

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. OPTIM. © 2021 Society for Industrial and Applied Mathematics
Vol. 31, No. 1, pp. 217--243

AN AVERAGE CURVATURE ACCELERATED COMPOSITE
GRADIENT METHOD FOR NONCONVEX SMOOTH COMPOSITE

OPTIMIZATION PROBLEMS\ast

JIAMING LIANG\dagger AND RENATO D. C. MONTEIRO\dagger

Abstract. This paper presents an accelerated composite gradient (ACG) variant, referred
to as the AC-ACG method, for solving nonconvex smooth composite minimization problems. As
opposed to well-known ACG variants that are based on either a known Lipschitz gradient constant
or a sequence of maximum observed curvatures, the current one is based on the average of all
past observed curvatures. More specifically, AC-ACG uses a positive multiple of the average of all
observed curvatures until the previous iteration as a way to estimate the ``function curvature"" at the
current point and then two resolvent evaluations to compute the next iterate. In contrast to other
variable Lipschitz estimation variants, e.g., the ones based on the maximum curvature, AC-ACG
always accepts the aforementioned iterate regardless of how poor the Lipschitz estimation turns out
to be. Finally, computational results are presented to illustrate the efficiency of AC-ACG on both
randomly generated and real-world problem instances.

Key words. smooth nonconvex composite programming, average curvature, accelerated
composite gradient methods, first-order methods, iteration-complexity, line search free methods

AMS subject classifications. 49M05, 49M37, 65K05, 65Y20, 68Q25, 90C26, 90C30

DOI. 10.1137/19M1294277

1. Introduction. In this paper, we study an accelerated composite gradient--
(ACG-) type algorithm for solving a nonconvex smooth composite optimization (SCO)
problem

\phi \ast := min \{ \phi (z) := f(z) + h(z) : z \in \BbbR n\} ,(1)

where f is a real-valued differentiable (possibly nonconvex) function with an M -
Lipschitz continuous gradient on domh and h : \BbbR n \rightarrow (- \infty ,\infty] is a proper lower
semicontinuous convex function with a bounded domain.

A large class of algorithms for solving (1) sets the next iterate yk+1 as the unique
optimal solution y(\~xk;Mk) of the linearized prox subproblem

y(\~xk;Mk) := argmin

\biggl\{
\ell f (x; \~xk) + h(x) +

Mk

2
\| x - \~xk\| 2 : x \in \BbbR n

\biggr\}
,(2)

where \ell f (x; \~xk) := f(\~xk) + \langle \nabla f(\~xk), x - \~xk\rangle , the prox-center \~xk is chosen as either
the current iterate yk (as in unaccelerated algorithms) or a convex combination of yk
and another auxiliary iterate xk (as in accelerated algorithms), andMk is good upper
curvature of f at \~xk, i.e., Mk > 0, and satisfies

\scrC (y(\~xk;Mk); \~xk) \leq Mk,(3)

\ast Received by the editors October 21, 2019; accepted for publication (in revised form) October 25,
2020; published electronically January 13, 2021.

https://doi.org/10.1137/19M1294277
Funding: This work was partially supported by ONR grant N00014-18-1-2077. The first author

was also partially supported by NSF grant CCF-1740776 through a joint fellowship from the Algo-
rithms and Randomness Center (ARC) and the Transdisciplinary Research Institute for Advancing
Data Science (TRIAD), the latter part of the TRIPODS program at NSF located at Georgia Tech
(http://triad.gatech.edu).

\dagger School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA
30332-0205 USA (jiaming.liang@gatech.edu, monteiro@isye.gatech.edu).

217

D
ow

nl
oa

de
d

01
/1

9/
21

 to
 1

43
.2

15
.1

37
.4

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

https://doi.org/10.1137/19M1294277
mailto:jiaming.liang@gatech.edu
mailto:monteiro@isye.gatech.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

218 JIAMING LIANG AND RENATO D. C. MONTEIRO

where

\scrC (y; \~x) := 2 [f(y) - \ell f (y; \~x)]
\| y - \~x\| 2

.(4)

Regardless of the choice of \~xk, it is well-known that the smaller the sequence \{ Mk\}
is, the faster the convergence rate of the method becomes. Hence, it is desirable to
choose Mk = \=Mk where \=Mk, referred to as the local curvature of f at \~xk, is the
smallest value of Mk satisfying (3). However, since finding \=Mk is generally time-
consuming, alternative strategies that upper estimate \=Mk are used. A common one is
a backtracking procedure that initially setsMk to be the maximum of all the observed
curvatures \scrC 1, . . . , \scrC k - 1 where \scrC i := \scrC (yi+1; \~xi) for every i \geq 1. It then checks whether
Mk is a good curvature of f at \~xk. If so, it sets yk+1 = y(\~xk;Mk); otherwise, it updates
Mk \leftarrow \eta Mk for some parameter \eta > 1, and then repeats this same step again. Such an
approach has been used extensively in the literature dealing with composite gradient
methods both in the context of convex and nonconvex SCO (N-SCO) problems (see,
for example, [3, 7, 16, 22]) and can be efficient particularly for those SCO instances
where a sharp upper bound M on the smallest Lipschitz constant \=M of \nabla f on domh
is not available.

This paper investigates an ACG variant for solving the N-SCO problem where
Mk is computed as a positive multiple of the average of all observed curvatures up
to the previous iteration. As opposed to ACG variants based on the scheme out-
lined above as well as other ACG variants, AC-ACG always computes a new step
regardless of whether Mk overestimates or underestimates \scrC k. More specifically, if
Mk overestimates \scrC k, then a composite step as in (2) is taken; otherwise, yk+1 is set
to be a convex combination of yk and an auxiliary iterate xk+1, which is obtained by
a resolvent evaluation of h. It is worth noting that both of these steps are used in
previous ACG variants but only one of them is used at a time. The main result of the
paper establishes a convergence rate for AC-ACG. More specifically, it states that k
iterations of the AC-ACG method generate a pair (y, v) satisfying v \in \nabla f(y)+ \partial h(y)
and \| v\| 2 = \scrO (Mk/k) where Mk is as in the beginning of this paragraph. Since Mk

is usually much smaller than \=M or even \=Mk, this convergence rate bound explains
the efficiency of AC-ACG to solve both randomly generated and real-world problem
instances of (1) used in our numerical experiments. Finally, it is shown that AC-ACG
also has similar iteration-complexity as previous ACG variants (e.g., [6, 10, 15, 16]).

Related works. The first complexity analysis of an ACG algorithm for solving
(1) under the assumption that f is a nonconvex differentiable function whose gradient
is Lipschitz continuous and that h is a simple lower semicontinuous convex function
is established in the novel work [6]. Inspired by [6], many papers have proposed
other ACG variants for solving (1) under the aforementioned assumptions (see, e.g.,
[5, 7, 16]) or even under the relaxed assumption that h is nonconvex (see, e.g., [13,
14, 26]). It is worth mentioning that (i) in contrast to [6, 16], the other works deal
with hybrid-type accelerated methods that resort to unaccelerated composite gradient
steps whenever a certain descent property is not satisfied, and (ii) in contrast to the
methods of [7, 13, 16] that chooseMk adaptively in a manner similar to that described
in the second paragraph in section 1, the methods in [5, 6, 14, 26] work with a
constant sequence \{ Mk\} , namely, Mk = M for some M > \=M . Section 3 provides a
more detailed overview of ACG variants for solving both convex and nonconvex SCO
problems which includes most of the ones just mentioned.

Other approaches toward solving (1) use an inexact proximal point scheme where
each prox subproblem is constructed to be (possibly strongly) convex and hence

D
ow

nl
oa

de
d

01
/1

9/
21

 to
 1

43
.2

15
.1

37
.4

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

AVERAGE CURVATURE ACG METHOD 219

efficiently solvable by a convex ACG variant. Papers [4, 10, 23] propose a descent
unaccelerated inexact proximal-type method, which works with a larger prox stepsize
and hence has a better outer iteration-complexity than the approaches in the previous
paragraph. Paper [15] presents an accelerated inexact proximal point method that
performs an accelerated step with a large prox stepsize in every outer iteration and
requires a prox subproblem to be approximately solved by an ACG variant in the
same way as in the algorithms presented in [4, 10].

Definitions and notations. The set of real numbers is denoted by \BbbR . The set of
nonnegative real numbers and the set of positive real numbers are denoted by \BbbR + and
\BbbR ++, respectively. Let \BbbR n denote the standard n-dimensional Euclidean space with
inner product and norm denoted by \langle \cdot , \cdot \rangle and \| \cdot \| , respectively. The Frobenius inner
product and Frobenius norm in \BbbR m\times n are denoted by \langle \cdot , \cdot \rangle F and \| \cdot \| F , respectively.
The set of real n\times n symmetric matrices is denoted by \scrS n, and we define \scrS n+ to be the
subset of \scrS n consisting of the positive semidefinite matrices. The indicator function
IS of a set S \subset \BbbR n is defined as IS(z) = 0 for every z \in S, and IS(z) =\infty , otherwise.
The cardinality of a finite set \scrA is denoted by | \scrA | . Let \scrO 1(\cdot) denote \scrO (\cdot + 1) where
\scrO is the big O notation.

Let \psi : \BbbR n \rightarrow (- \infty ,+\infty] be given. The effective domain of \psi is denoted by
dom\psi := \{ x \in \BbbR n : \psi (x) < \infty \} and \psi is proper if dom\psi \not = \emptyset . Moreover, a proper
function \psi : \BbbR n \rightarrow (- \infty ,+\infty] is said to be \mu -strongly convex for some \mu \geq 0 if

\psi (\alpha z + (1 - \alpha)u) \leq \alpha \psi (z) + (1 - \alpha)\psi (u) - \alpha (1 - \alpha)\mu
2

\| z - u\| 2

for every z, u \in dom\psi and \alpha \in [0, 1]. If \psi is differentiable at \=z \in \BbbR n, then its affine
approximation \ell \psi (\cdot ; \=z) at \=z is defined as

\ell \psi (z; \=z) := \psi (\=z) + \langle \nabla \psi (\=z), z - \=z\rangle \forall z \in \BbbR n.

The subdifferential of \psi at z \in \BbbR n is denoted by \partial \psi (z). The set of all proper lower
semicontinuous convex functions \psi : \BbbR n \rightarrow (- \infty ,+\infty] is denoted by Conv (\BbbR n).

Organization of the paper. Section 2 describes the N-SCO problem and the
assumptions made on it. It also presents the AC-ACG method for solving the N-SCO
problem and describes the main result of the paper, which establishes a convergence
rate bound for AC-ACG in terms of the average of observed curvatures. Section 3
contains three subsections. The first subsection reviews three ACG variants for solving
convex SCO (C-SCO) problems. The second (resp., third) one reviews pure (resp.,
hybrid) ACG variants for solving N-SCO problems. Section 4 provides the proof of the
main result stated in section 2. Section 5 presents computational results illustrating
the efficiency of the AC-ACG method. Section 6 presents some concluding remarks.
Finally, the appendix contains a technical result.

2. The AC-ACG method for solving the N-SCO problem. This section
presents the main algorithm studied in this paper, namely, an ACG method based
on a sequence of average curvatures, and derives a convergence rate for it expressed
in terms of this sequence. More specifically, it describes the N-SCO problem and the
assumptions made on it, presents the AC-ACG method, and states the main result of
the paper, i.e., the convergence rate of the AC-ACG method.

The problem of interest in this paper is the N-SCO problem (1), where the fol-
lowing conditions are assumed to hold:

D
ow

nl
oa

de
d

01
/1

9/
21

 to
 1

43
.2

15
.1

37
.4

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

220 JIAMING LIANG AND RENATO D. C. MONTEIRO

(A1) h \in Conv (\BbbR n);
(A2) f is a nonconvex differentiable function on domh and there exist scalars

m \geq 0, M \geq 0 such that for every u, u\prime \in domh,

(5) - m

2
\| u - u\prime \| 2 \leq f(u) - \ell f (u;u\prime), \| \nabla f(u) - \nabla f(u\prime)\| \leq M\| u - u\prime \| ;

(A3) the diameter D := sup\{ \| u - u\prime \| : u, u\prime \in domh\} is bounded.
Throughout the paper, we let \=m (resp., \=M) denote the smallest scalar m \geq 0

(resp., M \geq 0) satisfying the first (resp., second) inequality in (5).
We now make some remarks about the above assumptions. First, the set of

optimal solutions X\ast is nonempty and compact in view of (A1)--(A3). Second, the
second inequality in (5) implies

 - M
2
\| u - u\prime \| 2 \leq f(u) - \ell f (u;u\prime) \leq

M

2
\| u - u\prime \| 2 \forall u, u\prime \in domh.(6)

Third, the last remark together with the fact that f is nonconvex on domh due to
assumption (A2) implies that 0 < \=m \leq \=M . Fourth, assumption (A3) is used in the
proofs of Lemmas 4.1(b) and 4.3(b).

A necessary condition for \^y to be a local minimum of (1) is that 0 \in \nabla f(\^y)+\partial h(\^y),
i.e., \^y is a stationary point of (1). More generally, given a tolerance \^\rho > 0, a pair
(\^y, \^v) is called a \^\rho -approximate stationary pair of (1) if

\^v \in \nabla f(\^y) + \partial h(\^y), \| \^v\| \leq \^\rho .(7)

We are ready to state the AC-ACG method, which stops when a \^\rho -approximate
stationary pair of (1) is computed. AC-ACG requires as input a scalarM \geq \=M where
\=M is defined in the paragraph following (A3).

Average curvature--accelerated composite gradient (AC-ACG)

0. Let a parameter \gamma \in (0, 1), a scalar M \geq \=M , a tolerance \^\rho > 0, and an initial
point y0 \in domh be given and set A0 = 0, x0 = y0, M0 = \gamma M , k = 0, and

\alpha =
0.9

8

\biggl(
1 +

1

0.9\gamma

\biggr) - 1

;(8)

1. compute

ak =
1 +
\surd
1 + 4MkAk
2Mk

, Ak+1 = Ak + ak, \~xk =
Akyk + akxk

Ak+1
;(9)

2. set ygk+1 = y(\~xk;Mk) where y(\cdot ; \cdot) is as in (2) and compute

xk+1 = argmin
u\in \BbbR n

\biggl\{
ak [\ell f (u; \~xk) + h(u)] +

1

2
\| u - xk\| 2

\biggr\}
,(10)

vk+1 =Mk(\~xk - ygk+1) +\nabla f(y
g
k+1) - \nabla f(\~xk);(11)

3. if \| vk+1\| \leq \^\rho then output (\^y, \^v) = (ygk+1, vk+1) and stop; otherwise, compute

Ck = max

\biggl\{
\scrC (ygk+1; \~xk),

\| \nabla f(ygk+1) - \nabla f(\~xk)\|
\| ygk+1 - \~xk\|

\biggr\}
,(12)

Cavgk =
1

k + 1

k\sum
j=0

Cj ,(13)

Mk+1 = max

\biggl\{
1

\alpha
Cavgk , \gamma M

\biggr\}
,(14)

D
ow

nl
oa

de
d

01
/1

9/
21

 to
 1

43
.2

15
.1

37
.4

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

AVERAGE CURVATURE ACG METHOD 221

where \scrC (\cdot ; \cdot) is as in (4);
4. set

yk+1 =

\Biggl\{
ybk+1 := Akyk+akxk+1

Ak+1
if Ck > 0.9Mk;

ygk+1 otherwise
(15)

and k \leftarrow k + 1, and go to step 1.

We add a few observations about the AC-ACG method. First, the first two
identities in (9) imply that

Ak+1 =Mka
2
k.(16)

Second, the AC-ACG method evaluates two gradients of f and exactly two resolvents
of h (i.e., an evaluation of (I + \lambda \partial h) - 1(\cdot) for some \lambda > 0) per iteration, namely,
one in (2) and the other one in (10). Third, Theorem 2.1 below guarantees that
AC-ACG always terminates and outputs a \^\rho -approximate solution (\^y, \^v) (see step
3). Fourth, Ck is the most recent observed curvature, Cavgk is the average of all
observed curvatures obtained so far, and Mk+1 is a modified average curvature that
will be used in the next iteration to compute ygk+2. Fifth, the observed curvature Ck
used here is different from the one mentioned in the introduction (see (3)) and it is
more suitable for our theoretical analysis. Sixth, every iteration starts with a triple
(Ak, xk, yk) and obtains the next one (Ak+1, xk+1, yk+1) as in (9), (10), and (2). The
iterate yk+1 is chosen to be either ygk+1 = y(\~xk;Mk) obtained in (2) or the convex

combination ybk+1 defined in (15) depending on whether the current curvature Ck is
smaller than or equal to a multiple (e.g., 0.9) of the modified average curvature Mk

or not, respectively. Seventh, in the iterations for which Ck \leq 0.9Mk (called the good
ones), Mk is clearly a good upper curvature of f at \~xk in view of the definitions of
Ck and ygk+1 in (12) and step 2 of AC-ACG, respectively, and the definition of a good
curvature in (3). Thus, assuming that the frequency of good iterations is relatively
high, it is reasonable to expect that the smaller the sequence \{ Mk\} is, the faster the
convergence rate of AC-ACG will be (see the discussion after (3) in the introduction).
Eighth, it follows as a consequence of the results of section 4 that the number of
good iterations is relatively large (see Lemma 4.5) and that the overall effect of the
bad ones are nicely under control (see Lemma 4.4). Moreover, Theorem 2.1 below
states that the convergence rate of AC-ACG is directly proportional to

\surd
Mk in that

min\{ \| vi\| : i \leq k\} = \scrO (
\surd
Mk/
\surd
k).

We now discuss the likelihood of Mk+1, or equivalently, \gamma k+1 :=Mk+1/M , being
small. First observe that (14) implies that \gamma k+1 \geq \gamma . Hence, let us examine the
situation in which \gamma k+1 = \gamma , i.e., \gamma k+1 reaches its lowest possible value for a fixed
\gamma \in (0, 1). Clearly, it follows from (14) that \gamma k+1 = \gamma if and only if

(17)
Cavgk

M
\leq \alpha \gamma .

Moreover, in view of (8) and the fact that \gamma < 1, it follows that \alpha = \Theta (\gamma), and hence
(17) implies that Cavgk /M = \scrO (\gamma 2). In conclusion, under the restrictive choice of \alpha in
(8), \gamma k+1 = \gamma can happen only when the computed average curvature ratio Cavgk /M
is \scrO (\gamma 2). However, choice (8) for \alpha is too conservative in practice. Indeed, it follows
from the proof of Lemma 4.5 and the arguments in the paragraph following it that in
practice \alpha \in (0, 1) can be chosen as \Theta (1) instead of \Theta (\gamma) as above. Clearly, with such

D
ow

nl
oa

de
d

01
/1

9/
21

 to
 1

43
.2

15
.1

37
.4

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

222 JIAMING LIANG AND RENATO D. C. MONTEIRO

a choice of \alpha , (17) implies that the ratio Cavgk /M is \scrO (\gamma) instead of \scrO (\gamma 2) as above. In
summary, if \gamma \in (0, 1) is relatively small and \alpha is chosen as (0, 1) \ni \alpha = \Theta (1) instead
of (8), then the chances of having \gamma k+1 = \gamma increases. In view of the aforementioned
observation, the two AC-ACG variants which are computationally profiled in section 5
relax the choice of \alpha from (8) to one satisfying (0, 1) \ni \alpha = \Theta (1).

We now state the main result of the paper which describes how fast one of the
iterates yg1 , . . . , y

g
k approaches the stationary condition 0 \in \nabla f(y)+\partial h(y). A remark-

able feature of its convergence rate bound is that it is expressed in terms ofMk rather
than a scalar M \geq \=M .

Theorem 2.1. The following statements hold:
(a) for every k \geq 1, we have vk \in \nabla f(ygk) + \partial h(ygk);
(b) for every k \geq 12, we have

min
1\leq i\leq k

\| vi\| 2 = \scrO
\biggl(
M2
kD

2

\gamma k2
+
\theta k \=mMkD

2

k

\biggr)
,

where

\theta k := max

\biggl\{
Mk

Mi
: 0 \leq i \leq k

\biggr\}
\geq 1.(18)

We now make two remarks about Theorem 2.1. First, it immediately leads to a
worst-case iteration-complexity bound as follows. In view of the second inequality in
(5), the second inequality in (6), the definition of \=M in the paragraph following (A3),
and relation (12), it follows that for every k \geq 0, Ck \leq \=M , and hence that Cavgk \leq \=M
in view of (13). The latter inequality, (14), and the fact that \alpha = \Theta (\gamma) (see the line
following (17)), then imply that M/Mk+1 \leq 1/\gamma and

Mk+1

M
= \scrO

\biggl(\=M

\alpha M
+ \gamma

\biggr)
= \scrO

\biggl(\=M

\gamma M
+ \gamma

\biggr)
(19)

for every k \geq 0. These two estimates and the definition of \theta k in (18) then imply that,
for some i \leq k, we have

\theta k =
Mk

M

M

Mi
= \scrO

\biggl(\biggl(\=M

\gamma M
+ \gamma

\biggr)
1

\gamma

\biggr)
= \scrO

\biggl(\=M

\gamma 2M
+ 1

\biggr)
.

Moreover, it follows from Theorem 2.1(b) that the iteration-complexity for AC-ACG
to obtain a \^\rho -approximate stationary pair (\^y, \^v) is

\scrO 1

\biggl(
MkD

\gamma 1/2\^\rho
+
\theta k \=mMkD

2

\^\rho 2

\biggr)
= \scrO 1

\biggl(
Mk

\biggl(
D

\gamma 1/2\^\rho
+ \theta k

\=mD2

\^\rho 2

\biggr) \biggr)
which, in view of (19), the above estimate on \theta k, and the facts that \gamma < 1 andM \geq \=M
(see step 0 of AC-ACG), is bounded by

\scrO 1

\biggl(\biggl[
D

\gamma 1/2\^\rho
+

\biggl(\=M

\gamma 2M
+ 1

\biggr)
\=mD2

\^\rho 2

\biggr] \biggl(\=M

\gamma
+ \gamma M

\biggr) \biggr)
= \scrO 1

\biggl(
MD

\gamma 3/2\^\rho
+

\=mMD2

\gamma 3\^\rho 2

\biggr)
.(20)

Hence, for small values of \gamma , the worst-case iteration-complexity of AC-ACG is high
but, if \gamma is viewed as a constant, i.e., 1/\gamma = \scrO (1), then the above complexity is as
good as any other ACG method found in the literature for solving the N-SCO problem
as long as the second term in (20) is the dominant one. In particular, in terms of \^\rho

D
ow

nl
oa

de
d

01
/1

9/
21

 to
 1

43
.2

15
.1

37
.4

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

AVERAGE CURVATURE ACG METHOD 223

only, its worst-case iteration-complexity for solving an N-SCO problem is \scrO (1/\^\rho 2),
which is identical to that of any other known ACG method (see, e.g., [6, 10, 15, 16]).

Second, the dependence of the worst-case iteration-complexity (20) on \gamma is not
good because it is obtained using the conservative estimate (19). We will now examine
the iteration-complexity bound under the assumption that \gamma k+1 = Mk+1/M = \gamma , or
equivalently, (17) holds, for every k \geq 0. In this case, \theta k = 1 for every k \geq 0 and
hence the convergence rate bound in Theorem 2.1(b) yields the iteration-complexity
bound

\scrO 1

\biggl(
\gamma 1/2MD

\^\rho
+
\gamma \=mMD2

\^\rho 2

\biggr)
for AC-ACG, which improves as \gamma decreases. This contrasts with bound (20), which
becomes worse as \gamma decreases.

3. Comparison with other accelerated type methods. This section gives
a brief overview of existing ACG methods for solving convex and nonconvex SCO
problems. It contains three subsections. The first subsection reviews three ACG
variants for solving C-SCO problems. The second one discusses pure ACG variants
for solving N-SCO problems, i.e., ACG variants which perform only accelerated steps
similar to the ones of the variants of the first subsection. The third one discusses
hybrid ACG variants which, in addition to ACG steps, may also perform unaccelerated
ones.

3.1. Review of convex ACG methods. This subsection reviews three ACG
variants for solving C-SCO problems, i.e., SCO problems of the form (1) where (A1)--
(A3) hold with m = 0, and hence f is convex. All the ACG methods reviewed here
are described in terms of the notation introduced in the AC-ACG method or the
ACG framework described below. This approach has the advantage that all the ACG
methods are viewed under the same notation and hence their similarities/differences
become more apparent.

The accelerated gradient method for solving unconstrained C-SCO problems (i.e.,
(1) with h = 0) were originally developed by Nesterov in his celebrated work [18].
Subsequently, several variants of his method (see, for example, [1, 3, 11, 17, 19, 21,
22, 24]) have been developed for solving C-SCO problems.

Before reviewing ACG variants for solving C-SCO, we first describe a common
ACG framework underlying them.

ACG framework

0. Let an initial point y0 \in domh be given, and set x0 = y0, A0 = 0, and k = 0;
1. compute ak, Ak+1 and \~xk as in (9);
2. compute xk+1 and yk+1 using one of the rules listed below;
3. set k \leftarrow k + 1, and go to step 1.

We will now describe three possible rules for computing the iterates xk+1 and
yk+1 in step 2 of the above framework.

(i) (FISTA rule) This rule sets yak+1 = y(\~xk;Mk) where y(\~xk;Mk) is defined in
(2) and Mk > 0 is a good upper curvature of f at \~xk, then chooses yk+1 to
be any point satisfying \phi (yk+1) \leq \phi (yak+1) and computes xk+1 as

xk+1 = yak+1 +
Ak
ak

\bigl(
yak+1 - yk

\bigr)
.(21)

D
ow

nl
oa

de
d

01
/1

9/
21

 to
 1

43
.2

15
.1

37
.4

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

224 JIAMING LIANG AND RENATO D. C. MONTEIRO

The FISTA rule with yk+1 = yak+1 was first introduced by Nesterov when
h is the indicator function of a nonempty closed convex set (see, for exam-
ple, ``Constant Step Scheme, III"" on pages 83--84 of [19] or ``Constant Step
Scheme, II. Simple sets"" on page 90 of [20]) and was later extended to general
composite closed convex functions in [2, 3].

(ii) (AT rule) This rule computes xk+1 as (10) and chooses yk+1 to be any point
satisfying \phi (yk+1) \leq \phi (yak+1) where

yak+1 =
Akyk + akxk+1

Ak+1
.(22)

This rule with yk+1 = yak+1 was introduced by Auslender and Teboulle in [1],
which explains the name ``AT"" adopted here.

(iii) (LLM rule) This rule sets yk+1 as in the FISTA rule and xk+1 as in the AT
rule. The LLM rule was introduced by Lan, Lu, and Monteiro in [11], which
explains the name ``LLM"" adopted here.

We now make a few remarks on the three ACG variants based on the above
three rules. First, the ACG variant based on the LLM rule performs two resolvent
evaluations of h per iteration, while the variants based on the AT and FISTA rules
perform exactly one resolvent evaluation. Second, two popular choices of an upper
curvature sequence \{ Mk\} are as follows: (1) for some M \geq \=M , Mk = M for every
k \geq 0; and (2) for every k \geq 0, Mk is computed by a backtracking procedure such as
the one outlined in the second paragraph of section 1. While [1, 11, 19] consider only
the first choice, [3, 22] analyze the FISTA variant for both choices of \{ Mk\} . Third, the
AC-ACG method studied in this paper uses the LLM rule and works with a sequence
\{ Mk\} such that Mk is not necessarily a good upper curvature of f at \~xk.

We now comment on the monotonicity of the three aforementioned ACG vari-
ants. The three ACG variants based on the identity yk+1 = yak+1 are not necessarily
monotone (i.e., it satisfies \phi (yk+1) \leq \phi (yk) for every k \geq 0), even if every Mk is a
good upper curvature of f at \~xk. However, they can be made monotone by invoking
an idea introduced in [21] which sets yk+1 = argmin \{ \phi (y) : y \in \{ yk, yak+1\} \} , where
yak+1 is as described in each of the rules above. Another alternative way of forcing
monotonicity, which requires an extra resolvent evaluation of h, is to choose yk+1 as

yk+1 = argmin \{ \phi (y) : y \in \{ yk, yak+1, y
na
k+1\} \} ,(23)

where ynak+1 = y(yk;M
na
k) and Mna

k is a good upper curvature of f at yk. We remark
that yk can actually be removed from the right-hand side of (23). This is due to the
fact that Mna

k being a good upper curvature of f at yk implies that \phi (ynak+1) \leq \phi (yk)
in view of Lemma A.1 in the appendix with (Mk, \~xk, yk+1) = (Mna

k , yk, y
na
k+1).

3.2. Pure accelerated variants. This subsection discusses pure ACG variants
for solving the N-SCO problem (1). More specifically, we discuss three methods,
namely, the AG method proposed in [6], the NC-FISTA of [16], and its adaptive
variant ADAP-NC-FISTA, also described in [16]. The iteration-complexity of all three
methods is analyzed under the assumption that domh is bounded, but in practice all
three methods can successfully solve many problems with unbounded domh.

AG is a direct extension of the ACG variant, based on the LLM rule and the
constant choice of Mk, to the N-SCO context. Clearly, AG performs two resolvent
evaluations of h per iteration.

NC-FISTA requires as input a pair (M,m) such that M > \=M and M \geq m \geq \=m.
It is an extension of the version of FISTA with yk+1 = yak+1 from the C-SCO to the

D
ow

nl
oa

de
d

01
/1

9/
21

 to
 1

43
.2

15
.1

37
.4

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

AVERAGE CURVATURE ACG METHOD 225

N-SCO context, and it reduces to the latter one when m = \=m = 0. More specifically,
NC-FISTA sets yk+1 = y(\~xk;Mk) where Mk =M + \kappa 0m/(Mak) and computes xk+1

as in (21) with Ak/ak replaced by (\kappa 0m/M + 1) - 1(Ak/ak) where \kappa 0 is a positive
universal constant. In contrast to an iteration of the AG method, every iteration of
NC-FISTA performs exactly one resolvent evaluation of h.

One drawback of NC-FISTA is its required input pair (M,m), which is usually
hard to obtain or is often poorly estimated. On the other hand, ADAP-NC-FISTA
remedies this drawback in that it only requires as input an arbitrary initial pair
(M0,m0) such that M0 \geq m0 > 0, which is dynamically updated by means of two
separate backtracking search procedures.

3.3. Hybrid accelerated variants. This subsection discusses hybrid ACG
variants for solving the N-SCO problem (1). More specifically, we discuss three meth-
ods, namely, a nonmonotone variant as well as a monotone one, both described in
[13], which we refer to as NM-APG and M-APG, respectively, and UPFAG proposed
in [7]. To the best of our knowledge, the convergence of these hybrid ACG variants
is guaranteed due to the possibility of performing an extra unaccelerated composite
gradient step. Whether their convergence can be shown without this optional step is
an open question even for the case in which domh is bounded.

M-APG is exactly the instance of the ACG variant based on the FISTA rule
in which yk+1 is computed by means of (23) which, as already mentioned above,
guarantees its monotonicity property due to the fact that Mna

k is chosen as a good
upper curvature of f at yk. NM-APG is a variant of M-APG, which either sets
yk+1 = yak+1 or computes yk+1 as in (23) depending on whether or not, respectively,
yak+1 satisfies a key inequality, which ensures convergence of the method but not
necessarily its monotonicity.

UPFAG is an ACG variant based on the AT rule in which the next iterate yk+1

is chosen as in (23) except that (Ma
k ,M

na
k) is computed by line searches so that Ma

k

closely approximates a good curvature of f at \~xk and Mna
k satisfies a relaxed version

of the descent condition (50) with (Mk, \~xk, yk+1) = (Mna
k , yk, y

na
k+1).

4. Proof of Theorem 2.1. This section presents the proof of Theorem 2.1. We
start with the following technical result, which assumes that all sequences start with
k = 0.

Lemma 4.1. The following statements hold:
(a) the sequences \{ xk\} , \{ yk\} , \{ ygk+1\} , \{ ybk+1\} , and \{ \~xk\} are all contained in

domh;
(b) for every u \in domh and k \geq 0, we have

Ak\| yk - \~xk\| 2 + ak\| u - \~xk\| 2 \leq akD2;

(c) for every k \geq 0, Ck \leq \=M and Fk \leq \=M , where

Fk := \scrC (yk+1; \~xk)(24)

and \scrC (\cdot ; \cdot) is defined in (4);
(d) for every k \geq 0, we have

vk+1 \in \nabla f(ygk+1) + \partial h(ygk+1), \| vk+1\| \leq (Mk + Ck)\| ygk+1 - \~xk\| .(25)

Proof. (a) The sequences \{ xk\} and \{ ygk+1\} are contained in domh in view of (10),
(2), and step 0 of AC-ACG. Hence, using step 0 of AC-ACG again, (15), and the

D
ow

nl
oa

de
d

01
/1

9/
21

 to
 1

43
.2

15
.1

37
.4

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

226 JIAMING LIANG AND RENATO D. C. MONTEIRO

convexity of domh, we easily see by induction that \{ yk\} and \{ ybk+1\} are contained in
domh. Finally, \{ \~xk\} \subset domh follows from the third identity in (9) and the convexity
of domh.

(b) Let u \in domh and k \geq 0 be given. First note that for every A, a \in \BbbR + and
x, y \in \BbbR n, we have

A\| y\| 2 + a\| x\| 2 = (A+ a)

\bigm\| \bigm\| \bigm\| \bigm\| Ay + ax

A+ a

\bigm\| \bigm\| \bigm\| \bigm\| 2 + Aa

A+ a
\| y - x\| 2.

Applying the above identity with A = Ak, a = ak, y = yk - \~xk, and x = u - \~xk, and
using both the second and third identities in (9), we have

Ak\| yk - \~xk\| 2 + ak\| u - \~xk\| 2 = Ak+1

\bigm\| \bigm\| \bigm\| \bigm\| Akyk + aku

Ak+1
 - \~xk

\bigm\| \bigm\| \bigm\| \bigm\| 2 + Akak
Ak+1

\| yk - u\| 2

=
ak
Ak+1

\bigl(
ak\| u - xk\| 2 +Ak\| u - yk\| 2

\bigr)
\leq akD2,

where the inequality follows from Lemma 4.1(a), the assumption that u \in domh, the
definition of D in (A3), and the second equality in (9).

(c) The conclusion follows from definitions of Ck, Fk, and \scrC (\cdot ; \cdot) in (12), (24),
and (4), respectively, and the fact that \=M satisfies both the second inequality in (5)
and (6).

(d) The inclusion in (25) follows from the fact yk+1 = y(\~xk;Mk), the optimality
condition of (2) and the definition of vk+1 in (11). Moreover, the inequality in (25)
follows from definitions of Ck in (12) and vk+1 and the triangle inequality.

The next result provides an important recursive formula involving a certain po-
tential function \eta k and the quantity \| yk+1 - \~xk\| that will later be related to the
residual vector \| vk+1\| (see the proof of Lemma 4.3(a)).

Lemma 4.2. For every k \geq 0 and u \in domh, we have

Mk - Fk
2

Ak+1\| yk+1 - \~xk\| 2 \leq \eta k(u) - \eta k+1(u) +
1

2
\=makD

2,

where Mk and Fk are as in (14) and (24), respectively, and

\eta k(u) := Ak(\phi (yk) - \phi (u)) +
1

2
\| u - xk\| 2.(26)

Proof. Let k \geq 0 and u \in domh be given and define \gamma k(u) := \ell f (u; \~xk) + h(u).
Using the fact that xk+1 is an optimal solution of (10) and \gamma k is a convex function,
the second and third identities in (9), and relations (15) and (16), we conclude that

Ak\gamma k(yk) + ak\gamma k(u) +
1

2
\| u - xk\| 2 -

1

2
\| u - xk+1\| 2

\geq Ak\gamma k(yk) + ak\gamma k(xk+1) +
1

2
\| xk+1 - xk\| 2

\geq Ak+1\gamma k(y
b
k+1) +

1

2

A2
k+1

a2k
\| ybk+1 - \~xk\| 2

= Ak+1

\biggl[
\gamma k(y

b
k+1) +

Mk

2
\| ybk+1 - \~xk\| 2

\biggr]
.

Moreover, relations (2), (15), and (24) and the fact that \{ ybk\} \subset domh imply that

D
ow

nl
oa

de
d

01
/1

9/
21

 to
 1

43
.2

15
.1

37
.4

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

AVERAGE CURVATURE ACG METHOD 227

\gamma k(y
b
k+1) +

Mk

2
\| ybk+1 - \~xk\| 2 \geq \gamma k(yk+1) +

Mk

2
\| yk+1 - \~xk\| 2

= \phi (yk+1) +
Mk - Fk

2
\| yk+1 - \~xk\| 2.

Using the above two inequalities, the definition of \eta k in (26), and the first inequality
in (5), we easily see that

Mk - Fk
2

Ak+1\| yk+1 - \~xk\| 2 - \eta k(u) + \eta k+1(u)

\leq Ak(\gamma k(yk) - \phi (yk)) + ak(\gamma k(u) - \phi (u))

\leq \=m

2

\bigl(
Ak\| yk - \~xk\| 2 + ak\| u - \~xk\| 2

\bigr)
,

which, together with Lemma 4.1(b), then immediately implies the lemma.

For the purpose of stating the next results, we define the set of good and bad
iterations as

\scrG := \{ k \geq 0 : Ck \leq 0.9Mk\} , \scrB := \{ k \geq 0 : Ck > 0.9Mk\} ,(27)

respectively. The following result specializes the bound derived in Lemma 4.2 to
the two exclusive cases in which k \in \scrG and k \in \scrB . More specifically, it derives a
controllable bound on the residual vector vk+1 and the potential function difference
\eta k+1(u) - \eta k(u) in the good iterations and a controllable bound only on \eta k+1(u) - \eta k(u)
in the bad iterations.

Lemma 4.3. The following statements hold for every u \in domh and k \geq 0:
(a) if k \in \scrG then

Ak+1

72.2Mk
\| vk+1\| 2 \leq \eta k(u) - \eta k+1(u) +

1

2
\=makD

2;(28)

(b) if k \in \scrB then

0 \leq \eta k(u) - \eta k+1(u) +
1

2
\=makD

2 +
1 - \gamma
2\gamma

D2.(29)

Proof. (a) Let k \in \scrG be given and note that (27) and (15) imply that 0.9Mk \geq Ck
and yk+1 = ygk+1 where ygk+1 = y(\~xk;Mk) is as in (2). Hence, using the inequality in
(25), and the definitions of Ck and Fk in (12) and (24), respectively, we conclude that
\| vk+1\| \leq 1.9Mk\| yk+1 - \~xk\| and Fk \leq Ck \leq 0.9Mk. The latter two conclusions and
Lemma 4.2 then immediately imply that (28) holds.

(b) Let k \in \scrB be given and note that (15) and (27) imply that yk+1 = ybk+1.
Using the latter observation, Lemma 4.2, Lemma 4.1(c), the last equality in (9), and
relation (16), we conclude that

\eta k(u) - \eta k+1(u) +
1

2
\=makD

2 \geq (Mk - Fk)
2

Ak+1\| ybk+1 - \~xk\| 2

=
(Mk - Fk)

2
Ak+1

\bigm\| \bigm\| \bigm\| \bigm\| Akyk + akxk+1

Ak+1
 - Akyk + akxk

Ak+1

\bigm\| \bigm\| \bigm\| \bigm\| 2
=

(Mk - Fk)a2k
2Ak+1

\| xk+1 - xk\| 2 =
1

2

\biggl(
1 - Fk

Mk

\biggr)
\| xk+1 - xk\| 2

\geq 1

2

\biggl(
1 - 1

\gamma

\biggr)
\| xk+1 - xk\| 2

and hence that (29) holds in view of Lemma 4.1(a) and (A3).

D
ow

nl
oa

de
d

01
/1

9/
21

 to
 1

43
.2

15
.1

37
.4

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

228 JIAMING LIANG AND RENATO D. C. MONTEIRO

As a consequence, the next lemma provides the result of the summation of in-
equalities for k \in \scrG and k \in \scrB in Lemma 4.3.

Lemma 4.4. For every u \in domh and k \geq 1, we have

\Biggl(
1

36.1

\sum
i\in \scrG k

Ai+1

Mi

\Biggr)
min

1\leq i\leq k
\| vi\| 2 \leq \| u - x0\| 2 - 2\eta k(u) + \=mD2Ak +

1 - \gamma
\gamma

D2| \scrB k| ,

(30)

where \scrG k and \scrB k are defined as

\scrG k = \{ i \in \scrG : i \leq k - 1\} , \scrB k := \{ i \in \scrB : i \leq k - 1\} .(31)

Proof. First, note that

\sum
i\in \scrG k

Ai+1

Mi
\| vi+1\| 2 \geq

\Biggl(\sum
i\in \scrG k

Ai+1

Mi

\Biggr)
min
i\in \scrG k

\| vi+1\| 2 \geq

\Biggl(\sum
i\in \scrG k

Ai+1

Mi

\Biggr)
min

1\leq i\leq k
\| vi\| 2.

The conclusion follows by adding (28) and (29) both with k = i as i varies in \scrG k and
\scrB k, respectively, and using the above inequality, the definition of \eta k in (26), and the

facts that Ak = A0 +
\sum k - 1
i=0 ai and A0 = 0, which are due to (9) and step 0 of the

AC-ACG method, respectively.

Note that the left-hand side of (30) is actually zero when \scrG k = \emptyset , and hence
(30) is meaningless in this case. The result below, which plays a major role in our
analysis, uses for the first time the fact that Mk is chosen as in (14) and shows that
\scrG k is nonempty and well-populated. This fact in turn implies that the term inside the
parentheses in the left-hand side of (30) is sufficiently large (see Lemma 4.8 below).
The proof of Theorem 2.1 will then follow by combining these observations.

Lemma 4.5. For every k \geq 12, | \scrB k| \leq k/3 where \scrB k is as defined in (31).

Proof. Let k \geq 12 be given and, for the sake of this proof, define Cavg - 1 = 0. In
view of (14) and the definition of \scrB k in (31), it follows that for every i \in \scrB k,

\alpha

0.9
Ci > \alpha Mi \geq Cavgi - 1

and hence that

\alpha

0.9

\sum
i\in \scrB k

Ci >
\sum
i\in \scrB k

Cavgi - 1 .(32)

Using Lemma 4.1(c) and the facts that Ci > 0.9Mi for every i \in \scrB k and that Mi \geq
\gamma M \geq \gamma \=M (see (14) and step 0 of the AC-ACG method) for every i \geq 0, we have

0.9\gamma \=M \leq Ci \leq \=M, i \in \scrB k.(33)

Let l := | \scrB k| and let i1 < \cdot \cdot \cdot < il denote the indices in \scrB k. Clearly, in view of (13)
and the fact that ij \leq k for every j = 1, . . . , l, we have

Cavgi1 - 1 \geq 0, Cavgi2 - 1 \geq
1

k
Ci1 , \cdot \cdot \cdot \cdot \cdot \cdot , Cavgil - 1 \geq

1

k

\bigl(
Ci1 + \cdot \cdot \cdot + Cil - 1

\bigr)
.

Summing these inequalities, we obtain

D
ow

nl
oa

de
d

01
/1

9/
21

 to
 1

43
.2

15
.1

37
.4

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

AVERAGE CURVATURE ACG METHOD 229

\sum
i\in \scrB k

Cavgi - 1 \geq
1

k

l\sum
j=1

(l - j)Cij \geq
1

k

\lceil l/2\rceil \sum
j=1

(l - j)Cij \geq
1

k

\biggl\lfloor
l

2

\biggr\rfloor \lceil l/2\rceil \sum
j=1

Cij .

Combining (32) and the last inequality, we then conclude that

\alpha (S1 + S2)

0.9
\geq 1

k

\biggl\lfloor
l

2

\biggr\rfloor
S1,

where

S1 :=

\lceil l/2\rceil \sum
j=1

Cij , S2 :=

l\sum
j=\lceil l/2\rceil +1

Cij .(34)

Since (33) and the above definitions of S1 and S2 immediately imply that S2/S1 \leq
1/(0.9\gamma), we then conclude from the above inequality that

| \scrB k| = l \leq
\biggl(
2\alpha k

0.9

\biggr) \biggl(
1 +

S2

S1

\biggr)
+ 1 \leq

\biggl(
2\alpha k

0.9

\biggr) \biggl(
1 +

1

0.9\gamma

\biggr)
+ 1(35)

and hence that | \scrB k| \leq k/4+ 1 \leq k/3 in view of the definition of \alpha in (8) and the fact
that k \geq 12. The last conclusion of the lemma follows straightforwardly from the first
one.

We now make some remarks about choosing \alpha more aggressively, i.e., larger than
the value in (8) (recall the discussion in the second paragraph following the AC-ACG
method). First, in view of their definitions in (34), the quantities S1 and S2 are
actually quantities that depend on the iteration index k and hence should have been
denoted by Sk1 and Sk2 . Second, it follows from the first inequality in (35) that

| \scrB k| \leq
\biggl(
2\alpha k

0.9

\biggr)
(1 + \=\gamma k) + 1,

where \=\gamma k := Sk2 /S
k
1 . Third, we have used in the proof of Lemma 4.5 that \=\gamma k is bounded

above by 1/(0.9\gamma), which is a very conservative bound for this quantity. In practice
though, \=\gamma k behaves as \scrO (1) (if not for all k, then at least for a substantial number of
iterations). Fourth, in order to conclude that | Bk| \leq k/3 as in the proof of Lemma
4.5, it suffices to choose

\alpha =
0.9

8(1 + \=\gamma)
,

where \=\gamma := max\{ \=\gamma k : k \geq 1\} . Observe that the above choice of \alpha is \Theta (1) if \=\gamma behaves
as \scrO (1).

Before presenting Lemma 4.8, we first state two technical results about the se-
quences \{ Mk\} and \{ Ak\} .

Lemma 4.6. For every 1 \leq i < k, we have

Mk \geq
i

k
Mi.

Proof. From the definition of Cavgk in (13), for every i = 1, . . . , k - 1, we have

kCavgk - 1 - iC
avg
i - 1 = Ci + \cdot \cdot \cdot + Ck - 1

D
ow

nl
oa

de
d

01
/1

9/
21

 to
 1

43
.2

15
.1

37
.4

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

230 JIAMING LIANG AND RENATO D. C. MONTEIRO

and thus
Cavgk - 1

Cavgi - 1

=
i

k
+
Ci + . . .+ Ck - 1

kCavgi - 1

\geq i

k
.

The conclusion follows from the above inequality, the definition of Mk in (14), and
the fact that max\{ a, c\} \geq max\{ b, d\} for a, b, c, d \in \BbbR such that a \geq b and c \geq d.

The following result describes bounds on Ak in terms of the first k elements of
the sequence \{ Mi\} and also in terms of Mk alone.

Lemma 4.7. Consider the sequences \{ Ak\} and \{ Mi\} defined in (9) and (14),
respectively. For every k \geq 12, we have

Ak \leq

\Biggl(
k - 1\sum
i=0

1\surd
Mi

\Biggr) 2

\leq k
k - 1\sum
i=0

1

Mi
\leq k2 \theta k

Mk
(36)

and

Ak \geq
1

4

\Biggl(
k - 1\sum
i=0

1\surd
Mi

\Biggr) 2

\geq k2

12Mk
,(37)

where \theta k is as in (18).

Proof. We first establish the inequalities in (36). Using the first two identities in
(9) and the fact

\surd
b1 + b2 \leq

\surd
b1 +

\surd
b2 for any b1, b2 \in \BbbR +, we conclude that for any

i \geq 0,

\sqrt{}
Ai+1 =

\biggl(
Ai +

1 +
\surd
1 + 4MiAi
2Mi

\biggr) 1
2

\leq
\biggl(
Ai +

1 +
\surd
MiAi

Mi

\biggr) 1
2

\leq
\sqrt{}
Ai +

1\surd
Mi

.

Now, the first inequality in (36) follows by summing the above inequality from i = 0
to k - 1 and using the assumption that A0 = 0. Moreover, the second and third
inequalities in (36) follow straightforwardly from the Cauchy--Schwarz inequality and
the definition of \theta k in (18), respectively.

We now establish the inequalities in (37). Using the first two identities in (9), we
have

\sqrt{}
Ai+1 =

\biggl(
Ai +

1 +
\surd
1 + 4MiAi
2Mi

\biggr) 1
2

\geq
\biggl(
Ai +

1 + 2
\surd
MiAi

2Mi

\biggr) 1
2

\geq
\sqrt{}
Ai +

1

2
\surd
Mi

.

The first inequality in (37) now follows by summing the above inequality from i = 0
to k - 1 and using the assumption that A0 = 0. For every k \geq 12, we have

k - 1\sum
i=1

\surd
i \geq

\int k - 1

0

\surd
xdx =

2

3
(k - 1)

3
2 \geq 2

3

\biggl(
11

12
k

\biggr) 3
2

\geq 0.58k
3
2 ,

which, together with Lemma 4.6, then implies that

k - 1\sum
i=1

1\surd
Mi

\geq 1\surd
kMk

k - 1\sum
i=1

\surd
i \geq 0.58k\surd

Mk

.

The second inequality in (37) now follows immediately from the one above.

D
ow

nl
oa

de
d

01
/1

9/
21

 to
 1

43
.2

15
.1

37
.4

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

AVERAGE CURVATURE ACG METHOD 231

The following result provides a lower bound on the term inside the parentheses
of the left-hand side of (30).

Lemma 4.8. For every k \geq 12, we have

\sum
i\in \scrG k

Ai+1

Mi
\geq k3

3402M2
k

.

Proof. Let k \geq 12 be given and define

\~\scrG k := \{ i \in \scrG k : i \geq \lfloor k/3\rfloor \} , \~\scrB k := \{ i \in \scrB k : i \geq \lfloor k/3\rfloor \} .(38)

Using Lemma 4.6, the facts that \~\scrG k \subset \scrG k, \{ Ak\} is strictly increasing, and i/k \geq 2/7
for any i \in \~\scrG k and k \geq 12, and inequality (37), we conclude that

\sum
i\in \scrG k

Ai+1

Mi
\geq
\sum
i\in \scrG k

iAi+1

kMk
\geq
\sum
i\in \~\scrG k

iAi+1

kMk
\geq 2| \~\scrG k|

7Mk
A\lfloor k/3\rfloor +1

\geq 2| \~\scrG k|
7Mk

A\lceil k/3\rceil \geq
| \~\scrG k| (\lceil k/3\rceil)2

42MkM\lceil k/3\rceil
\geq | \~\scrG k| k2

378MkM\lceil k/3\rceil
.(39)

On the other hand, Lemma 4.6 with i = \lceil k/3\rceil implies that

Mk \geq
\lceil k/3\rceil
k

M\lceil k/3\rceil \geq
1

3
M\lceil k/3\rceil .

Moreover, the definition of \~\scrG k in (38), the fact that \~\scrB k \subset \scrB k, and Lemma 4.5 imply
that

| \~\scrG k| = k - \lfloor k/3\rfloor - | \~\scrB k| \geq k - \lfloor k/3\rfloor - | \scrB k| \geq k/3.

The conclusion of the lemma now follows by combining (39) with the last two obser-
vations.

We are now ready to prove the main result of our paper.

Proof of Theorem 2.1. (a) The conclusion immediately follows from Lemma
4.1(d).

(b) Letting x\ast \in X\ast be given and noting that \eta k(x\ast) \geq 0 in view of the definition
of \eta k in (26) and using the above inequality, Lemma 4.4 with u = x\ast , Lemma 4.5,
and relation (36), we conclude that\Biggl(

1

36.1

\sum
i\in \scrG k

Ai+1

Mi

\Biggr)
min

1\leq i\leq k
\| vi\| 2 \leq \| x0 - x\ast \| 2 + \=mD2Ak +

1 - \gamma
\gamma

D2| \scrB k|

\leq D2 + \=mD2Ak +
(1 - \gamma)D2k

3\gamma

\leq D2 +
\=mD2k2\theta k
Mk

+
(1 - \gamma)D2k

3\gamma
.

Statement (b) of the theorem now follows by combining the above inequality and
Lemma 4.8.

D
ow

nl
oa

de
d

01
/1

9/
21

 to
 1

43
.2

15
.1

37
.4

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

232 JIAMING LIANG AND RENATO D. C. MONTEIRO

5. Numerical results. This section presents computational results to illustrate
the performance of two variants of the AC-ACG method against five other state-of-
the-art algorithms on a collection of nonconvex optimization problems that are either
in the form of or can be easily reformulated into (1). It contains five subsections, with
each one reporting computational results on one of following classes of nonconvex op-
timization problems: (a) quadratic programming (subsection 5.1); (b) support vector
machine (SVM; subsection 5.2); (c) sparse PCA (subsection 5.3); (d) matrix com-
pletion (subsection 5.4); and (e) nonnegative matrix factorization (NMF; subsection
5.5). Note that sparse PCA and NMF are problems for which domh is unbounded.

We start by describing the two AC-ACG variants considered in our computational
experiments, both of which do not impose the restrictive condition (8) on the choice
of \alpha and \gamma . The first variant, which we refer to as ACT throughout this section,
preserves all steps in the AC-ACG method except that \gamma and \alpha are provided as input
by the user without necessarily satisfying (8). In our implementation, we set \gamma = 0.01
for every problem class listed above except the one in (b) for which \gamma is set to 0.002.
The latter choice of \gamma prevents the percentage of good iterations from being 100\% all
the time and instead keeps it within a range of about 65\% to 75\% (see subsection 5.2).
The choice of the scalar \alpha varies per problem class and is described in each one of
the subsections below. The second variant, referred to as AC throughout this section,
sets M0 = 0.01M and computes Mk+1 as in (14) with \gamma = 10 - 6 and Ck as

Ck = max\{ \scrC (ygk+1; \~xk), 0\} ,(40)

where \scrC (\cdot ; \cdot) is defined in (4). Our implementation of AC sets \alpha to values that depend
on the problem class under consideration and are specified in the subsections below.
Clearly, among the two variants described above, ACT is the closest to AC-ACG.

We compare the two variants of AC-ACG with five other methods, namely, (i) the
AG method proposed in [6]; (ii) the NC-FISTA of [16]; (iii) the ADAP-NC-FISTA also
described in [16]; (iv) the NM-APG method proposed in [13]; and (v) the UPFAG
method in [7]. We remark that methods (i)--(iii) are the three pure ACG variants
that have been outlined in subsection 3.2 and methods (iv) and (v) are two among
the three hybrid ACG variants that have been discussed in subsection 3.3. For the
sake of simplicity, we use the abbreviations NM, UP, NC, and AD to refer to the NM-
APG, UPFAG, NC-FISTA, and ADAP-NC-FISTA methods, respectively, in both the
discussions and the tables below.

This paragraph provides details about the three pure ACG variants used in our
benchmark. AG was implemented by the authors based on its description provided
in Algorithm 1 of [6] where the sequences \{ \alpha k\} , \{ \beta k\} , and \{ \lambda k\} were chosen as
\alpha k = 2/(k + 1), \beta k = 0.99/M , and \lambda k = k\beta k/2, respectively, and the Lipschitz
constant M was computed as described in each of the five subsections below. We
note that the choice \beta k = 0.99/M used in our implementation differs from the one
suggested in [6], namely, \beta k = 0.5/M (see (2.27) of [6]) and consistently improves the
practical performance of AG. The NC and AD variants were also implemented by the
authors based on their descriptions in [16]. The triple (M,m,A0) needed as input by
NC was set to (M/0.99,m, 5000) where m \geq \=m (see the first inequality in (5)). The
triple (M0,m0, \theta) needed as input by AD was set to (1, 1000, 1.25) in subsections 5.1,
5.2, and 5.5 and (1, 1, 1.25) in subsections 5.3 and 5.4.

This paragraph provides implementation details for the two hybrid ACG variants
used in our benchmark. The NM method was implemented by the authors based
on its description provided in Algorithm 2 of [13] which does not use line searches
to compute Ma

k and Mna
k . More specifically, the quadruple (\alpha x, \alpha y, \eta , \delta) needed as

D
ow

nl
oa

de
d

01
/1

9/
21

 to
 1

43
.2

15
.1

37
.4

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

AVERAGE CURVATURE ACG METHOD 233

input by Algorithm 2 of [13] was set to (0.99/M, 0.99/M, 0.8, 1). The code for UP
was made available by the authors of [7], where UP is described (see Algorithm 1 of
[7]). In particular, we have used their choice of parameters but have modified the
code slightly to accommodate for the termination criterion (7) used in our bench-

mark. More specifically, the parameters (\^\lambda 0, \^\beta 0, \gamma 1, \gamma 2, \gamma 3, \delta , \sigma) needed as input by UP
were set to (1/M, 1/M, 1, 1, 1, 10 - 3, 10 - 10). Recall that UP computes the good upper
curvatures Ma

k and Mna
k by line searches (see subsection 3.3). Our implementation

of UP initiates these scalars in both line searches by using a Barzilai--Borwein type
strategy (see equation (2.12) in [7]).

All seven methods terminate with a pair (z, v) satisfying

v \in \nabla f(z) + \partial h(z),
\| v\|

\| \nabla f(z0)\| + 1
\leq \^\rho ,

where \^\rho = 5\times 10 - 4 in the matrix completion problem and \^\rho = 10 - 7 in all the other
problems. All the computational results were obtained using MATLAB R2017b on a
MacBook Pro with a quad-core Intel Core i7 processor and 16 GB of memory.

5.1. Quadratic programming. This subsection discusses the performance of
the AC-ACG method for solving a class of quadratic programming problems.

More specifically, it considers the problem

min
\Bigl\{
f(Z) := - \alpha 1

2
\| D\scrB (Z)\| 2 + \alpha 2

2
\| \scrA (Z) - b\| 2 : Z \in Pn

\Bigr\}
,(41)

where (\alpha 1, \alpha 2) \in \BbbR 2
++, b \in \BbbR l is a vector with entries sampled from the uniform

distribution \scrU [0, 1], D \in \BbbR n\times n is a diagonal matrix whose diagonal entries are sampled
from the discrete uniform distribution \scrU \{ 1, 1000\} , Pn := \{ Z \in \scrS n+ : tr(Z) = 1\}
denotes the spectraplex, and \scrA : \scrS n+ \rightarrow \BbbR l and \scrB : \scrS n+ \rightarrow \BbbR n are linear operators
given by

[\scrA (Z)]i = \langle Ai, Z\rangle F \forall 1 \leq i \leq l,
[\scrB (Z)]j = \langle Bj , Z\rangle F \forall 1 \leq j \leq n,

with Ai \in \scrS n+ and Bj \in \scrS n+ all being sparse matrices having the same density (i.e.,
percentage of nonzeros) d and nonzero entries uniformly sampled from [0, 1].

The quadratic programming problem (41) is an instance of (1) where h is the
indicator function of the spectraplex Pn. For chosen curvature pairs (M,m) \in \BbbR 2

++,
the scalars \alpha 1 and \alpha 2 are chosen so that \lambda max(\nabla 2f) =M and \lambda min(\nabla 2f) = - m where
\lambda max(\cdot) and \lambda min(\cdot) denote the largest and smallest eigenvalue functions, respectively.

We start all seven methods from the same initial point Z0 = In/n where In is an
n \times n identity matrix, namely Z0 is the centroid of Pn. The parameter \alpha is set to 1
in AC and 0.5 in ACT.

Numerical results for the seven methods are given in Tables 1, 3, and 5, with
each table addressing a collection of instances with the same dimension pair (l, n) and
density d. Specifically, each row of Tables 1, 3, and 5 corresponds to an instance of
(41), their first column specifies the pair (M,m) for the corresponding instance, and
their second to eighth columns provide numbers of iterations and running times for
the seven methods. The best objective function values obtained by all seven methods
are not reported since they are essentially the same on all instances. The number of
resolvent evaluations is 1 in NC, 2 in AG, AC and ACT, 1 or 2 in NM, 1 on average
in AD, and 3 on average in UP. The bold numbers highlight the method that has the
best performance in an instance of the problem.

D
ow

nl
oa

de
d

01
/1

9/
21

 to
 1

43
.2

15
.1

37
.4

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

234 JIAMING LIANG AND RENATO D. C. MONTEIRO

Some statistic measures for AC and ACT to solve the instances in Tables 1, 3,
and 5 are given in Tables 2, 4, and 6, respectively. The first column in these tables is
the same as that of Tables 1, 3, and 5, the second (resp., fifth) column provides the
maximum of all observed curvatures Ck in AC (resp., ACT), the third (resp., sixth)
column provides the average of all observed curvatures Ck in AC (resp., ACT), and
the fourth (resp., seventh) column gives the percentage of good iterations (see (27))
in AC (resp., ACT).

In Tables 1--2, the density d = 2.5\% and the dimension pair (l, n) = (50, 200).
In Tables 3--4, the density d = 0.5\% and the dimension pair (l, n) = (50, 400).
In Tables 5--6, the density d = 0.1\% and the dimension pair (l, n) = (50, 800).

Table 1
Numerical results for AG, NM, UP, NC, AD, ACT, and AC.

M,m Iteration count/Running time (s)

AG NM UP NC AD ACT AC

106, 106 46/1.6 80/2.1 9/0.7 33/0.8 12/0.7 23/1.4 8/0.6

106, 105 3089/130 6242/191 2633/261 3384/94 2206/89 1009/57 883/39

106, 104 5400/188 10404/328 7203/705 1236/30 2591/104 1820/109 1760/73

106, 103 4621/176 11053/360 5429/540 5139/122 2637/109 1712/118 1508/68

106, 102 4476/176 11271/312 6891/653 11838/283 2639/116 1610/103 1472/65

106, 10 4461/171 11253/311 6479/613 14851/362 2640/116 1599/155 1485/66

Table 2
AC and ACT statistics.

M,m AC ACT

Max Avg Good Max Avg Good

106, 106 1.88E5 3.04E4 88\% 8.38E5 1.53E5 95\%

106, 105 4.85E5 8.84E4 64\% 7.00E5 9.25E4 98\%

106, 104 5.42E5 1.24E5 65\% 7.24E5 1.04E5 99\%

106, 103 5.48E5 1.20E5 69\% 7.27E5 1.16E5 97\%

106, 102 5.49E5 1.20E5 68\% 7.27E5 1.10E5 99\%

106, 10 5.49E5 1.18E5 70\% 7.27E5 1.09E5 99\%

Table 3
Numerical results for AG, NM, UP, NC, AD, ACT, and AC.

M,m Iteration count/Running time (s)

AG NM UP NC AD ACT AC

106, 106 44/4.4 75/5.1 10/1.9 33/2.1 12/1.8 17/2.6 8/1.0

106, 105 1411/134 3151/224 56/13 610/39 530/56 403/58 131/16

106, 104 1963/195 5071/373 105/26 1212/76 868/93 599/88 237/28

106, 103 1935/193 5172/382 115/29 4415/277 900/103 564/95 245/30

106, 102 1934/190 5045/367 119/32 7325/465 904/103 559/91 242/29

106, 10 1934/194 5056/373 113/31 7527/477 904/104 561/92 246/29

D
ow

nl
oa

de
d

01
/1

9/
21

 to
 1

43
.2

15
.1

37
.4

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

AVERAGE CURVATURE ACG METHOD 235

Table 4
AC and ACT statistics.

M,m AC ACT

Max Avg Good Max Avg Good

106, 106 2.40E5 3.22E4 88\% 6.32E5 1.67E5 93\%

106, 105 1.53E5 1.98E4 76\% 4.05E5 5.92E4 99\%

106, 104 2.03E5 2.50E4 72\% 4.16E5 6.66E4 98\%

106, 103 2.07E5 2.55E4 69\% 4.17E5 6.58E4 98\%

106, 102 2.08E5 2.55E4 71\% 4.17E5 6.54E4 98\%

106, 10 2.08E5 2.51E4 68\% 4.17E5 6.56E4 98\%

Table 5
Numerical results for AG, NM, UP, NC, AD, ACT, and AC.

M,m Iteration count/Running time (s)

AG NM UP NC AD ACT AC

106, 106 69/22 117/26 13/8 38/8 11/7 18/13 8/4

106, 105 277/119 502/118 9/6 176/36 24/10 31/20 7/3

106, 104 491/173 1030/246 13/9 786/163 60/24 65/39 11/5

106, 103 531/169 1144/259 13/9 1519/313 70/28 67/41 12/7

106, 102 535/172 1156/260 13/9 1698/351 71/28 67/43 12/6

106, 10 536/172 1157/266 13/8 1703/352 71/28 67/44 12/5

Table 6
AC and ACT statistics.

M,m AC ACT

Max Avg Good Max Avg Good

106, 106 1.28E5 1.70E4 88\% 3.65E5 5.37E4 94\%

106, 105 1.80E4 2.84E3 86\% 1.78E5 2.64E4 96\%

106, 104 3.26E4 3.89E3 91\% 1.78E5 2.99E4 98\%

106, 103 3.41E4 3.73E3 92\% 1.78E5 2.62E4 98\%

106, 102 3.42E4 3.75E3 92\% 1.78E5 2.58E4 98\%

106, 10 3.43E4 3.75E3 92\% 1.78E5 2.57E4 98\%

In summary, computational results demonstrate that (i) the computed average
curvature of AC is small compared with M and the computed maximum curvature;
(ii) the percentage of good iterations of AC lies in a suitable range; and (iii) AC has
the best performance in terms of running time.

5.2. Support vector machine. This subsection presents the performance of
AC-ACG for solving an SVM problem. Given data points \{ (xi, yi)\} pi=1, where xi \in \BbbR n
is a feature vector and yi \in \{ - 1, 1\} denotes the corresponding label, we consider the
SVM problem defined as

min
z\in \BbbR n

1

p

p\sum
i=1

\ell (xi, yi; z) +
\lambda

2
\| z\| 2 + I\scrB r

(z)(42)

for some \lambda , r > 0, where \ell (xi, yi; \cdot) = 1 - tanh(yi\langle \cdot , xi\rangle) is a nonconvex sigmoid loss
function and I\scrB r

(\cdot) is the indicator function of the ball Br := \{ z \in \BbbR n : \| z\| \leq r\} .
The SVM problem (42) is an instance of nonconvex SCO problems (1) where

D
ow

nl
oa

de
d

01
/1

9/
21

 to
 1

43
.2

15
.1

37
.4

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

236 JIAMING LIANG AND RENATO D. C. MONTEIRO

f(z) =
1

p

p\sum
i=1

\ell (xi, yi; z) +
\lambda

2
\| z\| 2, h(z) = I\scrB r

(z).

Clearly, f is differentiable everywhere and its gradient is M -Lipschitz continuous
where

M =
1

p

p\sum
i=1

Li + \lambda , Li =
4
\surd
3

9
\| xi\| 2 \forall i = 1, . . . , p.(43)

Since no sharper m < M satisfying the first inequality in (5) is known, we simply set
m =M .

We generate synthetic data sets as follows: for each data point (xi, yi), xi is drawn
from the uniform distribution on [0, 1]n and is sparse with 5\% nonzero components,
and yi = sign(\langle \=z, xi\rangle) for some \=z \in Br. We consider four different problem sizes
(n, p), i.e., (1000, 500), (2000, 1000), (3000, 1000), and (4000, 500). We set \lambda = 1/p
and r = 50.

We start all seven methods from the same initial point z0 that is chosen randomly
from the uniform distribution within the ball Br. The parameter \alpha is set to 0.5 in
both AC and ACT.

Numerical results of the seven methods are given in Table 7 and some statistic
measures of AC and ACT are given in Table 8. The explanation of their columns
excluding the first one is the same as those of Tables 1--6 (see the two paragraphs
preceding Table 1). Their first columns differ from those of Tables 1--6 in that they
only list the value of M computed according to (43). The best objective function
values obtained by all seven methods are not reported since they are essentially the
same on all instances. The number of resolvent evaluations is 1 in NC, 2 in AG,
AC, and ACT, 1 or 2 in NM, 1 on average in AD, and 3 on average in UP. The
bold numbers highlight the method that has the best performance in an instance of

Table 7
Numerical results for AG, NM, UP, NC, AD, ACT, and AC.

M Iteration count/Running time (s)

AG NM UP NC AD ACT AC

13 37384
639

42532
649

130
8

42533
233

12274
188

583
9

546
6

25 112562
4419

123551
4486

278
39

174845
5833

21127
1836

1017
93

1131
60

38 155503
12636

163197
12101

401
97

500000*
26258*

71991
8957

1208
168

1032
95

50 79752
4406

79064
5264

247
44

172535
5503

12450
1033

730
65

615
39

Table 8
AC and ACT statistics.

M AC ACT

Max Avg Good Max Avg Good

13 0.25 0.05 67\% 0.06 0.05 71\%

25 0.47 0.06 65\% 0.08 0.06 69\%

38 0.34 0.07 63\% 0.10 0.07 66\%

50 0.18 0.07 71\% 0.11 0.07 74\%

D
ow

nl
oa

de
d

01
/1

9/
21

 to
 1

43
.2

15
.1

37
.4

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

AVERAGE CURVATURE ACG METHOD 237

the problem. The numbers marked with * indicate that the maximum number of
iterations has been reached.

In summary, computational results demonstrate that (i) the computed average
curvature of AC is small compared with M and the computed maximum curvature;
(ii) the percentage of good iterations of AC lies in a suitable range; and (iii) AC is
either the best method or close to the best one in terms of running time.

5.3. Sparse PCA. This subsection considers a penalized version of the sparse
PCA problem, namely,

min
X,Y \in \BbbR p\times p

 - \langle \^\Sigma , X\rangle F +
\mu

2
\| X\| 2F +Q\lambda ,b(Y) + \lambda \| Y \| 1 +

\beta

2
\| X - Y \| 2F + I\scrF r (X),(44)

where the dataset consists of an empirical covariance matrix \^\Sigma \in \BbbR p\times p, two regular-
ization parameters \mu > 0 and \lambda > 0, a penalty parameter \beta > 0, and two scalars b > 0
and r \in \BbbN +. Moreover, \| \cdot \| 1 and Q\lambda ,b(\cdot) are the matrix 1-norm and a decomposable
nonconvex penalty function defined as

\| Y \| 1 :=

p\sum
i,j=1

| Yij | , Q\lambda ,b(X) :=

p\sum
i,j=1

q\lambda ,b (Xij) ,

where

q\lambda ,b(t) :=

\left\{ - t2

2b if | t| \leq b\lambda ;
b\lambda 2

2 - \lambda | t| otherwise,

and I\scrF r (\cdot) is the indicator function of the Fantope

\scrF r := \{ X \in \scrS n : 0 \preceq X \preceq I and tr(X) = r\} .

Clearly, problem (44) is an instance of the nonconvex SCO problem (1) where

f(X,Y) = - \langle \^\Sigma , X\rangle F+
\mu

2
\| X\| 2F+Q\lambda ,b(Y)+

\beta

2
\| X - Y \| 2F , h(X,Y) = I\scrF r (X)+\lambda \| Y \| 1.

Moreover, it is easy to see that the pair

(M,m) =

\biggl(
max

\biggl\{
\mu + 2\beta ,

1

b

\biggr\}
,
1

b

\biggr)
(45)

satisfies assumption (A2).
We discuss how synthetic datasets are generated. Let \Sigma \in \BbbR p\times p be an unknown

covariance matrix and X\ast be the projection matrix onto the r-dimensional principal
subspace of \Sigma . In the sparse PCA problem, we seek an s-sparse approximation X of
X\ast in the sense that \| diag(X)\| 0 \leq s, where s \in \BbbN +. We generate four datasets by
designing four covariance matrices \Sigma as described in [9] and list all required parameters
in Table 9. For each covariance matrices \Sigma , we sample n = 80 independent and
identically distributed observations from the normal distribution \scrN (0,\Sigma) and then
calculate the sample covariance matrix \^\Sigma .

All seven methods are started from the same initial point (X0, Y0) that are chosen
as follows. For datasets I and II, we set X0 = Y0 to be a diagonal matrix with the
first five diagonal entries equal to 1 and the other entries equal to zero. For datasets
III and IV, we set X0 = Y0 with the first diagonal entry being 1 and any other entries

D
ow

nl
oa

de
d

01
/1

9/
21

 to
 1

43
.2

15
.1

37
.4

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

238 JIAMING LIANG AND RENATO D. C. MONTEIRO

Table 9
Synthetic datasets for the sparse PCA problem.

Dataset s r p b \beta \mu \lambda

I 10 5 1200 3 0.33 1.67 0.25

II 10 5 1200 3 0.33 3.33 1

III 5 1 1200 3 30 3 5

IV 5 1 1200 3 30 0.67 1

Table 10
Numerical results for AG, NM, UP, NC, AD, ACT, and AC.

M Iteration count/Running time (s)

AG NM UP NC AD ACT AC

2.33 21/8.63 18/4.96 7/6.71 15/4.50 31/10.70 18/9.70 15/7.33

4 7/10.08 9/2.73 8/7.55 13/4.42 12/4.01 9/4.66 7/3.94

63 32/19.91 43/12.06 18/17.61 81/22.54 48/16.05 43/24.08 27/12.04

60.67 35/19.01 46/14.28 17/16.97 84/24.31 52/17.05 48/26.70 31/12.51

Table 11
AC and ACT statistics.

M AC ACT

Max Avg Good Max Avg Good

2.33 2.00 0.72 67\% 2.83 0.90 83\%

4 3.67 3.41 71\% 5.02 5.02 89\%

63 44.41 31.12 89\% 43.59 43.55 98\%

60.67 36.00 28.26 94\% 41.55 41.39 98\%

being 0. We observe that the initial points were chosen differently so as to guarantee
that they are feasible (i.e., lie in domh) for their respective instances. The parameter
\alpha is set to 0.5 in both AC and ACT.

Numerical results of the seven methods are given in Table 10 and some statistic
measures of AC and ACT are given in Table 11. The explanation of their columns
excluding the first one is the same as those of Tables 7 and 8, respectively. Their
first columns differ from those of Tables 7 and 8 in that the value of M is computed
according to (45). The best objective function values obtained by all seven methods
are not reported since they are essentially the same on all instances. The number of
resolvent evaluations is 1 in NC, 2 in AG, AC, and ACT, 1 or 2 in NM, 1 on average
in AD, and 3 on average in UP. The bold numbers highlight the method that has the
best performance in an instance of the problem.

In summary, computational results demonstrate that (i) the computed average
curvature of AC is close to the computed maximum curvature; (ii) the percentage of
good iterations of AC lies in a suitable range; and (iii) AC is either the best method
or close to the best one in terms of running time.

5.4. Matrix completion. This subsection focuses on a constrained version of
the nonconvex low-rank matrix completion problem. Before stating the problem, we
first give a few definitions. Let \Omega be a subset of \{ 1, . . . , l\} \times \{ 1, . . . , n\} and let \Pi \Omega

denote the linear operator that maps a matrix A to the matrix whose entries in \Omega
have the same values of the corresponding ones in A and whose entries outside of \Omega

D
ow

nl
oa

de
d

01
/1

9/
21

 to
 1

43
.2

15
.1

37
.4

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

AVERAGE CURVATURE ACG METHOD 239

are all zero. Also, for given parameters \beta > 0 and \theta > 0, let p : \BbbR \rightarrow \BbbR + denote the
log-sum penalty defined as

p(t) = p\beta ,\theta (t) := \beta log

\biggl(
1 +
| t|
\theta

\biggr)
.

The constrained version of the nonconvex low-rank matrix completion problem
considered in this subsection is

min
Z\in \BbbR l\times n

\Biggl\{
1

2
\| \Pi \Omega (Z - O)\| 2F + \mu

r\sum
i=1

p(\sigma i(Z)) : Z \in \scrB R

\Biggr\}
,(46)

where R is a positive scalar, \scrB R := \{ Z \in \BbbR l\times n : \| Z\| F \leq R\} , O \in \BbbR \Omega is an incomplete
observed matrix, \mu > 0 is a parameter, r := min\{ l, n\} , and \sigma i(Z) is the ith singular
value of Z. The above problem differs from the one considered in [25] in that it adds
the constraint \| Z\| F \leq R to the latter one.

The matrix completion problem in (46) is equivalent to

min
Z\in \BbbR l\times n

f(Z) + h(Z),(47)

where

f(Z) =
1

2
\| \Pi \Omega (Z - O)\| 2F + \mu

r\sum
i=1

[p(\sigma i(Z)) - p0\sigma i(Z)],

h(Z) = \mu p0\| Z\| \ast + I\scrB R
(Z), p0 = p\prime (0) =

\beta

\theta
,

and \| \cdot \| \ast denotes the nuclear norm defined as \| \cdot \| \ast :=
\sum r
i=1 \sigma i(\cdot). Note that the

inclusion of the constraint Z \in \scrB R in (46) implies that the above composite function
h has bounded domain and hence satisfies assumption (A3). It is proved in [25]
that the second term in the definition of f , i.e., \mu

\sum r
i=1[p(\sigma i(\cdot)) - p0\sigma i(\cdot)], is concave

and 2\mu \tau -smooth where \tau = \beta /\theta 2, so f is nonconvex and smooth. Since h is convex
and nonsmooth, the problem in (47) falls into the general class of nonconvex SCO
problems (1). It is easy to see that the pair

(M,m) = (max\{ 1, 2\mu \tau \} , 2\mu \tau)(48)

satisfies assumption (A2).
We use the MovieLens dataset1 to obtain the observed index set \Omega and the incom-

plete observed matrix O. The dataset includes a sparse matrix with 100,000 ratings
of \{ 1,2,3,4,5\} from 943 users on 1682 movies, namely l = 943 and n = 1682. The
radius R is chosen as the Frobenius norm of the matrix of size 943\times 1682 containing
the same entries as O in \Omega and 5 in the entries outside of \Omega .

We start all seven methods from the same initial point Z0 that is sampled from
the standard Gaussian distribution and is within \scrB R. The parameter \alpha is set to 0.5
in AC and 0.1 in ACT.

Numerical results of the seven methods are given in Table 12 and some statistic
measures of AC and ACT are given in Table 13. The format of Table 12 is similar to
that of Table 10 with the exception that the second to eighth columns also provide

1http://grouplens.org/datasets/movielens/.

D
ow

nl
oa

de
d

01
/1

9/
21

 to
 1

43
.2

15
.1

37
.4

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

http://grouplens.org/datasets/movielens/.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

240 JIAMING LIANG AND RENATO D. C. MONTEIRO

Table 12
Numerical results for AG, NM, UP, NC, AD, ACT, and AC.

M Function value/Iteration count/Running time (s)

AG NM UP NC AD ACT AC

4.4 2257
3856
4568

1809
1036
1033

2605
521
1545

2628
4780
3925

2625
1674
1946

2252
5420
5803

2288
765
833

8.9 3886
9158
10251

3359
1617
1605

4261
576
1621

4246
9751
7901

4203
1794
1930

3846
8726
8806

3884
968
1065

20 4282
22902
29274

3635
2875
2836

4637
676
1914

4641
22259
15912

4582
2209
2364

4282
13031
13869

4267
1079
1200

30 5967
37032
41673

5237
3717
4182

6753
606
1628

6380
32223
22265

6293
1963
2104

5963
18267
19913

5975
1085
1214

Table 13
AC and ACT statistics.

M AC ACT

Max Avg Good Max Avg Good

4.4 1.00 0.31 96\% 1.00 0.45 99\%

8.9 1.00 0.28 94\% 1.39 0.48 99\%

20 0.99 0.25 91\% 2.65 0.72 99\%

30 0.97 0.23 89\% 4.36 1.13 96\%

the function values of (46) at the last iteration and the numbers of iterations for all
seven methods. Note that the first columns of Tables 12 and 13 give the value of M
computed according to (48). The number of resolvent evaluations is 1 in NC, 2 in
AG, AC, and ACT, 1 or 2 in NM, 1 on average in AD, and 3 on average in UP. The
bold numbers highlight the method that has the best performance in an instance of
the problem.

In summary, computational results demonstrate that (i) the computed average
curvature for AC is small compared with M and the computed maximum curvature;
(ii) the percentage of good iterations of AC lies in a suitable range; and (iii) AC has
the best performance in terms of running time. Although AC uses the least amount
of time to terminate, NM finds solutions with the smallest objective function values.

5.5. Nonnegative matrix factorization. This subsection focuses on the fol-
lowing NMF problem:

min

\biggl\{
f(X,Y) :=

1

2
\| A - XY \| 2F : X \geq 0, Y \geq 0

\biggr\}
,(49)

where A \in \BbbR n\times l, X \in \BbbR n\times p, and Y \in \BbbR p\times l, which have been thoroughly studied in
the literature (see, e.g., [8, 12]).

This subsection reports the efficiency of directly using all seven methods to solve
(49) without making use of its two-block structure. We use the facial image dataset
provided by AT\&T Laboratories Cambridge2 to construct the matrix A. More specif-
ically, this dataset consists of 400 images, and each of those contains 92\times 112 pixels

2https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.

D
ow

nl
oa

de
d

01
/1

9/
21

 to
 1

43
.2

15
.1

37
.4

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

AVERAGE CURVATURE ACG METHOD 241

Table 14
Numerical results for AG, NM, UP, NC, AD, ACT, and AC.

Method Iteration count Running time(s)

AG 786 73.03

NM 162 14.91

UP 37 11.12

NC 656 41.67

AD 44 5.21

ACT 41 6.54

AC 36 4.70

with 256 gray levels per pixel. It results in an n \times l = 10,304 \times 400 matrix A whose
columns are the vectorized images. The dimension p is set to 20.

We start all methods from the initial point (X0, Y0) = (1n\times p/(np),1p\times l/(pl)),
where 1n\times p and 1p\times l are matrices of all ones of sizes n \times p and p \times l, respectively.
We estimate M in (5) as M = 100\times \scrC ((X0, Y0), (0, 0)) where \scrC (\cdot , \cdot) is defined in (4).
Since no sharper m < M satisfying the first inequality in (5) is known, we simply set
m =M . The parameter \alpha is set to 0.7 in both AC and ACT.

Numerical results for the seven methods are given in Table 14. The bold num-
bers highlight the method that has the best performance in the problem. The best
objective function values obtained by all seven methods are not reported since they
are essentially the same.

6. Concluding remarks. This paper presents an average curvature accelerated
composite gradient method, namely, the AC-ACG method, for solving the N-SCO
problem which is based on the average of all observed curvatures. More specifically,
as opposed to other ACG variants, which use a known Lipschitz constant or a back-
tracking procedure that searches for a good upper curvature Mk, AC-ACG uses the
average of all observed curvatures to compute Mk (see (14)) and always accepts the
first computed iterate according to (2) no matter whether Mk is good or not. A nice
feature of AC-ACG is that its convergence rate bound is expressed in terms of Mk

rather than an upper curvature M \geq \=M .
We now discuss some possible extensions of this paper. First, numerical results

show that the AC variant, which computes Ck as in (40), performs substantially
better than previous ACG variants as well as the ACT variant, which is closer to the
main method analyzed in this paper, namely, AC-ACG. However, convergence rate
analysis of AC (possibly with \gamma and \alpha satisfying (8)) is an interesting open problem.
Second, the AC-ACG method performs two resolvent evaluations of h per iteration.
It would be desirable to develop AC-ACG variants which only perform one resolvent
evaluation of h per iteration. Third, the analysis of AC-ACG assumes that assumption
(A3) holds, i.e., domh is bounded. It would be interesting to develop a variant of it
with a provable iteration-complexity similar to the one in this paper without assuming
(A3).

Appendix A. A technical result. Recall the definition of a good upper
curvature of f given above (3).

Lemma A.1. If Mk is a good upper curvature of f at \~xk and yk+1 = y(\~xk;Mk)
where y(\cdot ; \cdot) is defined in (2), then

\phi (yk+1) \leq \phi (\~xk) -
Mk

2
\| yk+1 - \~xk\| 2.(50)

D
ow

nl
oa

de
d

01
/1

9/
21

 to
 1

43
.2

15
.1

37
.4

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

242 JIAMING LIANG AND RENATO D. C. MONTEIRO

Proof. Using the fact that Mk is a good upper curvature of f at \~xk and (3), we
have

\phi (yk+1) \leq \ell f (yk+1; \~xk) + h(yk+1) +
Mk

2
\| yk+1 - \~xk\| 2.(51)

It follows from the definition of yk+1, (2), and the fact that the objective function in
(2) is Mk-strongly convex that for every u \in domh,

\ell f (u; \~xk) + h(u) +
Mk

2
\| u - \~xk\| 2

\geq \ell f (yk+1; \~xk) + h(yk+1) +
Mk

2
\| yk+1 - \~xk\| 2 +

Mk

2
\| u - yk+1\| 2,

which together with u = \~xk implies that

\phi (\~xk) \geq \ell f (yk+1; \~xk) + h(yk+1) +Mk\| yk+1 - \~xk\| 2.

Now inequality (50) immediately follows from (51) and the above inequality.

Acknowledgments. We are grateful to Guanghui Lan and Saeed Ghadimi for
providing the code for the UPFAG method of their paper [7]. We are also grateful to
the two anonymous referees and the associate editor Defeng Sun for providing helpful
comments on earlier versions of this manuscript.

REFERENCES

[1] A. Auslender and M. Teboulle, Interior gradient and proximal methods for convex and
conic optimization, SIAM J. Optim., 16 (2006), pp. 697--725.

[2] A. Beck and M. Teboulle, Fast gradient-based algorithms for constrained total variation im-
age denoising and deblurring problems, IEEE Trans. Image Process., 18 (2009), pp. 2419--
2434.

[3] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse
problems, SIAM J. Imaging Sci., 2 (2009), pp. 183--202.

[4] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford, Accelerated methods for nonconvex
optimization, SIAM J. Optim., 28 (2018), pp. 1751--1772.

[5] D. Drusvyatskiy and C. Paquette, Efficiency of minimizing compositions of convex func-
tions and smooth maps, Math. Program., (2018), pp. 1--56.

[6] S. Ghadimi and G. Lan, Accelerated gradient methods for nonconvex nonlinear and stochastic
programming, Math. Program., 156 (2016), pp. 59--99.

[7] S. Ghadimi, G. Lan, and H. Zhang, Generalized uniformly optimal methods for nonlinear
programming, J. Sci. Comput., 79 (2019), pp. 1854--1881.

[8] N. Gillis, The why and how of nonnegative matrix factorization, Regularization, Optimization,
Kernels, and Support Vector Machines, 12 (2014), pp. 257--291.

[9] Q. Gu, Z. Wang, and H. Liu, Sparse PCA with oracle property, in Advances in Neural Infor-
mation Processing Systems, 27, 2014, pp. 1529--1537.

[10] W. Kong, J. G. Melo, and R. D. C. Monteiro, Complexity of a quadratic penalty acceler-
ated inexact proximal point method for solving linearly constrained nonconvex composite
programs, SIAM J. Optim., 29 (2019), pp. 2566--2593.

[11] G. Lan, Z. Lu, and R. D. C. Monteiro, Primal-dual first-order methods with \scrO (1/\epsilon) iteration-
complexity for cone programming, Math. Program., 126 (2011), pp. 1--29.

[12] D. D. Lee and H. S. Seung, Learning the parts of objects by non-negative matrix factorization,
Nature, 401 (1999), pp. 788--791.

[13] H. Li and Z. Lin, Accelerated proximal gradient methods for nonconvex programming, in Ad-
vances in Neural Information Processing Systems, 28, 2015, pp. 379--387.

[14] Q. Li, Y. Zhou, Y. Liang, and P. K. Varshney, Convergence analysis of proximal gradi-
ent with momentum for nonconvex optimization, in Proceedings of the 34th International
Conference on Machine Learning, Vol. 70, 2017, pp. 2111--2119.

[15] J. Liang and R. D. C. Monteiro, A Doubly Accelerated Inexact Proximal Point Method for
Nonconvex Composite Optimization Problems, https://arxiv.org/abs/1811.11378, 2018.

D
ow

nl
oa

de
d

01
/1

9/
21

 to
 1

43
.2

15
.1

37
.4

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

https://arxiv.org/abs/1811.11378

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

AVERAGE CURVATURE ACG METHOD 243

[16] J. Liang, R. D. C. Monteiro, and C.-K. Sim, A FISTA-Type Accelerated Gradient Algorithm
for Solving Smooth Nonconvex Composite Optimization Problems, https://arxiv.org/abs/
1905.07010, 2019.

[17] R. D. C. Monteiro and B. F. Svaiter, An accelerated hybrid proximal extragradient method
for convex optimization and its implications to second-order methods, SIAM J. Optim., 23
(2013), pp. 1092--1125.

[18] Y. Nesterov, A method for unconstrained convex minimization problem with the rate of con-
vergence O(1/k2), Doklady AN SSSR, 269 (1983), pp. 543--547.

[19] Y. Nesterov, Introductory Lectures on Convex Programming, Lecture notes, 1998.
[20] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Kluwer, Bos-

ton, 2004.
[21] Y. Nesterov, Smooth minimization of nonsmooth functions, Math. Program., 103 (2005),

pp. 127--152.
[22] Y. Nesterov, Gradient methods for minimizing composite functions, Math. Program., (2012),

pp. 1--37.
[23] C. Paquette, H. Lin, D. Drusvyatskiy, J. Mairal, and Z. Harchaoui, Catalyst Acceleration

for Gradient-Based Non-Convex Optimization, https://arxiv.org/abs/1703.10993, 2017.
[24] P. Tseng, On Accelerated Proximal Gradient Methods for Convex-Concave Optimization, http:

//www.mit.edu/\sim dimitrib/PTseng/papers.html, 2008.
[25] Q. Yao and J. T. Kwok, Efficient learning with a family of nonconvex regularizers by redis-

tributing nonconvexity., J. Mach. Learn. Res., 18 (2017), pp. 179--1.
[26] Q. Yao, J. T. Kwok, F. Gao, W. Chen, and T.-Y. Liu, Efficient inexact proximal gradient al-

gorithm for nonconvex problems, in Proceedings of the 26th International Joint Conference
on Artificial Intelligence, 2017, pp. 3308--3314.

D
ow

nl
oa

de
d

01
/1

9/
21

 to
 1

43
.2

15
.1

37
.4

3.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

https://arxiv.org/abs/1905.07010
https://arxiv.org/abs/1905.07010
https://arxiv.org/abs/1703.10993
http://www.mit.edu/~dimitrib/PTseng/papers.html
http://www.mit.edu/~dimitrib/PTseng/papers.html

	Introduction
	The AC-ACG method for solving the N-SCO problem
	Comparison with other accelerated type methods
	Review of convex ACG methods
	Pure accelerated variants
	Hybrid accelerated variants

	Proof of Theorem 2.1
	Numerical results
	Quadratic programming
	Support vector machine
	Sparse PCA
	Matrix completion
	Nonnegative matrix factorization

	Concluding remarks
	Appendix A. A technical result
	Acknowledgments
	References

