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Abstract 

In this paper we show that a variant of the long-step affine scaling algorithm (with variable 
stepsizes) is two-step superlinearly convergent when applied to general linear programming (LP) 
problems. Superlinear convergence of the sequence of dual estimates is also established. For 
homogeneous LP problems having the origin as the unique optimal solution, we also show that 
2 is a sharp upper bound on the (fixed) stepsize that provably guarantees that the sequence of 
primal iterates converge to the optimal solution along a unique direction of approach. Since the 
point to which the sequence of dual estimates converge depend on the direction of approach of the 
sequence of primal iterates, this result gives a plausible (but not accurate) theoretical explanation 
for why ~ is a sharp upper bound on the (fixed) stepsize that guarantees the convergence of the 
dual estimates. 

Keywords: Interior point algorithms: Affine scaling algorithm; Linear programming; Superlinear convergence; 
Global convergence 

1. Introduct ion 

The affine scaling ( A S )  a lgor i thm,  introduced by Dikin [6] in 1967, is one  o f  the 

s implest  and most  efficient interior  point  a lgor i thms for solving linear p rog ramming  
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(LP) problems. Because of its theoretical and practical importance, there are a number 
of papers which study its global and local convergence [4,6-8,12,16,25,26,28-31 ] as 
well as its continuous trajectories [3,16,32]. For computational experiments and imple- 
mentation issues related to the AS algorithm, we refer the reader to [ 1,2,5,18,21,22]. 

Recently, Dikin [8] and Tsuchiya and Muramatsu [29] proved global convergence of 
the long-step version of the AS algorithm [31] for degenerate LP problems. This long- 
step version is the one in which the next iterate is determined by taking a fixed fi'action 
A ~ (0, I) of the whole step to the boundary of the feasible region. Assuming that 
A = �89 Dikin [8] showed the sequence of primal iterates converges to a point lying in 

the relative interior of the optimal face and that the sequence of dual estimates converges 

to the analytic center of the dual optimal face. Independently, Tsuchiya and Muramatsu 
[29] obtained an analogous result under the less restrictive condition that A ~< 3" They 
also demonstrated that the asymptotic reduction rate of the objective function value is 

exactly 1 - A, under the same assumption that A ~< 3" A simplified and self-contained 
proof of these results can be found in the recent survey by Monteiro, Tsuchiya and 

Wang [ 19]. 
In this paper we focus our attention on the asymptotic convergence properties of the 

long-step AS algorithm with variable stepsizes &. Specifically, we develop a variant 
which is two-step superlinearly convergent by properly choosing the sequence of step- 
sizes {Ak}. The algorithm is based on a centrality measure in the space of the "small" 
variables. When this measure is small, we show that, asymptotically, it is possible to 
take stepsizes sufficiently close to 1 to force the reduction rate of the objective function 
value as close to 0 as desired without loosing too much centrality. At the next step, if 

1 necessary, we select the stepsize At = 5 to recover the centrality of the iterate. 
This paper is organized as follows. In Section 2, we introduce basic assumptions, 

terminology and notation. The long-step AS algorithm and some of its basic properties 

are also reviewed. 
The main content of the paper is given in Sections 3, 4 and 5. The main result obtained 

in Section 3 is somewhat independent of (though related to) the results of Sections 4 
and 5. It deals with the case of the AS algorithm applied to a homogeneous LP problem 
with the origin as the unique optimal solution. In this case, we show that, when the 
sequence of stepsizes {At} satisfies lira infk~ ~ At > 3' the direction of approach of 
the primal iterates towards the (unique) optimal solution always oscillates. This result 
contrasts with the case where At = A ~< ~ for all k ~> 0, for which it is shown that the 
direction of approach is unique. Since the point to which the sequence of dual estimates 
converges depends on the direction of approach of the sequence of primal iterates, this 

2 is a sharp result gives a plausible (but not accurate) theoretical explanation for why _g 
upper bound on the (fixed) stepsize A that provably guarantees the convergence of the 
dual estimates. Specific examples illustrating that 3 is indeed sharp in the above sense 
were given by Tsuchiya and Muramatsu [29] and Hall and Vanderbei [ 13]. 

The above result is obtained by observing that the sequence of points obtained by 
conically projecting the sequence of the AS iterates for the homogeneous problem onto a 
constant-cost hyperplane (that is, a hyperplane where the objective function is constant) 
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is exactly the sequence obtained by applying Newton's method (with variable stepsizes) 

to the optimization problem defining the analytic center of the polyhedron determined 

by the intersection of  the constant-cost hyperplane with the feasible (conical) region 

of  the homogeneous problem. In conjunction with this, we also show that the projected 
I for all k > / 0 .  sequence converges quadratically to the analytic center when 2tk = ,~ = 

This result suggests that the AS iteration with/~k = �89 can be used as a kind of  centering 

step to keep the iterate "well-centered". 
In Section 4, we show that the relation established in Section 3 between the AS 

algorithm for the homogeneous problem and Newton's method for the analytic center 

problem can be used to analyze the sequence of  AS iterates for general LP problems. 

Close to a constant-cost face, it is possible to approximate the original problem by 

a homogeneous problem in the sense that the AS directions at a point x for the two 

problems asymptotically approach each other as x approaches the face. Hence, near 

a constant-cost face, the iterates generated by the AS algorithm applied to a general 

problem behave very much like the ones generated by the AS algorithm applied to a 

homogeneous problem. The analysis of  Section 4 forms the basis for the development 

of  the superlinear AS algorithm presented in Section 5. 
We show in Section 5 that the new variant of  the AS algorithm, whose sequence of 

stepsizes asymptotically alternate between ,~ = �89 and ,Ik ~ 1, is two-step superlinearly 

convergent with Q-order 1 + p  with respect to the sequence of  objective function values, 

where p is any a priori chosen constant in the interval (0, �89 Superlinear convergence 

of  the sequences of  primal iterates and dual estimates to a point in the relative interior 

of  the optimal face and to the analytic center of the dual optimal face, respectively, with 

R-order 1 + p is also shown. Finally, we give some remarks in Section 6. 

The following notation is used throughout our paper. We denote the vector of  all ones 

by e. Its dimension is always clear from the context. The symbols R n, R~ and R~_+ 

denote the n-dimensional Euclidean space, the nonnegative orthant of  N" and the positive 

orthant of  IR n, respectively. The set of  all m x n matrices with real entries is denoted 

by R ' ' x ' .  I f  J is a finite index set then ]J[ denotes its cardinality, that is the number 

of  elements of  J. For J C_ {l . . . . .  n} and w E R ", we let wj denote the subvector 

[Wi]ieJ; moreover, if E is an m x n matrix then Ej denotes the m x ]J] submatrix 
of  E corresponding to J. For a vector w E R", we let max(w) denote the largest 

component of  w, diag(w) denote the diagonal matrix whose i-th diagonal element is wi 
for i = l . . . . .  n and w -1 denote the vector [ d i a g ( w ) ] - l e  whenever it is well-defined. 

The Euclidean norm, the l-norm and the c~-norm are denoted by I1" 11, II' I1~ and I1' I1~, 
respectively. The superscript T denotes transpose. 

To avoid introducing several constants throughout the paper, we use the following 

notation. Given functions gl (x) and g2(x) which are defined for points on a set E, 

we say that g l ( x )  = O ( g 2 ( x ) )  for every x E E if there exists some constant M such 

that ]]g~(x)ll ~< Mllg2(x)l[ for every x E E. When the conditions g l (x )  = (.Q(g2(x)) 

for every x E E and g2(x) = O ( g l ( x ) )  for every x E E hold then we simply write 

gl (x) ~ g2(x) for every x E E. 
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2. Affine sealing algorithm 

In this section, we state the main terminology and assumptions used throughout our 
paper and describe the AS algorithm. We also review some basic properties of  the AS 
algorithm that are needed in the subsequent sections. 

Consider the following LP problem 

minimizex c'r.r 
( l )  

subject to A x  = b, x ) O, 

and its associated dual problem 

maximize(~. ,~ bTy (2) 

subject to A-r y + s = c, s >l O, 

where A E R m• c, x ,  s E R" and b, y E R m. 
We next introduce some notation and definitions which will be used throughout 

our paper. Given a point x E IR", let B (x )  - {i : x~ ~ 0} and N ( x )  - {i : xi = 0}. 
Clearly, ( N ( x ) ,  B ( x )  ) determines a partition of { l . . . . .  n}. Associated with any specific 

partition ( N , B )  of {1 . . . . .  n}, we let 

790 = {x  E R" : A x  = b, XN = 0}, 

79~ - {x E 79N :x8  /> 0}, 

79~+ - {x E 79N x B  > 0}, 

738 = { ( y , s )  E IR" x I R " : A T y + s  = c ,  s8 = 0 } ,  

73~ ~ { ( y , S )  ~ 73B : SN ~ 0}, 

73~+ - { ( y , s )  E 738 : sN > o}. 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

When N = 0, we denote the sets PN, 79~ and 79~+ by 7 9, 79+ and P++,  respectively. 
The sets 79+ and 79++ are the sets of feasible solutions and strictly feasible solutions 

of problem (1) .  Similarly, when B = 0, we denote the sets De,  D~ and D~ + by D, 
73 + and 73 ++, respectively. 73+ and 73++ are the sets of feasible solutions and strictly 

feasible solutions of  problem (2).  
A constant-cost  f ace  of an LP problem is a nonempty face of  the feasible polyhedron 

over which the objective function is constant. Every nonempty face 5 t- of  79+ is uniquely 
determined by a partition ( N , B )  in the sense that 79~ = 5 r" and 79++ 5 / 0. Every 
partition (N, B) which is uniquely associated with a constant-cost face of  (1) is called 

a constant-cost  partition. If  ( N , B )  is a constant-cost partition then the constant value 
of the objective function cVx over 7'~ is denoted by VN. The partition associated with 

the optimal face of  ( 1 ) is referred to as the optimal partition. 

The following result can be easily shown. 
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Lemma 2.1. The following statements hold: 

(a) ( N, B)  is a constant-cost partition if and only if 7)~ + ~/ 0 and 738 4 0; 
(b) i f  ( N, B)  is a constant-cost partition then cTx -- VN = yTNxN for  any x E 7 ~ and 

(y,g) ~ DB. 

We impose the following assumptions throughout this paper. 

Assumption 1. Rank(A) = m. 

Assumption 2. The objective function cTx is not constant over the feasible region of 

problem ( 1 ). 

Assumption 3. Problem ( l )  has an interior feasible solution, that is 7 :'++ 4= 0, 

Assumption 4. Problem ( 1 ) has an optimal solution. 

We now introduce important functions which are used in the description and analysis 
of the AS algorithm. For every x C R'.~.+, let 

y ( x )  = ( A X 2 A T ) - I  AX2c, 

s ( x )  =- c - A T y ( x ) ,  

d ( x )  = X2s(x )  = X[ I - X A T ( A X 2 A T ) - I  AX]Xc,  

(9a) 

(9b) 

(9c) 

where X ~ diag(x). Note that Assumption 1 implies that the inverse of AX2A T exists 
for every x > 0. The quantities ( y ( x ) ,  s ( x )  ) and d ( x )  are the dual estimate and the AS 

direction associated with the point x, respectively. For the purpose of future reference, 
we note that (9c) implies 

X - l d ( x )  = X s ( x ) .  (10) 

Lemma 2.2. The following statements hold: 

(a) for  any (y, ~) E 73, d ( x )  is the (unique) optimal solution of  

maximized gTd-- �89 2 

subject to Ad = O; 
(11) 

(b) tf (N, B) is a constant-cost partition then there exists a constant Co > 0 such 

that 

f lX~'ds(x)[ I  ~ CoI[X~'I[IIXNIIIIXN~dN(X) II VX > O. 

Proof. The proof of (a) is straightforward. The proof of (b) is given in Monteiro et 
al. [19, Lemma 3.6]. [] 



82 T. Tsuchiya. R.D.C. Monteiro/Mathematical Programming 75 (1996) 77-110 

We are ready to describe the AS algorithm. For a good motivation of the method, we 
refer the reader to Dikin [6],  Barnes [4],  Vanderbei, Meketon and Freedman [31] and 
Vanderbei and Lagarias [30].  

Algor i thm 1 (Affine Scaling Algorithm) 
Step O. Assume x ~ E 79 e ~ is available. Set k := 0. 

Step 1. Choose At E (0, 1 ), and let 

d t = d ( x k ) ,  

X t = d iag (x t ) ,  

xk+l = .rt _ At dk" 
m a x ( ( X t ) - ~ d  t) 

Step 2. k := k + l and return to Step 1. 

(12a) 

(12b) 

(12c) 

We note that Assumptions 1-4 imply that, for every x C 79++, the direction d ( x )  

must have at least one positive component so that m a x ( X - l d ( x ) )  > 0. Hence, the 
expression which determines x t+l in the AS algorithm is well-defined. Observe also 
that if 3.k were equal to 1, the iterate x k+l would lie in the boundary of the feasible 

region. Thus, since we choose &- E (0, I ), x k~l is ensured to be a point in 79++. 
The following basic result whose proof can be found in Vanderbei and Lagarias [30, 

p. 118] or in Monteiro et al. [19, Proposition 2.8] will be needed later on. 

Proposi t ion 2.3, For any full  row rank matrix A E R rex" and any vector c E N ~, the 

set { ( y ( x ) , s ( x )  ) : x  > 0} is bounded, where ( y ( x ) , s ( x )  ) is defined in (9). 

We next summarize the main results that have been proved for the AS algorithm. 
Proofs of  these results can be found in Tsuchiya and Muramatsu [29] and in the survey 
paper by Monteiro et al. [ 19]. The results below are stated in more general terms than 
they have been stated originally to accommodate the needs of  the current paper. But 

their proofs follow along the same lines pursued in the above two references. Let {x k} 

denote the sequence of iterates generated by Algorithm 1 and let {(yk, sk)} denote the 
sequence of dual estimates defined as (y t ,  s t)  = (y  ( x t ) ,  s(.r k) ) for all k ~> 0. 

Proposi t ion 2.4. The Jbllowing statements hold: 
(a) the sequence {x k} converges to some point x* E 79-t-; 

(b)  there exists M > 0 such that IIx t - x * l l  <~ M( cTxt - c T x * )  for  all k >~ 0; 
(c) the sequence { ( y k  s t)  } is bounded. 

I f  in addition, we have lira inf t~ ~ At > 0 then: 
(d) ( N . ,  B . )  = ( N ( x * ) ,  B(x*  ) ) is a constant-cost partition, or equivalently, the 

smallest face  containing x*, namely 79~ , is a constant-cost face; 
( e) every accumulation point (y*, s*) of  { (y t ,  s t)  } is in DB. (hence, X ' s*  = 0). 
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The analytic center of the optimal face of problem (2) is the (unique) point defined 
as  

(ya,~,) =argmax{ ~ logsj: (y,s)CD-~}, 
j E Nopt 

(13) 

where (Nopt, Bopt) denotes the optimal partition of (1). 

Proposition 2.5. I f  the sequence {Ak} satisfies Ak ~ ~ for all k >>. 0 and lira inf'k~ ~ ak 
> O, then the following statements hold: 

(a) {x ~} converges to a point x* lying in the relative interior of  the optimal face of. 
( 1 ) (hence, ( N . ,  B.  ) =- ( N(x* ), B (x*) ) is the optimal partition of ( 1 ) ) ; 

(b) {(yk,s~)} converges to (33a,ga); 
(C) l im~_~ ~ k T k XN. SN./(C X -- cTx *) = e/IN.I; 
(d) for any (~, g) C DB., we have 

k ~ c T x k - - c T x  * JN.I -argmax logxj :  gTN. XN. = I ,  XN. > 0  . (14) 
J 

Remark. Statement (d) is not explicitly stated in [19] and [29]; however, the first 
equality in (d) follows immediately from (b) and (c),  while the second one follows 

by verifying that (~)-~/IN, I satisfies the optimality condition for the optimization 
problem in (14) (see Lemma 4.7). 

3. Asymptotic behavior of the AS algorithm for a homogeneous problem 

It was shown in the original version of Tsuchiya and Muramatsu [29] that the 
sequence of dual estimates { (yk, s k) } converges to the analytic center (.~a, ga) of the 
dual optimal face whenever ,~k = A C (0, 5) for all k ) 0 (see Proposition 2.5(b)) .  

2 Later, Tsuchiya and Muramatsu [29] pointed out that their result holds even for )t~ = ~. 
Furthermore, they [29] and Hall and Vanderbei [ 13] gave specific examples showing 
that the bound ~ on the (fixed) stepsize is tight with respect to the property that 
l i m k - ~ ( y k , s  k) = (.9~,g"). In this section, we give a plausible explanation for the 
tightness of the bound _2 

3" 
2 Specifically, we show for any homogeneous LP problem that 5 is a sharp upper bound 

on the fixed stepsize that provably guarantees that the sequence {x k} converges to the 
optimal solution along a unique direction of approach. For an arbitrary LP problem and 
for A ~< 5' the uniqueness of the direction of approach of {x k} follows as a consequence 
of Proposition 2.5(c) and Lemma 4.9. The main result of this section shows that the 
direction of approach of {x ~} towards the optimal solution is not unique, whenever the 

2 sequence of stepsizes {ak} satisfies l i m i n f ~  ,~k > _~ (e.g., ak = A > 32- for all k ~> 0), 
the LP problem is homogeneous and 0 is its unique optimal solution. 
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Since the accumulation points of the sequence {(yt ,  sk)} are determined by the set 
of directions of approach of {x k} (this fact can be proved by using similar arguments as 
in Adler and Monteiro [ 3, Theorem 4.1 ] ), the above result gives a plausible theoretical 
explanation for why ~ is a tight bound on the (fixed) stepsize that guarantees the 
convergence of {(yk, st)} to the analytic center (35 a, g"). This explanation is not accurate 
though since existence of two or more directions of approach of {x k} does not imply 
(but is likely to result in) nonconvergence of the sequence {(yk, st)}. 

The main observation used in this section is that the sequence of points {r k} obtained 
by conically projecting {x k} onto a constant-cost hyperplane (that is, a hyperplane 
where the objective function is constant) is exactly the sequence obtained by applying 
Newton's method with a sequence of variable stepsizes {~'k} to the optimization problem 
defining the analytic center, say r*, of the polyhedron determined by the intersection 
of the constant-cost hyperplane with the feasible (conical) region of the homogeneous 
problem. One important consequence of this observation is that the sequence {r k} 
converges quadratically to r* when .hi = ,~ = �89 for all k /> 0. This result suggests that 

1 the AS iteration with At = 2 can be used as a kind of centering step to keep the iterates 
"well-centered". Another important consequence is that when At = .,l > _-} for all k ~> 0, 
the corresponding sequence of Newton stepsizes {~'t} satisfies lira infk~or r~. > 2 from 
which nonconvergence of the sequence {r k} easily follows. 

The following homogeneous problem is considered in this section. Given a vector 
E R p and a subspace H _C RP, the problem is to 

minimize {gT2 : 2 E H, ~ >/0}. (15) 

Define 

H ++ = {2 c H : S: > 0}, 

H ++ = {2 E H ++ �9 ([.T~ > 0 } ,  > 

H ++ - {.~ ~ H ++ : c'T~ = 1 }. 

Throughout this section we assume that H ++ ~ 0, or equivalently, H~ -+ g 0. 
The AS direction at a point ~ E H ++ is the (unique) solution d(.~) of the problem 

maximize {cTd-- �89  " .~ E W } ,  (16) 

where X ~ diag(2). 
One of our goals in this section is to give the relationship between the direction d(2)  

and the Newton direction at the point r = ff/gT2 C H +~ with respect to the following 
maximization problem: 

P 

maximize { ~ l o g r i  : r C  H++}. (17) 
i=1 

Given r E Hi ~+, the Newton direction of (17) at r is the (unique) solution ~7(r) of the 
problem 
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maximize { ( r - I ) T ( - - r / ) -  I T~-2  . 7r/ t~ r/ r / E  H, t~T7 "] = 0 } ,  (18) 

where R = diag(r)  and the variable ~7 belongs to R p. With this z/(r) ,  one iteration of  
the Newton method with a unit stepsize at the point r k is written as r ~+1 = r k - rl(rk). 

The proof of  the following result is straightforward. 

L e m m a  3.1. Assume that H ++ ~ ~. Then, the following statements are equivalent: 

(a) ~ = 0 is the unique optimal solution of  (15);  

(b) Hi ~+ is nonempty and bounded; 

(c) problem (17) has a (unique) optimal solution. 

The optimal solution of  (17),  when it exists, is denoted by r*. The following result 

plays an important role in several parts of  the paper. 

L e m m a  3.2. The following statements hold: 

(a) the function r ~ ~7(r) is continuous on H~-+; 

(b) f o r  r E H~ +, rl(r)  ~ 0  if and only if r is not the optimal solution of  ( 17); 

(c) i f  the optimal solution r* o f  (17) exists then 

Ilr  - r* - ~ ( r ) I I  
lim sup < ~ ,  

. . . . . .  "EHi '+ 11 r --  r*][ 2 

11~7(r) ll l imsup - - - 1 .  
. . . . . .  c - i "  IIr - r*ll  

(19) 

( 2 0 )  

Proof. The proof of  (a) and (b) are straightforward. Relation (19) is a standard 

property of  Newton methods and it holds whenever some reduced Hessian (see Fletcher 

[ 11, p. 260] ) of  the objective function of  (17) is nonsingular at r*. This last property 

follows due to the fact that the (full) Hessian of  ~iP=l logri  is negative definite at r*. 

Relation (20) follows as an immediate consequence of  (19).  [] 

L e m m a  3.3. Assume that {r k} C H {  + is a sequence detemzined by the recurrence 

relation r ~+l = r k --rkrl( rk), where {'rk} is a sequence o f  scalars such that lim i n f ~  rk 
> 2. Then 

(i) r k = r* holds f o r  all k sufficiently large (this can happen only if r* exists), or 

(ii) {r k} can not converge to a point in H ++. 

Proof. Assume that (i) does not hold. We will show that (ii) must hold. Indeed, in 
view of  Lemma 3.2(b),  we know that if r k~ = r* for some k0 then r k = r* for all 

k > k0. Since we are assuming that (i) does not hold, we conclude that r k -7' r* for all 

k/> 0. To show that (ii) holds, assume for contradiction that {r k} converges to a point 
r ~ E H ++. The relation r k+l = r k - rkz/(r k) and the fact that lim inI'k~oo rk > 2 imply 

that limk~oo r / ( r  k) = 0. By (a) and (b) of  Lemma 3.2, we conclude that r ~176 = r*, and 
hence that l i m k ~  r k = r*. Using the relation r k+l = r k - rkrl(r k) and Lemma 3.2(c),  

we obtain 
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II ? + ~  - r*ll  II - (r~ - 1)r /(r  k) + (r  ~ - r* - ,(r~))ll 
lira inf - lira inf 
k ~  11 rk - r*ll k - ~  II " k -  r*II 

>/ l iminf  (rk - 1)[[r/(r~) ]1 - I 1 ( ?  - r *  - , 7 ( ? ) )  II 

= liminf(r~ - 1) > 1. 
k ~ o o  

Hence, we conclude that II ra+~ - r*l l  > ][r ~ - r*ll  for every k sufficiently large, which 
contradicts the fact that {r k} converges to r*. [] 

Given a point .~" E H> +, we define 

~(27) = R-~d( .~ - ) .  
FT~.  - 

r(27) - ~ T ~ - '  

where X = diag(.t).  

(21) 

(22) 

Lemma 3.4. 

~*d(27) -- II;?- 'd(~)[[2 
eT~(~)  = 1, 

Ii~'-~d(~)ll-< II~ell, 

r /(r(~:))  = - - r ( Z )  + 

where R(.~) = diag(r(.~)).  

The fol lowing relations hold f o r  every ~ E H>+: 

,7 (~-) "~ 
d(.~) - R(.~) - e  + 

IIX'-'d(~) II 2 1 1 ~ 1 2 J  ' 

(23) 

(24) 

(25) 

(26) 

Proof. Let ~ C- H~ + be given. Since d(.2) is a solution of  (16),  we have 

6 - X-2d(27) C H • d(27) E H, (27) 

where H i denotes the orthogonal complement of H. Multiplying the first relation in 

(27) on the left by d(27) T and using the second relation, we obtain (23).  Multiplying 

the first relation in (27) on the left by 27T and using the fact that 27 C H, we obtain 

~vy, = e T ( f ( - l d ( 2 7 ) ) ,  which is equivalent to (24),  due to (21).  Using (23) and the 

Cauchy-Schwarz inequality, we obtain 

I1~-'d(27) I/2 = ( ~ ) T ( ~ - ' d ( m ) )  ~ 112<111~-'d(m)II, 

which clearly implies (25).  It remains to show (26). To simplify notation, let r - r(~:). 

Since ~7(r) is the unique optimal solution of  (18),  the first equality in relation (26) 

follows once we show that - r +  d(~) / l lR-Ld(~ . ) ] l  2 satisfies the optimality condition 

for (18) ,  that is, ~7 = - r  + d ( . ~ ) / l l R - l d ( x ) f  satisfies 

- r  - I - R - 2 ~ T E H •  ~TEH,  8Tr /=0 ,  (28) 
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where R c  = {3.c: A E R} and R = diag(r).  Indeed, relations (22) and (27) imply 

( = 
- r  - I  - R-2 - - r  4- 112_~d(~)112 ) 112_1d(~)112 

(sTY) 2,~-2d(2) H_L 
= E + R c .  

l l2 - 'd (y)  II 2 

Since H is a subspace, 2 E H and ,'](2) ~ H, we conclude that 

d(~) .~ d(~) 
- r +  - - - +  EH.  

112-~d(~)ll 2 aY~ 112-td(~)lle 

Using (22) and (23), we obtain 

d(.~) _ (gTr , 8Td(.~) "~ 
6"T(--F 4- [[,~-ij(.,~)[[2)= - -[[z~._loT(~f)ll2// 

=_(, 
112-~d(~)ll 2 

Hence, the first equality in (26) follows. The second equality in (26) follows from 
(21) and (22). [] 

Given a point 2 r H> + and a scalar A E (0, 1 ), let 

O(~) = I1,~(~)11: 
m a x ( ~ ( 2 ) )  ' 

a 
~*(a) = ~ - d(~). 

max(2-1d( .~))  

(29) 

(30) 

Lemma 3.5. Let 2 E HE + and a > 0 be such that 2+(h) E H+> +. Then, the following 
relations hold: 

1 1 
~ I1~(~)II ~ 0(~) ~ ~, 

a0(~) 
r (~+(a) )  = r(2)  

1 - ag(~) 

(31) 

(32) 

q ( r ( 2 ) ) .  (33) 

Proof. Let 2 + =.~+(,~). Using (21), (23), (29) and (30), we obtain 

~T~q-=?'l" ~._ max(2-1d(2))'~ 07(2) =?Tk 1 -  (gV2) max( ,~_ld(2))  

=~?T~ 1 max( f i (2 ) )  J 

and hence (31) follows. The first and second inequalities in (32) follow from (24) and 
(29). Since ~ and 2 + are in H ++, relation (31) imply that I - 3 .0 (~ )  > 0, from which 
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the third inequality in (32) follows. We next show (33).  Using (30),  (21) and (29) ,  

we obtain 

( ) (  ) A )(-laT(.~) = 2  e m a x ( a ( ~ ) ) a ( ~ )  ~ + = ) (  e -  m a x ( ~ _ ~ d ( 2 ) )  

) 
II'~(-~) II 2 /  

This relation together with (31) yield 

~+ ~'[e - (a0(~) / l l~( .~)  I[ 2) 5(~)]  
r ( 2  +) = 

FT~-~ = ~T~( 1 - 20(2)  ) 

_ R ( 2 ) [ e  - (aO(.~)/ll~(~) 11 =) ~(.~)] 
I - ~(~)  

( ) = r ( ~ )  - A0(.~) R(.~) - e  + 
1 - a 0 ( . ~ )  II,~(-~) I I Z /  

where R ( 2 )  = d i ag ( r (~ ) ) .  Combining the last relation with (26),  we obtain (33).  [] 

In the remaining part of this section, we let {.~} and {Ak} denote the sequence 
of iterates and stepsizes for the AS algorithm applied to problem (15) and define 
~ _ r(2k)  = ff~/sX.~l, for all k ~ 0. When /lk = A C (3 '  1) for all k >7 0, the following 
result shows that {~:k} can not converge to ~ = 0 along a unique direction of approach. 

Theorem 3.6. Assume that {At} C_ (3 '  1) satisfies lim infk~oo hk > ~ and that {Yc k} C_ 
+ +  H> . Then, the following statements hold: 
(a) limk~ooE'x~ k = 0 (hence, if 0 is the unique optimal solution of  (15) then 

limk~oo ~:k = 0) ; 
(b) {?k} does not converge (i.e., {?k} has at least two accumulation points), or 

?k = r* for  all k sufficiently large. 

++ ~7~k Proof. Since, by assumption, {2 k} C H> , we have > 0 for all k ~> 0. Moreover, 
(32) and the assumption that Ak > 3 imply that lira infk~oo A~0(.~: k) > 0. Since, by 
(31) ,  we have ~?Xyck+l = ~Xs:k(1 -- AJ)(x k)),  we conclude that limk~oo E'T2 k = 0. We 

next show (b).  If/~k = r* holds for some k = k0, then, we see, in view of (33) and 
the fact that ~k = r* implies fik = el[N[ due to (26),  that ~k = r* holds for all k ~> k0. 
Now we deal with the case where ~k ~ r* for all k. Assume for contradiction that {?k} 

converges to some point /:oo. It follows from relation (33) that 

~k+1 = ~k Ak0(x~) r/(~ k) Vk/> 0. (34) 
1 - a ~ ( ~  k) 

This relation together with the fact that {?k} converges and liminfk~oo Aj,0(~: k) > 0 

imply that 

lira "r/(~ k) = 0. (35) 
k ~ o o  
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By (26),  we have 

( / ~ ) - l r / ( F k )  = --e + - -  Vk >~ 0, (36) 
II~kll 2 

where ~k = fi(x k) and /~k = diag(Fk). We now consider two cases: 1. ~oo > 0 and 2. 

7 ~176 ~ 0, and show that both of  them are not possible. Consider first case 1. In this case, 

it follows from (35) and (36) that 

~k 
lira = e, (37) 

k-oo II~kll2 

and hence, in view of  (29),  we obtain 

lira 0(2k) - I  = l~m max = 1. 
k~cx~ k 

2 This relation together with the assumption that lim infk~c~ Ak > .~ yield 

AkO(2 k) & 
lim - lira - -  > 2 .  

,~--oo 1 - akO( .~  k) k ~  1 - Ak 

Hence, in view of  Lernma 3.3, we conclude that F k can not converge to a point F ~176 > 0. 
This shows that case 1 can not occur. We now consider case 2 in which /:oo ~ 0. Let 

Z = {i :  ?i ~176 = 0}. It is shown in Lemma 3.7 below that limk~oo [ ( /~k)- l r / (?k)]  z = --e, 
and hence that rlz(? k) > 0 for every k sufficiently large. This observation together 

with (34) clearly imply that f~+J > ~ for every k sufficiently large, a conclusion that 

contradicts the fact that 0 = ?~o = limk~oo ~ .  [] 

Note that the assumption {2 k} C_ H ++ in Theorem 3.6 is automatically satisfied if 

2 = 0 is the unique optimal solution of  problem (15).  

We next state and prove the result that was needed in proof of Theorem 3.6. 

L e m m a  3.7. Let a sequence {r k} C Hi ~+ and an index set Z c {1 . . . . .  p}  be given 
such that limk~oo rkz = 0. Then, limk~oo [ ( Rk) - Ir l (  rk) ] z = --e, where R k = diag(rk). 

Proof.  Let 2 be an arbitrary point in H> ++ and ft. be a full row rank matrix such 
that Null(riO = H. Then, it is easy to see that d (2 )  = ~zg(s  where g(2) _= ~ -  
fiJ(fi~2fi~T)-lfi, k~2g. Hence, we obtain 

2-~d(2)  Ri(x) 
~(~) - e v ~  - U ~  = R ( x ) ~ ( x ) ,  ( 3 8 )  

where R(2)  = d i a g ( r ( 2 ) ) .  By Proposition 2.3, there exists a constant Lo > 0 such that 
Jig(2) ]] ~< L0 for all 2 > 0. This observation together with (38) imply 

[]fiz(2)[] ~<Lollrz(2)]] V 2 E H  ++. (39) 
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Let {2 k} be a sequence such that r(2  k) = r k (for example, 2 k = r k for every k). From 

(39) and the assumption that lim~. . . . .  r~ = 0, we conclude that l im~_~t~z(~ /`) = 0. 

Using this observation together with (24) and (26),  we obtain 

tTz ( . { ~ ) )  
l i m [ ( R ~ ) - l r / ( r k ) ] z =  lim - e + - -  = - e .  

k ~  k - ~  !l~(x-~)ll 2 
[] 

We close this section with a result showing Ihat the sequence {?k} converges quadrat- 
i for all k>~0. ically to r* whene;er r* exists and 3.k = A = 

Theorem 3.8. I f  r* exists and ,~k = �89 Jbr  all k >~ 0 then {?k} converges quadratically 

to r*. 

Proof. Assume that r* exists and that Ak = ~ for all k ) 0. We first show that {?k} 
converges to r*. Indeed, by Lemma 3.1 and the fact that r * exists, we conclude that 

2 = 0 is the unique optimal solution of  (15).  By Proposition 2.5(a),  it follows that 

x* l- limk_oo 2k = 0 and. and hence that N, - N(x*) = {1 . . . . .  p}. Hence, if ,4 

is a full row rank matrix such that H = Null(,4) then, by Proposition 2.5(d) with 

(.~, g) = (0, ?), we conclude that 

l i m  /:k = lira = a r g n a a x  log Xj " z~,- _-- 0 ,  c T x  ---- 1, 2 > 0 = r*, 
k ~ c ~  k~cr ~ " j=l  

where the last equality follows from the definition of r*. It remains to show that {?k} 

converges quadratically to r*. In view of  (34),  quadratic convergence follows once we 

show that 

& 0 ( Z )  

1 - & g ( ~ k )  
- 1 + O(ll ( k)ll). ( 4 0 )  

First observe that (29) and (36) imply that 

) 0 ( Z )  - a - x = m a x  [/~kll 2 1 = m a x ( ( k k ) - r ~ ( ~ ) ) = O ( ~ ( ? ' ) ) .  

Using the fact that hk = �89 1or all k I> 0, it is now easy to see that the above relation 

implies (40).  [] 

I would yield It is easily seen that any other fixed stepsize ,~ E (0, ~) such that h r  

only linear convergence of the sequence {?~} to r*. Hence, the above result shows that 
a = �89 is the best stepsize as far as the speed of  convergence of the sequence {?k} to r* 

is concerned. 
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4. Technical results 

In this section, we show that the relation between the conical projection of the AS 
sequence {2 k} for the homogeneous problem (15) and the Newton iterates for the 
analytic center problem (17) carries over to the context of general LP problems. The 
main idea is to approximate the original LP problem by a homogeneous LP problem 
near a constant-cost face in the sense that the AS directions at a feasible point x for the 
two problems approach each other as x approaches the constant-cost face. We can then 
apply the techniques developed in the previous section to the approximate homogeneous 
problem and thereby obtain conclusions about the AS sequence {x ~} for the original LP 
problem. The results of this section are rather technical but they form the basis for the 
development of the superlinearly convergent algorithm of Section 5. 

Associated with a given constant-cost partition ( N , B ) ,  there is a homogeneous LP 
problem defined in the xu-space. Near the face 79~, the AS direction associated with this 
homogeneous problem provides a good approximation of dN(x) as we will see below 
in Lemma 4.3. To motivate and introduce the homogeneous LP problem associated with 
(N, B), consider the following problem 

minimize.~ CTNXN + C~X8 

subject to ANXN + ABXB = b, XN >/ O, 
(41) 

obtained by removing the constraint xB ) 0 from (1). The homogeneous LP problem 
is obtained by eliminating x8 from the above problem as follows. Let (y, g) E 738 be 
given and note that b E Range(AB) since 79~ :/(~. Due to Lemma 2.1(b), problem 
(41) can be written as 

minimizex sTNx N 

subject to ANXN c Range(AB), XN >>- O, 
(42) 

which is the homogeneous problem associated with (N, B). This problem can be iden- 
tified as a problmn of the form (15) by letting c = SN, x = XN and H = ~,v -- {~ E 
R ]NI : AN.~ E Range(A~)}. The corresponding problems (16), (17) and (18) in this 
case become: 

1 
maximizedu g~& - ~llX.~'a~lJ 2 

subject to ANdN C Range(AB), 
(43) 

maximize,.~ Y~iEN log ri 

subject to ANrN E Range(AB) 

gTNr N = 1, rN > 0 ,  

(44) 

and 
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maximiz%~, ( ru  1 )Y(_rlN ) _ ~riNRN.rlN 

subject to ANON E Range(AB) (45) 

sTT]N ---- 0, 7"IN > 0, 

respectively, where RN =-- diag(rN). 
We now introduce the notation needed ['or the development in this and the next 

section. Unless otherwise specified, (N, B) denotes a constant-cost partition of ( I ) .  Let 

Q~-b ~ {X IX ~ "7")++ cTx __ PN > 0}, (46) 

and, given x E Q~v ~, define 

X-ld(x)  X- ld(x)  
u(x) = = (47) 

cT x -- PN STNXN 

XN XN 
rN(x) = --cTx -- "N - f f  x~' (48) 

~tN(X ) ~ XN I J N ( x )  X N l d N ( X )  
cT"~ ~ t-'--'~ -- sT NxN ' (49) 

where du (x )  denotes the (homogeneous) AS direction of problem (42) at XN, that is, 
the optimal solution of (43). (Note that dN(X) and fin(X) are really functions of XN 
but for simplicity of notation we view them as a function of x. Note also that the vector 
u(x) depends on (N,B) but this dependence is ignored for simplicity of notation.) 
Given x E Q~+, we let ~TN(X) denote the Newton direction associated with (44) at the 
point rN = rN(X),  that is, the optimal solution of (45). (It would be more accurate to 

view r/N(') as a function of rN but for simplicity of notation, we view it as a function 
of x.) Clearly, it follows that "q(x) = r l ( rN(x ) )  for every x E Q++. Finally, given 
x E 7 -9++ and A > 0, we let 

A 
x+(h) = - x -  max(X_ld(x) )d(x).  (50) 

The following result provides a preliminary relation between the AS direction d(x) 
and the homogeneous AS direction do(x). 

L e m m a  4.1. For eyeD' x C ~++, the vector (SS,tiB) ~ (dN(x )  -- t in(X),  dB(x) ) is 
the (unique) optimal solution of the Jbllowing QP problem: 

minimize(,~u,,~.) I[IXN16NI] 2 q- IlIXBI6Bll2 
(51) 

subject to ANtiS + AB69 = --ANdN(X).  

Proof. The vector (tin(x) --dN(X). dB(x)) is clearly feasible for problem (51). To 
prove that (du(x) --dN (x) ,  dB (x) )  is optimal for (51), it is sufficient to show that 

( XN2(dN(x) -- dN(X) ) ) 
X~2 d8 ( x) E Range(AT). (52) 
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Fix some (y,g)  C Dn 5/0. Since gn = 0, dN(X) solves (43) and, by Lemrna 2.2(a), 
d ( x )  solves (11), we have 

_ X ~ 2 d B ( x  ) E Range(AT). (54) 

Combining (53) and (54), we obtain (52). [] 

The following technical lemma is well-known and is used in the proof of next result. 

Lemma 4.2. Let F E g{P xq be given. Then, there exists a constant CI = CI ( F )  with 

the following property.: f o r  any f C R v such that the system Fw = f is feasible and any 

z E R q, there ~ is t s  a solution ~, o f  Fw = f such that 

I 1 ~ - z l l  <<. c~llf  - Fzll 

Lemma 4.3. The following statements hold: 

(a) Ilun(x)[I = O(l lg~al l  IIXNII I l u N i x ) l [ ) f o r a l l  x E Q~v+; 
(b) [[~gix)  -- uNix)l[ = OiIIX~tII2IIXN]I2HUN(X)[[) for all x G Q~v + such that 

l lx~ ~ II IIXN]I is sufficiently small. 

Proof. The proof of (a) follows immediately from (47) and Lemma 2.2(b). We next 

show (b). Fix x > 0. Since ANdNiX) ~ Range(An) and A n d e ( x )  = - -ANdNix) ,  it 
follows from Lemma 4.2 that there exists riB(x) such that 

Andn(x) =--ANdN(X), Ildn(x) - d n i x ) l l  ~ C2] tdN(X) -  dgix)]] ,  (55) 

where C2 is a constant independent of x. Using the second relation in (55), we obtain 

IIX~' ( d n i x )  - dn(x) )  t[ ~< IIX~ * [I I l d n ( x )  - dBiX)I[  

~< c211x~Xll Ildg( x ) -- dN( X) [I 

<. c211x~'ll IIXNll l i s a ' a N ( x )  - XN~dNiX) II �9 (56) 

The first relation in (55) implies that (6N,&B) = (O, dB(X) )  is feasible to problem 
(51), and hence, by Lemma 4.1, we obtain 

IIX~'dn ix)II 2 + IIX; '  (aNix) - dNix ) ) l l  2 <~ IIX~ ldB (x) II 2. i57) 

Thus, we obtain 

IIX~ ~ (dNix) - & i x ) ) l l  2 ~< IIX~ ~& ix)II 2 - IIX~dn ix)II 2 

= [ X ~ l ( d n ( x )  + d n ( x ) ) ] T [ x ~ l ( d n ( x )  - dn(x ) ) ]  

<~ I lX~(  dn(x) + & ( x )  ) ll IIX~' i & i x )  - d n ( x ) ) ] l .  (58) 
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Combining this last relation with (56),  we obtain 

Hx?-,, ~ (aN(.,..) - t iN(X)) I I  <~ C211XB j II IIXNII IIX~' (dB(x)  + & ( x ) ) l l  
c: llX;'rl ppXNII {211XBIdB(x)ll + IIX~l(dB(-r) - d B ( x ) ) l l }  

<~ 2C~IIXB ~ II IIXNII IIX~'dB(x)H 
"~ ~, - I  + c211x~' II 2 IIXNII'HX~ t i N ( X )  - -  x/v ldN(x) l l ,  

from which we conclude that 

IIx;,~ (dN(x) - & ( x ) ) l l  ~< 4C211X~'II I[XNI[ IIX~'dB(x)l l ,  

whenever C~IIXB 1 II 2 IIXNII 2 ~< ~ The last relation together with (a) imply 

I IX ; ,  ~ ( dN(X) -- tiN( X ) )[[ = 0 ( l l X / '  I! 2 II XN II-' ! lX~ '  dN( x)ll )" 

After dividing both sides of this relation by cTx -- VN, we obtain the desired result. 

Lemma 4.4. The fol lowing relations hold: 

e'r~v(x) : 1 Vx r Q~+, 

and 

[] 

(59 )  

l e f u N ( x )  -- 11 = (,.9( ]]X~ l I]IIXNII211.N(X)H), (60) 

f o r  every x r Q~+ with IIx~ ~ II I/XNI/ su/ficiently small. 

Proof. Relation (59) is an immediate consequence of (24). Using (59) and Lemma 
4.3, we obtain 

leTuN(X) -- 1[ = leT(uN(X) -- fiN(x))] 

~< Ileil I I .N(x)  - ~,,~(x)]l 

= o( II gB-l II 2 II XN II 2 II l t N ( X ) l l ) '  

for every x ~ Q,~+ with IIx~ 1 ]1 IIXNII sufficiently small. [] 

L e m m a  4.5. The fol lowing relations hold: 

cTx +(A)  VN=(I - -A0(X)) (CTX--UN)  Vx~79++ , (61) 

and 

( tgN(X) ) AO(x) RN(X) - - e + - -  (62) rN(X+(A) ) = rN(X) l - aO(x) Ilu(x) II 2 ' 

f o r  every x E Q[v + and A > 0 such that x+(,~) e Q++, where RN(X) = d iag ( rN(x ) )  

and 

II"(x) II 2 
O(x) - (63) 

max(u(x)  )" 
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Proof. The proof of (61) is similar to the proof of (31) and uses the fact that cTd (x )  = 

iiX-~d(x) ]]2 Also, the proof of (62) tollows along the same line as the proof of (33). 

We omit the details. [] 

The next lemma is the main result of this section. It generalizes relation (33) of 

Lemma 3.5 to the context of general LP problems. 

Lemma  4.6. We have: 

,~O(x) 
rN(X + ( /~) ) = rN(X)  (37N(-r) + RN( X) hN(X)  ), 

1 - A O ( x )  

where 
( UN(X) ) 

h N ( x  ) = --e + 11,4x)ll---- ~ RN'(X)'qN(X) -=O(IIX~IIZlIXNII2), 

for every x E Q}+ such that IIx~ III IIXNll is sufficiently small. 

(64) 

(65) 

Proof. First note that (59) and Lemma 4.3 imply that 

II~N(X)II ~ ~ IluN(X)II ~ II~N(X)II ~ ~ (66) 

for every x C Q~+ with ]]X~ -I ]111XNII sufficiently small. Due to relation (26), we have 

R~I(X)~N(X) = R~i(X)~N(rN(X)) = -e  + 

and hence, 

u u ( x )  ~N(X) 
hN(X)  - - - -  

l l . (x)l l  2 l l~ (x ) l l  2 
_ ~N(X) ( l l~N(x)l l  2 

ll~N(X) II 2 \ llu(x)112 
Thus, we obtain 

~u(x) 

[IhN(X) H 

HaN(X)H 2' 

HN(X ) -- ~N(X)  

1 + ilu(x)ll 2 

I ]I~N(X)II 2 --llu(x)]121 [IUN(X) --ON(X)I I + 
II~N(x) 11 [tu(x)II 2 $1u(x) II 2 

llu,(x)ll2 + II/~N(X) -UN(X)ll [ll;~.(x)ll + IlUN(X)[I] 
Hs (x)l[ IlUN(x) II 2 

IlUN( X) - ;-.,;~( x) II + 
Iluu(x) l? 

II.;~(x) II 2 II~N(X) - UN(X)ll + 
11,TN(x)[lllu•(x)ll 2 II~N(x)ll IlUg(X)[[ 2 

+2llUN(X) - aN(x) 
LluN(x)II 2 

(67) 

Now, using (66) and Lenuna 4.3, it is easy to see that each one of the terms m the 
right hand side of the above expression is (9(]IX~ 1112NXNII 2) for every x C Q~v '~ with 

(68) 
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IIS~ll IIXNII sufficiently small. Hence, (65) follows. Relation (64) is an immediate 
consequence of (62) and (65). [] 

A natural question to be asked is: for which constant-cost partitions (N,B) does 
problem (44) have an optimal solution? The following result shows that the optimal 
partition is the only one. Recall that (9",~V ') denotes the analytic center of the dual 
optimal face, that is, the point defined in (13). 

Lemma 4.7. Let (N, B) be a constant-cost partition. Then, problem (44) has an 
optimal solution if and only if ( N, B) is the optimal partition of ( 1 ), in which case 
( s~v ) - j / I NI is the (unique) optimal solution of (44). 

Proof. If r~, is the optimal solution of (44) then by considering the optimality conditions 
of (44), we can easily show that 

( ( r*N)o  I/[N[ ) E Range(AT) + Rc. (69) 

Hence, 79 ++ ,=' ~. Due to the assumption that (N, B) is a constant-cost partition, we have 
7:'~ + ~ 0. Hence, we conclude that (N, B) is the optimal partition of (1). Conversely, 
by considering the optimality conditions of (13), we can easily verify that (~v)-~/Igl, 
where (g~)- i  =_ [diag(g~v)]-le, satisfies the optimality conditions of (44) with gN = 
g~,. We omit the details of the proof. [] 

Lemma 4.8. Let (N, B) be a constant-cost partition and assume that {ak} C 1t~ ++, 
{.~k} C 7 ~++ and {(yk ~k)} C_ 79 are sequences satisf3'ing the following conditions: 

(a) {~v/otk} is bounded; 
(b) lim~:~()f~g~v)/ce~ = aN > 0. where X~ = diag(~r and aN is some Igl- 

dimensional vector; 
(c) l imk_~ ~ = 0 and {gkN} is bounded. 

Then, ( N, B) is the optimal partition of ( 1 ) and we have: 

lira (~t g~)=(y ,~) ,  (70) 
k ~  ~ - 

lira x~./cek = ( , . ~ m ) - l a N ,  (71) 
k ~ oc, 

where So = diag(gN) and 

(9, s) = argmax{ Z a j l o g s . /  "(.y,s) E D~ +}. (72) 
j G N  

In particular, if aN is a positive multiple of the vector of all ones then (~, ~) is equal 
to the analytic center (y~,g~) defined in (13). 

Proof. Since (N ,B)  defines a constant-cost face, we have 7 :'++ :~ 0. Hence, to show 
that (N, B) is the optimal partition of (1) and that (70) holds, it is sufficient to show 



T. Tsuchiy& R.D. C. Monteiro /Mathematical Programmb~g 75 (1996) 77-110 97 

that any accumulation point (~, g) of (9 k, ~k) satisfies the optimality condition for (72), 
namely 

(y, g) E D~ +, (73) 

ANSNl aN C Range(Ae), (74) 

where SN = diag(.7/v). Indeed, let K be an infinite index set such that limke~:(y k, g~) = 
(~,g). Using (c) and the assumption that {(.~ ~k)} C D, we conclude (y,~) C DB. 
Moreover, (a) and (b) imply that SO > 0 and that 

lim 2ku = S N I a N  . (75) 
kEK; i~" k 

Thus, we conclude that (73) holds. Since 79++ ~ ~, we have b E Range(Ag). This 
observation together with the fact that {2k} C_ 79 ++ imply 

AN(YCk)  ~ Range(AB). (76) 
\o:~/ ,  

Relation (74) now follows immediately fiom (75) and (76). The limit (71) is an 
immediate consequence of (70) and (b). [] 

Lemma 4.9. Let ( N, B) be a consmnt-cost partition attd let {.~k} C_ Q}+ be a sequence 
such that {ru(2k)} is bounded and l i m k ~  II(X~) -1 II ]IXkNI[ = 0. The,, the following 
statements are equivalent: 

(a) l i m ~ U N ( 2  k) = e/INI; 
(b) l i m k ~  II(R~N)-Jr/N(2~)I] = 0, where R k N =- diag(rN(xk)) ; 
(c) ( N, B)  is the optimal partition of ( 1 ) and l i m ~  r N ( 2 k) = ( g~N ) - I / I N], 

in which case, limk--.~ (y(.~k), s (2k) )  = (9% ga). 

Proof. From Lemma 4.3 and the assumption that l imk__,oo 11 (2~) - ill I I 2kNll = 0, it fol- 
lows that 

lim UN(Y~ ~) = e/IN[ "r lim ~m(~ k) -- e/lNI.  (77) 
k ~ o o  k ~ o o  

Due to relations (26) and (59), we have 

--e + ~(~k) 112 2 2 eTUN('YCk) 1 II(R~)-'r/N(~k)IIZ= } } , 7 ~  = INL- ~ p ~ - 2  + [[aN(.~k)ll2 

1 
= INI ilaN(~)112, (78) 

Using the fact that eT~TN(2 ~') = 1, it is easy to see that l i m k ~  H~N(.i k) II = l / ~ v / ~  
if and only if limk--,o~ fiN(YC k) = el[N[. This observation together with (77) and (78) 
immediately imply the equivalence of (a) and (b). The proof of the implication (c) 
(b) follows immediately from (a) and (b) of Lemma 3.2 and Lemma 4.7. It remains to 
show the implication (a) ~ (c). Indeed, assume that (a) holds and let cek -= cT~: k -- uu 
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and (.yk,.~k) _= (y( .~k) ,s(2k))  for all k ) 0. We will show that the sequences {.~k}, 

{(.gk, ~k)} and {cek) satisfy conditions (a), (b) and (c) of Lemma 4.8 with a~v = e/lgl- 
Since by assumption {rN(2k)} is bounded and rN(2 t) = Y:~v/C~k for every k, condition 
(a) of Lemma 4.8 holds. Condition (a) implies that (b) of Lemma 4.8 with aN = e / IN[  

is satisfied since 

u ( 2 k )  R~s (2~)  2k~  k 
. . . . . .  (79) 

cT-~k -- PN OLk 

Clearly, { ( y k  ~ ) }  is bounded in view of Proposition 2.3. Hence, to show that condition 
(c) of Lemma 4.8 bolds, it is sufficient to prove that limk--,~ Y~ = 0. Indeed, first 

observe that (a),  the assumption that lim~._~ II ( 2 ~ ) - t  II H2~vll = 0 and Lemma 4.3(a) 
imply that {u(~ -k) } is bounded. Using this observation, the fact that ~k = (_9(112~,11) and 
(79), we obtain 

I1~11 <~ 1](2w = ,~11(2w II,,(?)ll ~< o(11(2~)-'[[ 112~,11), 

which, together with the assumption that l i m k ~  11(2w II II 2~ II = o, clearly imply that 
l i m k ~  ~ = 0. Using Lemma 4.8, we conclude that (c) holds and l i n l k ~  ( y ( 2 k ) ,  s ( 2  k) ) = 
( y" ,  ~" ) . [] 

We observe that it is possible to give a direct proof of the implication (b) ~ (c) by 
using Lemma 3.7, Lenuna 3.2(b) and Lemma 4.7. The proof given above shows instead 
the implication (a) =:> (c) via Lemma 4.8, which is simpler in the sense that it does 
not need the machinery introduced in the Section 2 and in the first part of this section. 

It also illustrates a basic principle that has been used in the convergence analysis of 
the AS algorithm (see Tsuchiya and Muramatsu [29] or Monteiro et al. [ 19, Theorem 
4.3]).  

5. A superlinearly convergent affine scaling algorithm 

In this section we present a variant of Algorithm I which is globally and two- 
step superlinearly convergent. After we state the algorithm, its global convergence and 
superlinear convergence are proved. 

To describe the variant of Algorithm 1 that will be studied in this section, we assume 
that two constants p and q are given such that 

p , q  E (0, 1), p < q (80) 
q + 2  

Examples of constants satisfying these conditions are: p = 0.3 and q = 0.95. Observe 
I that p can be chosen as close as to 5 as it is desired. For the purpose of future reference, 

we note that (80) implies that 

2 ( q -  p)  >q.  (81) 
l + p  
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The following variant of  Algorithm 1 will be shown later to converge two-step super- 
linearly with order at least 1 + p < 4 3" 

Algor i thm SLA 

Step O. Assume that constants p and q satisfying (80) and a point x ~ E P++ are given. 
Set k := 0. 

Step 1. Compute d k =_ d ( x  k) according to (9c) and let 

Nk = {i" x~ <~ [ e T [ ( x k ) - I d k ]  11/2}, (82a) 

O'k=eT((X~uk)--ldku~ ), (82b) 

~ (eTuNk(xk))2 
o-~ - IN~-I (82c) 

e k = .  [N~I [l(xk)_~dkll2 ilu(x~.)ll2 

Step 2. If 

,~ < o-~, (83)  

then (Predictor step) 

,~k = max(0.5 ,  1 - o-['.) (84) 

else (Corrector step) 

,~k = 0.5. 

d k 
Step 3. x k+l = x k - Ak (85) 

max(  (X k ) - ldk) ' 

Step 4. k := k + 1 and return to Step 1. 

The first expression for ek is the one that should be used to compute it. The second 
one is used during the analysis of  the algorithm and is a consequence of (47) .  It is 
easy to see that term within the square root of  the first or second expression for ek is 
nonnegative so that e~ is well-defined. 

The basic procedure is to alternate the choice of  the stepsize between Ak = 0.5 and 
ak ~ 1. Since Algorithm SLA is a variant of  Algorithm 1 in which ak >_- �89 for all 

k/> 0, we conclude that it satisfies all the statements ( a ) - ( e )  of  Proposition 2.4. As in 
Section 2, we denote the limit point of  the sequence {x k} by x* and let ( N . , B . )  = 

( N ( x * ) ,  B (x*)  ). By Proposition 2.4 (d) ,  ( N . ,  B.  ) is a constant-cost partition. Recall 
that the constant value of cTx over the face 7 ~+. is denoted by ~'N.. Clearly, ~'N, = cTx *. 
Throughout this section, the function u( . )  refers to the one associated with the partition 
( N , ,  B.  ) and the following notation is used: u k = u (x k),/~k = Ux, (X k), rk . N .  = rN*  ( x k ) '  

R k. = d i a g ( r  k ), k . r lN .=r lN . (xk ) ,  (yk, s k ) = ( y ( x k ) , s ( x k ) ) , f o r a l l k > ~ O .  
The global convergence analysis of Algorithm SLA is much simpler than its super- 

linear convergence analysis and is obtained in Theorem 5.3. So we next explain the 
underlying idea behind the superlinear convergence analysis of  Algorithm SLA. It is 
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shown in Proposition 5.1 that crk ,--, cTx ~ -  PN. and IIx~,. II = O(c Tx~- ~'N. ) from which 
it is easy to conclude that Nk = Nopt for all k sufficiently large, where (gopt, Bopt) 
denotes the optimal partition of  (1).  Moreover, Lemma 5.2 shows that ek is a measure 
of  centrality for the "small" variables x k the ones that dictate the speed of convergence g .  ~ 

of the (or, any interior point) algorithm. When the measure of  centrality ek is small, a 

predictor step with stepsize ,~x asymptotically approaching 1 is taken. The behavior of  
the predictor steps is analyzed in Lemma 5.5; the main conclusion is that the measure of  
progress cTx -- VN. is reduced at a superlinear rate while the centrality measure "slowly" 
deteriorates. At the next step, if the the small variables are not well-centered (i.e., the 

test (83) fails), then a corrector step is taken with stepsize At = �89 The effect of  this 
step is analyzed in Lemma 5.6; the main conclusion is that c T x -  ut~'. is reduced at 
a linear rate while the centrality measure is improved at a quadratic rate. Lemma 5.7 
shows that, asymptotically, one corrector step suffices to recover the centrality of  the 
small variables and hence that a predictor step is taken in every two steps of  Algorithm 
SLA. Using these conclusions, it is now easy to prove the superlinear convergence of  
Algorithm SLA (see Theorem 5.10). 

Some basic properties of Algorithm SLA which follows almost immediately from the 

analysis of  Section 4 are given in the following result. 

L e m m a  5.1. The fol lowing statements hold: 

(a) the sequences {uk}, {tT~. } and {r~m. } are bounded; 

(b)  {II(XL)-'H IIX~-.ll}. {llu~,. - ~ . [ [ } .  {11,4.11}, {eTu~N. -- l} and {ll&.ll} con- 
verge to 0 according to: 

II ( x k ) - '  II IIX%. II = O(c  T:~* - , ,N.).  (86) 

I1,~. - ,~ .  II = o ( ( c T x  * - ,,N. )2), (87) 

l e t u p .  - -  II = O ( ( c T x  ~ - ,,,,,.)~-), (88) 

Ilu~. II = o (c T x~ - PN.  ) ,  (89) 

IIsw II = O((c Txk - PN.  )2). (90) 

(c) Nt = N,  f o r  all k sufficiently large and the following relations hold: 

lim o-k - 1, (91) 
k ~ o o  (CTX k -- PN.  ) 

lim o-k = 0. (92) 
k---* oo 

Proof.  By Proposition 2.4(b)  and the fact that X~v, = 0, we have 

k [[Xu. [[ ~ [[Y k -- X*[] = ( ~ ( c T x  k --  PN.  )" ( 9 3 )  

Clearly, this implies that {rkN.} is bounded and that (86) holds, since l imk~o~x~. = 
X* s.  > 0. By (47) and ( I 0 ) ,  we have 
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Xk s k 
u ~ - (94) 

c T x  k - -  l.,N. ' 

from which we conclude that u~. = k k RN. SN.. This fact together with Proposition 2.4(c) 
and the fact that k {ro .  } is bounded imply that {u~. } is also bounded. Due to Lemma 
4.3, Lemma 4.4, the fact that {u~.} is bounded and (86), we conclude that (87), 

(88) and (89) hold. Clearly, (87) and (89) imply that {u ~} and { ~ . }  are bounded. 

Relation (90) follows immediately from (89), (94) and the fact that l i m k ~  x~. > 0. 
It remains to show (c).  Let ~-~ = e T ( ( X k ) - l d  ~) = ( xk )Ts  k. Using (88), (89) and 

(94), we obtain 

lim "rk = lim e'r u k = 1 
k---*oc~ c T x  k --  I.'N. k--*c'x3 

and hence, that 

lim ~-~ = 0. (95) 
k~oo 

These two relations together with (93) imply that 

x~i = O(c~rx k - VN. ) <~ O ( r k )  ~ v ~ ,  

for aH i C N, and k sufficiently large. Moreover, (95) and the fact that limk--.oo -~B. = 

X* B, > 0 imply that x~ > v ~  for all i C B. and k sufficiently large. From these two 
observations and (82a),  we conclude that Nk = N, for all k sufficiently large. Relation 

(92) follows immediately from (91), which in turn is an immediate consequence of 
(88) and the fact that crk/ (cTx k - -PN. )  = eTu~k = eTu~N, for all k sufficiently large. [] 

Remark.  From the previous lemma, it immediately follows that O-k ~ cTx ~ -- VN.. This 
means that any quantity appearing in the analysis below whose order is CO(o-k) is also 
(.9(cTx k -- UN. ) and vice versa. 

L e m m a  5.2. 

III (R~N.)- '~7~, .  II - ekl : CO(o-k). (96) 

Proof. Due to relations (26) and (59), we have (see (78))  

1 
I I ( R k N . ) - ~ , ~ . I I  2 = IN*I i i ~ , l l  2 

Define 

(97) 

1 (eTukN')2 Vk >~ O. (98) 
,bk - II~N. ii 2 ii,kll 2 

Using the inequality (or - 5,) 2 <~ [a 2 - y2[ for cr > 0 and y > 0, relation (97) and 

Lemma 5.1(c), we obtain for every k sufficiently large that 
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2 )_, k l12 

( eTG ' )2  I I (G  )-1 
= IN.I  i1.~112 . ~ X .  II 2 

~< 14'k[- 

It remains to show that I&~[ = (.9(o-~). Indeed, using a bounding scheme similar to the 
one in (68) together with (66) ,  Lemma 4.3 and Lemma 4.4, it is easy to see that 

14,~ I = co( I I ( xL  ) - '  II 2 llX,~, ll~). 

This relation together with (86) and (91) imply I&k[ = O(o-~). [] 

The next result establishes global convergence of Algorithm SLA. 

T he o rem 5.3. ( N.,  B.  ) is the optimal partition of (1), or equivalently, x* lies in the 

relative interior of the optimal face of ( 1 ). 

Proof.  If  the condition ek < o-~, is satisfied for finitely many indices k, the result follows 
1 lot all k sufficiently large. Assume now from Proposition 2.5 since, in this case, cr~ = 

that the set /C of all indices k satisfying et < cry, is infinite. By (92) and the definition 
of ]C, we have litn~.e~ et = 0, and hence, in view of Lemma 5.2, we conclude that 

lim~eK: II (RkN.) -1 ,,,k 'IN. I[ = 0. Using the equivalence between (b) and (c) of  Lemma 4.9, 
we conclude that ( N . ,  B. ) is the optimal partition of ( 1 ). [] 

We now focus our attention on the superlinear convergence analysis of Algorithm 

SLA. We start with the following technical result. 

L e m m a  5.4. Consider the function O(x) defined in (63) with N = N. and let Ok =- 
O(x k) for all k ) O. For all k sujficiently large, we have: 

IO[ ~ II ~< ll(R~v )-~ * - -  . T I N .  II + o ( , ~ . ) ,  ( 9 9 )  

where Oh = O(x k) for all k. 

Proof.  By (89) and (88) ,  we have max(u  k) = max(u~+, ) for every k sufficiently large. 

This observation together with (63), (65), (86) and (91) imply 

0k71 _ max (u~ . )  
ii.kll 2 - max(e  + (R~v)-I~7~. + hN.(Xk)), 

where hN. (x k) = O(  [I (Xw -111211X~N. 112) ~< O(o'~). Hence, we obtain 

_ - ,  k O ( o ' ~ )  [ ]  10; I 11 ~< II(R~v.)- 'G.  II + HhN.(-?)II ~< I I ( G . )  *TN. 11 + �9 

To simplify our presentation, we introduce the following set of  indices: 

K,p = {k : a predictor step is taken at the kth iteration}. 
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In the remaining part of  this section, we use r~v. to denote the point ( ~ . ) - ~ / I N . I .  By 
Lemma 4.7 and Theorem 5.3, we know that r~v. is the (unique) optimal solution of 

problem (44) with N = N. .  The main result about the predictor steps is given next. 

Lemma 5.5. For every k E ICe, we have: 

(a) I I G .  - r k ,  ll = O ( o - q ) ;  
( b )  Ok+  1 ,----' ( c T x  k+l  - -  P N . )  ~.o ( c T x  k --  p N . ) I + P  ,,-,., O-~+P; 

..k+l * ,',',r ( q - p ) / ( l + p ) ' ~  and hence, .A+x �9 (C) I N .  - -  rN. [1 = t.2kO-k+ 1 , . lim~c/Cp i N .  - -  rN. [[ = O. 

Proof.  Observe that (83) implies that ek = 0 ( o  -q) for all k E ICe. Using this observa- 
tion, Lemma 5.2, (92) and the fact that q < 1, we obtain that 

II(R~v.--1 k ) TIN. II = O ( O ' q )  V k  E ICp sufficiently large, ( 1 0 0 )  

and hence, l i m k ~  II(R~.)  - ]~k  'IN. II = 0. It then follows from Lemma 4.9 that 

l i m ~  r~.  = r*N.. This observation together with Lemma 3.2(c) imply 

]]r~r - r~v * - TIkN, II = O(l lrkN. - r~v * l ib ,  ( 1 0 1 )  

II?N. * ~ R k - '  - ~ II~N. II ~ N. rN.  II H( ) , ~ . 1 1 .  (102) 

for all k C ICp sufficiently large. Statement (a) now follows from relations ( I00 )  and 
(102).  We next show (b) .  By (61) ,  we have c t x  k+l -- PN. = (1 -- 2tkOk)(cTx k -- PN.) 
for all k ~> 0. In view of  (91) ,  (b) follows once we show that 

1 - AkOk "~ ~ Vk E ICe sufficiently large. (103) 

Using (100) ,  Lemma 5.4, (92) and the fact that q < 2, we conclude that 

[0k - 11 = O ( o  -q) Vk E ]Cp sufficiently large. (I})4) 

Using this observation and the fact that, by (84) and (92) ,  we have ak = 1 -- o'~ for all 

k E ICp sufficiently large, we obtain 

l( 1 --  a k O k )  --  ~ 1  = I(1 - a k 0 k )  - (1 - a , ) l  = AklOk -- II = o ( ~ g ) .  

Using (92) ,  the fact that, by (80) ,  q > p, and the above relation, we conclude that 
1 - akOk "-' ~ ,  and hence (b)  follows. It remains to show (c).  By (64) ,  we have 

AkOk ( k RkN h N . ( X k ) )  (105) 
rk+N. 1 -~ r~.  1 ~ Z O k  TIN* -~ " 

Moreover, by (65) ,  (86) and (91) ,  we have 

hN.(X k) =O(ll(Xw 2) ~ O( (cTxk-- pN.)2 ) ~ 0(0"2). (106) 

Using relations ( 101 ), (102) ,  ( 103 ), (105) and (106) ,  Lemma 5.1 (a) and statements 
(a) and (b) ,  we obtain that, for all k E ICe sufficiently large, 
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(rN" ( ) "~kOk Rk h N . ( x k )  k �9 k AkOk I ~ k  O. 
-- rN.  -- "ON. ) -- I -- .,~kOk 1 -- ,)tkO k 

. 12akOk-- I I , &0k 
[ I r k .  - rN. - -  T]kN. II + i ~  1 ~  IIT]N.I[ + l - A~0~ 

IIrN.--tN.  ) ~<o(11,.% _ r L l l 2 ) + o (  k ~ , . .  II + o ( ~ - p )  

q-t,. e~_(q-t,)/(~+r)). [] (107) O ( a  k ) ~ V\Uk.+l 

I[R* N. II Ilhm (x ~) II 

The main result about the corrector steps is as follows. 

L e m m a  5.6. Assume that 1C is an infinite index set such that limkE~: rkN. = r*u. and 
Ak = �89 for  all k E IC. Then, the following statements hold: 

(a) limkEK(cTx k+l -- P N , ) / ( c T x  k -- b'N.) = t ;  

(b) lim,~K: o'k+l/o-k = �89 

( c )  lira,+ ' * rN. II O(llr~. * 112+~r~) . foreven 'kcE-  - -  = - - i N .  . 

(hence, limkEr r~ +l = r~v" ). 

Proof. The assumption limkcjc r~. = r}. implies that lilnkc~ II (R~,)-lT]k. 1] ---- 0, which 
together with (92) and Lemma 5.4 imply limkc~ 0k = 1. This relation together with the 
assumption that Ak = �89 for all k E KS imply 

lim 1 - akOk = �89 ( 1 0 8 )  
kE~ 

This in turn implies (a), due to (61). Statement (b) follows immediately from (a) and 
(91). We next prove (c). Since limkE~: r ~x. =rx.,* Lemma 3.2(c) implies that 

l i ra. - r~v. - T]~N. II = co( IlrkN. -- rYv. 112). 

l id , .  - * ~ ~ rN. II I I~LI I  I I (R%.) - '~J , . I I .  

(~o9) 

(11o) 

hold for every k E/C sufficiently large. Hence, by Lemma 5.4, we have 

1 0 ~ - l l - - O ( l l ( R % , ) - ' ~ . I I  +o-~)~ = O C i l r % .  - r ~ . l l *  + o-z.), ( 1 1 1 )  

for every k E K: sufficiently large. Using relations (108), (109), (110) and (111), 
1 for all k E K:, we obtain by Lemmas 4.6 and 5.1(b) and the assumption that & = 

using an argument similar to (105), (106) and (107) that 

. 1 2 & 0 k  - I I &Ok 
lira** 1 - r L I I  <~ lira. - rN, -- T]kN, II + f~-A~-k  I1~.11 + 1 --~Ok Itgk'[k I[hN" (xk)ll 

O( l l r ~ .  - % II 2) + o (10 ,  - ~11[r~N, - -  r*N. II) + O(O 'b  

<~ O( l l r%.  -- r:,,. II 2 + ~,~), 

for every k E /C sufficiently large. [] 
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The next result shows that, asymptotically, a predictor step must occur at every two 

steps as long as the set KS̀ O is infinite�9 

Lemma 5.7. For every k sufficiently large, the following implication holds: 

kEKSe ,  k + l ~ K S ` o  =:~ k+2EKS`O.  (112) 

Proof. Let KS~ _= {k �9 k E KZ`O, k + 1 ~/C`o}. In view of Lemma 5.5(c),  it follows that 

the set KS = {k + 1 : k C KS~} satisfies the assumption of Lemma 5.6. Hence, it follows 
from (b)  and (c)  of  Lemma 5.6 that 

k+2 * k+l .* rN. rN. II O(  [12 + 2 , - -  = rN. - -  1 N.  O'k+ I ) Vk E KS`O, (113) 

o'k+2 ~ O-kH Vk C KS~,, (114) 

�9 k + 2  _ r *  and lamkcx:;, ru. N. [[ = 0. Hence, in view of Lemma 3.2(c) ,  we have 

r.k+2 * k+2 ( R k •  - 1  k+2 t II U. rN. II ~ ~ (115) - [inN. II N'. ) 9~N'. Vk  ~ KS`O. 

Using Lemma 5.2, (115) ,  (113) ,  (114) and Lemma 5.5(c) ,  we obtain 

( R k + 2 )  - l _ k + 2  II 
ek+2 ~- N.  t i N .  II + O ( O ' k + 2 )  

k+2 �9 
<~ (.9( ru. -- ru. II + ok+2) 

<~ O(  k+l �9 2 r N .  --  r N .  112 + O'k+l + O'k+2) 

r,-,z 2 ( q - - p ) / ( l + p )  2 
~tO'k+ l + O'k+l + O'k+2) 

for every k E KS~, where s - m i n { 2 ( q - p ) / ( l  + p ) ,  1}. By (81),  we have s > q. This 

observation together with the above relation imply that ek+2 < crq+2, or equivalently, 
k + 2 ~ KS,o, for every k C KS~o sufficiently large. [] 

The next result shows that the set KS̀ O is infinite. In view of the Lemma 5.7, this clearly 
implies that, asymptotically, a predictor step occurs at every two steps of  Algorithm SLA. 

Lemma 5.8. The set KSp is infinite. 

Proof. Assume for contradiction that there exists an integer k0 such that k ~ ICe for 
every k >~ k0. By Proposition 2.5(c) ,  we have 

lira k lim k k T k biN. = XN, S N. / (C X -- VN.) = e / l N .  I. 
k ~ o o  k~ex~ 

This relation together with Lernma 5.1 (a) and Lemma 4.9 imply that limk--oo r~.  = r* N . '  
Hence, it follows that the assumptions of  Lemma 5.6 are satisfied with KS = {k : k ~> k0}. 
By using statements (b)  and (c) of  this lemma, we conclude that limk~oo crk/o-k+l = 2 
and that, for some constant L0 > 0, 

uk+l * "~ 
I l tN.  - -  F N .  ]l ~ L0(l]r~. - r~r ]l 2 + o-~,) Vk/> k0. (116) 
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Hence, by taking a larger k0 if necessary, we may assume that 

o'k <~ 3crk~l Vk >-ko, (117) 

1 
IIr~. - & . l l  -< 18g~ vk > k0, (118) 

where (118) is due to the fact that limk_.m rkN. =rN.'* We next show by induction that 

Ilrk.--r~v. II ~ Llcr~ gk~>ko, (119) 

where LI -= max{18Lo k,~ _ r* [[rN. N. /rrT.~} Indeed, (119) obviously hold for k = k0 in 
view of the definition of Li. If (119) holds for k = l ~> k0 then (116), (117) and (118) 
imply 

-- rN. II <~ II N. -- 'N.  ll + Lo~T <~ + Lo cr~ <<. cr~ <~ L,oT+ ,. 

where the third inequality follows from the definition of Ll. We have thus proved that 

(119) holds. Using (119) and Lemma 3.2(c), we conclude that II(R~,~) -ln~,. II = 
Cg(cr~) for all k. This observation together with Lemma 5.2 then imply that ek = O(o-k)  

q for all k. Using (92) and the fact that q < 1, we conclude that ek < o- k, or equivalently, 
k E KTp, for every k sufficiently large. Since this conclusion contradicts our initial 
assumption, the result follows. [] 

The next result is needed in the proof that the sequence { (yk, S k ) } converges two-step 
superlinearly to the analytic center of the dual optimal face. 

L e m m a  5 . 9 .  / f  limk~oo rkN. = r*N. then 

u~, IN.le --O(llr~,---r*N. I I - t - ( cTxk - -UN. )  2) gk ) O. (120) 

Proof. Lemma 3.2(c) together with limk~oo r~,. = r~v . imply I1(R~.)-%%.11 ~ II&. - 
r~, tl- Using this observation, Lemma 5.1 (a) and relations (67) and (78) with N = N. ,  

we obtain 

G. e G . (  I ) 
- ~TT ~< 1 i N . r  IIG. ii 2 

IIG [I II(G )-l_k ,,x [I(RkN )-~,7~,.11 ~< . . ' / X .  rt + . 

Im, I IX.I 
~ O(llG. - &,[l) V k > 0  

This relation together with (87) then imply 

e 
G . - ~  -<IIG.-G.II+ G . -  

rk .* =o(11 u. - - 'g .  II + (d xk - ~'N.) 2) 

/?N. e 

+ IN*I I1~.112 IN.I 

Vk>~0. [] 
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The next result establishes the two-step superlinear convergence of Algorithm SLA. 

T h e o r e m  5.10. Algorithm SLA has the following properties: 
(a) the sequence {cTx t } converges 2-step supeHinearly to the optimal value VN. = 

cTx * with Q-order at least 1 + p, namely 

c T 3 .  - k + 2  _ I.,N. 
lim sup (121) 

~--.oo (c Tx~ - uU.) l+r' < oC; 

(b) the sequence {x k} converges 2-step superlinearly with R-order at least I + p m 

a point lying in the relative interior of the optimal face of problem ( l ); 
(c) the sequence {(yk, st)} converges 2-step superlinearly with R-order at least 

1 + p to the analytic center of  the optimal face of the dual problem (2), that is, 

the point ( ~a, ~a ) defined in (13). 

P r o o f .  It follows from Lemma 5.7 that if k is sufficiently large then either k C Ice or 
k + 1 E iCe. This fact together with Lemma 5.5(b) clearly imply (a). By Proposition 
2.4(b), we know that I[x k -  x*ll = O ( c l x  k -  ~N . )  and hence, in view of (a), it 

follows that {x ~} converges 2-step superlinearly to x* with R-order at least 1 + p. We 
�9 . ~a = 0 next show (c) From (a) and (90), it follows that that {s~ } converges t o . B .  

two-step superlinearly with R-order at least 1 + p. We next analyze the convergence 
of {s~v.}. From (a) and (c) of Lemma 5.5 and Lemma 5.7, it is easy to see that 
tl"~N. -- % II = O ( ( c T x  k -- ~N. ) ' ) ,  where t = ( q -  p ) / ( 1  + p ) .  Using this observation, 

* - a  -- I the relation rN. = (SN.) (>  0) and Lemma 5.9, we obtain 

[[ s~v. ~,a ( R k a-tu~ ( R*)-I  e 
- S N .  II = N.~ N. I g ,  I 

L l k .  e 

~< H(R~,.)-'II I/V.] + 

= 0  u . - -  + rN --rN. 

II(R~.)-Ie- ( R * )  -1e l i  

IN.J 

(122) 

(123) 

(124) 

(125) 

(126) 

= O( Plr~. - , ' ~ .  II + ( e T x  k -- ~N. )2) 

= O (  ( c r x  k - VN. ) ' ) .  

This clearly implies that {SkN, } converges to ~ N. two-step superlinearly with R-order at 
least l + p .  [] 

6. C o n c l u d i n g  r e m a r k s  

In this paper we have demonstrated that a variant of the long-step AS algorithm is 
4 two-step superlinearly convergent with Q(R)-order as close to g as desired. Practical 

eff• of this algorithm is not known at this moment, but the results of this paper 
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may suggest possible ways to implement the AS algorithm more reliably and efficiently, 
We believe that the analysis of this paper is important from the theoretical point of 
view since it shows that the AS aIgorithm with certain stepsizes is also able to keep 
the sequence of iterates well-centered, at least asymptotically. This is in some sense an 
unexpected result in view of the (pure) steepest descent nature of the AS algorithm. 

One interesting research problem is to improve the order of convergence of the 
algorithm of Section 5. It would also be interesting to develop a variant of the AS 
algorithm with convergence order equal to any number less than or equal to two, a 
property which many primal-dual algorithms (e.g. [33] and [17]) and the Iri and 
Imai's algorithm [27] have been shown to have. 

We believe that our analysis can be directly applied to the long-step variant of 
Karmarkar's algorithm [15] presented in [20]. It seems possible to show that this 
variant of Karmarkar's algorithm enjoys superlinear convergence without sacrificing its 
polynomial complexity by properly choosing the sequence of stepsizes according to the 

ideas suggested in this paper. 
Another algorithm whose analysis could benefit from the techniques in this paper 

is Todd's low complexity algorithm [231. During the predictor steps, his algorithm 
moves along the AS direction with stepsize tess than �89 (namely �89 of the step to the 
boundary of the largest inscribed ellipsoid). Since the AS step with Ak ~< �89 works as 
a kind of corrector step, it seems possible to show that Todd's algorithm may not need 
any corrector step asymptotically (cf. [24]).  Moreover, it seems possible to apply our 
analysis to show that a variant of Todd's algorithm is superlinearly convergent without 
sacrificing its polynomial complexity. 
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