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Abstract 

We present a unified analysis for a class of long-step primal-dual path-following algorithms 
for semidefinite programming whose search directions are obtained through linearization of the 
symmetrized equation of the central path Hp(XS) -- [PXSP -~ + (PXSP 1)TI/2 = #I, introduced 
by Zhang. At an iterate (X, S), we choose a scaling matrix P from the class of nonsingular ma- 
trices P such that PXSP -~ is symmetric. This class of matrices includes the three well-known 
choices, namely: P = S ~/2 and P - X -~/2 proposed by Monteiro, and the matrix P correspond- 
ing to the Nesterov Todd direction. We show that within the class of algorithms studied in this 
paper, the one based on the Nesterov-Todd direction has the lowest possible iteration-com- 
plexity bound that can provably be derived from our analysis. More specifically, its 
iteration-complexity bound is of the same order as that of the corresponding long-step pri- 
mal-dual path-following algorithm for linear programming introduced by Kojima, Mizuno 
and Yoshise. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier 
Science B.V. 
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1. Introduction 

Several authors  have discussed generalizations of in ter ior-point  algori thms for lin- 

ear p rogramming  (LP) to the context  of semidefinite p rog ramming  (SDP). The land- 

mark  work in this direction is due to Nesterov and  Nemirovski i  [14,15] where a 
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general approach for using interior-point methods to solve convex programs is pro- 
posed based on the notion of self-concordant functions. (See their book [17] for a 
comprehensive treatment of this subject.) They show that the problem of minimizing 
a linear function over a convex set can be solved in "polynomial time" as long as a 
self-concordant barrier function for the convex set is known. In particular, Nesterov 
and Nemirovskii show that linear programs, convex quadratic programs with convex 
quadratic constraints, and semidefinite programs all have explicit and easily comput- 
able self-concordant barrier functions, and hence can be solved in "polynomial 
time". On the other hand, Alizadeh [1] extends Ye's projective potential reduction 
algorithm [26] for LP to SDP and argues that many known interior-point algorithms 
for LP can also be transformed into algorithms for SDP in a mechanical way. Since 
then many authors have proposed interior-point algorithms for solving SDP prob- 
lems, including Alizadeh et al. [2], Helmberg et al. [3], Jarre [5], Kojima et al. 
[7,9], Lin and Saigal [10], Luo et al. [11], Monteiro [12], Nesterov and Nemirovskii 
[16], Nesterov and Todd [18,19], Potra and Sheng [20], Sturm and Zhang [22], Van- 
denberghe and Boyd [25], and Zhang [27]. Most of these more recent works are con- 
centrated on primal-dual methods. 

This paper studies long-step primal-dual path-following interior-point algorithms 
for SDP. Each search direction is the solution of a linear system containing a 
symmetrization of the equation X A S  + AXS = R, where R is an appropriate matrix. 
The first suggested and most natural symmetrization is to take the symmetric part of 
both sides of this equation, This approach results in the direction introduced by A1- 
izadeh et al. [2]. 

Another way of symmetrizing is to first apply a similarity transformation p( . )p- i  
to both sides of the equation and then symmetrize. Such an approach was first intro- 
duced by Monteiro [12] for the cases o f P  = X 1/2 and P = S 1/2. The resulting direc- 
tions were found to be equivalent to two special directions in the class of directions 
introduced earlier by Kojima et al. [9] through a different formulation. The second 
direction (with P = S 1/2) was also proposed by Helmberg et al. [3] independently 
from [9]. To unify the above directions, including the one by Alizadeh et al. [2], 
Zhang [27] formally introduced a general symmetrization scheme using an arbitrary 
nonsingular scaling matrix P, which leads to a class of search directions correspond- 
ing to different P matrices. In a recent paper, Todd et al. [24] study conditions for the 
existence and uniqueness of search directions in the above class, and show that the 
Nesterov-Todd direction [19] is a member of this class corresponding to any scaling 
matrix P such that pTp = S1/2(S1/2XS1/2) 1/2S1/2" More recently, Kojima et al. [8] 

demonstrate that the Nesterov-Todd direction also belongs to the class of directions 
introduced by Kojima et al. [9]. 

The goal of this paper is to establish iteration-complexity bounds for a class of 
long-step primal-dual path-following algorithms based on a certain "commutative" 
subset of the set of search directions obtained by a scaling and symmetrization 
scheme, which will be described in detail in Section 2. This scheme was originally in- 
troduced by Monteiro [12] for two special cases of scaling matrices and later gener- 
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alized by Zhang [27] to general scaling matrices. For  convenience, we will call the set 
of search directions generated by this scheme the M o n t e i r o ~ h a n g  family of search 
directions. As a result of our unified analysis, we are able to derive polynomial con- 
vergence for several long-step path-following algorithms based on search directions 
from the Monteiro-Zhang family, including all the directions discussed above but 
the Alizadeh-Haeberly-Overton (AHO) direction. Our derived iteration-complexity 
bound is O(x/~TnL), where ~o¢ is the supremum of  the spectral condition numbers of 
certain matrices C,*, with each G k determined by the current iterate (X *, S k) and scal- 
ing matrix P~. We show that the method based on the Nesterov-Todd direction has 
the lowest possible iteration-complexity bound derivable from our analysis because 
the corresponding G-matrices are always equal to the identity matrix. More specifi- 
cally, its iteration-complexity is of the same order, namely (9(nL), as that of  the cor- 
responding long-step primal-dual path-following algorithm for LP introduced by 
Kojima et al. [6]. In contrast, the scaling matrices P = X 1/2 and P = S 1/2 lead to 
G-matrices that have an (9(n) upper bound on their condition numbers. Consequent- 
ly, the algorithms based on these directions have (9(nlSL) iteration-complexity 
bounds. These latter iteration-complexity bounds were first proved in Monteiro 
[12], and in this paper follow as byproducts from our unified analysis. 

This paper is organized as follows. In Section 2, we introduce the SDP problem 
and a general symmetrization scheme that motivates the Monteiro-Zhang family 
of search directions. In Section 3, we introduce the so-called commutative class, a 
subset of the Monteiro-Zhang family, of scaling matrices, describe the long-step pri- 
mal-dual path-following algorithms corresponding to this class of scaling matrices, 
and present the main convergence results. The key result, Theorem 3.1, is stated in 
Section 3 without a proof. Section 4 contains technical results and a proof  for 
Theorem 3.1. We present several other relevant results in Section 5. Finally, conclud- 
ing remarks are given in Section 6. 

1.1. Notation and terminology 

The following notation is used throughout the paper. The superscript T denotes 
transpose. NP denotes the p-dimensional Euclidean space. The set of all p × q matri- 
ces with real entries is denoted by NP×q. The set of all symmetric p × p matrices is 
denoted by 5f p. For Q E JP ,  Q >-0 means Q is positive semidefinite and Q >-0 
means Q is positive definite. The trace of a matrix Q ~ NP×P is denoted by 

tr Q =- E p i=l Qi~' For a matrix Q E [~r,×p with all real eigenvalues, we denote its eigen- 
values by )~i[Ql, i -= 1 , . . .  ,p, and its smallest and largest eigenvalues by Rmi, [QI and 
)~ ..... [Q], respectively; moreover, the spectral condition number of a symmetric ma- 
trix Q is denoted by cond(Q) _-- -~max [Q]/Imin [Q]. Given P and Q in •P×q, the inner 
product between them in the vector space R ~'×q is defined as P • Q ~ tr pTQ. The Eu- 
clidean norm and its associated operator norm are both denoted by I1" [I; hence, 

[[Q[[ :-maxkl,tl_l]lQu[[ for any Q ~  R f'×p. The Frobenius norm of Q c R p×p is 
IIQIIt," ~ ( Q  . Q) I/2 ~5-r÷• P and c/,f, ~ denote the set of all matrices in .~P which are 
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positive semidefinite and positive definite, respectively. For any p × q matrix A, vec A 

denotes the pq-vector obtained by stacking the columns of A one by one from the 
first to the last column. The Kronecker product of  two matrices A and B is denoted 
by A ® B (see [4] for a comprehensive treatment on Kronecker products and related 

topics). 

2. The SDP problem and a symmetrization scheme 

In this section we first introduce the SDP problem and the corresponding assump- 
tions that will be used in our presentation. We also motivate the Monteiro-Zhang 
family of search directions used by our class of algorithms via a scaled symmetric 
equation of the central path which was introduced by Zhang [27]. 

Consider the following SDP problem which we call the primal SDP problem 

rain C.  X 

s.t. A i . X = b i ,  i =  1 ,2 , . . . ,m ,  (2.1) 

X 0, 

where C E i n ,  Ai ¢ ~" ,  i = 1 , . . .  ,m and b == (b j , . . .  ,b~) E Nm are the data, and 

X c Y" is the primal variable. 
The corresponding dual SDP problem is 

max bTy 
m 

s.t. ~ - ~ y i A i + S = C ,  (2.2) 
i=1 

S > 0 ,  

where y c ~ and S E ,9 ~" are the dual variables. 
The sets of  feasible interior points for (2.1) and (2.2) are, respectively, 

y 0 ( p )  = {X ~ ~ga++: Ai . X  = bi, i = 1 , . . . , m } ,  
t n  

~-°(D) ~ {(S,y) E 5~++ x Nm: y,A, + S = C}. 
i=1 

Assumption 2.1. We make the following assumptions throughout our presentation: 
(a) ~ 0 ( p )  x ,~-°(D) ¢ O; 

(b) the matrices Ai, i = 1 , . . . ,  m, are linearly independent. 

Under Assumption 2.1(a), it is well known that both (2.1) and (2.2) have op- 
timal solutions and that their optimal values are the same. Hence, if X* and 
(S*,y*) are optimal solutions of (2.1) and (2.2), respectively, we have 
C.  X * =  bVy *. This last condition can be alternatively expressed as X * .  S * =  0, 

or equivalently X'S*  = 0. Thus, the set of  primal and dual optimal solutions of 
t2.1) and (2.2) consist of all solutions ( X , S , y )  E Y+ × 50+ x [~  of the following 

~l~limality system: 
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X S  = O, 

~-~Yi Ai + S - C = 0, (2.3) 
i ~ l  

A s ' X - b i = O ,  i - : l , . . . , m ,  

where the first equation is called the complementarity condition. Observe that for 
X, S E 5 Pn, the product X S  is generally not in 5 Pn. Hence, the left-hand side of 
Eq. (2.3) is a map from 5 Pn x 5 p" x R" to R "xn x ~n  x 0~ m. Thus, the optimality sys- 
tem (2.3) is not  square when X and S are restricted to 5Pn. 

The methods discussed in this paper are all based on applying Newton-like methods 
to Eq. (2.3). One possible approach is to apply a (damped) Newton-type method to 
Eq. (2.3) viewing its left-hand side as a map from R nxn x 5 Pn x R m into itself. This ap- 
proach leads to a well-defined direction (AX, AS, Ay) in R "xn x cj~ × ~m. Since we 
want all iterates to be in 5 p" × 5 Pn x R m, we must then symmetrize (AX, AS, Ay) to ob- 
tain a search direction in 5 P" x Yn x Nm. The approach suggested by Helmberg et al. 
[3] and Kojima et al. [9] is to take the search direction (AX, AS, ky) where AX ~ (AX 
+ z ~ T ) / 2 ,  i.e., to project Z~  onto 5 ~ .  An independent and subsequent derivation of 
this direction was given in [12]. This paper describes two search directions generated 
by two novel symmetrization schemes that are special cases of the general 
symmetrization scheme studied in this paper (see the following paragraphs). In the 
sequel, we refer to the direction proposed by Helmberg et al. [3], Kojima et al. [9] 
and Monteiro [12] as the HRVW/KSH/M direction. The second direction introduced 
by Monteiro in [12], a dual counterpart of the HRVW/KSH/M direction, has also 
been found to be a member of the class proposed by Kojima et al. [9]. We will refer 
to this second direction as the KSH/M direction. A more detailed description of these 
directions will appear below in the context of the general symmetrization scheme. 

Another approach that enables the application of Newton-like methods is to 
make the optimality system (2.3) square by modifying the left-hand side of 
Eq. (2.3) to a map from 5 fn x 5 ~ × R m into itself. To achieve this, it is necessary 
to replace the first equation in (2.3) by an equivalent equation of  the form 

n n 45(X,S) = 0 ,  where ~b: ~ +  x ~ +  --+ 5 P" is a map such that, for every 
(X, S) c 5 P~ × ~#~, q~(X, S) = 0 if and only if X S  = 0. Approaches along this line 
were first proposed by Alizadeh et al. [2] (without scaling) and later by Monteiro 
[12] (with scaling). Motivated by these works, especially by the latter one, Zhang 
[27] introduced a general symmetrization scheme based on the so-called similar 

s ymme t r i za t i on  operator HF : ~ ..... ~ S n defined as 

I [ P M P  1 ) ] V M C R  , Hp(M) ~ ~ + (PMP 1 T ..... 

where P C S x" is some nonsingular matrix. Zhang [27] also observes that 

He(M) = "el ~ M = ~1, 

for any nonsingular matrix P, any matrix M with real spectrum (e.g., M = X S  with 
X , S  ~ .cF~) and any z c R. Consequently, for any given nonsingular matrix P, 
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Eq. (2.3) is equivalent to the following square system from 5P"x 5~"× IR ~ into 
itself: 

Hp(XS) = 0, (2.4) 

~ Y i  Ai + S -  C = 0, (2.5) 
i=l 

A i ' X - b i  =O, i =  l , . . . , m  (2.6) 

to which Newton-like methods can be applied. A perturbed Newton method applied 
to this system leads to the following linear system for direction 
(AX, AS, Ay) e 5 ~n × 5 ~" × ~m: 

H p ( I ~  S + X AS)  = altI - Hp(XS) ,  ( 2 . 7 )  

y, A , + A s = c - s -  y, Ai, (2.81 
i=1 i=1 

A i ' A X = b i - A i ' X ,  i = l , . . . , m ,  (2.9) 

where o- ~ (0, 1) is the centering parameter and ~ = g(X,S)  = (X.  S)/n the normal- 
ized duality gap corresponding to (X, S,y). The solution of  this linear system is the 
Newton step at the point (X, S,y) with respect to a system of equations that defines 
the unique point on the central path with duality gap ~/~, namely the system consist- 
ing of Eqs. (2.5) and (2.6) and the equation Hp(XS) = crpl. However, we observe that 
if the scaling matrix P varies from iteration to iteration, the directions determined by 
Eqs. (2.7)-(2.9) are not Newton steps with respect to the same system, even when a# 
remains constant, 

The following simple result shows that there is no loss of generality in restricting 
our attention to those scaling matrices P that are in cT" since they yield all the pos- e ++,  

sible directions that can be generated by system (2.7)-(2.9) as P varies over the set of 
nonsingular matrices. 

Proposition 2.1. The set of solutions to system (2.7)-(2.9) remains invariant as long as 
the matrix W = pTp does not change. 

Proof. Note that Eq. (2.7) is equivalent to the equation 

W(XAS + aXS)  + (ASX + S ~ )  rV = W(~,~ - XS) + (a~I - SX) W 

obtained by multiplying Eq. (2.7) on the left by pT and on the right by P. Since this 
last equation depends on W only, the result follows. []  

Hence, for fixed W c 5r++, there is no loss of generality in considering only the 
matrix W 1/2 among all those scaling matrices P such that pVp = W, since their cor- 
responding system (2.7)-(2.9) all have the same solution set. Thus we only need to 
consider scaling matrices that are in 5 Pn ++" 

Eq. (2.7) can also be written as 
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H ( 2 a S  + zX2 ) = - (2.10) 

where H = Hi is the plain symmetrization operator and 

X=_PXP, Af(=_PAXP, ~ = p - l s p  1, Ag ,=p-1ASP 1. (2.11) 

Moreover, in terms of the Kronecker product, Eq. (2.10) becomes 

/)vec AX + f 'vec AS = vec(a#I - H(XS)), (2.12) 

where 

E : _ ½ ( S ® I + I ® S ) ,  F = _ 1 ( 2 ® I + 1 ® 2 ) .  (2.13) 

The following result due to Todd et al. (see Theorem 3.1 of [24]) gives a sufficient 
condition for system (2.7)-(2.9) to have a unique solution. It is a generalization of a 
result of Shida et al. [21] corresponding to the case in which P = I. 

Proposition 2.2. Let X , S , P  ¢ Y~++ be given and suppose Assumption 2.1(b) holds. 
Then, a sufficient condition for system (2.7)-(2.9) to have a unique solution is that 
E[~ + F'E ~- O. Moreover, the latter condition holds if H(fi2S) = Hp(XS) ~ O. 

The choices o f P  = S 1/2 and P = X -1/2 in Eq. (2.7) lead to the two directions de- 
scribed by Monteiro in [12], namely, the HRVW/KSH/M direction and the KSH/M 
direction, respectively. These directions are in the class of directions proposed earlier 
by Kojima et al. [9] using a different approach. The HRVW/KSH/M direction, cor- 
responding to P = S ~/2, was also proposed by Helmberg et al, [3] independently from 
[9]. As was shown by Todd et al. [24], the choice of P = W~t/2 in Eq. (2.7), where 

mnt ~ S1/2(S1/2XS1/2)-1/2S1/2 = X 1 /2(XI /2sx1 /2) I /2x  1/2 (2.14) 

leads to the Nesterov-Todd direction [19], which was originally derived via a differ- 
ent approach (see also [22] for another derivation). The defining property of the ma- 
trix W = W~ (or P = Wi/z) is that it is the unique solution W (or P) in Y++ of the 
equation 

WXW = S (or PXP = P 1Sp-1) (2.15) 

(see [19,22] for more details). Observe that using the notation (2.11), identity 
(2.15) corresponds to the following symmetric property of the Nesterov-Todd di- 
rection 

P = W~]t/2 ::> X = S and E = f'. (2.16) 

Finally, we mention that the choice o f P  = I in Eq. (2.7) leads to the AHO direction 
proposed in [2]. 

3. The algorithm and main results 

In this section we describe the class of long-step primal-dual path-following algo- 
rithms that we will consider in this paper. We also present the main convergence 
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results for this class of algorithms. The key result is Theorem 3,1 whose proof will be 
given in Section 4. 

The class of algorithms we consider are based on the following so-called "large 
neighborhood" of the central path: 

./~'(~)) ~ {(Y,S,y) c ~0(p)  X ~°(O)" ,~min [AIS] ~ 7p(X,S)}, (3.1) 

where 7 C (0, 1) is a given constant, and 

X . S  
/~(X, S) : for every (X, S) c 5 P" × 5 p". 

n 
Recall from Proposition 2.2 that system (2.7)-(2.9) has a unique solution whenev- 

er the scaling matrix P E 50++ satisfies Hp(XS) = H(XS) _~ 0 (also recall tha tX and 5" 
are defined in Eq. (2.11)). In our class of algorithms, we impose a stronger condition 
on P; that is, P belongs to the following class of scaling matrices: 

~ ( X , S )  - {P c S~++: P~XS = SXP ~} = {P ~ S~_+: XS = SX}. (3.2) 

Since the scaling matrices in ~(X, S) make 2( and S commute, we will refer to 
~(X, S) as the commutative class of scaling matrices at (X, S). Observe that the scal- 
ing matrices P = Wn~t/2, P = S 1/2 and P = X -1/2, corresponding to the NT direction, 
the HRVW/KSH/M direction and the KSH/M direction, are contained in .¢~(X, S), 
and hence our analysis applies to these directions. However, P = I does not belong 
to ~(X, S), except for the unlikely case when X and S commute; hence, our analysis 
does not apply to the AHO direction. 

The long-step primal-dual path-following algorithm stated below uses search di- 
rections exclusively from the commutative class. We will call it Algorithm-CC, where 
"CC" stands for the "commutative class". It depends on three parameters 7, a and L 
which are assumed to be independent of the dimension n. 

Algorithm-CC 
Let ~ ,oC (0, 1), L > 1 and (X° ,S° , y  °) C JV'(7) be given. 
Set k = 0 and P0 = ( X°" S°)/n.  
Repeat until #t ~< 2-L/~o, do 

(1) Choose a scaling matrix pk E ~ (X  k, St). 
(2) Compute a solution (AXt, ASk, Ay k) of system 

(X ,S , y )  = (X~,S~,y~), P = P~ and p = Pk. 

End 

(2.7)-(2.9) with 

(3) Let c~, = max{c~ C [0, 1]: (Xk ,Sk ,y  k) + c~(Axt, ASk, Aft) C .A/(7), 

(4) Set (X k+~ , S k-~ 1, y~+l) = (X k, S t, yt) + c~k (AX k, AS h, Ayk). 

(5) Set gt+l = ( Xk+l "St+l)~ n and increment k by 1. 

We emphasize that the scaling matrix P = P~ in Algorithm-CC is allowed to 
change from iteration to iteration. Consequently, the optimality system (2.4) (2.6) 
changes from iteration to iteration, although its solution set remains invariant. Be- 
cause of this, these algorithms are not Newton method in the usual sense. 
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Recall that the matrices/) and F depend on X, S and P. Let/)~ and f'~ denote the 
matrices/)  and F evaluated at X k, S ~ and pk, respectively, and define 

tc~ ~ sup {cond [(/) k) l[,k]: k =  0 ,1 ,2 , . . .  }. (3.3) 

Clearly, tc~ ~> l. The following result gives an iteration-complexity bound for Algo- 
rithm-CC in terms of ~c~. 

Theorem3.1. Assume that ~ < oo .  Then the sequence { ~ }  generated by Algorithm- 

CCsatisfies 

where 

2a(1 - 7) 1 ) 
c~k~>min 1 , 1 - ~ + a 2 / 7  tx/,j~_n . 

Consequently, Algori thm-CC terminates in at most O(x/-k~nL ) iterations. 

We will leave the proof of Theorem 3.1 to Section 4 after developing some neces- 
sary technical lemmas, We now specialize Theorem 3.1 to the three special choices of 
the sequence {P~} that lead to the NT direction, the HRVW/KSH/M direction and 
the KSH/M direction. 

Lemma 3.1. The number tcoo defined by Eq. (3.3) satisfies: 

= 1 if P~ = ( w ; )  '/~ vk,  

~ <~ n/~ if f '  = ( x b  -'/~ Vk, 

<~ ~/~ i f  P~ = (S*) '/~ Vk. 

Proof. For simplicity, let us drop the superscript k. Assume first that P = (mnt) 1/2. By 
(2.16), we have )( = S, and hence/) = /~  due to (2.13). Thus it follows from (3.3) that 
1¢~ ~ 1. 

Consider now the case in which P = X  1/2. By (2.11), we have ) ) = I  and 
= X1/2SX1/2, which in view of (2.13) imply that F = I and 

_ 1 [X1/2SX1/: ~ 1 + I ~ , X I / 2 s x  ~/2] - -  7 

By well-known properties of the Kronecker product (see Ch. 4 of [4]), the spectrum 
of /) is {()~i+)@/2: l~<i, j~<n},  where {2i: i - l , . . . , n }  is the spectrum of 
X1/2SX ~/2. Since the latter matrix is contained in the interval [7/~, n/~] due to the fact 
that (X k, Sk,y k) ¢ -:+~(7), so is the former one, that is 
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Hence, we have 

cond(/~-lF) = cond(/) -l) = cond(/~) ~< n/7, 

which, in view of Eq. (3.3), implies that ~c~ ~< n/7. The proof for the case P = S 1/2 is 
similar. [] 

As a consequence of Theorem 3.1 and Lemma 3.1, we immediately obtain the fol- 
lowing result. 

T h e o r e m  3.2. Algorithm-CC based on the N T  direction, the HR V W / K S H / M  direction 
and the K S H / M  direction has iteration-complexity bounds' equal to C(nL), C(n3/ZL) 
and (9(n3/ZL), respectively. 

We note that the iteration-complexity bounds obtained in Theorem 3.2 for the 
HRVW/KSH/M and KSH/M directions were obtained earlier by Monteiro [12] with- 
in a more specialized context. We also note that, in the context of Algorithm-CC, 
Theorem 3.2 guarantees that the Nesterov-Todd direction achieves the best possible 
iteration-complexity bound of O(nL) that can provably be derived from our analysis. 
This is due to the fact that by Lemma 3.1 the condition number ~co~ achieves its low- 
est possible value for the sequence {pk} corresponding to the NT direction. 

4.  T e c h n i c a l  resu l t s  a n d  the  p r o o f  o f  T h e o r e m  3.1 

In this section, we first develop a number of technical results and then use these 
results to prove Theorem 3.1. 

We will use the following notation throughout this section: 

X(c~) - X + c ~ A X ,  S(c~) = S + ~ A S ,  (4.1) 

x .  s 
#(~) _= - -  , ¢t - (4 .2)  

n n 

The following simple identity introduced in [27] is useful for deriving bounds on 
the direction (AX, AS, Ay). 

Lemma 4.1. Let u, v, r E NP and E, F E O~ p×p satisfy Eu + Fv = r. I f  FE T E cjp++ then 

II(FET)-I/2Eull 2 + I](yET)-l/ZFvll 2 + 2uTv = [I(FE T) 1/2r112. (4.3) 

Proofi Pre-multiply both sides of Eu +Fv = r by (FE T) 1/2 and take 2-norm 
squared. [] 

Later we will apply Lemma 4.1 to the linear equation (2.12). With this goal in 
mind, we first need to derive conditions under which the matrices /" and F of 
Eq. (2.13) satisfy the assumption f,~,r ~ 5Q~'+ of Lemma 4.1. In the following 
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n 2 proposition, we show that a necessary and sufficient condition for p/gT C 5Q+ is that 
)~S E J " ,  or equivalently X- and S commute. This result is in essence the same as 
Proposition 3.1 of [24], which is formulated in terms of different matrices involving 
symmetrized Kronecker products. We give its (short) proof for completeness. 

Proposition 4.1. Let X, S E Y~+, 2 andS be defined as in Eq. (2.11), and~9 and F as 
in Eq. (2.13). Then." 

^ ^ n 2 (i) E, F C 5¢~+, and thus ~/9T = p /9 ;  

(ii) F/9 C ;7"" if  and only if  )(S E 5P"; 
(iii) F/9 E o <~"2 implies F/9 E 5P"+2+. 

Proof. (i) is obvious. For (ii), note that F/9 E ~,2 if and only if/9 and F commute. By 
direct calculation, 

4 (/~/9 - /9/~) = (XS - S X ) ® 1  + 1  ® (XS - SX). 

Therefore, F/9 = /gF  if and only if XS = SX. Since 19, P E 5P~+ and/~/9 is similar to 
~/2/9pl/2, clearly the symmetry of F/9 implies its positive definiteness. This proves 
(iii). []  

In the sequel, we will denote the eigenvalues of the matrix XS as 
21 ~< 22 ~< ... ~< 2,. Observe that since the matrices XS, SX, S1/2XS 1/2, X1/2SX 1/2, 
X-S, SX are similar, they all have the same eigenvalues. In addition, we let A denote 
the diagonal matrix 

A ~ diag(21, " ~ 2 ,  • - • , 2 n ) -  

Proposition 4.2. For any P E ~ (X ,S ) ,  there exist an orthogonal matrix Qp and 
diagonal matrices A(X) and A(S) such that." 
( i ) ) (  ~ PXP = Qp[A(X)IQT; 

(ii) S =-P 'SP 1= QpIA(S)]QT; 
(iii) A = A(f()A(S),  and hence XS  = SX = QpAQ T. 

Proof. The commutativity of J( and S ensures that the two matrices share a common 
set of orthonormal eigenvectors, from which (i) and (ii) follow. Moreover, by (i) and 
(ii), we have JfS -- Qp [A (X)A (S)] QpX. Since the spectrum of XS and ))S is the same, by 
permuting the columns of QP if necessary, we have A = A(X)A(S),  that is (iii) 
holds. [] 

The result below follows from applying Lemma 4.1. to Eq. (2.12). 

Lemma 4.2. Let P C ~(X ,  S) and G =- E 1t~. Then, 

1] G 1/2 vec  ~ 1 1 2  q- I I G  1 / 2  vec a 911 + 2A3~. AS" = £ (~# - .~i)2 
i=1 
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Moreover, / f 2 m i  n [XS] ~ 7/2 Jor some 7 ~ (0, 1), then 

£ (~/2 - ,~i) 2 
i=1 ~ ~< (1 - 2o- + o-2/7)n/2. (4.4) 

Proof. Applying Lemma 4.1 to relation (2.12) we obtain 

I1(?~?) 1/2/? vec 62112 + ll(~/?)-'/2~ vec A~II 2 + 2 A 2 .  As 

= II(?f:) V2vec(o-/2/- H(2~))II 2. 

The commutativity of k and F implies that 

(?E)- I /2~ = (~ 17) I/2 = G ,/2, (~E) 1/27 = (E ,?), /2 = G,/2. 

Hence, for the proof of the first statement it remains to show that 

II(?E) 1/2 vec (o-/21-2S)II 2 = ~ (~/2 - ,~,)2 (4.5) 
i= 1 "~i 

Using Eq. (2.13) and Proposition 4.2(ii), we find the spectral decomposition of/~ to be 

= 1(o6®I + I ® S )  = ½0[A(S) ~)I + I  ® A(S)]Q T, 

where 0 : Qp ® Qp is an orthogonal matrix of dimension n 2. Similarly, by Eq. (2.13) 
and Proposition 4.2(i), we have 

? = ½(2 o i  +I  ~ 2 )  = ½Q[A(2) ~ + I  o A(2)]O ~ 

Therefore, using Proposition 4.2(iii) we obtain 

(?~0) I = 4Q[A ® I + I @ A + A()~) ® A(S) + A(S) ® A0))] 10T , 

where the matrix in the middle is diagonal with the property that its ((i - 1)n + i)th 
diagonal element is equal to 1/(42i) for i = 1 , . , . ,  n. On the other hand, observe that 

vec(o-/2/-XS) = 0 vec(o-/2l - A), 

where vec(o-/2I - A) is an n2-vector having at most n nonzero components, namely: 
its ((i - 1)n + i)th component is equal to o-/2 - 2~ for i = 1, . . .  ,n. The above two re- 
lations and a straightforward verification finally yield 

vec(o-/21-2S)T(/~?) -t vec(o-/21 - XS) = £ 
(o-/2 2i) 2 

i=1 ~i 

which proves Eq. (4.5) and hence the first part of the lemma. 
~7 To prove (4.4), we use the fact that n/2 = tr XS = ~=1  2~ to obtain 

~ (0"/2 --  /~i)2 n o-2n/2 
0"2/22 ~-  -- 2o-n/2 + Z 2, ~< - -  - 2an/2 + n/2, 

2i "M i=1 i=1 

which completes the proof of the lemma. [] 

Lemma 4.3. Let (X ,S , y )  ~ 5P++ × 50++ x R m and (AX, AS, Ay) satisfy Eq. (2.7). 
Then 
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Hp(X(¢~)S(o~) ) = ( l  - a)He(XS) + ~a#I + 0~2Hp(z~O(AS), (4 .6)  

1/(0~) = (1 --  0~ -~ (gO')/,/ q- ~ 2 ~ ( .  AS~n, (4.7) 

Proof: By Eq. (4.1), we have 

x(~)s(~)  = ( x  + ~ ) ( s  + c~As) = x s  + ~(XAS + a ~ S )  + WaOCAS. 

This expression, together with the linearity of Hp(.) and Eq. (2.7), implies that 

Hp(X(~)S(~) ) = ~Ip(XS) + ~I-tp(X AS + ~OZ S) + ~2Hp(aX AS) 
= He(XS) + o~[G#I - He(XS)] + 0~2Hp(z~XAS), 

and hence Eq. (4.6) holds. Using Eq. (4.6) and the identity trHe(M) = trM, we obtain 

X(~) .  S(~) = tr[(1 - c~)Hp(XS) + o~a#I + ~eHp(AXAS)] 

= (1 - ~)trHp(XS) + c~a#n + ~2trHp(AXAS) 

= (1 - ~)X.  S + ~apn + c~2AX • AS. 

Dividing this expression by n and noting Eq. (4.2), we obtain Eq. (4.7). [] 

Lemma 4.4. Suppose that (X,S,y.) E 5P++ × 5~++ × E ~, P ~ 5P++ and Q E ~ ( x , s ) .  
Then, 

/~min [Hp(XS)] ~ ,~min [XS] = ~min [HQ(XS)]. (4.8)  

Proof. Since Q ~ Ga(X, S), we have HQ(XS) = QXSQ x. By similarity, 

• ~min [XS] -- ~min [QXSQ i] = "~min [HQ(XS)]. 

Moreover, 

• ~min [XS] = ~min [ PXSP-1 ] > -~min [H(PXSp-1)] = *~min [/-/p(XS)], 

where the inequality follows from the fact that the real part of the spectrum of a real 
matrix is contained between the largest and the smallest eigenvalues of its Hermitian 
part (see p. 187 of [4], for example). We have thus shown that (4.8) holds. []  

~" x ~  m, (ax, a s , & ) ~ y x y  Lemma 4.5. Suppose that (X ,&y)  c ~+÷ x~ +~ 
x Rm and P < 2P(X,S) satisfy Eq. (2.7) and that 2rain [XS] >~ 7#for  some constant 
~, C (0, 1). Then 

"~m,,, Ix(~)s(,.)] > r#(~) 

Jor every ~ ~ [0, E~], where 

~ = - m i n ( 1 , a ( 1 - 7 ) H ' ~  and oo=~ ]]Hp(AXAS)H+ 71AX AS I. (4.9) 
\ / o) M 

Proof. Using the assumptions that )Vmm [XS] >~ 7# and P ~ :~(X,S) together with 
Lemma 4.4, we obtain 
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-~min [Hp(XS) - ~l~I] =/~min [Hp(X'S)] - ~,.  = )cmin INS] - ~)[A ~ O. 

Combining Eqs. (4.6) and (4.7) and simplifying, we obtain 

Hp(X(o:)S(o:)) - -  ~ ) l z ( ~ ) I  = (1 - o¢)(Hp(XS) - 7#I) + c~a(1 - 7)/~I + c~2f2, 

(4.10) 

(4.11) 

where 

~2 ~ Hp(AJ/AS) -- 7 (z~(. AS)I. 
n 

It follows from Lemma 4.4, (4.9)-(4.11) and the fact that J~min ['] is a homogeneous 
concave function on the space of symmetric matrices that 

,~min [X(~)S(0¢)] - 7~(~) /> -~min [Hp(X(oOS(o~))] - 7~(o;) 

~> (1 - ~)~min [Op(Y'S) - -  '~,/~I] @ ~0"(1 -- ";),U + ~2R~i~ If2] 

for every c~ E [0, ~]. [] 

Lemma 4.6. For any u, v E ~ and G E cj~+, we have 

II"lllivll ~ ~ (lla-~/2ullZ + IIG1/Zvll~). 
2 

(4.12) 

Proof. We have: 

Hence 

I1,112 
uT G I ,  

/~ min ( 6 - 1  ) 

vTGv Ilal/2vll 2 
rain ( G)  ~ rain ( G)  ' 

Ilullll~ll ~ ~ I I G  ~/2ullllGl/Zvll 

,< ~ (lia-,/2.1t2+llGl/2v[) 
2 

[] 

Lemma 4.7. Let a point (X, S,y) E At(7 ) and a scaling matrix P ~ ,~a(X, S) be given, 
and define G ==_ 1~ lp where 1~ and F are given by Eq. (2.13). Then, the solution 
(AX, AS, Ay) of Eqs. (2.7)--(2.9) satisfies 

IIH/aXAX)II~, ~ ,~ona~05 (1 - 2~ + ~2/v)n~. (4.13) 
2 

Proof. Let AX and AS be defined as in Eq. (2.11). Using relations (2.8) and (2.9) and 
the fact that (X, S, y) is a feasible point, we easily see that 
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AX. AS = AJ(. AS = 0. (4.14) 

We have 

[IHp(AXAS)IIF = IIH(A2AS)IIF ~< IIzX2ASIIF ~< IIa211FIIASL., 

= I[vecA2[[ IlvecASII. 
Using Lemmas 4.6, 4.2 and relation (4.14), we obtain 

Ilvec zX21111vec ASll (IhG-1/2vec A2112+IIG'/2Nec ASll 2) 
2 

2 
The result now follows by combining the above two inequalities. [] 

Finally, we are in a position to prove Theorem 3.1. 

Proof of Theorem 3.1. Due to Eq. (4.14), relation (4.7) implies that Hk+l = (1-- 
( 1 -  a)e~)#~. By Lemma 4.5 and Eq. (4.14), it follows that (Xk(e),Sk(c~),yk(~)) 
E ~V'(7) for every c~ E [0, ~k], where 

~ ~ rain (1, a(1 - 7)p 

Hence, by the definition of ~k, Lemma 4.7 and relation (3.3), we have 

ek ~> min(1,~k) ~> min 1, 1 _-~-~+a2/7 ~ U ~ n  ' 

which proves the first part of the theorem. The second part about the iteration-com- 
plexity bound follows from a now standard argument. [] 

5. Other results 

Besides the three special cases considered in Lemma 3.1 and Theorem 3.2, there 
are many other choices of {pk} that lead to polynomial algorithms. In this section, 
we derive a representation for the commutative class 2P(X, S) and establish an alter- 
native iteration-complexity bound for Algorithm-CC based on this representation. 

Without loss of generality, we assume that there are p (p ~< n) distinct eigenvalues 
in the spectrum of XS and we group them into p groups. Hence, 

A = diag(2(~)I(1),..., 2(P)I(P)), (5.1) 

where 2 (i) is the ith distinct eigenvalue, 1 (i) the identity matrix of dimension n u), 
n (g) ~> 1 the multiplicity of 2 (i/, and ~ ' -1  nU) n. 
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Consider the following class of block diagonal matrices associated with the pair 

(x,s): 

J- (X ,S )  - {diag(T( ' / , . . . ,  TO°l): T (i) E J ++,jor i =  1, . . .  ,p}. 

The following result gives a representation for the class of matrices W E 5~++ such 
that W = p2 for some P E ~a(X, S), namely 

s) =_ { w y++. wxs  = x s w } ,  

in terms of the set Y(X,  S). 

Theorem 5.1. Let (X,S) ~ 50++ × 5~++ and a f ixed P C ,~(X,S) be given. Then, 

~//(X,S) = {PQpTQTp: T C 3-(X,S)}, (5.2) 

where Qp is as in Proposition 4.2. Moreover, W(X ,S )  is" a convex cone of  dimension at 
least n. 

Proof. Let W E 50++ be given. The equation WXS = SXW is equivalent to 

(P-'WP 1 ) (2S )=  (SX)(P-1WP 1), 

which in turn, by Proposition 4.2.(iii), is equivalent to T A = A T ,  where 
T ==_ QTp-J Wp-IQp ;>_ 0. Given the structure of A in Eq. (5.1), one can easily see that 
the last relation is equivalent to T E Y-(X,S). We have thus proved that Eq. (5.2) 

n , holds. Obviously, the set { W c J++.  WXS = SXW} is a convex cone, Since, for fixed 
P E ~ ( X , S ) ,  PQpTQ;F,P is a one-to-one and linear function of T, it follows from the 
characterization of T that this set has dimension at least n (equal to n when 
p = n ) .  [] 

We now give a complexity result in terms of the representation (5.2) in Theorem 
5.1. If we fix P at (Sk) ~/2 in Theorem 5.1, then by the representation (5.2) any 
pk c ~ ( X  k, S ~) can be written as 

[(s l J2( lr ( lT(s ll/2] '/2, (5.3/ 

where Q~ is the matrix Qp in Theorem 5.1 corresponding to P =  (Sk) 1/2 and 
T k C J(X~,Sk) .  We stress that similar results corresponding to other choices of P 
in the representations can also be similarly established. Recall that ~coo is defined 
in Eq. (3.3). 

Theorem 5.2. For any sequences {(Xk,S~,yk)} C ~/'(7) and {pk: pk E ~(Xk,Sk)}, 
there holds 

u K~ ~<- s p c o n d ( T  k , 
7 

where T k ~ Y ( X  k, S k) is associated with pk through Eq. (5.3). 
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Proof. Again let us drop the superscript k. Recall that 

G~E-1F : ( S ® I + I ® ~ ) - 1 ( 2 ® I + I ® 2 ) .  

It follows from commutativity of )( and S that the lth eigenvalue of G for 
l = ( i - 1 ) n + j ,  1 ~<i , j<,n,  is 

2/[G] -- ; i[X] -~- ; j [X] 
;,[2] + 2j IS] ' (5.4) 

Observe that 2 - - P X P  is similar to X1/2WX 1/2 and S = P 1SP 1 to SU2W-~S 1/2, 
where W = p2. Substituting these relations and W = S1/2QTQTS U2, we obtain: 

;,[X] = ;,[x'/Zwx '/z] = ;i[x'/2S'/2QTQTS'/2X'/2], 

;i[S] = ;i[S1/2W IS1/2 ] = ; i [T-1] .  

Observe that for any A E 5 P", B C ~n×, and v ~ R n 

vTBTABv (Bv)TA(Bv) vTBTBv 
vTv (Bv)T(Bv) vTv ' 

which implies that 

;rain [A];min [BTB] ~< ;~[BTAB] <~ 2max [A];max [BTB]. 

Using these inequalities, we have 

;min [X1/2SX1/2]2min [T] ~ ;i[X] ~ 2max [xl/2sxl/2]2max [T]. 

Consequently, from Eq. (5.4) we obtain 

;max IN] ~< ;max [X1/2SXl/2];max IT] , [X1/2sxl/2];2ma x IT]. 
;min[r 1] ---- A . . . .  

Similarly, 

2min [Xl/2SXl/2];min [T] = ;min [xl/2sxl/2122min IT]. 
;rain[G] ~ ;max[T 1] 

Therefore, 

cond(G) <~ cond(S1/2XS1/=)cond( r) 2, 

where we used the fact that SI/2XS 1/2 is similar to X1/2SX1/2. Finally, it is known (see 
the proof of Theorem 3.1) that (X ,S ,y )c  ,IV'(7) implies that cond(S1/2XS 1/2) 
<~ n /,/. [ ]  

This theorem guarantees that Algorithm-CC will have a polynomial iteration- 
complexity bound if the matrices {T k} are chosen so that their spectral condition 
numbers are uniformly bounded above by a polynomial of n. In particular, it will 
have an O(nl 5L)-iteration complexity bound if cond(T k) is bounded above by a con- 
stant independent of n. Furthermore, for any number ~, the choice T k = (Ak) ~ would 
give an O(n 15 ~l~lL)-iteration polynomial algorithm since cond(T k) ~< (n/3,) I~1. 
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6. Concluding remarks 

Afte r  the release o f  the first vers ion o f  the current  paper ,  several new develop-  

ments  have occurred.  S tu rm and  Z h a n g  [23] independen t ly  p rov ided  another  

p r o o f  for  the (9(nL)-iteration convergence of  the long-s tep  pa th- fo l lowing  algo- 

r i thm using the Nes te rov  T o d d  direct ion.  M o n t e i r o  [13] p roved  tha t  shor t -s tep 

p r ima l -dua l  pa th- fo l lowing  a lgor i thms  based on any  direct ion of  the M o n t e i r o -  

Z h a n g  family,  inc luding the A H O  direct ion,  have i t e ra t ion-complex i ty  b o u n d  

equal  to (9(x/~L). Mon te i ro ' s  result  for  the A H O  direc t ion  is o f  par t i cu la r  interest  

since the A H O  direc t ion  cor responds  to a fixed scal ing mat r ix  (the ident i ty  ma-  

trix) and  has good  local convergence proper t ies  and  interest ing numer ica l  behav- 

ior  (see [2,7]). 

I t  is wor th  not ing  tha t  for long-step pa th- fo l lowing  a lgor i thms,  namely  those that  

use the " large  n e i g h b o r h o o d "  defined in Eq. (3.1), no po lynomia l  complex i ty  result  

has been ob ta ined  so far  for  a search direct ion outs ide  the  commuta t ive  class s tudied 

in this paper .  
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