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Abstract 

We study a trust region affine scaling algorithm for solving the linearly constrained convex 
or concave programming problem. Under primal nondegeneracy assumption, we prove that every 
accumulation point of the sequence generated by the algorithm satisfies the first order necessary 
condition for optimality of the problem. For a special class of convex or concave functions 
satisfying a certain invariance condition on their Hessians, it is shown that the sequences of iterates 
and objective function values generated by the algorithm converge R-linearly and Q-linearly, 
respectively. Moreover, under primal nondegeneracy and for this class of objective functions, it is 
shown that the limit point of the sequence of iterates satisfies the first and second order necessary 
conditions for optimality of the problem. @ 1998 The Mathematical Programming Society, Inc. 
Published by Elsevier Science B.V. 

Keywords: Linearly constrained problem; Affine scaling algorithm; Trust region method; Interior point 
method 

1. Introduction 

The affine scaling (AS)  algorithm for linear programming was first introduced by 

Dikin [6] in 1967 but remained unknown to the western community until the late 

80's. The method was later rediscovered independently by Barnes [3] and Vanderbei et 

al. [44] .  Since then, there have appeared a number of  papers which study its global and 

local convergence [7,8,12,21,37-39,41-43] ,  the behavior of  its associated continuous 

trajectories [2,4,22,24,45] and its computational efficiency [ 1,23]. 
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In 1980, Dikin [9] proposed the second order affine scaling algorithm for convex 
quadratic programming (QP) problem, where the next iterate minimizes the objective 
function over the intersection of the feasible region with the ellipsoid centered at the 
current point and whose radius is a fixed fraction /3 c (0, 1) of the radius of the 
largest "scaled" ellipsoid inscribed in the nonnegative orthant. This method was later 
rediscovered by Ye [46] and Ye and Tse [48] after the introduction of Karmarkar's 
algorithm [ 17]. The above mentioned papers all assume that the QP problem is primal 
nondegenerate, an assumption that considerably simplifies the analysis of convergence. 
In Refs. [46,48] an extra dual nondegeneracy assumption is also imposed. A global 
convergence proof of the second order AS algorithm which drops the primal nondegen- 
eracy assumption but still keeps some sort of dual nondegeneracy assumption is given in 
Tsuchiya [40] for strictly convex QP with/3 E (0, 1/8]. Sun [35] gives a global con- 
vergence proof for the second order AS algorithm without imposing any nondegeneracy 
assumptions; however, his analysis is still restrictive since the algorithm only allows very 
small /3, i.e. /3 = 2 -°(L~, where L is the input size of the problem. Recently, Monteiro 
and Tsuchiya [25] proved the global convergence of the second order AS algorithm for 
convex QP for any/3 E (0, 1) without imposing any nondegeneracy assumptions. For 
nonconvex QP problems, Ye [47] and Bonnans and Bouhtou [5] establish global con- 
vergence of the second order AS algorithm assuming primal nondegeneracy and some 
sort of dual nondegeneracy, which is satisfied by any strictly concave QP. As a special 
case of our results in this paper, we establish global convergence of this algorithm for 
any (not necessarily strictly) concave QP problem under primal nondegeneracy. Global 
convergence of the second order AS algorithm for indefinite QP problems under the 
assumption of primal nondegeneracy only is still an open question. 

Computational results of the affine scaling for solving general quadratic problems are 
reported in Bonnans and Bouhtou [5] and Han, Pardalos and Ye [ 15]. Other related 
interior point algorithms for solving general quadratic programming are given in Kamath 
et al. [ 16 ] and Kamarkar et al. [ 18 ]. Interior point methods for solving general quadratic 
programs have been recently surveyed by Pardalos and Resende [32]. 

AS algorithms for solving a linearly constrained convex program have been studied by 
Gonzaga and Carlos [ 14] and Sun [36]. Ref. [ 14] analyzes a first-order AS algorithm, 
where at each iteration a line search is performed along the scaled steepest descent 
direction computed using the first order Taylor expansion of the objective function. 
Under primal nondegeneracy assumption, Gonzaga and Carlos [ 14] prove that every 
accumulation point generated by this algorithm is an optimal solution. Sun [36] studies 
a version of the second order AS algorithm for a certain class of convex functions whose 
Hessians satisfy a certain invariance property and establishes its global convergence 
without imposing any nondegeneracy assumption. At each iteration of his algorithm, 
an optimal displacement d k that minimizes the second order Taylor expansion of the 
objective function over the ellipsoid with a fixed fraction/3 > 0 is computed, and the 
next iterate x k+l is determined by x k+l = x k + dk/K,  where K ~> 1 is a constant which 
depends on the curvature of the objective function. As in his paper [35], the convergence 
result of Ref. [36] is restrictive in the sense that the step-length has to be small, 
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namely O(e) ,  to insure that the algorithm finds an e-optimal solution. Gonzaga [ 13] 
studies a trust region method which explores the shape of the trust regions to generate 
ellipsoidal regions adapted to the shape of the feasible region. Possible convergence 
results (including the case of convex objective function) of his algorithm under primal 
nondegeneracy assumption are given without any proofs. 

In this paper, we study a version of the second order AS algorithm for solving a lin- 
early constrained optimization problem in which the fraction flk for the ellipsoid used at 
the kth iteration is selected according to a trust region strategy. Trust region methods have 
been an important and well studied class of iterative methods for nonlinear optimization 
problems. They possess strong convergence properties and are reliable and efficient in the 
numerical solution of optimization problems (see for example Refs. [ 10,11,19,20,28- 
31,33,34] ). Mor6 [ 30] provides a comprehensive survey of trust region methods applied 
to unconstrained minimization problems, where ellipsoids of different shapes and sizes 
are used as trust regions. In the trust region methods studied by Mor6, the shape of 
the trust region (i.e., the scaling matrix used to define the region) is only explored for 
the purpose of attaining good scaling and preconditioning of the variables. Convergence 
results for trust region methods applied to unconstrained optimization problems are ob- 
tained by assuming that the condition numbers of the scaling matrices are uniformly 
bounded. On the other hand, AS algorithms for linearly constrained problems explore 
the shape of the trust region to adapt it to the shape of the feasible region so that 
feasibility is achieved automatically as a by-product. In contrast to the unconstrained 
case, the sequence of scaling matrices used by AS algorithms has unbounded condition 
number. It turns out that the general theory presented in Mor6 [30] is also useful for 
the analysis of trust region methods with unbounded scaling matrices, as will be seen 
in the analysis of the algorithm presented in this paper. 

The kth iteration of the algorithm studied in this paper can be briefly described as 
follows. A quadratic approximation function which agrees with the objective function 
in value and gradient at the current iterate is minimized over an affine scaling ellipsoid 
centered at the current iterate and with fraction flk > 0. The fraction/~k+l is then deter- 
mined from fl~ according to a standard trust region strategy: the fraction is increased or 
decreased depending on whether the minimizer of the quadratic approximation provides 
a good or bad prediction of the objective function. Assuming primal nondegeneracy and 
that the objective function is either convex or concave, we prove that every accumula- 
tion point of the sequence of iterates generated by the algorithm satisfies the first order 
necessary condition for optimality of the problem; in particular, if the objective function 
is convex we obtain the result that any accumulation point of the sequence of iterates 
is an optimal solution of the problem. Assuming that the Hessians of the quadratic 
approximation and the objective function agree at each iteration and that the (convex 
or concave) objective function satisfies a certain invariance condition on its Hessian, it 
is shown that the sequence of iterates and objective function values converge R-linearly 
and Q-linearly, respectively. Moreover, if primal nondegeneracy is also assumed then it 
is shown that the limit point satisfies the first and second order necessary conditions for 
optimality of the problem. 
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The paper is organized as follows. In Section 2, we state the assumptions used in this 
paper and describe the trust region AS algorithm. We also review some basic results 
about this method. In Section 3, we establish the global convergence of the algorithm for 
solving a linearly constrained convex or concave problem under the primal nondegen- 
eracy assumption. This section is divided into three subsections. In Subsection 3.1, we 
review some results that are used in the convergence analysis of  trust region methods for 
unconstrained problems. This discussion closely follows the presentation of Mor6 [30].  

In Subsection 3.2, by introducing a suitable change of  variable, we are able to recast 
our algorithm into a special case of  the algorithm considered in Ref. [30] and therefore 
use the analysis of  this paper to obtain the conclusion that the complementarity prod- 

uct between the kth iterate and its associated dual estimate converges to 0. Finally, in 
Subsection 3.3, we complete the convergence analysis of  the trust region AS algorithm. 

In Section 4, we analyze the same algorithm under the assumption that the objective 
function satisfies a certain invariance property and, at each iteration, the second order 
Taylor expansion is used for the quadratic approximation of  the objective function. In 
Appendix A, we prove a technical result due to Gonzaga and Carlos [ 14] which is used 
in the analysis of  Subsection 3.3. In Appendix B, we study some properties of  the class 
of  functions considered in Section 4. 

In this paper, we make no attempt to verify the computational efficiency of  the trust 
region AS algorithm for solving linearly constrained nonlinear problems. Our concern is 
mainly with the theoretical aspects of  the method. However, based on the success of  the 
affine scaling algorithm for solving linear and quadratic programs (e.g. Refs. [ 1,23,15] ) 
and the effectiveness of  trust region methods for solving nonlinear problems, we believe 
that the trust region AS algorithm will be quite successful in solving linearly constrained 
nonlinear problems. 

The following notation is used throughout the paper. Z+ denotes the set of all the 
nonnegative integers. Rp, R p + and RP+ denote the p-dimensional Euclidean space, the 
nonnegative orthant of  R p and the positive orthant of  R t', respectively. The set of  all p x q 
matrices with real entries is denoted by R pxq. For Q E R pxp, Q ~> 0 (Q ~< 0) means Q 

is positive (negative) semi-definite and Q > 0 (Q < 0) means Q is positive (negative) 
definite. The diagonal matrix corresponding to a vector u is denoted by diag (u).  The ith 
component of  a vector u C R p is denoted by ui and, for an index set a C_ {1 . . . . .  p},  the 
subvector [l.li]ieot is denoted by us. I fce C_ {1 . . . . .  p},  /3 C {1 . . . . .  q} and Q E ]I~ pxq, 

we let Q ~  denote the submatrix [Qij] ic,~,jc~; if c~ = { 1 . . . . .  p},  Q,~ is simply denoted 
by Q~. Given u and v in Rp, u ~< v means ui <<. vi for every i = 1 . . . . .  p.  For a vector 
u, the Euclidean norm, the 1-norm and the co-norm are denoted by I1" II, I1" Ill and 
Jl" I1~, respectively. Given a matrix Q c ~pxq, we let Range (Q)  - {Qv ] v C ]~q} 
and Null (Q)  = {v E R q ] Qv = 0}. We say that ( B , N )  is a partition of {1 . . . . .  p}  if 
B U N = {1 . . . . .  p}  and B N N = (~. The superscript T denotes transpose. I f  {sck} and 
{rlt} are two sequences of  real numbers, then the notation sck = CO(r/k) means that there 
exists a scalar r ~> 0 such that ]~:k[ ~< rr/k for all k sufficiently large. 
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2. Description of the algorithm and preliminary results 

287 

In this section, we introduce the linearly constrained problem which will be the subject 
of our study and state the main assumptions that will be needed in our analysis. We 
then describe the trust region affine scaling algorithm for solving the linearly constrained 
(convex or concave) problem and give some basic preliminary results that will be useful 
in the subsequent sections. 

We consider the following linearly constrained problem 

minimize f ( x ) 
subject to A x =  b (1) 

x>~0,  

where f : JR n ~ ~ is a twice continuously differentiable function, A E R rex" and b E 

R m. We denote the feasible region of problem (1) by 79 =- {x E ]R n I Ax  = b, x >~ 0} 
and define the set 790 = {x C 7 9 ] x > 0}, which is the relative interior of 79 whenever 
it is nonempty. 

We make the following assumptions throughout the paper: 

Assumption 1. rank(A) = m; 

Assumption 2. there exists x ° E 7 90 such that £ ( x  °) = {x  C 79 I f ( x )  <~ f (x°)}  is 

bounded; 

Assumption 3. the function f is either convex or concave; 

Assumption 4. 79 is nondegenerate, i.e. AX2A T with X ~ diag (x )  is invertible f o r  

every x E 79. 

Assumptions 1 and 2 will be implicitly assumed in the statement of every result of this 
paper. On the other hand, explicit reference will be made to the other two assumptions 
whenever they are needed. 

Assume that x k C 7 9o denotes the current (the kth) iterate generated by the algorithm. 

A rough description of how the next iterate is computed is given as follows. The function 
d H f ( x  k + d) - f ( x  k) is approximated by the quadratic function q t ( d )  defined as 

qk(d)  = ~T f ( x k ) T d  + ~dl TQkd ~ f ( x  k + d) - f ( x k ) ,  

where Qk ~ X~2f(xk) is an approximate Hessian (e.g., obtained by means of some 
quasi-Newton updating scheme), and an optimal solution d ~ of the problem 

minimize qk(d)  = ~T f ( x ~ ) T d  + ½dTQkd 

subject to A d  = 0 (2) 

liX~-'dll ~ & 
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is computed, where flk is some scalar in (0, 1). Clearly, x k + d k is then an optimal 
solution of  the function x ~-+ qk(x - x k) over the Dikin 's  ellipsoid with center x k and 

radius ilk: 

~(Xk, f lk )  =-- {x  l A x  = b, IIx~a(x- xk)ll <~ tk}. 

Since C ( x k , i k )  C 790 for any x k E 790 and any t k  E (0, 1), we have the desired prop- 

erty that xk+d  k E 790. In practice, it is desirable to compute only an approximate solution 

of  (2) since an exact solution may be hard to compute (e.g., see Refs. [5,30,31]).  In 
our presentation, we require that an approximate solution of (2) be computed according 
to the following criteria: 

d k E a rgmin(qk(d )  I Ad = 0, IIS~-~dll ~ ~k}, 
with/3k E [(1 -- ~r)flk, min(/3, (1 + O')flk)],  (3) 

where o- E (0, 1) and /~ C (0, 1) are given constants. In other words, x k + d k is the 

exact solution of qk ( x - x  k) over an ellipsoidal trust region with the same scaling matrix 
and with radius/3k which is close to the specified Elk. Next the ratio between the actual 

reduction in f and the predicted reduction in qk is computed as 

f ( x  k ) -  f ( x  k + d k) 
rk =-- _qk (dk  ) (4) 

For some constant 01 E (0, 1) (e.g., 01 = 0.25), if rk > 01 then we set x k+l = x k + d~; 

otherwise, we set x k+l = x k. In both cases, flk is updated. In the second case, flk must 
be reduced so that the ratio at the next iteration is improved, that is, it becomes closer 
to 1. 

The details of  the trust region affine scaling algorithm for solving ( 1 ) are given next. 

Algorithm 1. Let o- , / )  E (0, 1), Qo E Rnxn and x ° ~ 790 as in Assumption 2 be given. 

Set flo = ft. 
F o r k = O ,  1,2 . . . .  

(a) Determine an approximate solution d k o f (2 )  in the sense o f (3 )  and compute rk; 
1 (b)  I f r k  <~ 0.25, let x k + l =  x k, ik+l  E (~ ik ,  2l-ik]; 

I f  rk E (0 .25,0 .75) ,  let x k+l = x k + d  k, flk+l E [½ilk, ilk]; 

I f  rk >1 0.75, let x k+l = x k + d k, flk+l E [flk,min(2flk,  /3)];  
(c) Update the matrix Qk. 

We observe that any constants 0 < 01 <( 0 2 < 1 could be used in place of  the 
numerical constants 0.25 and 0.75. In the three cases of  Algorithm 1 (b) ,  the range 
of  possible values for flk+1 is an interval; this has the advantage of providing more 
flexibility on the choice of  flk+l at each iteration. The above algorithm is in fact similar 
to the one described in Mor6 [30] but with a specific choice of  the scaling matrix (see 
Algori thm 2 of Section 3);  this observation is further explored in Subsection 3.2. Note 
that in Algorithm t ( b ) ,  if  rk <~ 0.25 then the displacement vector d k is not accepted: 
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in this case the iteration is called unsuccessful; if rk > 0.25 then d ~ is accepted: in this 

case the iteration is called successful. We let $ denote the set of  all successful iterations: 

S=- {k C Z+ Irk>0.25} .  

The main goal of  Section 3 is to show that if :~ E 79 is an accumulation point of  the 

sequence generated by Algorithm 1 then ~ satisfies the first order necessary condition 
for optimality of  (1) ,  that is, for some (y, $) E ]~m X ~n, 

ATy -}- ~ = ~ ' f ( ~ ) ,  ~ ~> 0 and X~ = 0, (5) 

where X = diag (2) .  Moreover, Section 4 shows that, for a certain class of  convex 

or concave functions, ~ satisfies the following second order necessary condition for 
optimality of  ( 1 ) : 

Ad = O, dN= 0 =~ dTX72f(Yc)d >/O, (6) 

where N ~ {j I xj = 0}. 
For the purpose of  future reference, we note that an approximate solution d k of (2) 

satisfies the first order necessary conditions for optimality of  subproblem (3),  namely, 

for some yk+ C R m and /-tk C R, 

sk+ -2 k -- y+, (7) +tzkX k d = 0 ,  where sk+=--XTqk(d ~) A T k 

Ad k = 0, (8) 

~tk (llx~-ld~ll - /~k) = 0, (9) 

IIX[ldkl[ ~</3k, (10) 

~tk /> 0, (11) 

and the second order necessary condition 

dT(Qk + tzkX-~2)d >/0, Vd E Nul l (A) .  (12)  

Observe that qk(d k) <~ 0 due to (3) and the fact that qk(O) = 0. The following result 

shows that, without loss of  generality, we may assume that qk(d k) < 0, and hence, 
d k ~ 0, for all k ~> 0. 

Proposi t ion  2.1. If qk( d k) = 0 then x k satisfies the first order necessary condition for 
optimality of problem (1). In particular, if f ( . )  is convex and qk(d k) = 0 then x k is an 
optimal solution of problem (1). Moreover, if Qk = V2 f ( x k) then x k also satisfies the 
second order necessary condition for optimality of problem (1). 

Proof. If  qk(d k) = 0 then d = 0 is an optimal solution of  (3) since qk(O) = 0. Hence, 

we may assume that d k = 0. Using this observation, relation (7) and the fact that 
Vqk(d)  = %Tf(xk) + Qkd, we conclude that V f ( x  k) -ATyk+ = 0, which shows that ~ 

x k together with (y, ~) = (yk+, 0) satisfy the first order condition (5).  We also conclude 
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from (9) that/z~ = 0. If  Qk = V 2 f ( x  k) then, by (12), we have that d T V 2 f ( x k ) d  ~ 0 
for all d E Null(A), showing in particular that (6) holds with 2 = x t. [] 

By Proposition 2.1, if qk(d k) = 0 for some k, then Algorithm 1 finds a point satisfying 
the first (and, if Qk = V f 2 ( x k ) ,  second) order necessary conditions for optimality of 
(1) in a finite number of iterations. Hence, from now on, we assume that qk(d k) < 0 
and d k ¢ 0 for all k ~> 0. This implies in particular that expression (4) is always 
well-defined. 

The following relations can be easily derived using relations (7) and (8) together 
with Assumption 1. 

yk+ = ( a x ~ a  T ) - l  a X 2 V  qk( dk),  13) 

= A ( A X k A )  A X k ) V q k ( d k ) ,  14) sk+ ( I - -  T 2 T - 1  2 

_ HXks*+ll 15)  
Ilx~-ldk]] " 

Proposition 2.2. The following statements hold: 
(a) - q k ( d  k) = ½(dk)TQkdk + #k[[S~ldk[12 for all k >~ O; 

(b) O <  ( 1 - f l ) x  k < . x  k+l <. ( l + f l ) x k f o r a l l k > O ;  
(c) f ( x  k) -- f ( x  k+1) > --0.25qk(d k) > Oforal l  k C S; 
(d) the sequence { f ( x  k) } is non-increasing; 
(e) {x  k} C £ ( x  °) and {x k} is' bounded; 
(f) ]]xkldkll = ilk for  every k >~ 0 such that Qk <~ O. 

Proof. We first prove (a). Using relations (7) and (8), we have fbr all k ~> 0, 

qk(d k ) = V f ( x k ) T d  k + ½(dk)TQkd k = ( V f ( x  k) +Qkdk)Td k ½(dk)TQkd~ 

_ 1 = (dk)TVqk(d  k) ~(dk)TQkdk = --iXklIX~ldkll 2 -- ½(dk)TQkdk. 

We now prove (b).  Since (b) clearly holds if the kth iteration is unsuccessful, we may 
assume that the kth iteration is successful. Then, x k+l = x k + d k and, by relations (3) 

and (10), we have ]]X~ -1 (x k+l - x  k) ]] ~< DK ~< D, which clearly implies that ( 1 - D ) x  1' ~< 
x k+l <~ (1 + f l ) x  k. since D < l, this implies that i f x  k > 0 then x k+j ~> (l  - D ) x  1' > 0. 
Using the fact that x ° > 0 and a simple induction argument, we conclude that x k > 0 
for all k ~> 0, and hence (b) holds. Statement (c) follows from (4) and the fact that 
rk > 0.25 and x k+l = x k + d k for every k ~ S. Statement (d) follows from (c) and 

the fact that x ~+1 = x k for all k ~ 8. Statement (e) is an immediate consequence of 
(b),  (d) and Assumption 2. We now prove statement (f). Assume for contradiction 

that there exists a k/> 0 such that Qk <~ 0 and ][Xkldk[] < ilk. Then, by (9), we have 
#k = 0. It then follows from (12) that dTQkd >/ 0 for all d E Null (A). But since 
Q~ ~< 0, we must have dTQkd = 0 for all d C Null (A). Hence, by (2) and (3), it 

follows that 

d k E a r g m i n { V f ( x k ) T d [ A d  = O, IIX~INH ~ ~k}, (16) 



R.D.C. Monteiro, Y Wang~Mathematical Programming 80 (1998) 283-313 291 

Using the assumption that qk(d k) < 0 for all k ) 0 (see paragraph after Proposition 
2.1) and the fact that the objective function of (16) is linear, it is easy to see that 
Ilsk-ldg[[ =/)k, a contradiction. [] 

3. Global convergence 

The purpose of this section is to establish the global convergence of Algorithm 1 for 
solving problem (1). This section is divided into three subsections. In the first subsec- 
tion, we review some results that are used in the convergence analysis of trust region 
methods for unconstrained problems. This discussion closely follows the presentation of 
Mor6 [ 30], which analyzes a general trust region method in which ellipsoids of different 
shapes and sizes are used as trust regions. This general theory turns out to be useful 
for the convergence analysis of Algorithm 1. In the second subsection, by introducing 
a suitable change of variables that eliminates the constraints Ax = b from problem ( 1 ), 
we are able to translate Algorithm 1 into a special case of the algorithm considered 
in Ref. [30] and therefore use the analysis of this paper to obtain the conclusion that 

limg~oo IlXks(xk)ll = o, where s(x) is defined for all x E 7 9 by 

s(x) - ( I -  AT[AX2ATI-I AX2) V f ( x ) .  (17) 

(Note that Assumptions 1 and 4 are needed here to guarantee that s( . )  is well-defined 
on the relative boundary of 79.) Finally, in the third subsection, we complete the conver- 
gence analysis of Algorithm 1. Specifically, under the assumptions stated in Section 2, 
we show that every accumulation point 2 of the sequence {x k} generated by Algorithm 
1 satisfies the first order necessary condition for optimality of problem (1) ; in particular, 
if f is convex then 2 is an optimal solution of (1). 

3.1. Trust region algorithms for unconstrained problems 

In this subsection we review some results discussed in Mor6 [30] that play an 
important role in the analysis of Algorithm 1. 

Mor6 [30] studies a general trust region method for minimizing a continuously 
differentiable function h : R p ---+ R over Np, in which the trust region subproblems are 
of the form 

minimize q~k(w) = Vh(zk)Tw + lwTBkw (18) 

subject to IIO~wll ~</3~, 

where the minimization is with respect to the displacement vector w E Rp, z g denotes 
the kth iterate, Bg E R pxt', the scaling matrix D~ E R pxp is invertible (not necessarily 
diagonal or symmetric) and flk > 0. 

Since an exact optimal solution of problem (18) may be hard to find, an approximate 

solution is computed instead. Let 3/1 > 0, 3/2 > 0 be two constants. According to 
Ref. [30], w k is called an approximate solution of (18) if 

~bk(w k) <~ 3/1 min{4)k(w) l l[Dkwll ~< /3~}, [[Dkw~ll ~< 3~2ilk. (19) 
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The following ratio between the real reduction in h and its predicted reduction 

h(z  k) - h (z  k + w k) 
Pk = _~bk (wk) (20) 

is used to determine whether w k is accepted as the displacement vector: if Pk > 0.25, 
w k is accepted and we set z k+l = z ~ + wk; otherwise, we set z ~+1 = z k. 

We are now ready to state the complete algorithm studied in Ref. [30].  

Algorithm 2. Trust Region Method. 
Let 3/1 > O, ")/2 > O, z 0 E ]~P, flo > O, Bo E ]~P×P and a nonsingular matrix Do C ]~P×P 
be given. 
F o r k = O ,  1,2 . . . .  

(a) Determine an approximate solution w k of  (18) according to (19), and compute 

Pk; 
(b) I f p k  ~ 0.25 then z k+l = z k, /3k+1 C (0, l ~¢~k[; 

I f  pk E (0.25,0.75) then z k+l = z k + w k, t3k+l c [½fl~,/3k]; 

I f  pk >/ 0.75 then z k+l = z k + w k, /3k+1 E [/3k,2flk]; 
(C) Update the matrix Bk and the scaling matrix Dk+l. 

It is useful at this point to make a few observations about Algorithm 2. As in 

Algorithm 1, any constants 0 < 01 < 02 < 1 could be used in place of  the numerical 

constants 0.25 and 0.75. If, for some k, fbk(W k) = 0 then it is easy to see that XTh(z k) = 
0; in this case, having computed a critical point z k of  h( . ) ,  Algorithm 2 terminates at 

the kth iteration. From now on, we assume that qSk(w k) < 0, and hence w k v~ 0, for 

all k >~ 0. At this point no restriction is imposed on the way the sequence of  matrices 

{Bk)  and {Dk} are updated; however, to obtain meaningful results about the behavior 

of  Algorithm 2, some conditions on {Bk} and {D~) will be needed (see (21) and 

(23) ) .  As in Algorithm 1, we say that the kth iteration is successful if Pk > 0.25, and 

unsuccessful, otherwise. Finally, we note that ( h ( z  k) ) is a non-increasing sequence. 

A complete convergence analysis of  Algorithm 2 in the context of  unconstrained 
minimization problems can be found in Mor6 [ 30]. Here we are only interested in some 

of  the technical results stated in Ref. [30].  For the purpose of  future reference, we next 

state these results here. We start with Lemma 4.8 of  Ref. [30].  

Lemma 3.1. I f  w k satisfies (19), then 

( HDkTVh(zk)H } 
_q~k(w k) >/ 1 ] lD~TVh(zk) l lmin  

~yl ilk, [ID~TB~D~I II 

The following condition is used in the statement of  the next two results: there exist 

constants 0-1 > 0 and 0-2 > 0 such that 

IIDSBkD~1I[ ~ o-1, [[D~-IN ~ 0-2, Vk ~ 0. (21) 
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The next result is Theorem 4.10 of Ref. [30].  
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T h e o r e m  3.2. Let {z ~} be the sequence generated by Algorithm 2. Assume that con- 
dition (21 ) holds and that { h ( z k) } is bounded below. Then, 

liminfllD~TXTh(z k) t1 = 0. (22) 
k---+oo 

The application of  the above result to the convergence analysis of  Algorithm 1 would 
lead to the conclusion that liminfk__, ~ IIXks(x k) 11 = 0. This result alone is not sufficient 
to prove convergence of  Algorithm 1. What is really needed is the stronger result that 
l i m k ~  IIX~s(x ~) II = 0, which will be obtained by means of the result stated below. It 
is a modification of  Theorem 4.14 of Ref. [30] in the sense that instead of assuming 
the condition: there exist constants 61 > 0 and 82 > 0 such that 

IIz k - zmll ~< ~1 for m <<. k <<. l ~ IlDm -Dtl l  <~ t52, 

the following condition is assumed: as m and l tend to c~, we have 

l lz  m - zZll - ~  0 ~ IlOmlOm T - D71D;-TII ~ O. (23) 

Although the proof  of  the next result is a slight modification of the one given for 
Theorem 4.14 of  Ref. [30],  we include it here for the sake of completeness. 

T h e o r e m  3.3. Let (z  k} be the sequence generated by Algorithm 2. Assume that (21) 
and (23) hold and that {z k} is bounded. Then 

l im IID~V~7h(z k) 1[ = 0. (24) 
k---+~ 

Proof.  Assume for contradiction that (24) does not hold. Then there exists a constant 

el > 0 such that the index set ~ = (k I IlDkrVh(zk)]] >7 el} is infinite. In view of  
Theorem 3.2, for any given e2 C (0, e l ) ,  it is easy to construct two index sequences 

{mi} C 1C and {li} such that for all i, mi < li < mi+l, 

I[D~,r27h(zl')11 < e2, and IID~rVh(zk)ll >~ e2, for all k =mi . . . . .  l i -  1. (25) 

Using the fact that z k+l is either equal to z k or z k ÷ w k and relations (19) and (21) ,  
we obtain 

IIZ k + l  - -  zkl] ~ I[DkllII[Dk(Z k+l -- zk)]l ~ O-2")/2flk, Vk ~> 0. (26) 

Using Lemma 3.1, relations (20) ,  (21) ,  (25) ,  (26) and the fact that Pk > 0.25 if the 
kth iteration is successful, we conclude that if mi ~ k < li and the k-th iteration is 
successful then 

h(zk) --h(zk+l) )o'25(--(ak(wk) ) ) lyle2min {flk , e2 }0.1 

> l y l e 2 m i n {  ['zk+l-zku0.23'2 ' 0-1e2} . (27) 
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Since {h(zk)} is a nonincreasing sequence, h is continuous and the sequence {z k} 
is bounded, we have l i m ~  h(z  k) - h(z k+l) = 0. In view of (27), this implies the 
existence of some i0/> 0 such that 

h(z  ~) _ h ( z k + l  ) >1 "Yle2 i zk+ 1 _ zk][ ' Vk successful, m i  <~ k < li and i ~> io. 
8o'2Y2 

Since the above relation holds trivially for all unsuccessful iterations, it follows by the 
triangle inequality that 

yle2 
h(z"") - h(z z') >1 8~2~211z"" - zZ'll, Vi ~> i0. 

This clearly implies that l i m i ~  [[z m' - z t' I] = 0. Using this relation, the boundedness 
of {z~}, the continuity of Vh and (23), we conclude that, for some il ~> io, 

IlVh(z m') - Vh(zt')l[ ~< e~ and IIO~,'Om, ~ - o ~ l o ~ . r l l  ~< ~ ,  Vi ~> il. (28) 

The assumption that {z k} is bounded implies the existence of a constant 0"3 > 0 such 
that IlVh(z~)ll ~< 0-3 for all k. This together with (21), (25) and (28) imply 

IIO~]'Vh(z m') II 2 = Vh(zm')  w (Om lO~ T - o { l o l 7  r) V h ( z  m') 

q-~7h(zli)WD~i lD~iTVh(z li ) 

+ ( V h ( z " )  + Vh(z t ' ) )TD~'D,7 ~ (Vh(z  m') - Vh( z" ) )  

<. + 1 + 

Noting that ]lOmfVh(z m') 112 ~> eft due to the fact that { m i }  C_ ](7, we conclude that 

e, < + 1 + 

for any e2 C (0, el ), a contradiction. [] 

3.2. Convergence of  the complementarity product 

In this section we show that Algorithm 1 can be recast as a special case of Algorithm 2 

by means of a suitable change of coordinates. Using the analysis of the previous sub- 
section, we then obtain the main result of this section, namely l im~_~ IIXks(x ~) II = O, 
where Xk ~ diag (x k) and s( .)  is defined in (17). We note that Assumptions 3 and 4 
are not used to derive this result. 

Throughout this subsection and the next one, we make the following assumptions on 
the sequence of matrices {Q~}. The first one is all we need for deriving the main result 
of this subsection; the other assumption will be used in the next subsection, where we 
provide the complete convergence analysis of Algorithm 1. 

Assumption 5. There exists M > 0 such that [dTQkdt <~ MJ[d[I 2 for all d C Null(A) 
and k ~ O. 
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Assumption 6. Either one of the following conditions holds: 
(a) dTQkd ~ O for all d E Null(A) and k >>. O, or; 

(b) dTQkd <~ O for all d C Null(A) and k >/O. 
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Observe that if Qk = V e f ( x  k) for all k >~ 0 then both Assumptions 5 and 6 are 
automatically implied by Assumptions 2 and 3 of Section 2. 

Let H E ]I~ nx(n-m) be a matrix whose columns form a basis for the null space of 

A, and define the mapping II  : R n-m ~ Null(A) by H ( z )  = Hz. Obviously, H is 

an isomorphism. Let x ° E 79o be the point as in Assumption 2. Consider the function 
h : R n-m --~ R given by 

h(z )  =- f ( x  ° + H z ) ,  Vz c R  "-m, (29) 

and define the sequences of (n - m) x (n - m)-matrices {B~} and {Dk} for all k ~> 0 
as  

Bk =-- HTQ~H, Dk ~ (HTX~2H) U2. (30) 

We have the following straightforward result whose proof is left to the reader. 

Proposition 3.4. Assumption 5 holds if and only if the sequence {B k} = {HTQkH} is 

bounded. Moreover, Assumption 6(a) (respectively 6(b) )  holds if and only if Bk ) 0 
(respectively Bk <~ O) for all k >>10. 

We next show that Algorithm 1 can be recast as a special case of Algorithm 2. We 
start by pointing out the relationship between the approximate solutions of the trust 
region subproblems (2) and (18). 

Proposition 3.5. Let the point x k C 790 be given and define z k = H -1 (x k - x ° ) .  I f  d ~ is 
an approximate solution of (2) according to (3), then w k = H -1 ( d k) is an approximate 
solution of (18) (with Bk and Dk given by (30)) according to (19) with Yl = ( 1 - 0-) 2 

and 3/2 = 1 + 0-. 

Proof. Using the fact that w k = I I - l ( d  k) and d k is an approximate solution of (2) 

according to (3), it is easy to verify that 

w k c argmin{q~k(W) I IIOkwll <~ Bk}, where/3k C [(1 - o')flk, (1 + o')flk]. (31) 

The result now follows from Lemma 3.13 in More and Sorensen [ 31 ] which states that 
(31) implies that w k satisfies (19) with yl = ( 1 - o - )  2 a n d y 2 =  1 +0-.  [] 

The following result follows as an immediate consequence of Proposition 3.5. 

Proposition 3.6. Let {x k} denote the sequence generated by Algorithm 1 and consider 
the sequence {z k} defined by z k = H - l ( x  k - x °) for all k >i O. Then Algorithm 2, 

applied to the function h defined in (29), with initial point z ° = O, and with the 
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sequences {Dk} and {Bk} given by (30), generates the sequence {z k} whenever the 
sequence of approximate solutions {w k} of subproblem (18) are chosen according to 
w k = I I - l ( d  ~) for all k >~ O, where {d k} is the sequence of approximate solutions of 
subproblem (2) generated by Algorithm 1. 

From now on, we let {z k} denote the sequence defined as 

z k = H - l ( x k - - x ° ) = ( H T H ) - l H T ( x k - - x ° ) ,  V k > 0 .  (32) 

Our next goal is to show that the sequences {Bk}, {Dk} and {z k} satisfy conditions 
(21) and (23), and hence, the hypothesis of Theorem 3.3. Condition (21) turns out 
to hold under a mild condition on the sequence of matrices {Qk}, namely, that the 
sequence {HTQk H} be bounded. 

Lemma 3.7. Suppose Assumption 5 holds. Then, there exist constants 0-1 > 0 and 
0-2 > 0 such that 

I lOSnko~  ill ~ 0-1, and IlO~ -111 ~ 0-2, Vk ~ 0. 

Proof. In view of Proposition 3.4, Assumption 5 implies that {Bk} is bounded. Hence, 
it suffices to show that {D~ -I} is bounded. Letting P(x) denote the projection matrix 
onto Null(AX) and noting that Null(AXk) = Range(X~-lH), we have 

P(x  k) = X~ 1H(HTX~2H) - 1 n T X k l  " (33) 

From (30), (33) and some simple matrix manipulation, we obtain 

D~ 2 = (HTX~2H) -1 = (HTH)-IHTXkP(xk)X~H(HTH) -1. (34) 

The result now follows from the fact that sequences {P(x  k) } and {x k} are bounded. [] 

We observe that the condition that the sequence {HTQkH} be bounded is independent 
of the choice of H, and hence, it is a property of the sequence {Q~} alone. 

In the next four lemmas we show that the sequences {Dk} and {z k) defined in (30) 
and (32), respectively, satisfy condition (23). We note that if Assumption 4 holds, 
then this fact is easily proved using the fact that P(x) is a continuous function over 
the nonnegative orthant R~. (Recall that P(x) denotes the projection matrix onto the 
null space of AX.) For the sake of generality, we prove this result without using 
Assumption 4. 

For the purpose of stating the first lemma, we introduce the following notation. For 
a partition (B, N) of { 1 . . . . .  n}, we let PB (XB) denote the projection matrix onto the 
null space of ABXB and PN(XN) denote the projection matrix onto the subspace {PN I 
ANXNPN C Range(AB)}, where XB = diag (XB) and XN = diag (XN). The following 
result is due to Tsuchiya [39] and a simplified proof can be found in Monteiro and 
Tsuchiya [25]. 
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Lemma 3.8. Let (B, N) be a partition of { 1 . . . . .  n}. Then, for every x C R"++, there 
holds 

p ( x )  = ( pN(xN) O ) 
o PB(x~) + AP, 

where IIAPH = (_9( IIXN]l ][XB 1 II )" 

Proposi t ion  3.9. Let C C R t be a nonempty set and let m : cl C --~ R p be a function 
such that m restricted to C is continuous. Assume also that for every c E cl C \ C and 
every sequence {c ~} c C converging to c there holds lim~--,o~ m(c ~) = re(c). Then, m 
is continuous. 

Proof.  To prove continuity of  m, let {c k} C cl C be a sequence converging to c. 
We will show that limk~oo m(c k) = m(c).  We may assume that either {c k} C C or 
{c k} C cl C \ C. I f  {c k} C C then limk--.~ m(c ~) = m(c) follows easily from the 

assumption that m restricted to C is continuous or from the other limiting assumption. 
So, assume now that {c ~} C cl C \ C. It is easy to show the existence of a sequence 
{b k} C C such that II bk - ckll <~ 1/k and Ilm(c k) - m(b k) II ~< 1/k for all k ~> O. 
Clearly, this implies that limk-.oo b k -- c. Hence, by the first case, we conclude that 
l i m k ~  m(b k) = m(c).  This together with the fact that IIm(c k) - m ( b  k) II ~< 1/k for all 
k implies that l i m k - ~  m(c k) = m(c).  We have thus shown that m is continuous. [] 

Lemma 3.10. The sequences {Dk} and {z k} defined in (30) and (32) satisfy condi- 
tion (23). 

Proof.  We first show that the matrix-valued function x H P ( x ) X  is continuous on the 
nonnegative orthant R~_, where X -= diag (x) .  It is sufficient to show that the assump- 
tions of  Proposition 3.9 is satisfied for the set C = 1R~_+ and the function m(x) = P ( x ) X  
for all x E R~_. It is obvious that m restricted to R~_+ is continuous since the function 
x ~-~ P ( x )  is obviously continuous on R~_+. We now verify the other limiting assump- 
tion of  Proposition 3.9. Let YC E IR~_ \ R~_+ be given and let {x k} C__ R~_+ be an arbitrary 

sequence converging to 2. Let B = {i I YCi > 0} and N = {i ] 2i = 0}. It is easy to see that 

m ( Y c ) = ( p B ( 2 B ) 2 8 0 )  
0 0 " 

Using Lemma 3.8 and the fact that IIPN(XN)II ~< 1 for all x~, > 0 and that XB ~-' PB(XB) 
is a continuous function for xB > 0, it is now easy to see that limk--.o~ m(x k) = m(Yc). 

In view of  (34) and the above observation, we see that D~ -2, viewed as a function 
of  x k, varies continuously with x ~ E N~_. Hence, since {x k} is bounded, it follows that 
as m and 1 tend to oc, we have 

]IX m -- XI]] ---4 0 ~ liD2, a - 07211 ~ 0 .  ( 3 5 )  
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Condition (23) now follows from the above implication by noting that, as m and l tend 
to cx~, ]Ix" - xl]] = [[H(z m - Z l) [[ ~ 0 if  and only if ][z m - zt[[ ~ 0. [] 

We are now ready to use Theorem 3.3 to obtain the conclusion that l i m k ~  IIX~s(x k) II 
= 0. We observe that the result below does not require Assumptions 3 and 4 to hold. 

T h e o r e m  3.11. Suppose Assumption 5 holds and let {x k } be the sequence generated 
by Algorithm 1. Then, 

lim IIX~s(x k) II = 0.  
k---~oo 

Proof.  Consider the sequences (Bk),  (Dk) and {z ~} defined in (30) and (32).  
In view of  Proposition 3.6, Lemma 3.7, Lemma 3.10 and Theorem 3.3, we have 
limk-~oc I]DklVh(zk)]] 2 = 0. Using the fact that, due to (29),  ~7h(w) = HTUf (x )  
whenever x = Hw + x ° and relation (30) ,  we conclude 

l im V f (xk)TH(HTX~2H)-IHT~7 f ( xk )  = O, 
k--+ oo 

which, in view of  (17) and (33) ,  is equivalent to 

lim ]]XkS(X k) II 2 = klim ]]p(xk)Xk~Tf(x k) l] 2 
k---+o~ 

= l i m  V f ( x k ) T X k P ( x k ) X k ~ f ( x  k) = O. [] 
k--,oo 

3.3. Convergence analysis of  algorithm 1 

The purpose of  this subsection is to complete the convergence analysis of  Algo- 
rithm 1. The main result of  this subsection (namely, Theorem 3.14) states that, under 
Assumptions 3, 4, 5 and 6, every accumulation point of  the sequence {x k} generated by 
Algorithm 1 satisfies the first order necessary condition for optimality of  problem (1) ; 

in particular, if f is convex, we obtain the result that every accumulation point of  {x k} 
is an optimal solution of (1) .  

The following notation is used throughout this subsection. Let ~ be an accumulation 
point of  {x k} and let ~ --= s (~) .  (Here, we are assuming that Assumption 4 holds.) We 

define the index sets N = {i] si v~ 0} and B = {1 . . . . .  n} \ N. 
The arguments used in the proof  of  the following result are similar to the ones used 

in Gonzaga and Carlos [ 14]. For the sake of completeness, its proof  is given in the 

Appendix A. 

L e m m a  3.12. Suppose Assumptions 3, 4 and 5 hold. Then lim s(x k) = g. 
k---~ oo 

We point out that Lemma 3.12 does not require Assumption 6; this assumption is used 
for the first time in the next result. Recall that S denotes the index set of  all successful 
iterations of  Algorithm 1. 
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L e m m a  3.13. Suppose Assumptions 3, 4, 5 and 6 hold. Then lim s~ = g. 
kES - 
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Proof. By Lemma 3.12, it suffices to show that limkcs[s~+ - s(xk)] = 0. By (14) and 
(17), we have 

k _ s (x  k) = ( I -  T 2 T -1 2 a ( a x k a )  AX~)Q~d k, V k ) O .  S+ 

Since the matrix I - AT(AX~A T) -1AX~ maps every vector in Range(A T) into the zero 
vector, the limit above will follow if we show that the projection of the vector Qkd k 
onto Null(A) converges to 0 as k c S tends to oo, or equivalently, 

l imHTQkd k = 0, (36) 
kGS 

where H is any matrix whose columns form a basis for Null(A). Indeed, (a) and (c) 
of Proposition 2.2 imply 

f ( x  k) - f ( x  k+l) > --O.25qk(d k) = ~ (dk)T(Qk ÷ tztx-~z)d k ÷ ½tzk(dk)Tx~2d k, 

V k E S .  

Since, by (d) and (e) of Proposition 2.2, limkes f ( x  k) - f ( x  k+l) = 0 and both terms 
on the right hand side of the above inequality are nonnegative due to (12), we conclude 
that 

lim(dk)T(Qk ÷ tzkX~2)d ~ = O, limtz~(dk)TX~2d k = 0, (37) 
kCS kES 

which immediately yields limkcs(d~)TQkd k = 0. Let {w k} be a sequence such that 
Hw k = d k for all k ) 0. Then, we have l imkes(wk)T(HTQkH)wk = 0. Assume first that 

(a) of Assumption 6 holds. Proposition 3.4 and Assumption 5 imply that {HTQ~H} is 
a bounded sequence of positive semi-definite matrices. Using these two facts together 
with l imkes(wk)T(HTQkH)wk = 0, it is easy to see that l imkcs(HTQkH)w ~ = 0, or 

equivalently, (36) holds. If  (b) of Assumption 6 holds then a similar argument as 
above, with HTQkH replaced by --HTQkH, shows that (36) also holds. [] 

Theorem 3.14. Suppose Assumptions 3, 4, 5 and 6 hold. Then every accumulation point 
of {x k} satisfies the first order necessary condition for optimality of (1). In particular, 
if f ( . ) is convex then any accumulation point of {x ~} is an optimal solution of  (1). 

Proof. Since the accumulation point 2 of the sequence {x k} considered at the beginning 
of this subsection is arbitrary, it suffices to prove that 2 satisfies the first order necessary 
condition for optimality of (1). Let ~ _= s(2) and let y =__ ( A X 2 A T ) - 1 A X 2 V f ( 2 ) ;  we 

will show that (y, ~) satisfies (5). By relation (17), we have V f ( 2 )  = s(2) + ATy = 
+ ATy. Moreover, continuity of s( . )  over 7 ~ and Theorem 3.11 imply that 3~g = 0. 

We next verify that g ~> 0. Indeed, assume for contradiction that there exists an index 
l E N such that sl < 0. Then, 21 = 0 since 2IS l = O. By Lemma 3.13, there exists an 
integer k > 0 such that (s~+)t < 0 for all k/> k and k E S. Hence, in view of (7) and 
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( 1 1), we have d~ > 0, and hence, x~ +1 = x~ + d~ > x~ for all k >~ ~: and k E S. Since 
x~ +1 = x~ for all k ¢ S, we conclude that x~ +1 7> xt k > 0 for all k ~> X:, a contradiction 
with the fact that 2t = 0 is an accumulation point of {x~}. [] 

We conclude the section by noting that all the results in Section 3 hold if f ( . )  
is assumed to be continuously differentiable only. The assumption that f ( . )  is twice 
continuously differentiable will be fully used in the next section. 

4. Additional results for a class of objective functions 

In this section, we consider the behavior of Algorithm 1 when Qk = x72f(x ~) for 
all k ~> 0 and the objective function satisfies the invariance property that the null 
space of x72f(x) is constant for every x E 79. Under these conditions, we show that 
the sequence {x k} converges R-linearly to a point satisfying first and second order 
necessary conditions for optimality of (1) and that the sequence { f ( x  k) } converges 

(monotonically and) Q-linearly. 
Throughout this section we make the following assumptions. 

Assumption 7. Qk = V2f (xk)  for all k ~ O; 

Assumption 8. N u l l ( ~ 2 f ( x )  ) = Null(~72f(z ) ) for any x, z E 79. 

We observe that Assumptions 2, 3 and 7 together automatically imply Assumptions 
5 and 6. Hence, all the results obtained in Section 3 hold under Assumptions 1-4 and 

Assumption 7. 
From now on we denote the constant subspace Nu l l (V2f (x ) ) ,  x E 79, by N" and its 

orthogonal subspace by N "±. Given any vector d C R n, we let do and d± denote the 
orthogonal projections of d onto N" and N "±, respectively. 

L e m m a  4.1. Suppose Assumptions 3 and 8 hold. Then given any compact set S C 79, 

there exist constants A1 = AI(S) > 0 and a2 = A2(S) > 0 such that ,h l td±l l  2 ~< 
IdWX72f(x)dl <<, a211d±ll2 for all x E S and d C R n. 

Proof. By considering - f  if f is concave, we may assume that f is convex. Since 
d T V 2 f ( x ) d  = d ~ V 2 f ( x ) d ±  for all d c R n, it is sufficient to show that, for some 
t2 /> A1 > 0, we have AlllUll 2 ~< uTX72f(x)u <~ ,'~2IIUII 2 for all (x ,u)  E S × H ±, or 

equivalently, ,~1 ~< uTx72f(x)u ~< ,~2 for all (x ,u)  E C = S × {u C A/"± ] rlull = a}. 
But this trivially follows by noting that the set C is compact, the values assumed by the 
function (x ,u)  E C ~-* uT~72f(x)u C R are strictly positive and by using the fact that 
a continuous function defined on a compact set achieves a minimum and a maximum 

value. [] 

The following lemma gives an alternative characterization for a function satisfying 

Assumptions 3 and 8. 
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Lemma 4.2. Let f be a function satisfying Assumption 3. Then, f satisfies Assumption 
8 if and only if for every compact set S C_ 79, there exists a constant K = K(S) >1 1 
such that IdT~72f(x)d] <~ KIdT~Tef(z)dl for all x, z c S and all d c R n. 

Proof. To prove the "if" part, let x, z C 7 9 be given. Letting S = {x, z }, we conclude 
that there exists a constant K ) 1 such that IdTV2f(x)dl <~ t~ldTV2f(z)d] for all 

d E R n. Hence, if d C Null ( V 2 f ( z ) )  then IdT~2f(x)dl <~ ~:ldTV2f(z)dl = o,  
from which we conclude that d ~ Null ( V 2 f ( x ) ) ,  due to Assumption 3. Hence, 
Null ( V 2 f ( z ) )  C Null ( V 2 f ( x ) ) .  Since this inclusion holds for every x ,z  E 7 9, we 
have in fact that Null ( V 2 f ( z ) )  = Null ( V 2 f ( x ) )  for every x, z E 79, i.e. Assumption 
8 holds. The "only if" part is an immediate consequence of Lemma 4.1: if A1 = ,tl (S) 
and ~2 =/ i2(S)  are as in Lemma 4.1 then K ---- ,t2//ll ) 1 is easily seen to satisfy the 
condition of this lemma. [] 

The class of functions satisfying the alternative condition of Lemma 4.2 has already 

been considered in Sun [36]. It is observed in his paper that any convex quadratic 
function or any convex function having positive definite Hessian everywhere satisfies 

this condition. More generally, it is easily seen that any function of the form f ( x )  = 
u(Ex) + cTx, where E C R txn, c E R" and u : ]~l __~ ]R is a twice continuously 

differentiable function such that XY2u(y) > 0 (or, ~72u(y) < 0) for any y c ~l, 

also satisfies Assumption 8, and hence the conclusion of Lemma 4.2. Conversely, in 
Appendix B, we give a partial characterization for the reverse implication (see Lemma 
B.3). As a special case, we show that if Null(~72f(x))  is constant for every x E ~n 

then f has the form mentioned above. 

Lemma 4.3. Suppose Assumption 7 hold. Then d ~ is an optimal solution to the problem 

minimize ~k(d)  = V f(x~)T d + l dTV2 f ( x k ) d  + ½tZkllXkl dll 2 (38) 
subject to Ad = O, 

and ~k (d) is convex in Null(A). 

Proof. Follows immediately from relations (7),  (8) and (12) and the fact that, by 
Assumption 7, Qk = V2f (xk) ,  and hence Vqk(d) = V f ( x  k) + V2f (xk )d ,  for all 
d E R  n. [] 

Lemma 4.4. Suppose Assumptions 3, 7 and 8 hold. Then there exists a constant A1 > 0 
such that for all k >7 O, 

1 ,tllld~_ll 2 ~< ~ ](dk)Tv2f(x~)dk I ~ --q~(dk). (39) 

Proof. Since by Assumption 2, £ ( x  °) is compact, Lemma 4.1 implies the existence of 
a constant ,~l > 0 such that 

!2 [dWV2f(x)dl >~ AllldJ-II 2' Vd C Rn,Vx E £(x° ) .  (40) 
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By Assumption 3, f ( . )  is either convex or concave. If f ( . )  is convex then (a) and (e) 
of Proposition 2.2, Assumption 7 and (40) imply 

1 --qk(d k) = ½(dk)Tv2 f ( x k ) d  k + tzk(dk)WXk2d k >/ ~ I (dk)Tv2 f(x )d I 

/> a, IId _ll. 

If f ( . )  is concave then (a) and (e) of Proposition 2.2, Assumption 7, (12) and (40) 
imply 

- q k ( d  k) = --½(dk)Tv2 f ( x k ) d  k + (dk) T ( V 2 f ( x  ~) + tZkXk 2) d k 

>/½ I (dk)Tv2f (xk)dk l  >~ ~I, I]d~_[[ 2. [] 

Lemma 4.5. Suppose Assumption 8 hold and let 2 E 79 be fixed. Then for any x E 79 
and any d E A/', there holds 

Xgf(x)Td = V f ( 2 ) T d .  

Proof. Let x E 79 and d E A/" be given and define the function F(O) =-_ V f ( 2  + O(x - 
2))Td. Clearly, F (1)  = V f ( x ) T d  and F(0)  = Vf (2 )Td .  Applying the mean value 
theorem to F(O) and using Assumption 8 and the fact that d ~ A/', we obtain 

V f ( x ) T d - -  V f ( 2 ) T d  = ( x - -  2 ) w v 2 f ( z ) d  = O, 

where z is a point lying in the line segment between x and 2. [] 

The proof of the following lemma can be found in Monteiro and Wright [27]. It 
unifies Theorem 2.5 and Lemma A.1 of Monteiro, Tsuchiya and Wang [26], which in 
turn are based on Theorem 2 of Tseng and Luo [37]. 

Lemma 4.6. Let c E R q and G E ]~P×q be given. Then there exists a nonnegative 
constant L = L( c, G) with the properly that for any diagonal matrix D > 0 and any 
vector g C Range(G), the (unique) optimal solution w = w( c, G) of 

mincTw + ½11Dwll z, subjectto Gw = g, 
W 

satisfies 

I1 11 Z (Ic  l + Ilgll ) • 

The next result is due to Sun (see Theorem 2 of Ref. [35] ). The proof given below, 
based on Lemma 4.6, is however simpler than its original proof. 

Lemma 4.7. Suppose that Assumptions 3, 7 and 8 hold. Then Ildkll 2 = o (--qk( dk) ). 

Proof. Let E be a matrix such that Null(E) = A/'. In view of Lemma 4.3 and the fact 
that Ed k = Ed~ + Ed~ = Ed~, we have 
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dk = argmin{V f(xk)  Td + ldWV2f(xk) d + ½~kllX~-~dll 2 I Ad = O, Ed = Edk, }. 

(41) 

The objective function of (41) can be simplified as follows. Assume that d is a feasible 
solution of (41). Then d - d  k E Null(E) = N'. Using Lemma 4.5 and the definition of 
N', it is easy to see that 

dTV2 f ( xk)d = ( d~ ) Tv2 f ( xk)d~, 

Vf(xk)Td = Vf(Yc)Td - Vf(2)Td~_ + Vf(xk)Td~. (42) 

Since the quantities (d~)TV2f(xk)d~, Vf(2)Td~ and Vf(xg)Td~ do not depend on 
d, it follows from (41) and (42) that 

dk = arg min{Vf (x )  Td + ½~llx;ldll 21 ad = O, Ed = Ed~}. 

From Lemma 4.6, we know that there exists a constant C2 > 0 which only depends on 
V f ( 2 ) ,  A and E such that 

[ldkll <. C2(IV f(yc)Tdkl + [IEd~_ll) 

<. G(IVf (x )Td~I  + IVf(~)Td0~l + IIEd~_II), (43) 

Using Lemma 4.4, Lemma 4.5, the definition of qk(') in (2) and the fact that d k = 
d0 k ÷ d k and d~ C N', we obtain 

IVf(.~)Tdo~l = IV f(x~)Td~l = [V f(xk)Td k -- V f(xk)Tdk2_ [ 

= Iqk(d k) - ½(dk)Tx~2f(xk)dk-- Vf(xk)Td~l 

<~tq~(d~)l+l I~(d~T 2 k ~ IVf(xk)Tdk, V f ( x  )d ]+ 

~< 2 (-q~(dk)) + IIVf(x k) II IId~_ll. (44) 

Since {x k} C_ £(x°), which by Assumption 2 is a compact set, we conclude that 
{ V f ( x  k) } is bounded. This observation, relations (43) and (44) and Lemma 4.4 imply 

IId~ll = o (-qt~ (d k)) ÷ O (lld~_ II) = o (-qk(d k)) ÷ 0 (--qk(dk))l/2 

= o  [] 

The next corollary follows immediately from Lemma 4.7. 

Corollary 4.8. Suppose Assumptions 3, 7 and 8 hold. Then 

Ilx k+l - x~ll = o ( f ( x  k) - f ( x k + l ) )  1/2 

Proof. It follows immediately from Lemma 4.7, Proposition 2.2(c) and the fact that 
x ~+l=x k + d  k i f k E S a n d x  ~+ l=x  k i f k ~ S .  [] 

We next prove the geometric convergence of the subsequence { f ( x  k) - f~}keS,  
where fo~ = limk--,~ f(xk).  We first state and prove two technical lemmas. 
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L e m m a  4.9. Let A -- {x  E 79 ] f ( x )  = fo~}. Then there exists an integer k > 0 such 
that 

minIIX~'ix- xk)ll ~ v~, Vk > 7¢. 
xE.A 

Proofi Assume for contradiction that there exists a subsequence {Xk}keg such that 

IIx~-' ix  - x k) II > v~ ,  Vx E A, gk E K. i45) 

By Proposition 2.2(e) ,  {xk}kEK is bounded. By passing to a subsequence, we may 
assume that limkex x k = x*. Clearly, x* E .A. Observe that 

/ /  

* k l i m  I lXk 1 (x *  - x k) II 2 -= l i m  Z ( x i / x  i - 1) 2 = I N i x * ) l ,  
kEK kEK 

i=1 

where N ( x * )  = {i ] xi* = 0} and IN(x*)[ denotes the cardinality of N(x* ) .  Hence, if 

IN(x*) I < n then IIs~-' i x * - x  k) II ~< v~  for all k sufficiently large. Also, if IN(x*)] = n 
then x* = 0, and hence, IIx~ -1 (x* - x  k) II = v ~  for all k ~> 0. Since both cases contradict 
(45) with x = x* E A, the result follows. [] 

The next lemma shows that {ilk} is bounded away from 0. 

L e m m a  4.10. Suppose that Assumptions 3, 7 and 8 hold. Then, lim infk_,~ flk > 0. 

Proof.  Assume for contradiction that liminfk+oo flk = 0. Let K -- {k E Z+ ] /3k > ilk+t}. 
It is easy to show that liminfke K/3k+1 = 0, or equivalently, that limkex, /3k+l = 0, for 
some infinite subset KI C K. Observing that, by Algorithm l (b ) ,  we have/3k ~< 8/3k+1 
for all k/> 0, we conclude that limkcK, /3k = 0. Since, by (3) ,  

[[dkll ~< IlXkf[llX~'dkl[ <~ (1 + o')[[Xkl[/3k, 

it follows from the fact that limkEK~ flk = 0 and Proposition 2.2(e) that limkEK1 flk = 0 
that limkcx, Hdkll = 0. By Taylor Expansion Theorem, the definition of  qk(') in (2) and 
Assumption 7, we have 

f ( x  k) - f ( x  k + d k) = - -V  f ( x k ) r  d k _ (dk)T~72 f ( x k  q- Okdk)d k 

= - -qk (d  k) q- ( d k )  T ( ~ 7 2 f ( x  k) -- ~ 7 2 f ( x  k -4- Okdk)) d k, 

Vk >>. O, 

where Ok E (0, 1). This relation, relation (4) and Lemma 4.7 imply 

I ( d k )  T ( V 2 f ( x k )  -- V 2 f ( x  k Jr- Okdk))  dkl 
Irk - 11 = 

--qk(d k) 

= 0  (lIV2 f ( x  k) - V 2 f ( x  k + Okd k)ll) . 

Using the continuity of  ~72f(-),  the fact that limkeK1 Ildklt = 0 and Proposition 2.2(e) ,  
it follows from the last expression that limke< rk = 1. However, since flk > flk+1 for 
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every k C K1, it follows from Algorithm 1 (b) that r~ < 0.75 for every k E K1, a fact 
that contradicts the conclusion that limkcK~ rk = 1. [] 

We are now ready to establish the geometric convergence of the subsequence 

{ f ( x  k) - f°°}kCS. 

Lemma 4.11. Suppose that Assumptions 3, 7 and 8 hold and let f ~  = limk~oo f ( xk). 
Then, there exist a constant y > 0 and an integer k such that 

f ( x  k) - f ( x  k+l ) 
) 7 ,  Vk E S ,  k ) Ic. (46) 

f ( x  k) _ foo 

In particular, the subsequence { f ( x  k) - f ~  } kc8 converges geometrically, that is, i f  

S = {ko < kl < k2 < . . .}  then f ( x  kt~l) - fo~ ~ (1 - 3 , ) ( f (x  k~) - f ~ )  for  all l ) 0 
sufficiently large. 

Proof. Using Proposition 2.2(c), it suffices to show that --qk(d k) ) ~ ( f ( x  k) -- f ~ )  

for some constant "~ > 0 and all k ) t:. Indeed, let 2k E .A - {x E P I f ( x )  = f ~ }  be 
such that 

2 k = arg minxc.Allx~ -~ (x  - x k) II, (47) 

k X k and define x,~ .~ + a ( 2  k - xk) ,  where a C [ 0, 1 ] is arbitrary. Using the definition of 
k _ X k 0k( ' )  in (38), Lemma 4.3 and the fact that x ,  ~ Null(A), we obtain 

qk( d k) + ~ IIX~-*dkll2 =-Ok( d k) <~ Ok(x~ -- x k) 

Ixk X_I  rx k = q k ( x ~ -  x ~) + T k , ~ -  xk)ll 2. 

By second order Taylor expansion and the fact that 2 k E A, we have 

f ~  _ f ( x  k) = f(Yc k) - f ( x  k) 

= V f ( x k ) T ( y c  k -- X k) + ½(2 ~ -- x k ) T v 2 f ( z k  ) (2 k -  Xk), 

for some Z ~ lying on the line segment between x ~ and 2 g. Using the above two relations, 
relation (9) and the definitions of x~ and qk( ' ) ,  we obtain 

--qk( d k) ) --qk(X~ - X k) - - -~IIX~- '  ( x ~ -  xk)l[ 2 + - ~  IIx~-ldkll 2 

ol 2 
= --aXTf(xk)T(yc k -- X k) -- - ~ ( 2  k -- x k ) T v e f ( x k  ) (yC k -- X k) 

tZ kCe 2 
ilxi-1 (2k _ x ~) LI 2 + - ~ B ~  

2 

te -k xk)T ( V 2 f ( z  k) aV2  f ( x k ) )  (2k X g) = a ( f ( x  k) - f ~ )  + ~ ( x  -- -- - -  

_ t X k  7 ~ 2  /xka22 Ilx£-I (2k xk) 112 + ~-~,k. (48) 
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Using Lemma 4.2, the compactness of £ (x° ) ,  we conclude the existence of a constant 
t< ~> 1 such that 

I d T V 2 f ( x ) d l  <~ t < l d T V 2 f ( z ) d l ,  Vx,  z c £ ( x ° ) ,  Vd c Null(A). (49) 

We now consider the following two cases separately: f is convex and f is concave. 

Assume first that f is convex. Let 

i is[  1(~-_ xk)II ~< 1. (50) 

Using (49) and the fact that cek ~< l/t< and V 2 f ( x  ~) is positive semi-definite, we obtain 

(X k -- x k ) T ( v 2 f ( z k  ) -- a k V 2 f ( x  k) ) (YC k -- X k) 

>>1 ( 1/t< - cek) (2  k -- xk)WV2 f ( x k )  (2k _ x k) >>. O. 

This relation, relation (48) with a = ak and relation (50) imply 

- q ~ ( d  k) >~ ak ( f ( x  ~) - f o o ) .  

We next consider the case where f is concave. Let 

k (51) 
ak ~ m i n  1, ( t < + l ) l l x [ l ( ~ _ x k ) l l  2 

Using relations (12), (48) with a = ak, (49) and (51) and the fact that a~ ~< C~k and 
x 7 2 f ( x k )  is negative semi-definite, we obtain 

- q ~ ( a  ~) > o~ ( f ( x  ~) - f ~ )  + 2 ( ~  ~ - x ~ ) ~ v 2 f ( z ~ ) ( ~  ~ - x k) 

tzk°~k - 1 I'Zk ~2 
7 IIx~ ( ~  - x ~) II 2 + 5 - . ~  

>1 o~ k ( f ( x  k) _ foo)  + _~_(yck _ x k ) T v 2 f ( x k ) ( y c k  _ X ~) 2(t< + 1) 

_~_/"Zk ,~2 
T P e  

> ak ( f ( x  k) - f oo )  t<~_mllx;,(~k x~)ll 2 + 
2(t< + 

>1 ak ( f ( x  k) - f o ~ ) .  

Hence, in both cases, we have shown that f ( x  ~) - f ( x  k+l ) ~> a k ( f ( x  k) - f ~ )  for all 
k E S. The result now follows by observing that liminfk_+ ~ o~k > 0, due to relations 
(47), (50) and (51) and Lemmas 4.9 and 4.10. [] 

Theorem 4.12. Suppose that Assumptions 3, 7 and 8 hold. Then the fo l lowing  state- 
ments hold. 
(a) limk~o~ x k = x* f o r  some x* E 7); 
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(b) there exists a constant C3 > 0 such that [Ix k - x'l] ~< C3( f ( x  k) - f ( x* )  )l/2 for 
all k >/O. 

Proof. Since limg~o~ f ( x  k) - f ~  = 0, (a) and (b) follows if we show the existence of 
a constant C3 > 0 such that [Ix g -  x m [I ~< C3 ( f ( x  k) - fo~)1 /2  for any k/> 0 sufficiently 
large and any m ~> k. Indeed, assume that k >~ ~:, where Ic is the index mentioned in 
Lemma 4.11, and let l denote the smallest index in S such that I/> k. By Corollary 4.8, 
there exists a constant C > 0 such that I I xk -  x k+a I I <<. c ( f ( x  g) - f ( x  k+l ) )1/2 for all 
k >~ 0. Using this fact, Lemma 4.11 and the fact that x k = x t, we obtain for any m ~> k 

that 

o~ 
IIx k -  xmll ~ ~ IIx t -  xr+lll ~ C ~ ( f ( x  t) - f(xt+X)) 1/2 

t=k t=k 

tES,t>/l tES,t>/l 

(s ) ~<C ( l - y )  i/2 ( f ( x l ) - - f ~ ) l / 2 = C 3 ( f ( x k ) - - f ~ ) l / 2 .  [] 

The next theorem is an immediate consequence of Theorem 3.14 and 4.12. The next 
result is the main result of this section. 

Theorem 4.13. Suppose that Assumptions 3, 4, 7 and 8 hold. Then the sequence {x k} 
converges to a point satisfying the first and second order necessary conditions for 
optimality of  problem (1). I f  f (. ) is convex, then the limit point is an optimal solution 
of problem (1). 

Proof. In view of Theorems 3.14 and 4.12, we conclude that limk~o~ x k = x* and x* 

satisfies the first order necessary condition for optimality of problem (1). In particular, 
when f ( . )  is convex, x* is an optimal solution of problem (1). We now prove that 
x* satisfies the second order necessary condition for optimality of problem (1),  that is, 
dTV2f (x*)d  >~ 0 for every d E {d l Ad=O, dN. --0) ,  where N* =_ {i l x T --0}. Since 
this conclusion is obviously true when f ( . )  is convex, it is enough to show it when f ( . )  
is concave. By Theorem 3.11, Corollary 3.12, Lemma 3.13, we have limgc$ ]lXksk+[[ = 0. 
Moreover, by Proposition 2.2(f), Assumption 7, the fact that V 2 f ( x  k) <<. 0 for all k ~> 0 

and relation (3),  we have [[X~ldk[[ =/3k ~> (1 -o ' ) f lk .  These two observations together 
with Lemma 4.10 and relation (15) imply that limkcs/zk = 0. By letting k E S tend to 
infinity in relation (12), we easily see that dTV2f (x*)d  ~ 0 for every d E {d [Ad = 
O, dN.  = 0 } .  [] 
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Appendix  A 

In this appendix, we provide a proof of  Lemma 3.12. 

Recall that 2 denotes an accumulation point of  {xk}, g ~_ s(2) ,  N = {i1 Xi ~s 0} and 
B _---- { 1 . . . . .  n} \ X. We define 

1-2 =_ {x  C 7 9 I XN = O, f ( x )  = f(YC)}. (A.1) 

The next five lemmas establish the fact that every accumulation point of  {x t} is in 

12. 

L e m m a  A.1. Suppose Assumptions 3, 4 and 5 hold. Then the set 12 is convex. 

Proof. Let y -= ( A X 2 A T ) - I A X 2 X ~ f ( 2 )  where .~ ~ diag (~). By (17),  we have 

x J f ( 2 )  = s(~) + ATy = $ + ATy, and by the definition of  B, we have ~ = 0. Using 

these relations and Theorem 3.11, it is easy to see that ~ is an optimal solution of the 
problem 

optimize { f ( x )  I Ax = b, xl~ >>. O, XN = 0}, (A.2) 

where "optimize" should be read as "minimize" when f ( - )  is convex, and, "maximize" 

when f ( - )  is concave. Hence, 12 is the set of  optimal solutions of  (A.2).  Since the set of  

optimal solutions of  a minimization (maximization) problem with a convex (concave) 

objective function over a convex set must be convex, the result follows. [] 

The next lemma is a well-known result in convex analysis. 

L e m m a  A.2. Let f : ]~n __+ R be a convex or concave continuously differentiable 

function. I f  f is constant on a convex set C c R n, then xj f ( .)  is constant on C. 

L e m m a  A.3. Suppose Assumptions 3, 4 and 5 hold. Then s ( x )  = g for  every x E 12. 

Proof. Let x E g2 be given. It then follows from Lemmas A.1 and A.2 and the fact that 

f ( . )  is constant o n / 2  that V f ( x )  = Vf( .~) .  Hence, letting y - (Aj?2A T)-~Ay(2Vf(yc) 

and using (17) and the fact that Xu = 0, we obtain 

s ( x )  = [I - A T ( A X 2 A T ) - I A X 2 ]  V f ( 2 )  

= [I -- A T ( A X 2 A  T) -lax2] (s q- ATy) 

= ~ -  A T ( A X 2 A T ) - I A X 2 ~  = ~. [] 

Since s( . )  is a continuous function over 79 and the level set £ ( x  °) is assumed to 

be bounded (and hence, compact),  it follows that s( .)  is uniformly continuous over 
£ ( x ° ) .  Hence, there exists a constant ¢ > 0 such that 

IIs(x) - s ( z ) l l  ~<min~i6u for all x , z  E £ ( x  °) such that ] l x - z l [  ~<¢. (A.3) 
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Define 

{x  c Z ( x  °) I IIx - for s o m e  2 12}. (A.4) 

Lemma A.4. Suppose Assumptions 3, 4 and 5 hold and let 2 C 79 be an accumulation 
point of {xk}. Then either 2 C 12 or 2 ~ 12~. 

Proof. Suppose for contradiction that there exists an accumulation point 2 of {x k} such 
that 2 E 12~ and 2 ~ 12. Clearly, 2 ~ 79 and f ( 2 )  = f ( 2 ) .  Then, by the definition of 12 
and the fact that 2 ~ 12, there exists an index l C N such that 2t > 0. Since 2 E 12,, we 

know that there exists a 2 E 12 such that 112 - xl] ~< r. Taking x = 2 and z = 2 in (A.3) 
and noting that s(2) = g, we obtain 

l l s ( 2 )  - s( )ll = I I s ( 2 )  - ~ min~iEN ~ ½1 zl. 

Hence, Ist(2) - gll ~< 1~1/2, which yields st(2) 4= O, and hence, 21s1(2) 4= O. By 
Theorem 3.11, we must have 2jsj(2) = 0 for all j ,  contradicting the earlier conclusion 
that 21Sl(2) 4= O. [] 

Lemma A.5. Suppose Assumptions 3, 4 and 5 hold. Then any accumulation point of 
{x k} is in 12. 

Proof. Assume for contradiction that {x k} has an accumulation point not in 12. Then, 
in view of Lemma A.4, this accumulation is not in Or. Since {x k} has accumulation 

points both in /2 and outside the closed set 12~, it is easy to see that there exists a 
subsequence {xk}kcK such that x k E 12~ and x k+l ~ /2~ for all k C K. Let 2 and 

be accumulation points of {xk}k~x and {x k+l }~cK, respectively. Obviously, 2 ~ 12~ and 
¢ 12. By definition of /2 ,  we conclude that -~U 4= 0. In view of Lemma A.4 and the 

fact that 2 E 12~, we must have 2 E /2, and hence, Xu = 0. Using this fact and letting 
k c K tend to c~ in Proposition 2.2 (b),  we obtain 0 ~< xu ~ (1 -~-/~)2 u = 0. But this 
contradicts the earlier conclusion that -~U 4= 0. []  

We are now ready to prove Lemma 3.12. 

Proof  of L e m m a  3.12. By Assumption 4, we know that s(x) is a continuous function 
of x over 7 9. This fact together with the boundedness of {x k} implies that the sequence 
{s(xk)}  is bounded. Hence, it suffices to show that g is the only accumulation point 
of {s(x k) }. Indeed, let ~ be an accumulation point of {s(xk)}.  Clearly, there exists an 
accumulation point 2 of {x k} such that ~ = s(2).  Using Lemma A.5, we conclude that 
2 E 12. It then follows from Lemma A.3 that ~ = s(2) = ~. 
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Appendix B 

In this appendix, we establish some properties of  the class of functions considered in 

Section 4. 

L e m m a  B.1. Let U C_ ]K t be an open and connected set and let qS1 : U ~ R be a twice 

continuously differentiable function such that ~72~bl (u) = 0 f o r  all u c U. Then, there 

exist unique r E ~I  and a C ]K such that q51 (u)  = rTu + a f o r  all u E U. 

L e m m a  B.2. Let U C_ ]~t be an open and connected set and let ¢bl : U ~ ]K be a 

continuously differentiable function such that 27q~2 (u)  = 0 f o r  all u c U. Then, ~)2 is a 

constant function on U. 

L e m m a  B.3. Let g : R 1 ~ R be a twice continuously differentiable function and 

let C c_ ]R l be a relatively open convex set. Assume that f o r  all x E C, the matrix 

V 2 g ( x )  ~ 0 and that Null  (U2g(x ) )  = iV', where A/" is a subspace independent o f  x. 

Then, there exist a fu l l  row rank matrix E E R l~xl such that the set Ec = {Ex  [ x E C}  

is open, a vector c ~ R I and a twice continuously differentiable mapping gl : Ec ~-~ ]K 

such that 

g ( x )  = gl ( E x )  + cTx and V2gl (Ex )  > 0, Vx C C. 

Proofi We divide the proof into two parts: we first prove the lemma under the assumption 

that C is open and then use this conclusion to prove the lemma under the assumption 

that C is relatively open. Assume then that C is open. Let P = [P1,P2] C R l×t be an 

orthogonal matrix such that the columns of  P1 C R txl~ form a basis for A/"± and the 
columns of  P2 C ]K txtz form a basis for .N'. Consider the function q5 : R 1 H ]R defined 

by ~b(y) = g ( P y ) .  Letting D _= {y [ Py C C},  we have 

Decomposing y accordingly into y = (yl,Y2), where yl C RtJand Y2 E R 12, we claim 

that for all y = (y l ,y2)  C D, there hold: 

T 8(Y)  = g l ( Y J ) + c 2 Y 2 a n d  V2gl (y l )  > 0 ,  (B.1) 

where c2 C ]K 12 and gj is a twice continuously differentiable function defined on the 

open set D1 ~ {Yl [ Y E D} C R tl and taking values in R. Indeed, let Yl C DI be 

given and define Dy~ = {Y2 [ (Yl,Y2) C D}. Clearly, Dy~ is a nonempty open convex 

set. Moreover, letting ~by 1 (Y2) = ~b(yl ,Y2) for all Y2 E Dye, we have that 272qSy, (Y2) = 
2 Vy2y2qS(yl,y2) = 0, for all Y2 C Dy,. By Lemma B.1, there exist unique c2(y l )  E JU 2 

and gl (Yl) E ~ such that 

Q~Yl (Y2) = gl (Yl)  + c2 (y l )Ty2 ,  Vy2 E Dy 1 , Yl E D1. (B.2) 
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Differentiating this relation with respect to Y2, we obtain Vy2q~(yl, 3'2) = XTy2~yl (Y2) = 

c2(yl)  for all y2 E Dy 1 and Yl E D1, or equivalently, for all (Yl ,Y2) E D. Since 

any point (Yl, Y2) E D has a rectangle neighborhood contained in D, it follows that 

~7y2~(y~,y2 ) = c2(ytl) for any Ytl sufficiently close to Yl. Hence, we conclude that 

c2 is continuously differentiable on D1 and that Vc2(y~) = Vy~yz~b(yl,y2) = 0 for all 

Yl C D1. By Lemma B.2, it follows that c2 is a constant function on D1. Hence, the 

first relation in (B.1) follows and hence, g l ( y l )  is twice continuously differentiable 

on D1. Differentiating this relation with respect to Yl twice, we see that X72gt(yl) = 

Vy~y~q~(yl,Y2) > 0 for any y E D. Letting x = Py and observing that x E C ~ y ~ D, 

it follows from relation (B.1) that 

g ( x )  = g (Py )  = qb(y) = qb(PTx) = gl (PTl X) + c~P~x = gl (Ex )  + cTx, Vx c C, 

where E --= P~ and c =-- P2c2. Hence the result follows when C is open. 

Assume now that C is relatively open. Fix x ° E C, let aff ( C )  denote the affine 

hull of  C and let H E ]R tx~ be a matrix whose columns form a basis for the subspace 

aff ( C )  - x °. Define the mapping H : R k ~ aff C by H ( u )  =_ x ° + Hu. Clearly, H is 

an isomorphism and C ~ H -1 ( C )  C_ ]Rk is an open convex set. Consider the function 

~(u)  : C F-~ ]~ defined by ~,(u) ~ g ( x ° + H u ) .  We have x72~,(u) = H T V 2 g ( x ° + H u ) H  >~ 

0 for every u C C. Using this fact and the assumption that Null (~72g(x))  = .A/" for 

every x E C, we obtain 

x72~(u)d = 0 ¢¢, dT~72~,(u)d = 0 ¢¢, ( H d ) T V 2 g ( x °  + Hu)  ( H d )  = 0 ¢¢, Hd  E iV', 

Vu c O, 

from which it follows that Null ( V 2 ~ ( u ) )  is independent of  u C C. Applying  the first 

part to the function ~( . )  and the set C, we conclude the existence of  a full row rank 

mat r ix /~  ~ ~ xk, a twice continuously differentiable function ~q :/28 -+ ]R defined on 

the open set /2~ ~ {/2u I u E C} and a vector ? E R ~ such that 

g(x  ° + Hu)  = ~(u)  = ~,~ (Eu)  + gTu = ~,~ ( E,f-I(x - x°)  ) + g'rkI(x -- x° ) ,  

V u ~ O ,  

where /~ ~ ( H W H ) - I H  T. Letting E = /~/]r, c = HTc and g~ : /~e + Ex ° C_ IR t:, ~ ]R 

defined by gl (w)  = ~,~ (w - Ex °) - cTkIx ° for all w, we have 

g(x )  = gl (Ex )  + cTx, V2gl (Ex )  > O, gx  ~ C. 

The result thus follows. [] 
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