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ABSTRACT
In this paper, we propose a projection-free accelerated method for
solving convex optimization problems with unbounded feasible set.
Themethod is an acceleratedgradient scheme such that eachprojec-
tion subproblem is approximately solved by means of a conditional
gradient scheme. Under reasonable assumptions, it is shown that an
ε-approximate solution (concept related to the optimal value of the
problem) is obtained in at most O(1/

√
ε) gradient evaluations and

O(1/ε) linear oracle calls. We also discuss a notion of approximate
solution based on the first-order optimality condition of the problem
and present iteration-complexity results for the proposed method
to obtain an approximate solution in this sense. Finally, numeri-
cal experiments illustrating the practical behaviour of the proposed
scheme are discussed.
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1. Introduction

The conditional gradient (CondG) method proposed by Frank andWolfe [4,5] is designed
to solve the convex optimization problem

f ∗ := min
x∈X f (x), (1)

where X is a nonempty compact convex set and f is a differentiable convex function such
that ∇f is Lipschitz continuous on X. Given xk−1 ∈ X, its kth step first finds yk as a min-
imum of the linear function 〈∇f (xk−1), ·〉 over X and then set xk = (1− αk)xk−1 + αkyk
for some αk ∈ [0, 1]. Its major distinguishing feature compared to other first-order algo-
rithms such as the projected gradient (or accelerated gradient) method is that it replaces
the usual projection onto X by a linear oracle which computes yk as above. Since, for
some relevant cases of X, the latter operation is considerably cheaper than the first one,
the CondG method is competitive with first-order projection methods for solving large-
scale instances of (1) and has received significant attention in different application areas
(see [1–3,6–8,10,12–14]). It has been shown that if αk in the CondG method are prop-
erly chosen, then this algorithm can find an ε-solution of (1) (i.e. a point x̂ ∈ X such that
f (x̂)− f ∗ ≤ ε) in at mostO(1/ε) iterations and gradient evaluations (see [6,10,13]).
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Recently, there has also been a growing interest in the study of accelerated gradient
methods for solving large-scale optimization problems; see, for instance, [9,11,15–18].
These methods have optimal iteration-complexity, namely, an ε-approximate solution
of (1) (with X not necessarily bounded) can be obtained in at most O(1/

√
ε) gradi-

ent (as well as projections) evaluations. Motivated by the efficiency of the accelerated
methods and taking into account that in some applications the associated projection
subproblems are difficult to solve, Lan and Zhou [13] developed a projection-free accel-
erated gradient scheme for solving (1), called conditional gradient sliding (CGS) method,
which uses the CondG method to approximately solve the associated projection subprob-
lems. Note that in this case X needs to be bounded. They showed that the CGS method
obtains an ε-approximate solution of (1) in at most O(1/

√
ε) gradient evaluations and

O(1/ε) linear oracle calls. The authors also presented some numerical experiments show-
ing the advantages of the CGS algorithm over the standard CondGmethod applied directly
to (1).

Our main goal in this paper is to develop and analyse a projection-free accelerated
method for solving problem (1) when X is unbounded. The proposed scheme follows
the same idea of the CGS method in the sense that it is an accelerated gradient method
such that its projection subproblems are inexactly solved by means of the CondGmethod.
In these subproblems, the unbounded set X is intercepted with a ball whose radius is
iteratively and appropriately updated throughout the whole procedure. We show that an
ε-approximate solution of (1) is obtained in at most O(1/

√
ε) gradient evaluations and

O(1/ε) linear oracle calls.We discuss a concept of approximate solution based on the first-
order optimality condition for problem (1) and show that the iteration-complexity bounds
to obtain such an approximate solution are basically the same as the ones stated above. An
advantage of the latter concept is that it can easily be verified during the process of the
method. It is worth mentioning that our accelerated scheme is an extension of a CGS vari-
ant developed here for solving (1) when X is bounded. Some numerical experiments are
presented in order to illustrate the applicability of the general accelerated scheme to solve
quadratic optimization problems with unbounded constraints.

The outline of this paper is as follows. Section 2 presents notations and reviews the
conditional gradient method for solving a specific problem. This section also discusses
a projection-free accelerated method for solving (1) and establishes its convergence rate.
Section 3 develops and analyses a general projection-free method for solving (1) when
X is unbounded. A specific implementation of the latter method is studied in Section 4.
Section 5 discusses a notion of approximate solution and presents a procedure for com-
puting the initial radius of the general scheme. Section 6 contains some numerical
experiments.

2. Notation and backgroundmaterials

In this section, we present our notations and review the conditional gradient method for
solving a specific problem. We also present an accelerated method for solving a convex
optimization problem when the feasible set is bounded.

Throughout this paper, E denotes a finite-dimensional inner product real vector space
with inner product and induced norm denoted by 〈·, ·〉 and ‖ · ‖, respectively. We denote
the sets of real numbers byR, nonnegative numbers byR+ and positive numbers byR++.
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Our problem of interest is the convex optimization problem

f ∗ := min
x∈X f (x), (2)

where X is a nonempty closed convex subset of E and f : E→ R is a differentiable convex
function such that ∇f is L-Lipschitz continuous on X for some L ≥ 0, i.e.

‖∇f (x)− ∇f (y)‖ ≤ L‖x− y‖, x, y ∈ X. (3)

We assume that the set of optimal solutions X∗ of (2) is nonempty. For a given x0 ∈ X, let
us denote by d0 the distance from x0 to X∗ and

lf (x, y) := f (y)+ 〈∇f (y), x− y〉, x, y ∈ X.

It follows from the convexity of f and (3) that

lf (x, y) ≤ f (x) ≤ lf (x, y)+ L
2
‖x− y‖2 y ∈ X. (4)

The indicator function IX : E→ (−∞,∞] is defined as

IX(x) =
{
0, x ∈ X,
∞, x /∈ X.

For a scalar ε ≥ 0, the ε-subdifferential of a function f : E→ (−∞,∞] is the operator
∂εf : E ⇒ E defined as

∂εf (x) = {v | f (y) ≥ f (x)+ 〈y− x, v〉 − ε, ∀y ∈ E}, ∀x ∈ E.

When ε = 0, the operator ∂εf is simply denoted by ∂f and is referred to as the
subdifferential of f. We also recall that a point x∗ ∈ X is a solution of (2) if and
only if

0 ∈ ∂(f + IX)(x∗).

2.1. Conditional gradientmethod

In this section, we review the conditional gradientmethod (also known as the Frank–Wolfe
method) for solving an optimization problem. We present its convergence rate which will
play an important role in the derivation of iteration-complexity bounds for proposed accel-
erated schemes. As is well known the conditional gradient method assumes that a linear
optimization (LO) oracle is available, i.e. a routine which returns an optimal solution to
the problem of minimizing a linear form over a nonempty compact convex set.

Let X be a nonempty compact convex subset of E. Consider the following problem:

min
u∈X

{
〈g, u〉 + c

2
‖u− x0‖2

}
, (5)

where c>0, g ∈ E and x0 ∈ X. The conditional gradientmethod for solving (5) is formally
described as follows:
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____________________________________________________________________
Conditional gradient (CondG) method
____________________________________________________________________
Step 0 Let ε > 0 and z1 ∈ X. Set t = 1.
Step 1 Use the LO oracle to compute an optimal solution ut of

g∗t,c = min
u∈X {〈g + c(zt − x0), u− zt〉}.

Step 2 If g∗t,c ≥ −ε, then stop the algorithm and output zt . Otherwise, set

zt+1 = zt + αt(ut − zt),

where

αt := min
{
1,
〈g + c(zt − x0), zt − ut〉

c‖ut − zt‖2
}
. (6)

Step 3 Set t← t + 1, and go to step 1.

end
____________________________________________________________________
In the following, we consider an iteration-complexity result for the CondG method. Its

proof can be founded, for example, in [13, Theorem 2.2(c)].

Proposition 2.1: The total number of iterations performed by the CondG method for
obtaining zt ∈ X such that 〈g + c(zt − x0), u− zt〉 ≥ −ε for all u ∈ X is bounded by

⌈
6cD2

X
ε

⌉
,

where DX is the diameter of X.

2.2. Projection-free acceleratedmethod

In this section, we present a projection-free accelerated method for solving (2) when the
feasible set is bounded and discuss its convergence behaviour. Such a method is related to
the one proposed in [13]. The method is described as follows.

___________________________________________________________________
Projection-free accelerated (PFA) method
___________________________________________________________________
Step 0 Let x0 ∈ X be given, and set A0 = 0, β0 > 0, y0 = x0, function �0 : X→ R as �0 ≡ 0
and k = 1.
Step 1 Set (y, x,�) = (yk−1, xk−1,�k−1) and (A,β) = (Ak−1,βk−1). ComputeA+, x̃ and �+ :
X→ R as

A+ := A+ β +
√

β2 + 4LAβ

2L
,

x̃ := A
A+

y+
(
1− A

A+

)
x,

�+ := A
A+

� +
(
1− A

A+

)
lf (·, x̃).
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Step 2 Let η+ > 0 and β+ ≥ β , and apply the CondG method with g := A+∇�+, c := β+
and an arbitrary z1 ∈ X to obtain x+ such that

〈A+∇�+ + β+(x+ − x0), u− x+〉 ≥ −η+ ∀u ∈ X. (7)

Step 3 Compute

y+ := A
A+

y+
(
1− A

A+

)
x+.

Step 4 Let (yk, xk, x̃k,�k) = (y+, x+, x̃,�+) and (Ak,βk, ηk) = (A+,β+, η+). Set k← k+ 1
and go to step 1.

end
___________________________________________________________________
Let us make a few remarks about the PFA method. First, note that the update rule for

Ak is equivalent to the identity

Ak

(Ak − Ak−1)2
= L

βk−1
∀k ≥ 1. (8)

Second, using the definition of �k, we easily obtain by induction that Ak�k(u) =∑k
i=1(Ai − Ai−1)lf (u, x̃i). Hence, in Step 2 of the PFA method, we are applying the

conditional gradient method to find an approximate solution xk for the subproblem

min
u∈X

{ k∑
i=1

(Ai − Ai−1)lf (u, x̃i)+ βk

2
‖u− x0‖2

}
(9)

such that 〈 k∑
i=1

(Ai − Ai−1)∇f (x̃i)+ βk(xk − x0), u− xk
〉
≥ −ηk ∀u ∈ X. (10)

Throughout this section, we let

η0 = 0, and η̄k =
k∑

i=0
ηi.

The next proposition establishes the main property of the PFA method and, as a conse-
quence, the convergence rate of f (yk)− f ∗.

Proposition 2.2: For every k ≥ 0, the following inequality holds:

Ak�k(u)+ βk

2
‖u− x0‖2 ≥ Akf (yk)+ βk

2
‖u− xk‖2 − η̄k, ∀ u ∈ X. (11)

As a consequence, for every k ≥ 1, we have

f (yk)− f ∗ ≤ βk

2Ak
d20 +

η̄k

Ak
.
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Proof: Let us prove by induction that (11) holds for all k ≥ 0. Since η̄0 = A0 = 0, we have
it trivially holds for k = 0. Suppose that (11) holds for k−1. Using the same notations of
the PFA method and denoting η̄ = η̄k−1, the induction assumption becomes

A�(u)+ β

2
‖u− x0‖2 ≥ Af (y)+ β

2
‖u− x‖2 − η̄, ∀ u ∈ X. (12)

Now, using the definition of �+, β+ ≥ β and (12) with u = x+, we have

�+(x+) := A+�+(x+)+ β+

2
‖x+ − x0‖2

≥ (A+ − A)lf (x+, x̃)+ A�(x+)+ β

2
‖x+ − x0‖2

≥ (A+ − A)lf (x+, x̃)+ Af (y)+ β

2
‖x+ − x‖2 − η̄.

Thus, since lf (·, x̃) is an affine function and minorizes f, we obtain

�+(x+) ≥ A+lf
(

A
A+

y+ A+ − A
A+

x+, x̃
)
+ β

2
‖x+ − x‖2 − η̄,

which, combined with the definitions of x̃ and y+ and (8), yields

�+(x+) ≥ A+
(
lf (y+, x̃)+ βA+

2(A+ − A)2
‖y+ − x̃‖2

)
− η̄

= A+
(
lf (y+, x̃)+ L

2
‖y+ − x̃‖2

)
− η̄

≥ A+f (y+)− η̄, (13)

where the last inequality is due to (4) and A+ > 0. On the other hand, using �+ is a
quadratic function and (7), we have

�+(u) = �+(x+)+ 〈∇�+(x+), u− x+〉 + β+

2
‖u− x+‖2

≥ �+(x+)− η+ + β+

2
‖u− x+‖2.

Therefore, from the last inequality and (13), we obtain

�+(u) ≥ A+f (y+)− η̄ − η+ + β+

2
‖u− x+‖2,

which, combined with the definitions of �+ and η̄, concludes the induction proof. Now,
letting x∗ ∈ X∗ be such that d0 = ‖x0 − x∗‖, the last statement of the proposition follows
immediately from (11) with u = x∗ and the fact that � ≤ f . �

Next corollary specializes the rate of convergence of f (yk)− f ∗ given in Proposi-
tion 2.2 by appropriately choosing the sequences {βk} and {ηk}. In particular, this instance
implies complexity bound similar to the acceleratedmethods with projection step (see, e.g.
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[16,17]). We state the results assuming the knowledge of an upper bound D0 for the dis-
tance from x0 to the solution set. Note that, since X is a compact set, we may consider D0
as the diameter of X.

Corollary 2.3: Let D0 be an upper bound for the distance from x0 to the solution set, and let
B>0. For every k ≥ 1, set βk = k+ 1, ηk = D2

0/B and consider yk be generated by the PFA
method. Then,

f (yk)− f ∗ ≤
(
B+ 2
B

)
9LD2

0
2k2

, ∀ k ≥ 1. (14)

As a consequence, the total number of outer and inner iterations of the PFA method for
obtaining yk such that f (yk)− f ∗ ≤ ε can be bounded, respectively, by

O
(
D0
√
L√

ε

)
andO

(
LD2

X
ε

)
.

Proof: Lemma A.1 in Appendix A implies that Ak ≥ (k+ 1)k2/(9L). Thus the first state-
ment of the corollary follows immediately from Proposition 2.2 and the definitions of
{βk}, {ηk} and {η̄k}. It follows from (14) that the PFA method provides yk such that
f (yk)− f ∗ ≤ ε in atmostO(D0

√
L/ε). On the other hand, Proposition 2.1 implies that the

total number of LO oracle calls up to the kth iteration of the PFA method can be bounded
by

k∑
i=1

6βiD2
X

ηi
+ 1 =

k∑
i=1

6(i+ 1)BD2
X

D2
0

+ 1 = 6k(k+ 3)BD2
X

2D2
0

+ k ≈ O(k2D2
X/D2

0).

Since k ≈ O(D0
√
L/ε), the last claim follows from the previous estimate. �

Remark 2.4: Since X is a compact set, as mentioned before, a possible estimateD0 satisfy-
ing Corollary 2.3 is D0 = DX . However, if for a particular problem, an estimate D0 much
smaller thanDX is known, then Corollary 2.3 gives a sharper complexity result than taking
D0 = DX . It is worth pointing out that if such a D0 is known, then problem (2) may be
restricted to X ∩ B(x0,D0). In such a case, the number of LO oracle calls depends also on
D0 instead of DX , and therefore, it may be smaller depending on how easy it is to solve the
subproblems over the set X ∩ B(x0,D0).

3. Adaptive projection-free acceleratedmethod

In this section, we describe and analyse a projection-free method for solving problem (2)
when X is unbounded. Since the diameter of X is not finite, the PFA method cannot
be directly applied. Therefore, we adapt the method in such a way that its subproblems
are solved over the set X ∩ B(x0,Rk), where the radius Rk is iteratively and carefully
updated.
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___________________________________________________________________
Adaptive projection-free accelerated (APFA) method
___________________________________________________________________
Step 0 Let x0 ∈ X, τ > 1 andR1 > 0 be given, and setA0 = η̄0 = 0, β0 > 0, y0 = x0, function
�0 : X→ R as �0 ≡ 0 and k = 1.
Step 1 Set (y, x,�) = (yk−1, xk−1,�k−1) and (A,β , η̄) = (Ak−1,βk−1, η̄k−1).

If k = 1, set A+ = β0/(2L), x̃ = x0 and R+ = R1; else, let the unique A+ > A solution of

1
2

(
A+

A+ − A

)2
− LA+

β
= τ 2, (15)

set

x̃ := A
A+

y+
(
1− A

A+

)
x, (16)

and compute R+ as

R+ := 2τ
τ − 1

‖x0 − x̃‖ + τ + 1
τ − 1

√
2η̄
β
. (17)

Step 2 Let η+ > 0 and β+ ≥ β and apply the CondG method with g := A+∇�+, c := β+
and an arbitrary z1 ∈ X ∩ B(x0,R+) to obtain x+ satisfying

〈A+∇�+ + β+(x+ − x0), u− x+〉 ≥ −η+ ∀u ∈ X ∩ B(x0,R+), (18)

where

�+ := A
A+

� +
(
1− A

A+

)
lf (·, x̃), (19)

set η̄+ := η̄ + η+ and

y+ := A
A+

y+
(
1− A

A+

)
x+. (20)

Step 3 Let (yk, xk, x̃k,�k) = (y+, x+, x̃,�+) and (Ak,βk, ηk, η̄k,Rk) = (A+,β+, η+, η̄+,R+).
Set k← k+ 1 and go to step 1.

end
___________________________________________________________________

We now make some remarks about the above method. First, a fundamental property
for the convergence analysis of the method is that the ball B(x0,Rk) contains the unknown
exact solution of the subproblem (9) over the unbounded set X. Such a property will be
a priori required for k = 1 and, as it will be seen in Lemma 3.3, it holds for all k ≥ 2.
Corollary 4.3 presents a simple choice for R1 satisfying the required condition and in
Section 5 a procedure to refine this choice is described. Second, note that for updating
Ak, it is necessary to find a solution of a third degree polynomial equation which can
be easily obtained by root-finding algorithms like Newton method. Third, similarly to
the PFA method, we see that Ak�k(u) =

∑k
i=1(Ai − Ai−1)lf (u, x̃i) and the conditional

gradient method is applied to obtain an approximate solution xk for the subproblem (9)
satisfying (10) with X replaced by X ∩ B(x0,Rk).

Before establishing the convergence rate for the APFAmethod, we need some technical
results .
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Lemma 3.1: Let A ≥ 0, β > 0, x, y ∈ X and an affine function � ≤ f be given, and define

χ = χ(A,�,β , x, y) := Af (y)−min
u∈X

{
A�(u)+ β

2
‖u− x0‖2 − β

4
‖u− x‖2

}
.

Then, the following statements hold:

(a) for any x∗ ∈ X∗, we obtain

A(f (y)− f ∗) ≤ β

2
‖x∗ − x0‖2 + χ ;

(b) for any A+ > A and u ∈ Xwe have

A+�+(u)+ β

2
‖u− x0‖2 ≥ A+

(
lf (ũ(u), x̃)+ βA+

4(A+ − A)2
‖ũ(u)− x̃‖2

)
− χ ,

(21)
where x̃ and �+ are as defined in (16) and (19), respectively, and

ũ(u) := A
A+

y+
(
1− A

A+

)
u. (22)

Proof: It follows from the definition of χ that

A�(x∗)+ β

2
‖x∗ − x0‖2 ≥ Af (y)− χ ∀x∗ ∈ X∗,

which, combined with � ≤ f , implies the first statement. Now, using the definitions of �+
and χ , we have

A+�+(u)+ β

2
‖u− x0‖2 = (A+ − A)lf (u, x̃)+ A�(u)+ β

2
‖u− x0‖2

≥ (A+ − A)lf (u, x̃)+ Af (y)+ β

4
‖u− x‖2 − χ .

Thus since lf (·, x̃) is an affine function and minorizes f, we obtain

A+�+(u)+ β

2
‖u− x0‖2 ≥ A+lf

(
A
A+

y+ A+ − A
A+

u, x̃
)
+ β

4
‖u− x‖2 − χ

= A+lf
(
ũ(u), x̃

)+ β

4
‖u− x‖2 − χ , (23)

where the last equality is due to the definition of ũ(u). On the other hand, the definition of
ũ(u) and x̃ implies

u− x = A+

A+ − A
(
ũ(u)− x̃

)
.

Hence, statement (b) now follows from (23) and the last equality. �
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Lemma 3.2: Let A ≥ 0, β > 0, x, y ∈ X and an affine function� ≤ f be given, and let χ :=
χ(A,�,β , x, y), where χ(·, ·, ·, ·, ·) is defined in Lemma 3.1. Also, let A+ > A satisfying

A+

2(A+ − A)2
≥ L

β
(24)

be given, and consider x̃ and �+ as in (16) and (19), respectively. Moreover, assume that
x+ satisfies (18) for some η+ ≥ 0, β+ ≥ β and R+ ≥ ‖x+r − x0‖, where x+r is the unique
minimizer of

min
u∈X

{
�+(u) := A+�+(u)+ β+

2
‖u− x0‖2

}
, (25)

and consider y+ as in (20). Then, χ+ := χ(A+,�+,β+, x+, y+) satisfies

χ+ ≤ χ + η+.

Proof: Since β+ ≥ β , it follows from the definition of �+ in (25) that

�+(x+) ≥ A+�+(u)+ β

2
‖u− x0‖2,

which, combined with Lemma 3.1(b) with u = x+ and the definition of y+, yields

�+(x+) ≥ A+
(
lf (y+, x̃)+ βA+

4(A+ − A)2
‖y+ − x̃‖2

)
− χ

≥ A+
(
lf (y+, x̃)+ L

2
‖y+ − x̃‖2

)
− χ

≥ A+f (y+)− χ , (26)

where the second and third inequalities are due to (24) and (4), respectively. Using the fact
that �+ is a quadratic function and x+r is the unique minimizer of (25), we have

�+(u) ≥ �+(x+r )+ β+

2
‖u− x+r ‖2 ∀u ∈ X. (27)

Since by assumption R+ ≥ ‖x+r − x0‖, it follows by using the Taylor expansion of �+ at
x+ and (18) that

�+(x+r ) = �+(x+)+ 〈∇�+(x+), x+r − x+〉 + β+

2
‖x+r − x+‖2

≥ �+(x+)− η+ + β+

2
‖x+r − x+‖2.

In view of (27) and the last inequality, we have

�+(u) ≥ �+(x+)− η+ + β+

2
‖u− x+r ‖2 +

β+

2
‖x+r − x+‖2

≥ �+(x+)− η+ + β+

4
‖u− x+‖2

≥ A+f (y+)− χ − η+ + β+

4
‖u− x+‖2,
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where the second inequality is due to the convexity of ‖ · ‖2, and the last one is due to (26).
It follows from the previous estimate and the definition of �+ that

A+�+(u)+ β+

2
‖u− x0‖2 − β+

4
‖u− x+‖2 − A+f (y+) ≥ −χ − η+ ∀u ∈ X.

Combining the definition of χ+ with the last inequality, the proof of the lemma follows.
�

Lemma 3.3: Let A > 0, β > 0, x, y ∈ X and an affine function � ≤ f be given, and let
χ := χ(A,�,β , x, y), where χ(·, ·, ·, ·, ·) is defined in Lemma 3.1. Assume that A+ > A sat-
isfies (15) for some given τ > 1 and define x̃ and �+ as in (16) and (19), respectively. Then,
for any β+ ≥ β , the unique minimizer x+r of (25) satisfies

‖x+r − x0‖ ≤ R(χ) := 2τ
τ − 1

‖x0 − x̃‖ + τ + 1
τ − 1

√
2max{χ , 0}

β
.

Proof: First, as � ≤ f and lf (·, x̃) ≤ f , it follows trivially from (19) that

�+ ≤ f . (28)

Now, let us define an auxiliary point ỹ as

ỹ := argmin
z∈X

{
lf (z, x̃)+ βA+

4(A+ − A)2
‖z − x̃‖2

}
. (29)

Since ũ(u) ∈ X for all u ∈ X (see (22)), it follows by Lemma 3.1(b) and (29) that

A+�+(u)+ β

2
‖u− x0‖2 ≥ A+

(
lf (ũ(u), x̃)+ βA+

4(A+ − A)2
‖ũ(u)− x̃‖2

)
− χ

≥ A+
(
lf (ỹ, x̃)+ βA+

4(A+ − A)2
‖ỹ− x̃‖2

)
− χ

= A+
(
lf (ỹ, x̃)+ L

2
‖ỹ− x̃‖2

)
+ βτ 2

2
‖ỹ− x̃‖2 − χ

≥ A+f (ỹ)+ βτ 2

2
‖ỹ− x̃‖2 − χ , (30)

where the equality is due to (15) and the last inequality is due to (4). Since β+ ≥ β , the
latter inequality with u = x+r implies that

A+�+(x+r )+ β+

2
‖x+r − x0‖2 ≥ A+f (ỹ)− χ . (31)

From the fact that x+r is the unique minimizer of (25), we have

A+�+(ỹ)+ β+

2
‖ỹ− x0‖2 ≥ A+�+(x+r )+ β+

2
‖x+r − x0‖2 + β+

2
‖ỹ− x+r ‖2

≥ A+f (ỹ)− χ + β+

2
‖ỹ− x+r ‖2,
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where the last inequality is due to (31). Using (28) and rearranging the last inequality, we
obtain

‖ỹ− x+r ‖ ≤ ‖ỹ− x0‖ +
√
2max{χ , 0}

β+
.

Using the triangle inequality and the fact that β+ ≥ β , we have

‖x+r − x0‖ ≤ 2‖ỹ− x0‖ +
√
2max{χ , 0}

β
. (32)

On the other hand, inequality (30) with u = ỹ yields

A+�+(ỹ)+ β

2
‖ỹ− x0‖2 ≥ A+f (ỹ)+ βτ 2

2
‖ỹ− x̃‖2 − χ .

Thus using (28) and simple algebraic manipulations, we have

τ‖ỹ− x̃‖ ≤
√
‖ỹ− x0‖2 + 2max{χ , 0}

β
,

and then

τ
(‖ỹ− x0‖ − ‖x0 − x̃‖) ≤ ‖ỹ− x0‖ +

√
2max{χ , 0}

β
.

Rearranging the last inequality, we obtain

(τ − 1) ‖ỹ− x0‖ ≤ τ‖x0 − x̃‖ +
√
2max{χ , 0}

β
.

Hence, using the assumption τ > 1, we have

‖ỹ− x0‖ ≤ τ

τ − 1
‖x0 − x̃‖ + 1

τ − 1

√
2max{χ , 0}

β
.

Therefore, the result follows from the last inequality and (32). �

The next proposition provides an essential inequality from which follows our main
convergence rate result for the APFA method.

Proposition 3.4: Let x1r be the unique minimizer of

min
u∈X

{
A1�1(u)+ β1

2
‖u− x0‖2

}
. (33)

If the input R1 in the APFA method satisfies R1 ≥ ‖x1r − x0‖, then the following inequality
holds, for every k ≥ 1,

Akf (yk)+ βk

4
‖u− xk‖2 ≤ Ak�k(u)+ βk

2
‖u− x0‖2 + η̄k ∀u ∈ X. (34)



OPTIMIZATION METHODS & SOFTWARE 13

Proof: The proof of (34) is done by induction on k. It clearly holds for k = 0 due to the
fact that A0 = η̄0 = 0. Assume then that (34) holds for some k ≥ 0 and let us show that it
holds for k+ 1. This induction assumption is clearly equivalent to

χk := χ(Ak,�k,βk, xk, yk) ≤ η̄k,

due to the definition of χ(·, ·, ·, ·, ·) in Lemma 3.1. Also, letting

(A,�,β , x, y) = (Ak,�k,βk, xk, yk),

(A+,�+,β+, x+, y+) = (Ak+1,�k+1,βk+1, xk+1, yk+1), R+ = Rk+1, η+ = ηk+1,

it follows from the APFAmethod and Lemma 3.3 (or the assumption that R1 ≥ ‖x1r − x0‖)
that the hypothesis of Lemma 3.2 holds.

Therefore, the latter lemma implies that

χk+1 ≤ χk + η+ ≤ η̄k + ηk+1 = η̄k+1,

and hence that (34) holds for k+ 1. We have thus proved that (34) holds for every
k ≥ 1. �

The following result for the APFAmethod establishes the convergence rate of f (yk)− f ∗
and the boundedness of the sequences {xk}, {yk} and {x̃k}.

Theorem 3.5: Assume that the input R1 in the APFA method satisfies R1 ≥ ‖x1r − x0‖,
where x1r is the unique minimizer of (33). Then, for any k ≥ 1,

f (yk)− f ∗ ≤ βk

2Ak
d20 +

η̄k

Ak
, (35)

max{‖xk − x∗‖, ‖yk − x∗‖, ‖x̃k+1 − x∗‖} ≤ √2d0 + 2 max
1≤j≤k

√
η̄j

βj
, (36)

where x∗ ∈ X∗ is such that d0 = ‖x0 − x∗‖.

Proof: It follows from Proposition 3.4 with u = x∗ and �k ≤ f that

Akf (yk)+ βk

4
‖xk − x∗‖2 ≤ Akf ∗ + βk

2
d20 + η̄k ∀k ≥ 1. (37)

Since Ak > 0 for any k ≥ 1, inequality (37) clearly implies that (35) holds. From (37), we
also obtain

‖xk − x∗‖2 ≤ 2d20 +
4η̄k
βk

∀k ≥ 1,

and thus,

‖xk − x∗‖ ≤ √2d0 + 2

√
η̄k

βk
∀k ≥ 1. (38)
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On the other hand, since A0 = 0 and Ak =
∑k

j=1(Aj − Aj−1), the definition of yk in (20)
gives

yk − x∗ = 1
Ak

k∑
j=1

(Aj − Aj−1)(xj − x∗),

which, combined with (38), implies that

‖yk − x∗‖ ≤ max
1≤j≤k

‖xj − x∗‖ ≤ √2d0 + 2 max
1≤j≤k

√
η̄j

βj
∀k ≥ 1. (39)

Now, combining the definition of x̃k in (16) with (38) and (39), we have, for any k ≥ 1,

‖x̃k+1 − x∗‖ ≤ Ak

Ak+1
‖yk − x∗‖ +

(
1− Ak

Ak+1

)
‖xk − x∗‖

≤ √2d0 + 2 max
1≤j≤k

√
η̄j

βj
.

Therefore, (36) follows from (38), (39) and last inequality. �

To end this section, we present a result on the radius sequence {Rk} which will be
important to analyse a particular instance of the APFA method.

Corollary 3.6: Let {Rk} be generated by the APFAmethod and assume that R1 ≥ ‖x1r − x0‖,
where x1r is the unique minimizer of (33). Then

Rk ≤ (4+√2)τ +√2
τ − 1

(
2τ(
√
2+ 1)

(4+√2)τ +√2d0 + max
1≤j≤k−1

√
η̄j

βj

)
∀k ≥ 2.

Proof: Let x∗ ∈ X∗ be such that d0 = ‖x0 − x∗‖. It follows from (36) and the triangle
inequality that

‖x0 − x̃k‖ ≤ (
√
2+ 1)d0 + 2 max

1≤j≤k

√
η̄j−1
βj−1

∀k.

Therefore, since τ > 1, for any k ≥ 2, the definition of Rk in (17) implies that

Rk = 2τ
τ − 1

‖x0 − x̃k‖ + τ + 1
τ − 1

√
2η̄k−1
βk−1

≤ 2τ
τ − 1

(
(
√
2+ 1)d0 + 2 max

1≤j≤k

√
η̄j−1
βj−1

)
+ τ + 1

τ − 1

√
2η̄k−1
βk−1

,

which implies the desired inequality. �
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4. An instance of the APFAmethod

In this section, we study the convergence rate of an instance of the APFAmethod. Basically,
in this special version we specify the choices of the constant τ and the sequences {βk} and
{ηk}.

____________________________________________________________________
Specialized adaptive projection-free accelerated (S-APFA) method
____________________________________________________________________
This method is an instance of the APFA method with the constant τ and the sequences

{βk} and {ηk} defined by

τ = √3, βk = k+ 1 ∀k ≥ 0, and ηk =
R2k
B
∀k ≥ 1, (40)

where the positive constant B satisfies

B > p := (4
√
3+√6+√2)2
(
√
3− 1)2

≈ 218. (41)

______________________________________________________________________
Clearly, there exist various options of choices for the constant τ and the sequences {βk}

and {ηk}. The choices provided in the S-APFAmethod lead to optimal complexity bounds
on the total number of outer and inner iterations for problem (2).

In view of the S-APFA method, we can prove a finer estimate of the radius sequence
{Rk}.

Proposition 4.1: Consider the sequence {Rk} generated by the S-APFA method and assume
that R1 ≥ ‖x1r − x0‖, where x1r is the unique minimizer of (33). Then,

Rk ≤
√
Bp√

2(
√
B−√p)

[(√
2
p
+ 1

)
d0 + R1√

B

]
∀k ≥ 2. (42)

Proof: Let us prove by induction that (42) holds. First, from the S-APFA method we have

√
B >
√
p, η̄j =

j∑
i=1

ηi =
j∑

i=1

R2i
B
. (43)

Thus, it follows from Corollary 3.6 and definitions of τ and p in the S-APFA method that

R2 ≤
√
p
2

[(√
2
p
+ 1

)
d0 + R1√

B

]
,

which, combined with the fact 1 <
√
B/(
√
B−√p), implies that (42) trivially holds for

k = 2.Now, assume that (42) holds any j ∈ {2, . . . , k} for some k ≥ 2. Sinceβj = j+ 1, (43)
implies that

η̄j

βj
= 1

B(j+ 1)

j∑
i=1

R2i ≤
R21
2B
+ 1

B(j+ 1)

j∑
i=2

R2i ≤
R21
2B
+

θ2j

B
∀j ≥ 2,
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where θj = maxi∈{2,...,j} Ri. Hence, from Corollary 3.6 and definitions of τ and p in the
S-APFA method, we have

Rk+1 ≤
√
p
2

[(√
2
p
+ 1

)
d0 + R1√

B
+
√
2
B

max
j∈{2,...,k}

θj

]

=
√
p
2

[(√
2
p
+ 1

)
d0 + R1√

B
+
√
2
B

θk

]
.

Observing that the induction assumption implies that θk is majorized by the right-hand
side of (42), it follows from the last inequality that

Rk+1 ≤
√
p
2

[(√
2
p
+ 1

)
d0 + R1√

B
+

√p
(
√
B−√p)

((√
2
p
+ 1

)
d0 + R1√

B

)]

=
√
p
2

((√
2
p
+ 1

) √
Bd0

(
√
B−√p) +

R1
(
√
B−√p)

)
.

Hence, the induction proof follows easily from the last inequality. �

In what follows, we present our main result on convergence rates of the S-APFA
method.

Theorem4.2: Consider the sequence {yk} generated by the S-APFAmethod and assume that
R1 ≥ ‖x1r − x0‖, where x1r is the unique minimizer of (33). Then

f (yk)− f ∗ ≤
⎡
⎣1+ 2

(√
2+√p√
B−√p

)2
⎤
⎦(d20 + R21

B

)
25L
k2

∀k ≥ 1. (44)

As consequence, if B = 4p, then

f (yk)− f ∗ ≤
(
d20 +

R21
4p

)
86L
k2

∀k ≥ 1.

Proof: From the S-APFA method and Proposition 4.1, we have

η̄k =
k∑

i=1

R2i
B
≤ R21

B
+ p

2(
√
B−√p)2

[(
1+
√
2√p

)
d0 + R1√

B

]2
(k− 1)

≤ R21
B
+ p

(
√
B−√p)2

⎡
⎣(1+

√
2√p

)2

d20 +
R21
B

⎤
⎦ (k− 1),
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where the last inequality is due to (a+ b)2 ≤ 2(a2 + b2) for all a, b ∈ R. Hence, using
Theorem 3.5 and βk = k+ 1, we conclude that

f (yk)− f ∗ ≤ 1
2Ak

[
(k+ 1)d20 + 2η̄k

]

≤ 1
2Ak

⎡
⎣(k+ 1)d20 +

2R21
B
+ 2p

(
√
B−√p)2

⎛
⎝(1+

√
2√p

)2

d20 +
R21
B

⎞
⎠ (k− 1)

⎤
⎦

≤ k+ 1
2Ak

⎡
⎣1+ 2

(√
2+√p√
B−√p

)2
⎤
⎦(d20 + R21

B

)
,

which, combined with the estimate of Ak in Lemma A.2, implies (44). The second
inequality of the proposition is an immediate consequence of first one and B = 4p. �

Next result, we present a possible choice of R1 which depends on ∇f (x0). Moreover, we
specialize Theorem 4.2 for this choice of R1.

Corollary 4.3: Let x1r be the unique minimizer of (33). Then, the following inequality holds:

‖x1r − x0‖ ≤ 1
4L
‖∇f (x0)‖. (45)

As a consequence, the S-APFA method with R1 = ‖∇f (x0)‖/4L and B = 4p generates a
sequence {yk} satisfying

f (yk)− f ∗ ≤
(
d20 +

‖∇f (x0)‖2
64pL2

)
86L
k2

∀k ≥ 1.

Proof: The first statement is proved in lemma A.1(a) of Appendix A. The second part
follows directly from Theorem 4.2 and definition of R1. �

The following result establishes iteration-complexity bounds for the S-APFAmethod to
obtain an approximate solution yk, i.e. f (yk)− f ∗ ≤ ε, where ε > 0 is a given tolerance.

Corollary 4.4: For a given tolerance ε > 0, the S-APFA method with R1 = ‖∇f (x0)‖/4L
and B = 4p generates a point yk satisfying f (yk)− f ∗ ≤ ε in at most

O
(√

Ld20 +
‖∇f (x0)‖2

L
1√
ε

)
, O

((
Ld20 +

‖∇f (x0)‖2
L

)
1
ε

)
(46)

outer iterations and LO oracle calls, respectively.

Proof: Thefirst bound in (46) follows immediately from the last statement ofCorollary 4.3.
Now, by Proposition 2.1, we obtain that the total number of LO oracle calls up to the kth
outer iteration of the S-APFA method can be bounded by

k∑
i=1

(
24βiR2i

ηi
+ 1
)
=

k∑
i=1

[24B(i+ 1)+ 1] = 12Bk(k+ 3)+ k = O(k2).

Therefore, the second bound in (46) follows from the first one and the last conclusion. �
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5. Approximate solution and a procedure for obtaining R1

In this section, we discuss a notion of approximate solution that naturally generalizes the
concept of solution of an optimization problem. We show that the S-APFA method gen-
erates an approximate solution, which can easily be verified during the process of the
method. We also present a procedure which is capable of controlling the size of ∇f (x0)
when compared to d0, which is an interesting property used to obtain a better estimate of
our iteration-complexity results.

Definition 5.1: Given ρ, ε > 0, we say that z ∈ X is a (ρ, ε) solution of problem (2) if and
only if there exists v ∈ ∂ε(f + IX)(z) such that ‖v‖ ≤ ρ.

Note that any solution of problem (2) is a (ρ, ε)-solution of (2) for any ρ, ε > 0.
Therefore, the above definition is consistent with the concept of approximate solution.

Proposition 5.2: Consider the APFA method and assume that R1 ≥ ‖x1r − x0‖, where x1r is
the unique minimizer of (33). Then, for every k ≥ 1, yk is a (ρk, εk)-solution of (2), where
(ρk, εk) is computed as

ρk := βk

Ak

[(√
2
2
+ 1

)
‖yk − x0‖ + 1

2
‖yk − xk‖ +

√
η̄k

βk

]
,

εk := βk

2Ak
‖yk − x0‖2 − βk

4Ak
‖yk − xk‖2 + η̄k

Ak
.

Proof: First, let the auxiliary quadratic convex function qk : E→ R be defined as

qk(u) = Ak(�k(u)− f (yk))+ βk

2
‖u− x0‖2 − βk

4
‖u− xk‖2 + η̄k ∀u ∈ X, (47)

and let wk be its minimizer over X. Hence, we obtain for any u ∈ X,

Ak(�k(u)− f (yk)) = qk(u)+ βk

4
‖u− xk‖2 − βk

2
‖u− x0‖2 − η̄k

≥ qk(wk)+ βk

4
‖u− wk‖2 + βk

4
‖u− xk‖2 − βk

2
‖u− x0‖2 − η̄k

≥ gk(u) := βk

4
‖u− wk‖2 + βk

4
‖u− xk‖2 − βk

2
‖u− x0‖2 − η̄k,

(48)

where the second inequality is due to the fact that qk(wk) ≥ 0 (see Proposition 3.4 with
u = wk). Now, let

vk := ∇gk(y
k)

Ak
, μk := −gk(y

k)

Ak
.

Hence, since �k ≤ f and gk is affine, it follows from (48) and the first-order Taylor
expansion of gk at yk that

f (u)− f (yk) ≥ 〈vk, u− yk〉 − μk ∀u ∈ X,
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which implies that

vk ∈ ∂μk(f + IX)(yk). (49)

Now, observe that from (48) with u = yk and �k ≤ f , we easily have

Akεk ≥ Akμk = βk

2
‖yk − x0‖2 − βk

4
‖yk − wk‖2 − βk

4
‖yk − xk‖2 + η̄k ≥ 0.

Hence,

‖yk − wk‖2 ≤ 2‖yk − x0‖2 − ‖yk − xk‖2 + 4η̄k
βk

,

which implies that

‖yk − wk‖ ≤ √2‖yk − x0‖ + 2

√
η̄k

βk
. (50)

On the other hand, from the definition of vk it is immediate to see that

‖vk‖ = βk

Ak

∥∥∥∥12 (yk − xk + yk − wk)+ x0 − yk
∥∥∥∥

≤ βk

Ak

(
1
2
‖yk − xk‖ + 1

2
‖yk − wk‖ + ‖yk − x0‖

)
,

which, combined with (50), implies that ‖vk‖ ≤ ρk. Therefore, since μk ≤ εk, the lemma
follows from (49) and Definition 5.1. �

In the following theorem, we present an iteration-complexity result for the S-APFA
method .

Theorem 5.3: Consider the S-APFA method with some R1 ≥ ‖x1r − x0‖, where x1r is the
unique minimizer of (33). For a given tolerance pair (ρ, ε) ∈ R

2++, the S-APFA method
certifies that an iterate yk is a (ρ, ε)-solution of (2) in at most

O
(√

Lmax
{√

d0 + R1√
ρ

,
d0 + R1√

ε

})
, O

(
Lmax

{
d0 + R1

ρ
,
(d0 + R1)2

ε

})
(51)

outer iterations and LO oracle calls, respectively.

Proof: Let x∗ ∈ X∗ be such that d0 = ‖x0 − x∗‖, and ρk and εk as defined in Propo-
sition 5.2. Note that, if ρk ≤ ρ and εk ≤ ε, then combining Proposition 5.2 and
Definition 5.1, we have yk is a (ρ, ε)-solution of (2). Therefore, let us first estimate ρk and
εk. Using the triangle inequality and (36), we obtain

‖x0 − yk‖ ≤ d0 + ‖yk − x∗‖ ≤ (
√
2+ 1)d0 + 2 max

1≤j≤k

√
η̄j

βj
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and

‖yk − xk‖ ≤ ‖yk − x∗‖ + ‖x∗ − xk‖ ≤ 2
√
2d0 + 4 max

1≤j≤k

√
η̄j

βj
,

which imply that

ρk ≤ 7βk

Ak

(
d0 + max

1≤j≤k

√
η̄j

βj

)
(52)

εk ≤ βk

2Ak
‖yk − x0‖2 + η̄k

Ak
≤ 7βk

Ak

(
d20 + max

1≤j≤k
η̄j

βj

)
. (53)

From the definition of η̄j, βj = j+ 1 and Propostion 4.1 we see that there exists c1 > 0 such
that

η̄j

βj
= 1

B(j+ 1)

j∑
i=1

R2i ≤
R21
2B
+ 1

B(j+ 1)

j∑
i=2

R2i ≤ c1(R21 + d20).

Combining the last inequality, (52), (53) and Lemma A.2, we obtain c2 > 0

ρk ≤ Lc2
k2

(d0 + R1) , εk ≤ Lc2
k2
(
d20 + R21

)
,

which implies that in at most

O
(√

Lmax
{√

d0 + R1√
ρ

,
d0 + R1√

ε

})
,

outer iteration, the iterate yk is a (ρ, ε)-solution of (2). Now, note that Proposition 2.1
implies that the total number of LO oracle calls up to the kth outer iteration of the S-APFA
method can be bounded by

k∑
i=1

(
24βiR2i

ηi
+ 1
)
=

k∑
i=1

(24B(i+ 1)+ 1) = 12Bk(k+ 3)+ k = O(k2).

Therefore, the second bound in (51) follows from the first one, which concludes the proof.
�

In the remaining part of this section, we focus our attention on refining the initial radius
R1 = ‖∇f (x0)‖/(4L) given in Corollary 4.3. Our goal is to keep R1/d0 relatively small. For
this, we present a procedure which needs the following set:

Z(R) :=
{
z ∈ X ∩ B(x0,R) :

〈∇f (x0)
2L

+ 2(z − x0), u− z
〉

≥ − R2

M1
∀u ∈ X ∩ B(x0,R)

}
, (54)

where R,M1 > 0.
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Remark 5.4: Observe that, in view of Proposition 2.1, the CondG method applied for
solving problem (5) with g = ∇f (x0)/(2L) and c = 2 computes a point z ∈ Z(R) by
performing no more thanO(M1) LO oracle calls.

Procedure 5.5: Let scalars ρ, ε > 0 andM1 > 2 be given and set

δ := min
{

ρ

4L
,

ε

‖∇f (x0)‖
}
, R := ‖∇f (x

0)‖
8L

. (55)

Step 1 Compute z ∈ Z(R) using the CondG method, where Z(R) is defined in (54); if ‖z −
x0‖ ≥ R/2, output R1 := 2R and stop; else, if R ≤ δ, declare ‘x0 is a (ρ, ε)-solution of (2)’ and
stop;
Step 2 set R := R/2 and go to Step 1.

end

Next proposition shows that our goal to refine R1 depending on d0 is achieved, apart
from the unlikely situation in which x0 be already a (ρ, ε)-solution of problem (2). The
proof of the next proposition will be presented in Appendix B.

Proposition 5.6: Assume that Procedure 5.5 computes all the iterates z ∈ Z(R) via the
CondG method. Then, in at most

O
(
M1

[
1+ log2

‖∇f (x0)‖
8Lδ

])
(56)

LO oracle calls, Procedure 5.5 either certifies that the iterate x0 is a (ρ, ε)-solution of
problem (2) or outputs R1 satisfying

‖x1r − x0‖ ≤ R1 ≤ 8
√
2M1√

2M1 − 2
d0, (57)

where x1r is the unique minimizer of (33) and δ is defined in (55).

Next theorem summarizes the complexity results of the S-APFA method when Proce-
dure 5.5 is used to compute R1. We also show that it generates and certifies an approximate
solution.

Theorem 5.7: Let a tolerance pair (ρ, ε) ∈ R
2++ be given and δ as defined in (55). If

the S-APFA method use Procedure 5.5 to compute R1, then an iterate yk is certified to be
a (ρ, ε)-solution in at most

O
(√

Lmax
{√

d0√
ρ
,
d0√
ε

})
, O

(
Lmax

{
d0
ρ
,
d20
ε

}
+M1

(
1+ log2

‖∇f (x0)‖
8Lδ

))

outer iterations and LO oracle calls, respectively.

Proof: First, note that if the second stopping criterion of Procedure 5.5 is satisfied, then
the result trivially follows from Proposition 5.6 and the fact that y0 = x0. Otherwise,
Procedure 5.5 output R1 and then the proof follows directly from Theorem 5.3 and
Proposition 5.6. �
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6. Numerical experiments

The main purpose of this section is to illustrate the performance of the S-APFA to
solve quadratic programming (QP) problems over the cone of n× n symmetric positive
semidefinite matrices S+n . More specifically, let a linear operator A : Rn×n→ R

m and
b ∈ R

m be given, the problem of our interest is

min
x∈S+n

1
2
‖Ax− b‖22. (58)

The computational results were obtained using MATLAB R2016b on a 3.5GHz intel
Core i5 computer with 8GB of RAM and OS X system. In our experiment, the linear oper-
atorA : Rn×n→ R

m is sparse with entries uniformly distributed over [0, 1], and the total
number of nonzero entries is specified by the density parameter d. The vector b ∈ R

m was
obtained as b = As, where s := cTc and the entries of the matrix c ∈ R

n×n are uniformly
distributed over [0, 1]. Thus, for each instance, the optimal value is 0 and s is a solution.
We specify the four problems studied in Table 1.

In the implementation of the S-APFA method, we set x0 = 0, R1 = ‖∇f (x0)‖/4L (see
Corollary 4.3) and B = 220. The Lipschitz constant L was estimated using the power
iteration method. Note that (18) is equivalent to

〈w+ − x+, u− x+〉 ≤ η+/β+ ∀u ∈ X ∩ B(x0,R+), (59)

where w+ = x0 − A+∇�+/β+, i.e. x+ is an approximate projection of w+ on X ∩
B(x0,R+). At each outer iteration, the right-hand side of the inequality in (59) was replaced
by max{1, η+/β+} to avoid an excessive number of inner iterations, and z1 as in Step 2 of
the APFA method was set as

z1 = R+(w+ − λminI)
max{R+, ‖w+ − λminI‖F} ,

where λmin is the smallest eigenvalue of w+ and ‖ · ‖F denotes the Frobenius Norm.
Note that z1 is the projection of the positive semidefinite matrix w̃+ := w+ − λminI onto
B(x0,R+).

For comparison purpose, we run the accelerated projected gradient (APG)method cor-
responding to the variant of the PFA method in which projections onto the feasible set X
are computed exactly, i.e. the iterate x+ in Step 2 of the PFAmethod is replaced by the exact
solution of (9). Note that, in this case, the assumption on the boundedness of X required
in Section 2.2 is not necessary. We are also interested in analysing the behaviour of the
S-APFA method to obtain a (ρ, ε)-solution (see Definition 5.1). For this, we considered
(ρk, εk) as defined in Proposition 5.2.

Table 2 shows the performance of S-APFA and APG methods for solving the four QP
problems described in Table 1. In Table 2, ‘Outer’ and ‘Inner’ are the total numbers of outer

Table 1. Instances for the QP problems.

Instances n m d Instances n m d

QP 1 2500 500 1e-4 QP 3 7500 1500 1e-5
QP 2 5000 1000 1e-4 QP 4 10000 2000 1e-5
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Table 2. Performance of the S-APFA and APGmethods for solving QPs 1–4.

f (yk)− f∗ ≤ 10−2 max{ρk/ρ0, εk/ε0} ≤ 10−1

S-APFA APG S-APFA

Prob. f (y0) Outer Inner Time Outer Time Outer Inner Time f (yk)

QP 1 59.26 65 184 41.90 28 56.56 87 250 62.50 4.2e-3
QP 2 16.59 57 114 297.10 22 341.77 62 124 352.00 4.0e-3
QP 3 33.38 80 223 409.61 26 1338.21 86 241 487.74 5.2e-3
QP 4 15.32 61 122 837.82 21 2301.90 70 140 940,41 3.9e-3

and inner iterations, respectively, ‘Time’ is the CPU time in seconds and ‘f (yk)’ is the value
of the objective function at the final iterate yk.

From Table 2, we can see that the S-APFA method performed well for all instances of
QP problems considered and our stopping criterion based on (ρ, ε)-solution is reliable and
suitable if there is no knowledge of the optimal value f ∗. Moreover, a relatively low accu-
racy in the (ρ, ε)-stopping criterion implied a considerable accuracy for the primal gap
f (yk)− f ∗ (recall that f ∗ = 0). We also see that the S-APFA method required more outer
iterations than the APG method to approximately solve (58). However, the latter method
was muchmore time-consuming than the former. Themain reason is that at each iteration
of the APG method demands to compute the exact solution of the projection subprob-
lem (9), which requires the computation of the complete eigenvalue decomposition of a
large matrix, whereas each subproblem of the CondGmethod requires to compute only its
leading singular vector. The latter requirement is usuallymuch less computationally expen-
sive (see, e.g. [8,10] for more details). Therefore, we can conclude that the S-APFAmethod
is suitable for solving large-scale instances of the QP problem (58), being very competitive
with other accelerated gradient schemes.
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Appendices

A. Properties of the sequences {Ak}
In this section, we establish some properties on the sequences {Ak} defined in the PFA and S-APFA
methods.

Lemma A.1: Consider the sequence {Ak} generated by the PFA method, then

Ak ≥ (k+ 1)k2

9L
. (A1)

Proof: It is easy to check that (A1) holds for k = 1. Assume that (A1) holds for some k ≥ 1, we will
now prove by induction that this estimate also holds for k+ 1. From the update formula for Ak+1,
the induction assumption and βk = k+ 1 we obtain

9LAk+1 = 9LAk + 9
2
βk + 9

2

√
β2
k + 4LβkAk

≥ (k+ 1)
(
k2 + 9

2
+ 3k

)

≥ (k+ 1)2(k+ 2).

It follows from the previous estimates that (A1) holds for k+ 1, completing the proof. �

Lemma A.2: Consider the sequence {Ak} generated by the S-APFA method, then

Ak ≥ (k+ 1)k2

50L
∀k ≥ 1. (A2)

Proof: Using a root-finding algorithm, we obtain the first 10 terms of the sequence {Ak} in the
S-APFA method multiplied by L are 0.5, 0.8106, 1.3104, 2.1021, 3.3328, 5.2040, 7.9761, 11.9669,
17.5428 and 25.1050, which trivially imply that (A2) holds for k = 1, . . . , 10. Now, assume that (A2)
holds for some k−1 with k ≥ 10, we are going to prove by induction that this estimate also holds for
k. Let us define

P(x) = 1
2

(
x

x− Ak−1

)2
− Lx

k
, Ā = (k+ 1)k2

50L
.

By using simple calculus, we obtain

P(Ā) ≥ 1
2

(
(k+ 1)k
3k− 1

)2
− k(k+ 1)

50
≥ 1

18
(k+ 1)2 − 1

50
k(k+ 1).

Since the last term above is greater than 3 for all k ≥ 9, we haveP(Ā) ≥ 3. From the updating formula
of {Ak} in the S-APFAmethod, we see thatAk is the unique solution of P(x) = 3 in ]Ak−1,∞[. Now,
from the fact that P is decreasing in this interval and P(Ā) ≥ 3, we obtain Ak ≥ Ā which concludes
the induction proof. �

A. Proof of Proposition 5.6

Our goal in this section is to establish Proposition 5.6. For this, let us first observe that for the S-APFA
method the auxiliary point x1r as defined in Proposition 3.4 becomes

x1r = argmin
x∈X

{
�1(u) := 1

2L
lf (u, x0)+ ‖u− x0‖2

}
. (A3)

In the following, we present two auxiliary results.
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Lemma A.3: Let x1r be as defined in (A3). Then, the following hold:

(a) ‖x1r − x0‖ ≤ min{2d0, 1
4L‖∇f (x0)‖};

(b) 4L(x0 − x1r ) ∈ ∂μ1(f + IX)(x0), where μ1 := 〈∇f (x0), x0 − x1r 〉.

Proof: Using the first-order optimality condition for problem (A3), we have

〈 1
2L
∇f (x0)+ 2(x1r − x0), u− x1r 〉 ≥ 0 ∀u ∈ X. (A4)

By taking u = x0 in the previous inequality, we obtain ‖x1r − x0‖2 ≤ 〈∇f (x0), x0 − x1r 〉/4L, which,
combined with Cauchy–Schwarz inequality, yields

‖x1r − x0‖ ≤ ‖∇f (x0)‖/(4L). (A5)

Now, let x∗ ∈ X∗ be such that d0 = ‖x0 − x∗‖. Since �1 is strongly convex and x1r is its minimizer
over X, we have

�1(x∗) ≥ �1(x1r )+ ‖x∗ − x1r‖2

= 1
2L

(
lf (x1r , x

0)+ L
2
‖x1r − x0‖2

)
+ ‖x∗ − x1r‖2

≥ 1
2L

f (x1r )+ ‖x∗ − x1r‖2, (A6)

where the last inequality is due to (4). On the other hand, since lf (·, x0) ≤ f , it follows from the
definition of �1 that �1(x∗) ≤ f (x∗)/2L+ d20, and then (A6) implies that

1
2L

f (x∗)+ d20 ≥
1
2L

f (x1r )+ ‖x∗ − x1r‖2.

Thus since f (x∗) ≤ f (x1r ) we obtain ‖x∗ − x1r‖ ≤ d0, which implies by the triangle inequality that
‖x1r − x0‖ ≤ 2d0. Therefore, (a) follows by combining the last inequality with (A5).

Now let us prove that (b) holds. It follows from (A4) that, for any u ∈ X,

〈∇f (x0)+ 4L(x1r − x0), u− x0〉 ≥ 〈∇f (x0), x1r − x0〉 + 4L‖x1r − x0‖2,
which implies from the definition of μ1 and by letting v := 4L(x0 − x1r ) that

〈∇f (x0), u− x0〉 ≥ 〈v, u− x0〉 − μ1 ∀u ∈ X.

Therefore, from the previous estimate and the convexity of f, we obtain

f (u)− f (x0) ≥ 〈v, u− x0〉 − μ1 ∀u ∈ X,

which trivially implies that (b) holds. �

LemmaA.4: Let M1 > 2, R> 0 and z ∈ Z(R) be given, where Z(R) is defined in (54). Consider x1r as
defined in (A3). Then,

(a) if ‖z − x0‖ ≥ R/2 then R ≤ 4
√
2M1√

2M1−2d0;
(b) if ‖z − x0‖ ≤ R/2 then x1r ∈ B(x0,R).

Proof: First, let us consider the auxiliary point

zR := argmin
u∈X∩B(x0,R)

�1(u), (A7)
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where �1 is defined in (A3). Since �1 is a quadratic function and z ∈ Z(R), we have

�1(zR) ≥ �1(z)− R2

M1
+ ‖zR − z‖2

≥ �1(zR)+ ‖zR − z‖2 − R2

M1
+ ‖zR − z‖2,

where in the last inequality we also applied the first-order optimality condition for zR. Hence, from
the previous estimate, we obtain

‖zR − z‖ ≤ R/
√
2M1. (A8)

For proving (a), first note that using ‖z − x0‖ ≥ R/2 and (A8), we obtain

‖zR − x0‖ ≥ ‖z − x0‖ − ‖zR − z‖ ≥ R
2
− R√

2M1
= (
√
2M1 − 2)R
2
√
2M1

,

which implies that

R ≤ 2
√
2M1√

2M1 − 2
‖zR − x0‖.

On the other hand, from the definition of x1r and zR we easily see that

‖zR − x0‖ ≤ ‖x1r − x0‖.
Therefore, statement (a) follows now from the last two inequalities and Proposition A.1(a).

Now, let us prove (b). Combining (A8) with ‖z − x0‖ ≤ R/2 andM1 > 2, we have

‖zR − x0‖ ≤ ‖zR − z‖ + ‖z − x0‖ ≤ R√
2M1
+ R

2
< R.

Thus zR is an interior point of convex set X ∩ B(x0,R). Hence, since �1 is convex, it follows from
the definition of x1r and zR that x1r = zR, which implies that x1r ∈ B(x0,R). �

We are now ready to prove Proposition 5.6.

Proof of Proposition 5.6: It is easy to see that the number of execution of the CondG method in
Procedure 5.5 is at most

1+ log2
‖∇f (x0)‖

8Lδ
.

Therefore, (56) follows now from Proposition 2.1 (see also Remark 5.4).
Let us prove that if the second stopping criterion of Procedure 5.5 holds, then in fact x0 is a (ρ, ε)-

solution of (2). Indeed, the last computed R and z ∈ Z(R) are such that ‖z − x0‖ ≤ R/2 and R ≤ δ.
As a consequence, it follows from Lemma A.4(b) that ‖x1r − x0‖ ≤ δ. Hence, letting v := 4L(x0 −
x1r ) and μ1 := 〈∇f (x0), x0 − x1r 〉, Lemma A.1(b) implies that v ∈ ∂μ1(f + IX)(x0). Therefore, since
‖v‖ ≤ 4Lδ ≤ ρ and μ1 ≤ ‖∇f (x0)‖δ ≤ ε, the statement of the Proposition about x0 follows. Now,
assume that Procedure 5.5 output R1. It is easy to see that the computed z ∈ Z(R1/2) satisfies ‖z −
x0‖ ≥ R1/4, and then the second inequality in (57) follows from Lemma A.4(a) with R = R1/2. On
the other hand, if Procedure 5.5 stop in the first iteration, then the first inequality in (57) follows
from Lemma A.1(a), otherwise, as the computed z ∈ Z(R1) satisfies ‖z − x0‖ ≤ R1/2, the desired
inequality follows from Lemma A.4(b) with R = R1. �
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