An efficient algorithm for rank- 1 sparse PCA

Yunlong He Renato Monteiro*
Georgia Institute of Technology Georgia Institute of Technology
School of Mathematics School of Industrial & System Engineering
heyunl ong@at ech. edu renat o. nontei ro@ sye. gat ech. edu

Haesun Parkf
Georgia Institute of Technology
Division of Computational Science and Engineering
hpar k@c. gat ech. edu

Abstract

Sparse principal component analysis (PCA) imposes exmatints or penalty
terms to the original PCA to achieve sparsity. In this papes,introduce an

efficient algorithm to find a single sparse principal compungith a specified

cardinality. The algorithm consists of two stages. In th&t Btage, it identifies an
active index set with desired cardinality correspondinghi® nonzero entries of
the principal component. In the second one, it finds the hiesttibn with respect
to the active index set, using the power iteration methodpeiments on both
randomly generated data and real-world data sets show tinaigorithm is very

fast, especially on large and sparse data sets, while themeahquality of the

solution is comparable to other methods.

1 Introduction

Principal Component Analysis (PCA) is a classical tool ferfprming data analysis such as dimen-
sionality reduction, data modeling, feature extractiod &mther learning tasks. It can be widely
used in all kinds of data analysis areas like image procgsgiene microarray analysis and docu-
ment mining. Basically, PCA consists of finding a few orthogldirections in the data space which
preserve the most information from the data cloud. This isedloy maximizing the variance of the
projections of the data points along these directions. Hewestandard PCA generally produces
dense directions (i.e., whose components are most honzerdhence are too complex to explain
the set of data points. Instead, a standard approach indheilg community is to pursue sparse
directions which in some sense approximate the directioodyced by standard PCA. Sparse PCA
has a few advantages, namely: i) it can be cheaply storedi)andaptures the simple and inherent
structure associated with the (in principal, complex) dsf For these reasons, sparse PCA is a
subject which has received a lot of attention from the leggriommunity in the last decade.

Several formulations and algorithms have been proposeetimnm sparse PCA. Zou et al. [9]
formulate sparse PCA as a regression-type optimizatiohleno which is then solved by a Lasso-
based algorithm. D’Aspremont et al.'s DSPCA algorithm [d.perform rankt sparse PCA consists
of solving a semi-definite relaxation of a certain formudatof rankd sparse PCA whose solution is

*The work of this author was partially supported by NSF Grab@&~-0808863 and CMMI-0900094 and
ONR Grant ONR N00014-08-1-0033.

fThe work of this author was also supported by the Nationa¢i&m Foundation grant CCF-0808863 and
CCF-0732318. Any opinions, findings and conclusions or meoendations expressed in this material are
those of the authors and do not necessarily reflect the viéttedNational Science Foundation.

then post-processed to yield a sparse principal compoReper [2] by d’Aspremont et al. proposes
a greedy algorithm to solve a new semi-definite relaxatiah@ovides a sufficient condition for op-
timality. Moghaddam et al. [8] perform sparse PCA by usingmbinatorial greedy method called
ESPCA obtaining good results, although their method carndve an large data set. Their method,
like ours, consists of identifying an active index set (itee indices corresponding to the nonzero
entries of the principal component) and then using an algorisuch as power-iteration to obtain
the final sparse principal component. Journée et al [5]mdcéormulate multiple sparse PCA as a
nonconcave maximization problem with a penalty term to eahisparsity, which is then reduced
to an equivalent problem of maximizing a convex functionrawve€ompact set. The latter problem
is then solved by an algorithm which is essentially a geigatibn of the power-iteration method.
Finally, [7] proposes a different multiple sparse PCA agmto based on a formulation enforcing
near orthogonality of the PCs, which is then solved by an arged Lagrangian approach.

In this paper, we propose a simple but efficient heuristidifating a single sparse principal compo-
nent. We then compare our approach with the one proposed indely GPower, which is widely
viewed as one of the most efficient methods for performingspBRCA. Experiments show that our
algorithm can perform considerably better than GPower inesdata instances, and hence provides
an alternative tool to efficiently perform sparse PCA. Hina clear advantage of our method is
that it can easily produce a single sparse principal compioofea specified cardinality with just a
single run while the GPower method in [5] may require sevaras due to the fact it is based on a
formulation which is not directly related to the given canality.

2 Rank-1 Sparse PCA

In this section, we define the rariksparse PCA problem and present algorithms for approximatel
solving it.

2.1 Formulation

Given a data matri¥/ € R™*? whose rows represent data pointsRi and a positive integer
s, performing rankt sparse PCA oV consists of finding an-sparse principal component df,
i.e., a direction0 # = € R” that maximizes the variance of the projections of these paiats
alongz. Mathematically, this corresponds to finding a veatthat solves the optimization problem
max{||Vz|?/||z||* : ||z]lo < s}, where|z|, denotes the number of nonzero components.of
To eliminate redundancy, we can alternatively considey ¢mt optimal directions of siz¢/’s, i.e.,
directionsz which solve

max{|[V|? : zflo < s, o]l < Vs}. 1)

2.2 A Heuristic Algorithm

We will now give the basic ideas behind our method. The metuodists of two stages. In the first
stage, an active index sétof cardinalitys is determined. The second stage then computes the best
feasible directiorr with respect to (1) satisfying; = 0 forall j ¢ J, i.e., it solves the problem

max{[|[Vz| : ||z]2 < Vs,x; =0,Vj & J}. 2

We note that oncd is determined, the latter can be efficiently computed by using the power-
iteration method [4]. Hence, from now on, we will focus oueation only on the determination of
the index set.

To describe the procedure to determihave make the following observations. First, note that under
the condition thaflz||o < s, the inequality||z|| .. < 1 implies that||z|2 < /s. Hence, the problem

max{||Vz|? : [|lzflo < s, 2]l <1} ®3)

is a restricted version of (1). Since its objective functi®oonvex, one of its extreme points must be
an optimal solution. Note also that its set of extreme paiotssists of those vectosiswith exactly

s nonzero components which are eitieor —1. ldeally, we would like to choos# as the set of
nonzero components of an optimal extreme point of (3). H@resince solving (3) exactly is hard,

we instead propose a heuristic to find an approximate feasidution of (3), which is then used to
determine/ in an obvious manner.

Our heuristic to approximately solve (3) proceeds in a gyemdnner as follows. Starting from
(0 = 0, assume that at thieth step, we have a vectef*—1) with exactlyk — 1 nonzero compo-
nents which are all eithdror —1. Also, let.J,_; denote the index set corresponding to the nonzero
components ot*~1. We then set®) := 2(*=1) 4 aye;,, wheree; denotes thé-th unit vector
and(jx, ax) solves

(jk,r) = argmax ||V(x(k71) + aej)HQ. (4)

J€Jk—1,a=%1

Clearly,z(*) is a vector with exactly: nonzero components which are all eitheor —1. It differs
from z(*~1) only in thej,-th component which changes fraimin z(*~1) to oy, in 2.

Since, for fixedj ¢ Ji_1 anda = +1,

[V (@*D + aej)||* = [V DI + o]|* + 200] Va1, (5)
wherev; is the j-th column of V, the o that maximizes the above expression is the sign of
oI V(=1 Hence, it follows that

jr = argmax ||v;]|? + 2|v]7.ﬂVa:(k_1)|7 ap = Sigr(v;‘»';Va:(k_l)). (6)
J¢ k-1

Hence, we need to comput%Vx(k’—” for everyj ¢ J,_1 tofind ji. A key point to observe is that

there is no need to compuﬁ?Vx(’“—l) from scratch. Instead, this quantity can be updated based
on the following identity:

vaVx("’_l) = v;fFV(x("’_Q) + Oék—lejk,l) = U]TVI(]“_Q) + ak:_lv;rvjkil. (7

There are two cases to discuss at this point/ {1 is explicitly given, then the quantitijvj,H

is just its (j, jx—1)-th entry, and hence there is no need to compute it. Othenifige’ V' is not
explicitly given, it is necessary to essentially compusgjjt_; -column and then extract the entries
of this column corresponding to the indicgg Jy,_1.

Our first algorithm, referred to as Scol-SPA, is summarizetbw. Its main difference from our
second algorithm (see next section) is that it add$ éxactly one index (instead of several indices)
per loop.

Algorithm 1: Scol-PCA

Input: Centered data matriX (or, sample covariance matrix = V7'V) and desired sparsity.
Initialization: ~ Setz(®) =0, J = (.
Iteration: Fork=1,...,s,do:
Updatej, = argmax;q ;, l|lv;]1% + 2|vaVx(k’1)| andoy, = sign(v;, Vak=1),
Setz(®) = 2(*=1 4 aye;, and addj, to J
Postprocessing: Use the power-iteration method to solve (2) and output ismgdtsolution.

2.3 Complexity and Speed-up Strategy

We now briefly discuss the arithmetic complexity of the fireape of Algorithm 1 disregarding the
complexity of its second phase where the power-iteratiothotis applied. The reason is that the
latter method generally depends on measures other thanrtension of the underlying matrix.
Moreover, our computational experiments show that the filgise is generally by far the more
expensive one. WhelW 7'V is explicitly given, it is easy to see that the arithmetic gbexity of
the first phase of Algorithm 1 i€(ps). Otherwise, wher’TV is not explicity given, then this
complexity become®(nps) in the dense case, and considerably smaller hiénnz + ps) in the
sparse case, where: denotes the number of nonzero entried/of

It is possible to develop a variant of the above algorithmalitincludes a constant number, say
of indices into.J in the same loop, thereby reducing the overall arithmetimglexity of the first

phase taD(nps/c). This simple idea consists of adding théest indicesi ¢ J,_; according to
the criteria in (6), say.1, .. ., jk ¢, t0 the set/,_; to obtain the next index sef,, and then set

x(kﬁ) e x(kfl) _|_ ak,lej)ﬁl _|_ P + ajk,uejk.zﬂ
wherea;, . is the sign of] Vak~Ufori=1,... ¢

Itis easy to see that such variant performs at nfiggt| loops and that the arithmetic complexity of
each loop i0(pn), thereby implying the aforementioned arithmetic complefar the first phase
of the new variant. We will refer to this variant as the Mcd-A method. It is considerably faster
than the single column version described earlier at the msgef a small sacrifice in the quality
of its solution (i.e., its variance). In our computationaperiments, we set = s/10 so that the
Mcol-PCA method performs at most loops.

In many applications, one has= (I — %)W, wherelV is the uncentered data matrix whileis
the centered data matrix. Moreover, the mat#ixis generally sparse while the matiiixis dense. It
is easy to see that our method can be implemented only in s without ever having to form
V, thereby taking advantage of any available sparsity of tieentered data.

3 Experiment result and comparison

3.1 Randomly Generated Data

In this subsection, we evaluate the quality and speed of batsions of our method by compar-
ing them to GPower method [5] withy penalty term, namely GPower0, using a set of randomly
generated sparse matrices. All experiments are performBuNTLAB.

In our first experiment, we have randomly generated sparnsaregnatricedV with dimensionp
varying from 200 to 4000, with their sparsity (i.e., proporntof nonzero entries) set &9%. We also
set the required cardinalityto p/5. In Figure 1, the first graph plots the running time againstrixa
size for all three methods and the second graph plots theéxhsite against the solution variance
for the two versions of our method. Observe that while theedpef Scol-PCA is comparable with
GPower, Mcol-PCA can be much faster than the latter one ag#xpense of a little loss in solution
quality.

14 T T T T T T T 2500

—6— GPower0 i —4— Scol-PCA
126 —4— Scol-PCA /] —-8— Mcol-PCA A
/ -

= - /
Mcol-PCA A 2000

101

1500

Running Time

1000

Variance of the solution

500

o g
AT
=65 L L L L L L L L L L L .
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Size of the square matrix Size of the square matrix

Figure 1: When the size of the matrix is increasing frad@0 to 4000, the first graph displays the
curves of the time for a single run of all three methods, ardsacond graph displays curves of
the solution variance for Scol-PCA and Mcol-PCA. The caatlty of solution for Scol-PCA and
Mcol-PCA is fixed ap/5, while the parameter in GPower method is chosen coarselgtta glose
cardinality.

Our second experiment consists of two parts. In the firspp(resecond) one, we have randomly
generated sparse matrices witfip = .1 (resp.,n/p = 10), with the sparsity set t80% and with
their larger dimension increasing fro200 to 4000. The corresponding graphs of the running time

against the size of the larger dimension are given in Figuf@tserve that while the speed of Mcol-
PCA method is comparable to GPower whefp = .1, it is faster than GPower wheryp = 10.

14 0.7

T T T T
—S— GPower0 —S— GPower0
—FH— Mcol-PCA —FH— Mcol-PCA

I
N
T
o
o
T

-
T

I

2]

o
®
T
o
IS

o

o
T

o

w
T

Running Time
Running time

<
IS
T
o
[N}
T

0.1r

o
N
T

""" L L L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500
Number of variables p Number of samples

. .
3000 3500 4000

Figure 2: As the number of variables increases from 200 td04&@dn/p = 0.1, the running
time curve is shown in the left graph. As the number of samjleseases from 200 to 4000 and
n/p = 10, the running time curve is shown in the right graph.

In the third experiment, we have generated a set of squagerdatrices of siz&000, with their
sparsity varying froml% to 20%. The cardinality of the solution is still set @8% of the matrix
size. The plot of running time against sparsity of the magridisplayed in Figure 3. It turns out that
Mcol-PCA algorithm become considerably faster than GPawethod as the data matrix becomes
sparser.

30

—=&— GPower0
—+&— Mcol-PCA

25¢

201

151

Running time

101

E/E—E/B —=

B8
RN
o B
58

. . .
0 0.05 0.1 0.15 0.2
Sparsity of the Matrix

Figure 3: Plot of running time against sparsity of the matr@nging from 1% to 20%.

In the fourth experiment, we have input the cardinality af #olution by GPower to both versions
of our method, so that we can compare their solution qualitiie size of the square matrix is
fixed as 5000, while the cardinality of the solution growsnfrd to 900. The trade-off curve of
the variance against the cardinality of the solution is ldiged in the first graph in Figure 4. The
second graph plots running time against the cardinalitysede that Scol-PCA method outperforms
GPower method in terms of solution quality and speed. Thaingtime of our speed-up algorithm
Mcol-PCA barely increases as the cardinality increasihthe@expense of an acceptable sacrifice in
solution quality.

3.2 Image data and document data

In this subsection, we compare our Mcol-PCA method with G&romethod using two kinds of
real-world data matrices. The first matrix comes from hantiem digits database MNIST [6]. The

2800 T T T T T T T T 30

—o— GPower0 o A
2600 Scol-PCA = —6— GPower0
5 Mcol-PCA o 251 —£— Scol-PCA
24001 - S — 1 —=&— Mcol-PCA

22001

N
=
T

2000

Variance
Running time
i
u

1800+
1600 - 10

14001 ,/
]

Wy
5 L= 5
~ e
12001, ISt
A & eB——888 &
e
1000 0
0 100 200 300 400 500 600 700 800 900 0 100 200 300 400 500 600 700 800 900
Cardinality Cardinality

Figure 4: The trade-off curve of variance against cardipa$i on the left. The curve of running
time against cardinality is on the right. In this experimehné cardinality of all three methods is set
exactly the same.

matrix we use has siz&)00 by 784. Each row of the matrix corresponds to a image with 28 by 28
pixels, and hence of size 784. In Figure 5, the first graphspiabning time against the sparsity of
the solution, while the second graph plots the variance®gtilution against its sparsity. Observe
that on this data set, Mcol-PCA method outperforms GPowehatknot only in terms of speed but
also solution quality.

I
w

I
©

—&— GPower0
A Mcol-PCA|]

I
[S)
T
B
®
T

o o N
o © = =
T T T T

Variance
[
u o ~
T T

Running time

o
3
T
I
kS
T

o
o
T
I
w
T

I
2l
T
I
N
T

. L L L L L 11 L L L L L
60 80 100 120 140 160 180 60 80 100 120 140 160 180

Cardinality Cardinality

Figure 5: Experiments on 5000 handwritten digits imagesmfMNIST database. The left one plots
running time against cardinality curves while the right @ha&ts variance against cardinality curves.

By experiments on huge document data from [3], we can shovalgarithm is efficient in terms
of both speed and storage. The first document data set we tise IPS full papers data set,
with 1500 documents and 12419 words forming a sparse maitsize 1500 by 12419. In Figure
6, the fist graph plotting running time against sparsity shtvat Mcol-PCA is more efficient than
GPower in terms of speed when the desired sparsity is leashi@ The second graph shows that
the solution variances of Mcol-PCA is comparable to that Bb&er although a little smaller.

The second document data set is the Enron Emails data se39881 documents and 28102 words.
When we try to center the 39861 by 28102 sparse matfixMATLAB returns out of memory.
However, using our algorithm there is no need to install teetered data explicitly, as we can
compute the values iIWTW — n(u1, ... pup) " (11, ... pp) instead of V7'V

n
o
=
1S

NN
N B
é
R
©

T T
—6— GPower0
A Mcol-PCA| 1

N
>

Running time
=
N S = =
T T T
>

>
Variance

-
T

& —o— GPower0 57
A A Mcol-PCA| |
A

.
50 100 150 200 250 300 350 400 450 500 550 0 100 200 300 400 500 600
Cardinality Cardinality

o
K

Figure 6: Experiments on NIPS document-word data.The ledtgots running time against cardi-
nality curves while the right one plots variance againsticelity curves.

4 Further discussion

The main contribution of this paper is that we propose a stnbpit very efficient algorithm for per-
forming rankd sparse PCA. Our method allows users to set the cardinalttyeo$olution explicitly,
which is important in visualization systems. To find subsayisparse principal components, we
can use the classical deflation scheme described in [1].

The two versions of our method, namely Scol-PCA and Mcol-PCa# be easily applied to per-
form sparse PCA on either the data matrix or the sample cawegi matrix, as the key step in our
algorithm is to update using values in the covariance mésee identity (7)). Due to this property,
the method has potential applications to other sparseitegeigorithms where covariance matrix,
kernel matrix or general distance matrix is involved, whigé will study in the future work.

References
[1] A. d Aspremont, L. EI Ghaoui, M.I. Jordan, and G.R.G. Larnet. A direct formulation for
sparse PCA using semidefinite programmiBtAM review, 49(3):434, 2007.

[2] A. d’Aspremont, F. Bach, and L.E. Ghaoui. Optimal sabumi$ for sparse principal component
analysis.The Journal of Machine Learning Research, 9:1269-1294, 2008.

[3] A. Frank and A. Asuncion. UCI machine learning reposit@010.
[4] G.H. Golub and C.F. Van LoarMatrix computations. Johns Hopkins Univ Pr, 1996.

[5] M. JourrZe, Y. Nesterov, P. Richtarik, and R. Sepulchre. Generdlpmver method for sparse
principal component analysi€ORE Discussion Papers, 2008.

[6] Y. LeCun and C. Cortes. The MNIST database of handwritigits, 2009.

[7] Z. Lu and Y. Zhang. An Augmented Lagrangian Approach fpa&e Principal Component
Analysis. Arxiv preprint arXiv:0907.2079, 2009.

[8] B. Moghaddam, Y. Weiss, and S. Avidan. Spectral boundsfarse PCA: Exact and greedy
algorithms.Advancesin Neural |nformation Processing Systems, 18:915, 2006.

[9] H. Zou, T. Hastie, and R. Tibshirani. Sparse principahpmnent analysisJournal of compu-
tational and graphical statistics, 15(2):265-286, 2006.

