definite.
In view of these observations, Fukuda et al. noted that it is sufficient to work with only a
partial symmetric matrix X̂, i.e., a symmetric matrix in which only a part of the entries
are specified. Let F ⊂ {1, . . . , n} × {1, . . . , n} be the entries in which the matrix is
specified, and assume that F is symmetric in the sense that (i, j) ∈ F if and only if
(j, i) ∈ F . A matrix completion X of X̂ is a matrix X ∈ Sn such that Xij = X̂ij for all
(i, j) ∈ F . A positive definite matrix completion of X̂ is a matrix completion X of X̂

such that X is positive definite. The maximum determinant matrix completion of X̂ is
the unique optimal solution of the following optimization problem:

max{det X : X is a positive definite matrix completion of X}.
Let us denote this solution by X(X̂), that is, as a function of X̂.
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A key observation is that X = X(X̂) is characterized by the property that (X−1)ij =
0 for all (i, j) /∈ F . Hence, the inverse of X(X̂) is a sparse matrix if the size of F is
relatively small. In their algorithm, the set F is chosen to be the chordal extension of the
aggregate sparsity E of the SDP data, which is defined as follows: (i, j) ∈ E if and only
if the (i, j)-th entry of at least one of the matrices C and Aj , j = 1, . . . , m, is nonzero.
Without giving the formal definition of the chordal extension F of E (see instead [33]),
we mention that it has the property that the inverse of X = X(X̂) admits a Cholesky
factorization X−1 = LDLT , where L is a unit lower triangular matrix whose nonzero
entries all lie in F . An efficient scheme to compute this factorization is developed in
[33]. This paper also describes a potential-reduction algorithm based on the potential
function

ρ log(X̂ • S) − log det X(X̂) − log det S,

where ρ > n is a fixed constant. An iterate of this algorithm consists of a triple (X̂, y, S)

where X̂ is a partial symmetric matrix with all partial entries in F . The HRVW/KSH/M
direction is then computed at the point (X(X̂), y, S), but only the entries of �X lying in
F are computed to obtain a partial primal search direction �̂X, in addition to the usual
dual component (�y, �S). In this process, the dense matrix X = X(X̂) is never com-
puted. Instead, the factorization X−1 = LDLT is used whenever one needs to operate
with the matrix X. The next point is then set to (X̂, y, S)+α(�̂X, �y, �S), where α > 0
is a suitable stepsize which guarantees that the above potential function is sufficiently
decreased. Polynomial convergence of this primal-dual potential-reduction algorithm is
established in [33] and computational results of their algorithm are reported in [69].

Burer [12] on the other hand describes a primal-dual path-following IP algorithm
based on the following central path equation

LS = √
ν

[
L(X̂)

]−1
,

where LS is the Cholesky lower triangular factor of S and L(X̂) is the Cholesky lower
triangular factor of the inverse of X(X̂). Since this central path system is already square
(i.e., its number of equations is equal to its number of variables), the corresponding New-
ton direction can be computed to yield a direction (�̂X, �y, �S), where �̂X is a partial
direction with all partial entries lying in F . Using the fact that the Newton direction
is well-defined for every well-centered point, Burer [12] then develops a primal-dual
short-step algorithm with an O(nL) iteration-complexity bound.

All the second-order methods discussed in Sections 3 and 4 as well as the ones above
can be implemented by computing the Newton direction using the (preconditioned) con-
jugate gradient or residual method. From now on, we will refer to the resulting methods
as iterative second-order methods. Implementations of iterative second-order methods
can be found in Burer [13], Choi and Ye [20], Lin and Saigal [53], Nakata et al. [70],
Toh [98] and Toh and Kojima [99]. In particular, Burer [13] and Toh [98] have been able
to solve some large-scale SDP problems very successfully. The development of efficient
iterative second-order methods is a research area that certainly deserves much more
attention since they have the potential to supersede first-order methods in the solution
of large-scale SDPs. However, at present, it is too early to make definitive comparisons
about these two classes of algorithms.
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6. Computational complexity per iteration

In this section, we describe the number of flops per iteration that the following two
classes of methods need to perform:

i) direct second-order methods, i.e. the ones based on direct matrix factorizations;
ii) first-order methods (more specifically, the methods of Subsections 5.1 and 5.2);

iii) iterative second-order methods.

Our goal is to give a rough idea of how these methods compare to one another for both
dense and sparse problems.

We first consider the methods of class i). Assume first that the matrices C and Ai ,
i = 1, . . . , m, are dense. These methods all have computational complexity per iteration
that can be expressed as

βm2n2 + γmn3 + ξm3 + O(mn2 + m2n + n3), (38)

where β, γ, ξ > 0 are (small) constants depending on the search direction used. Section
3.7 of Monteiro and Zanjácomo [67] lists the best known values of these constants for six
primal-dual search directions, including the AHO, HRVW/KSH/M and NT directions.
Note that the first two terms in (38) have degree four while the other ones all have degree
3. Note also that among all the third degree terms, only one was written outside the O(·)
function, the reason being that this term, namely ξm3, can become of the same order of
magnitude as the first two terms in (38) when the number m of constraints of the SDP is
�(n2). (This situation occurs often for SDPs that arise as relaxations of combinatorial
and/or graph problems.) Note that for problems in which m = �(n2), the overall com-
plexity becomes �(n6), which shows that the methods of class i) become prohibitively
expensive for such problems.

We will now roughly describe the parts of a general second-order method that con-
tribute to the first three terms in (38). The search direction (�X, �y, �S) of an arbitrary
second-order method is the solution of a system of the form (10), where the operators
E and F depend on the search direction used. Theorem 2.2 claims that �y satisfies
(AE−1FA∗)�y = u for some u ∈ �m. In terms of the matrices Ai’s, this means that
�y is a solution of the linear system B�y = u, where the (i, j)-th entry of the matrix
B ∈ �m×m is given by

Bij = Ai • E−1F(Aj ). (39)

The second term in (38) is due to the computation of the m matrices Vj ≡ E−1F(Aj ),
j = 1, . . . , m, while the first one is due to the calculation of the m2 (or possibly, only
m(m+1)/2 if B is symmetric) inner products Ai •Vj in (39). The solution of B�y = u

via direct factorization methods then contributes with the third term to the bound (38).
When the SDP data is sparse, the first and second terms in (38) can be replaced by

(much) smaller terms but the third term can not be reduced in view of the fact that B

always results in a dense matrix. In conclusion, second-order methods based on direct
factorization are also prohibitively expensive for sparse SDP problems for which m is
large. However, these methods can be quite effective in the solution of SDP problems
for which both m and n are relatively small.

We now consider the methods of class ii). For a given matrix P , let nz(P ) denote
the number of nonzero entries of P . An iteration of the low-rank method of Subsection
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5.1 has a computational complexity bound of O(r nz(S)+nz(C)+∑m
i=1 nz(Ai)) flops,

and hence of O((r + m)n2) flops when the SDP data is dense (see Propositions 3.2 and
3.3 of [16]). On the other hand, an iteration of the log-barrier method of Subsection 5.2
has a computational complexity bound of O(n nz(L) + nz(C) + ∑m

i=1 nz(Ai)) flops
(and hence, O((n + m)n2) flops when the SDP data is dense), where L is the Cholesky
lower triangular factor of S (see Subsection 5.3 of [18]). Comparing the bounds for the
sparse and dense cases, one can immediately see how the presence of sparsity in the SDP
data dramatically affects the complexity bounds for both the low-rank and log-barrier
methods. Observe that the bound for the low-rank method is generally much better than
the one for the log-barrier method since nz(S) (resp., r) is usually much smaller than
nz(L) (resp., n). Moreover, since the bound for the log-barrier algorithm depends on
nz(L), a symmetric permutation of the rows and columns of S (determined once at the
start of the algorithm) is performed so as to keep the “fill-in” of L, that is the quantity
nz(L) − nz(S), relatively small.

In conclusion, the number of flops per iteration performed by first-order methods is
generally much smaller than that of second-order methods. However, first-order methods
generally take many (from few hundreds to few thousands) iterations to converge and
tend to have difficulty to obtain highly accurate nearly optimal solutions. On the other
hand, second-order methods converge quickly (in a few tens iterations) to highly accu-
rate solutions. Overall, first-order methods are much superior to second-order methods
based on direct factorization in the solution of large-scale SDP problems. The major
drawback of the latter methods is that finding the solution of the linear system B�y = u

may be prohibitively expensive (sometimes impossible) not only due to the high number
of flops required but also to the high amount of memory space needed to store B.

Finally, we briefly discuss the computational complexity of iterative second-order
methods. First, they do not need to compute and/or store the matrix B. Second, the
amount of work and storage requirement of an inner iteration (i.e., an iteration of the
iterative method used to solve the system B�y = u) of these methods are very compa-
rable to that of an iteration of the log-barrier method. Third, the total number of inner
iterations performed by an iterative second-order method depends crucially on the choice
of preconditioner used in the iterative algorithm for solving the linear systems B�y = u.
In conclusion, from the “inner iteration point of view”, these methods behave quite sim-
ilar to first-order methods. The development of efficient preconditioners for solving the
systems B�y = u is certainly the crucial step towards making iterative second-order
methods become superior to first-order methods.
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