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Abstract

Sparse principal component analysis (PCA) imposes extra constraints or penalty
terms to the original PCA to achieve sparsity. In this paper,we introduce an
efficient algorithm to find a single sparse principal component with a specified
cardinality. The algorithm consists of two stages. In the first stage, it identifies an
active index set with desired cardinality corresponding tothe nonzero entries of
the principal component. In the second one, it finds the best direction with respect
to the active index set, using the power iteration method. Experiments on both
randomly generated data and real-world data sets show that our algorithm is very
fast, especially on large and sparse data sets, while the numerical quality of the
solution is comparable to other methods.

1 Introduction

Principal Component Analysis (PCA) is a classical tool for performing data analysis such as dimen-
sionality reduction, data modeling, feature extraction and further learning tasks. It can be widely
used in all kinds of data analysis areas like image processing, gene microarray analysis and docu-
ment mining. Basically, PCA consists of finding a few orthogonal directions in the data space which
preserve the most information from the data cloud. This is done by maximizing the variance of the
projections of the data points along these directions. However, standard PCA generally produces
dense directions (i.e., whose components are most nonzero), and hence are too complex to explain
the set of data points. Instead, a standard approach in the learning community is to pursue sparse
directions which in some sense approximate the directions produced by standard PCA. Sparse PCA
has a few advantages, namely: i) it can be cheaply stored; andii) it captures the simple and inherent
structure associated with the (in principal, complex) dataset. For these reasons, sparse PCA is a
subject which has received a lot of attention from the learning community in the last decade.

Several formulations and algorithms have been proposed to perform sparse PCA. Zou et al. [9]
formulate sparse PCA as a regression-type optimization problem which is then solved by a Lasso-
based algorithm. D’Aspremont et al.’s DSPCA algorithm [1] to perform rank-1 sparse PCA consists
of solving a semi-definite relaxation of a certain formulation of rank-1 sparse PCA whose solution is
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then post-processed to yield a sparse principal component.Paper [2] by d’Aspremont et al. proposes
a greedy algorithm to solve a new semi-definite relaxation and provides a sufficient condition for op-
timality. Moghaddam et al. [8] perform sparse PCA by using a combinatorial greedy method called
ESPCA obtaining good results, although their method can be slow on large data set. Their method,
like ours, consists of identifying an active index set (i.e., the indices corresponding to the nonzero
entries of the principal component) and then using an algorithm such as power-iteration to obtain
the final sparse principal component. Journée et al [5] recently formulate multiple sparse PCA as a
nonconcave maximization problem with a penalty term to achieve sparsity, which is then reduced
to an equivalent problem of maximizing a convex function over a compact set. The latter problem
is then solved by an algorithm which is essentially a generalization of the power-iteration method.
Finally, [7] proposes a different multiple sparse PCA approach based on a formulation enforcing
near orthogonality of the PCs, which is then solved by an augmented Lagrangian approach.

In this paper, we propose a simple but efficient heuristic forfinding a single sparse principal compo-
nent. We then compare our approach with the one proposed in [5], namely GPower, which is widely
viewed as one of the most efficient methods for performing sparse PCA. Experiments show that our
algorithm can perform considerably better than GPower in some data instances, and hence provides
an alternative tool to efficiently perform sparse PCA. Finally, a clear advantage of our method is
that it can easily produce a single sparse principal component of a specified cardinality with just a
single run while the GPower method in [5] may require severalruns due to the fact it is based on a
formulation which is not directly related to the given cardinality.

2 Rank-1 Sparse PCA

In this section, we define the rank-1 sparse PCA problem and present algorithms for approximately
solving it.

2.1 Formulation

Given a data matrixV ∈ Rn×p whose rows represent data points inRp and a positive integer
s, performing rank-1 sparse PCA onV consists of finding ans-sparse principal component ofV ,
i.e., a direction0 6= x ∈ Rp that maximizes the variance of the projections of these datapoints
alongx. Mathematically, this corresponds to finding a vectorx that solves the optimization problem
max{‖V x‖2/‖x‖2 : ‖x‖0 ≤ s}, where‖x‖0 denotes the number of nonzero components ofx.
To eliminate redundancy, we can alternatively consider only the optimal directions of size

√
s, i.e.,

directionsx which solve

max{‖V x‖2 : ‖x‖0 ≤ s, ‖x‖2 ≤ √
s}. (1)

2.2 A Heuristic Algorithm

We will now give the basic ideas behind our method. The methodconsists of two stages. In the first
stage, an active index setJ of cardinalitys is determined. The second stage then computes the best
feasible directionx with respect to (1) satisfyingxj = 0 for all j 6∈ J , i.e., it solves the problem

max{‖V x‖ : ‖x‖2 ≤ √
s, xj = 0, ∀j /∈ J}. (2)

We note that onceJ is determined, the latterx can be efficiently computed by using the power-
iteration method [4]. Hence, from now on, we will focus our attention only on the determination of
the index setJ .

To describe the procedure to determineJ , we make the following observations. First, note that under
the condition that‖x‖0 ≤ s, the inequality‖x‖∞ ≤ 1 implies that‖x‖2 ≤ √

s. Hence, the problem

max{‖V x‖2 : ‖x‖0 ≤ s, ‖x‖∞ ≤ 1} (3)

is a restricted version of (1). Since its objective functionis convex, one of its extreme points must be
an optimal solution. Note also that its set of extreme pointsconsists of those vectorsx with exactly
s nonzero components which are either1 or −1. Ideally, we would like to chooseJ as the set of
nonzero components of an optimal extreme point of (3). However, since solving (3) exactly is hard,
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we instead propose a heuristic to find an approximate feasible solution of (3), which is then used to
determineJ in an obvious manner.

Our heuristic to approximately solve (3) proceeds in a greedy manner as follows. Starting from
x(0) = 0, assume that at thek-th step, we have a vectorx(k−1) with exactlyk − 1 nonzero compo-
nents which are all either1 or−1. Also, letJk−1 denote the index set corresponding to the nonzero
components ofx(k−1). We then setx(k) := x(k−1) + αkejk

, whereei denotes thei-th unit vector
and(jk, αk) solves

(jk, αk) = argmax
j 6∈Jk−1, α=±1

‖V (x(k−1) + αej)‖2. (4)

Clearly,x(k) is a vector with exactlyk nonzero components which are all either1 or −1. It differs
from x(k−1) only in thejk-th component which changes from0 in x(k−1) to αk in x(k).

Since, for fixedj /∈ Jk−1 andα = ±1,

‖V (x(k−1) + αej)‖2 = ‖V x(k−1)‖2 + ‖vj‖2 + 2αvT
j V x(k−1), (5)

where vj is the j-th column of V , the α that maximizes the above expression is the sign of
vT

j V x(k−1). Hence, it follows that

jk = argmax
j /∈Jk−1

‖vj‖2 + 2|vT
j V x(k−1)|, αk = sign(vT

jk
V x(k−1)). (6)

Hence, we need to computevT
j V x(k−1) for everyj /∈ Jk−1 to findjk. A key point to observe is that

there is no need to computevT
j V x(k−1) from scratch. Instead, this quantity can be updated based

on the following identity:

vT
j V x(k−1) = vT

j V (x(k−2) + αk−1ejk−1
) = vT

j V x(k−2) + αk−1v
T
j vjk−1

. (7)

There are two cases to discuss at this point. IfV T V is explicitly given, then the quantityvT
j vjk−1

is just its(j, jk−1)-th entry, and hence there is no need to compute it. Otherwise, if V T V is not
explicitly given, it is necessary to essentially compute its jk−1-column and then extract the entries
of this column corresponding to the indicesj /∈ Jk−1.

Our first algorithm, referred to as Scol-SPA, is summarized below. Its main difference from our
second algorithm (see next section) is that it adds toJ exactly one index (instead of several indices)
per loop.

Algorithm 1: Scol-PCA

Input: Centered data matrixV (or, sample covariance matrixΣ = V T V ) and desired sparsitys.
Initialization: Setx(0) = 0, J = ∅.
Iteration: Fork = 1, . . . , s, do:

Updatejk = argmaxj /∈Jk−1
‖vj‖2 + 2|vT

j V x(k−1)| andαk = sign(vT
jk

V x(k−1)).

Setx(k) = x(k−1) + αkejk
and addjk to J

Postprocessing: Use the power-iteration method to solve (2) and output is optimal solution.

2.3 Complexity and Speed-up Strategy

We now briefly discuss the arithmetic complexity of the first phase of Algorithm 1 disregarding the
complexity of its second phase where the power-iteration method is applied. The reason is that the
latter method generally depends on measures other than the dimension of the underlying matrix.
Moreover, our computational experiments show that the firstphase is generally by far the more
expensive one. WhenV T V is explicitly given, it is easy to see that the arithmetic complexity of
the first phase of Algorithm 1 isO(ps). Otherwise, whenV T V is not explicity given, then this
complexity becomesO(nps) in the dense case, and considerably smaller thanO(s.nz + ps) in the
sparse case, wherenz denotes the number of nonzero entries ofV .

It is possible to develop a variant of the above algorithm which includes a constant number, sayc,
of indices intoJ in the same loop, thereby reducing the overall arithmetic complexity of the first
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phase toO(nps/c). This simple idea consists of adding thec best indicesj /∈ Jk−1 according to
the criteria in (6), sayjk,1, . . . , jk,c, to the setJk−1 to obtain the next index setJk, and then set

x(k) = x(k−1) + αk,1ejk,1
+ · · · + αjk,c

ejk,c
,

whereαjk,i
is the sign ofvT

jk,i
V x(k−1) for i = 1, . . . , c.

It is easy to see that such variant performs at most⌈s/c⌉ loops and that the arithmetic complexity of
each loop isO(pn), thereby implying the aforementioned arithmetic complexity for the first phase
of the new variant. We will refer to this variant as the Mcol-PCA method. It is considerably faster
than the single column version described earlier at the expense of a small sacrifice in the quality
of its solution (i.e., its variance). In our computational experiments, we setc = s/10 so that the
Mcol-PCA method performs at most10 loops.

In many applications, one hasV = (I − eeT

n )W , whereW is the uncentered data matrix whileV is
the centered data matrix. Moreover, the matrixW is generally sparse while the matrixV is dense. It
is easy to see that our method can be implemented only in termsof W , without ever having to form
V , thereby taking advantage of any available sparsity of the uncentered data.

3 Experiment result and comparison

3.1 Randomly Generated Data

In this subsection, we evaluate the quality and speed of bothversions of our method by compar-
ing them to GPower method [5] withL0 penalty term, namely GPower0, using a set of randomly
generated sparse matrices. All experiments are performed in MATLAB.

In our first experiment, we have randomly generated sparse square matricesW with dimensionp
varying from 200 to 4000, with their sparsity (i.e., proportion of nonzero entries) set to20%. We also
set the required cardinalitys to p/5. In Figure 1, the first graph plots the running time against matrix
size for all three methods and the second graph plots the matrix size against the solution variance
for the two versions of our method. Observe that while the speed of Scol-PCA is comparable with
GPower, Mcol-PCA can be much faster than the latter one at theexpense of a little loss in solution
quality.
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Figure 1: When the size of the matrix is increasing from200 to 4000, the first graph displays the
curves of the time for a single run of all three methods, and the second graph displays curves of
the solution variance for Scol-PCA and Mcol-PCA. The cardinality of solution for Scol-PCA and
Mcol-PCA is fixed asp/5, while the parameter in GPower method is chosen coarsely to get a close
cardinality.

Our second experiment consists of two parts. In the first (resp., second) one, we have randomly
generated sparse matrices withn/p = .1 (resp.,n/p = 10), with the sparsity set to20% and with
their larger dimension increasing from200 to 4000. The corresponding graphs of the running time
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against the size of the larger dimension are given in Figure 2. Observe that while the speed of Mcol-
PCA method is comparable to GPower whenn/p = .1, it is faster than GPower whenn/p = 10.
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Figure 2: As the number of variables increases from 200 to 4000 andn/p = 0.1, the running
time curve is shown in the left graph. As the number of samplesincreases from 200 to 4000 and
n/p = 10, the running time curve is shown in the right graph.

In the third experiment, we have generated a set of square data matrices of size5000, with their
sparsity varying from1% to 20%. The cardinality of the solution is still set as20% of the matrix
size. The plot of running time against sparsity of the matrixis displayed in Figure 3. It turns out that
Mcol-PCA algorithm become considerably faster than GPowermethod as the data matrix becomes
sparser.
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Figure 3: Plot of running time against sparsity of the matrix, ranging from 1% to 20%.

In the fourth experiment, we have input the cardinality of the solution by GPower to both versions
of our method, so that we can compare their solution quality.The size of the square matrix is
fixed as 5000, while the cardinality of the solution grows from 1 to 900. The trade-off curve of
the variance against the cardinality of the solution is displayed in the first graph in Figure 4. The
second graph plots running time against the cardinality. Observe that Scol-PCA method outperforms
GPower method in terms of solution quality and speed. The running time of our speed-up algorithm
Mcol-PCA barely increases as the cardinality increasing, at the expense of an acceptable sacrifice in
solution quality.

3.2 Image data and document data

In this subsection, we compare our Mcol-PCA method with GPower method using two kinds of
real-world data matrices. The first matrix comes from handwritten digits database MNIST [6]. The
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Figure 4: The trade-off curve of variance against cardinality is on the left. The curve of running
time against cardinality is on the right. In this experiment, the cardinality of all three methods is set
exactly the same.

matrix we use has size5000 by 784. Each row of the matrix corresponds to a image with 28 by 28
pixels, and hence of size 784. In Figure 5, the first graph plots running time against the sparsity of
the solution, while the second graph plots the variance of the solution against its sparsity. Observe
that on this data set, Mcol-PCA method outperforms GPower method not only in terms of speed but
also solution quality.
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Figure 5: Experiments on 5000 handwritten digits images from MNIST database. The left one plots
running time against cardinality curves while the right oneplots variance against cardinality curves.

By experiments on huge document data from [3], we can show ouralgorithm is efficient in terms
of both speed and storage. The first document data set we use isthe NIPS full papers data set,
with 1500 documents and 12419 words forming a sparse matrix of size 1500 by 12419. In Figure
6, the fist graph plotting running time against sparsity shows that Mcol-PCA is more efficient than
GPower in terms of speed when the desired sparsity is less than 500. The second graph shows that
the solution variances of Mcol-PCA is comparable to that of GPower although a little smaller.

The second document data set is the Enron Emails data set with39861 documents and 28102 words.
When we try to center the 39861 by 28102 sparse matrixW , MATLAB returns out of memory.
However, using our algorithm there is no need to install the centered data explicitly, as we can
compute the values inWT W − n(µ1, . . . µp)

T (µ1, . . . µp) instead ofV T V .
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Figure 6: Experiments on NIPS document-word data.The left one plots running time against cardi-
nality curves while the right one plots variance against cardinality curves.

4 Further discussion

The main contribution of this paper is that we propose a simple but very efficient algorithm for per-
forming rank-1 sparse PCA. Our method allows users to set the cardinality ofthe solution explicitly,
which is important in visualization systems. To find subsequent sparse principal components, we
can use the classical deflation scheme described in [1].

The two versions of our method, namely Scol-PCA and Mcol-PCA, can be easily applied to per-
form sparse PCA on either the data matrix or the sample covariance matrix, as the key step in our
algorithm is to update using values in the covariance matrix(see identity (7)). Due to this property,
the method has potential applications to other sparse learning algorithms where covariance matrix,
kernel matrix or general distance matrix is involved, whichwe will study in the future work.

References

[1] A. d Aspremont, L. El Ghaoui, M.I. Jordan, and G.R.G. Lanckriet. A direct formulation for
sparse PCA using semidefinite programming.SIAM review, 49(3):434, 2007.

[2] A. d’Aspremont, F. Bach, and L.E. Ghaoui. Optimal solutions for sparse principal component
analysis.The Journal of Machine Learning Research, 9:1269–1294, 2008.

[3] A. Frank and A. Asuncion. UCI machine learning repository, 2010.

[4] G.H. Golub and C.F. Van Loan.Matrix computations. Johns Hopkins Univ Pr, 1996.
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