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Abstract
This paper proposes an efficient adaptive variant of a quadratic penalty accelerated 
inexact proximal point (QP-AIPP) method proposed earlier by the authors. Both the 
QP-AIPP method and its variant solve linearly set constrained nonconvex compos-
ite optimization problems using a quadratic penalty approach where the generated 
penalized subproblems are solved by a variant of the underlying AIPP method. The 
variant, in turn, solves a given penalized subproblem by generating a sequence of 
proximal subproblems which are then solved by an accelerated composite gradient 
algorithm. The main difference between AIPP and its variant is that the proximal 
subproblems in the former are always convex while the ones in the latter are not 
necessarily convex due to the fact that their prox parameters are chosen as aggres-
sively as possible so as to improve efficiency. The possibly nonconvex proximal 
subproblems generated by the AIPP variant are also tentatively solved by a novel 
adaptive accelerated composite gradient algorithm based on the validity of some key 
convergence inequalities. As a result, the variant generates a sequence of proximal 
subproblems where the stepsizes are adaptively changed according to the responses 
obtained from the calls to the accelerated composite gradient algorithm. Finally, 
numerical results are given to demonstrate the efficiency of the proposed AIPP and 
QP-AIPP variants.
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1  Introduction

This paper presents a practical variant of the quadratic penalty accelerated inexact 
proximal point (QP-AIPP) method studied in [15].

The QP-AIPP method of [15] is designed for solving the linearly–constrained 
nonconvex composite optimization problem

where A ∶ ℜn
↦ ℜp is a linear operator, b ∈ ℜp , h ∶ ℜn

→ (−∞,∞] is a closed 
proper convex function, and f is a real-valued differentiable (possibly nonconvex) 
function whose gradient is L–Lipschitz and which, for some 0 < m ≤ L , satisfies

The QP-AIPP method solves (1.1) via a quadratic penalty method, i.e., a sequence of 
penalty subproblems of the form

for an increasing sequence of positive penalty parameters c, is solved by the acceler-
ated inexact proximal point (AIPP) method (discussed below) in which each penalty 
subproblem is solved using a common starting point z0 ∈ dom h (i.e., a cold–start 
strategy is adopted).

We briefly outline the AIPP method of [15]. First, note that (1.3) is a special case 
of

where g(z) ∶= f (z) + c‖Az − b‖2∕2 is a function satisfying

where M = L + c‖A‖2 . In the general setting of (1.4)–(1.5), the AIPP method gener-
ates a sequence {zk} using an inexact proximal point (IPP) framework (see for exam-
ple [31, 32]), i.e., given zk−1 ∈ dom h , it computes zk as a suitable approximate solu-
tion of the proximal subproblem

for some prox-parameter 𝜆k > 0 . Note that the first inequality in (1.5) implies that 
the objective function of (1.6) is convex as long as �k is not larger than 1/m. The 
AIPP method sets �k = 1∕(2m) for every k and uses an accelerated composite gradi-
ent (ACG) variant (see for example [4, 23, 27]) to approximately solve (1.6).

Since the larger �k is the faster the above IPP framework converges to a desirable 
approximate solution, the main goal of this paper is to develop an aggressive AIPP 

(1.1)min {f (z) + h(z) ∶ Az = b, z ∈ ℜ
n},

(1.2)f (u) ≥ f (z) + ⟨∇f (z), u − z⟩ − m

2
‖u − z‖2 ∀ z, u ∈ dom h.

(1.3)min
�
f (z) + h(z) +

c

2
‖Az − b‖2 ∶ z ∈ ℜ

n
�
,

(1.4)�∗ ∶= min {�(z) ∶= g(z) + h(z) ∶ z ∈ ℜ
n}

(1.5)
−
m

2
‖u − z‖2 ≤ g(u) −

�
g(z) + ⟨∇g(z), u − z⟩� ≤ M

2
‖u − z‖2 ∀ z, u ∈ dom h,

(1.6)min

�
g(z) + h(z) +

1

2�k
‖z − zk−1‖2 ∶ z ∈ ℜ

n

�
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variant, and subsequently an aggressive QP-AIPP variant, which possibly chooses 
�k substantially larger than 1/m despite potential loss of convexity of (1.6). An 
important ingredient in obtaining this aggressive AIPP variant is the development 
of a relaxed ACG (R-ACG) algorithm that approximately solves (1.6) according to a 
more relaxed termination criterion. More specifically, within a reasonably number of 
iterations, the algorithm: (1) either solves the possibly nonconvex subproblem (1.6) 
according to the relaxed criterion or stops with failure due to �k being too large; and 
(2) always solves (1.6) according to the relaxed criterion when its objective func-
tion is convex. The aforementioned relaxed AIPP (R-AIPP) variant starts with a 
relatively large initial prox parameter and, in each one of its steps, calls the R-ACG 
algorithm to solve the corresponding prox subproblem. If a key descent inequality 
fails, then the prox parameter �k is halved, the prox center zk−1 is maintained, and 
the R-ACG algorithm is invoked once again to solve the resulting prox subproblem; 
otherwise, the prox parameter �k is preserved and zk takes the place of zk−1.

This paper also considers a more general version of (1.1) in which the linear 
constraint Az = b is replaced by the linear set constraint Az ∈ S , where S ⊆ ℜp is 
a closed convex set. Clearly, when S = {b} , the more general problem reduces to 
(1.1). Under the assumption that dom h is bounded and all penalty subproblems are 
solved by the AIPP variant using the aforementioned cold–start strategy, it turns out 
that the iteration complexity of the QP-AIPP variant for finding the desired approxi-
mate solution is considerably worse than that of the QP-AIPP method of [15]. If, on 
the other hand, the QP-AIPP variant adopts the warm–start strategy in which the 
R-AIPP method for solving the current penalty subproblem starts from the approxi-
mate solution found for the previous subproblem, then the iteration complexity of 
this relaxed QP-AIPP (R-QP-AIPP) variant is shown to be the same as that of the 
QP-AIPP method of [15], up to a logarithmic factor.

The proposed AIPP and QP-AIPP variants are compared with three state-of-the-
art optimization methods on five different optimization problems. The computa-
tional results obtained show that the variants can substantially outperform most of 
the competing methods on many problem instances.

Related works We first discuss papers dealing with related algorithms for solv-
ing the convex version of (1.1) and other related monotone problems. Iteration-com-
plexity analysis of quadratic and exact penalty methods for solving (1.1) under the 
assumption that f is convex and h is a convex indicator function was first studied 
in [16, 17] and further explored in [2, 26, 33]. Iteration-complexity of first-order 
augmented Lagrangian methods for solving the latter class of linearly constrained 
convex programs was studied in [3, 18, 21, 22, 26, 30, 34]. Inexact proximal point 
methods using accelerated gradient algorithms to solve their prox-subproblems were 
previously considered in [7, 12–14, 25] in the setting of convex-concave saddle 
point problems and monotone variational inequalities.

We now discuss papers dealing with related algorithms for solving (1.1) when f 
is nonconvex and the assumptions mentioned after (1.1) hold. Paper [15] is, up to 
our knowledge, the first one to consider a proximal method with acceleration strat-
egy for solving (1.1). Previous works using acceleration strategies were concerned 
with the unconstrained problem (1.4). Namely, [9] proposed an accelerated gradient 
framework to solve (1.4) with better iteration complexity than the usual composite 
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gradient method. Since then, many authors have proposed other accelerated frame-
works for solving (1.4) under different assumptions on the functions g and h (see, 
for example, [5, 8, 10, 19, 29]). In particular, by exploiting the lower curvature m, 
[5, 8, 29] proposed some algorithms which improve the iteration-complexity bound 
of [9] in terms of the dependence on the upper curvature M. Finally, there has been 
a growing interest in the iteration complexity of methods for solving optimization 
problems using second order information (see, for example, [5, 6, 24, 28]).

Organization of the paper Section 1.1 provides some basic definitions and nota-
tion. Section  2 begins with presenting some background materials and transitions 
into defining a general descent (GD) framework for solving the nonconvex optimi-
zation problem (1.4). Section 3 presents and derives the complexity of an R-ACG 
algorithm which attempts to solve (1.6) even when it is not convex. Section 4 pre-
sents a relaxed variant of the AIPP method proposed in [15]. Section 5 presents a 
relaxed variant of the QP-AIPP method proposed in [15]. Section 6 presents numeri-
cal results to illustrate the efficiency of the AIPP and QP-AIPP variants. Finally, 
Sect. 7 presents some concluding remarks.

1.1 � Basic definitions and notation

This subsection provides some basic definitions and notation used in this paper.
The set of natural numbers is denoted by ℕ . The set of real numbers is denoted 

by ℜ . The set of non-negative real numbers and the set of positive real numbers 
are denoted by ℜ+ and ℜ++ , respectively. Let ℜn denote a real valued n–dimen-
sion inner product space, whose inner product and its associated induced norm are 
denoted by ⟨⋅, ⋅⟩ and ‖ ⋅ ‖ , respectively. Let ⟨⋅, ⋅⟩F denote the Frobenius inner product. 
Let Sn

+
 denote the cone of positive semidefinite n–by–n matrices. For t > 0 , define 

log+
1
(t) ∶= max{log t, 1} . The set of proper lower semi-continuous convex functions 

defined on ℜn is denoted by Conv(ℜn) . Given a linear operator A ∶ ℜn
↦ ℜp , the 

operator norm of A is denoted by ‖A‖ ∶= sup{‖Az‖∕‖z‖ ∶ z ∈ ℜn, z ≠ 0}.
Let � ∶ ℜn

→ (−∞,+∞] be given. The effective domain of � is denoted by 
dom𝜓 ∶= {x ∈ ℜn ∶ 𝜓(x) < ∞} and � is proper if dom� ≠ ∅ . If � is differenti-
able at z̄ ∈ ℜn , then its affine approximation 𝓁𝜓 (⋅;z̄) at z̄ is denoted by

Also, for � ≥ 0 , its �-subdifferential at z ∈ dom� is denoted by

The subdifferential of � at z ∈ dom� , denoted by ��(z) , corresponds to �0�(z).
For a given X ⊆ ℜn , the closure of the set X is denoted by clX , the indicator func-

tion of X, denoted by �X , is defined as �X(x) = 0 if x ∈ X and �X(x) = ∞ if x ∉ X . 
Moreover, the normal cone of X at a point x ∈ X is denoted by

(1.7)�𝜓 (z;z̄) ∶= 𝜓(z̄) + ⟨∇𝜓(z̄), z − z̄⟩ ∀z ∈ ℜ
n.

(1.8)���(z) ∶= {v ∈ ℜ
n ∶ �(u) ≥ �(z) + ⟨v, u − z⟩ − �,∀u ∈ ℜ

n}.

NX(x) ∶= {u ∈ ℜ
n×n ∶

⟨
u, x� − x

⟩
≤ 0,∀x� ∈ X} = ��X(x).
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2 � A general descent framework

As discussed in Sect.  1, all the penalized subproblems (see (1.2)) that arise dur-
ing the execution of the QP-AIPP method, as well as the R-QP-AIPP method, are 
of the form (1.4). Hence, efficiently obtaining a solution of (1.4) is of paramount 
importance for both the QP-AIPP and R-QP-AIPP methods. While the QP-AIPP 
method uses the AIPP method to solve (1.4), the R-QP-AIPP method uses the 
R-AIPP method which will be discussed in Sect. 4. The discussion of this section (as 
well as Sect. 3) will essentially pave the way towards the presentation of the R-AIPP 
method.

More specifically, this section presents and analyzes a GD framework for solv-
ing (1.4) that makes use of a black box (see step 1 of the GD framework below). In 
addition, it describes: the assumptions and relevant quantities underlying problem 
(1.4), the notion of approximate stationary point of (1.4) adopted in this section and 
Sect. 4, and the relationship between the GD framework and the GIPP framework of 
[15], of which the AIPP method is an instance of.

Our problem of interest in this section and Sect. 4 is (1.4) which is assumed to 
satisfy the following assumptions: 

	(A1)	 h ∈ Conv(ℜn);
	(A2)	 g is a nonconvex differentiable function on dom h and there exist a scalar M > 0 

such that 

	(A3)	 𝜙∗ > −∞.

In addition, the analysis in Sect. 4 makes use of the quantity

which is positive in view of assumption (A2). While it is generally difficult to 
compute the above quantity, it is well known that assumption (A2) implies that 
m ∈ (0,M] . Moreover, it is shown in Proposition 4.2 below that the smaller m is, the 
better the iteration complexity of R-AIPP method in Sect. 4 becomes.

It is well-known that a necessary condition for z∗ ∈ dom h to be a local minimum 
of (1.4) is that z∗ be a stationary point of � , i.e., 0 ∈ ∇g(z∗) + �h(z∗) . A relaxation 
of this inclusion leads to the following definition of an approximate stationary point 
of (1.4): given a tolerance 𝜌̂ > 0 , a pair (ẑ, v̂) is said to be a 𝜌̂–approximate stationary 
point of (1.4) if

Given a general quadruple (�, z−, z, v) ∈ ℜ++ ×ℜn × dom h ×ℜn , the following 
simple refinement procedure shows how to obtain a pair (ẑ, v̂) satisfying the inclu-
sion in (2.3) with a technically useful bound on the residual v̂ (see Proposition 2.1 
below) 

(2.1)‖∇g(u) − ∇g(z)‖ ≤ M‖u − z‖ ∀u, z ∈ dom h;

(2.2)m ∶= inf
�
m ∈ ℜ++ ∶ g(u) ≥ �g(u;z) −

m

2
‖u − z‖2 ∀u, z ∈ dom h

�
,

(2.3)v̂ ∈ ∇g(ẑ) + 𝜕h(ẑ), ‖v̂‖ ≤ 𝜌̂.
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For the sake of brevity, we write (ẑ, v̂,𝛥) = RP(𝜆, z−, z, v) to indicate that the tri-
ple (ẑ, v̂,𝛥) is the output of the above refinement procedure with inputs M, (g, h), and 
(�, z−, z, v) . We now state an important property of this procedure, whose proof can 
be found in “Appendix A”.

Proposition 2.1  Let a pair of functions (g,  h) satisfying (A1)–(A3) and a quadru-
ple (�, z−, z, v) ∈ ℜ++ ×ℜn × dom h ×ℜn be given and let (ẑ, v̂,𝛥) = RP(𝜆, z−, z, v) . 
Then, � ≥ 0 and

where M� is as in (2.4).

The above proposition shows that the pair (ẑ, v̂) , computed as in (2.5) and (2.6), 
clearly satisfies the inclusion in (2.3) and that the quantity 𝜆‖v̂‖ has an upper bound 
expressed in terms of the two quantities: ‖v + z− − z‖ and 

√
M�� . Given a tolerance 

𝜌̂ > 0 , it will be shown in Proposition 2.2 below that the GD framework stated next 
generates a sequence of iterates {(�k, zk, vk)} whose corresponding refined sequence 
{(ẑk, v̂k)} obtained as (ẑk, v̂k) = RP(𝜆k, zk−1, zk, vk) for every k ≥ 1 yields a 𝜌̂–approxi-
mate stationary point of (1.4).

(2.8)v̂ ∈ ∇g(ẑ) + 𝜕h(ẑ), 𝜆‖v̂‖ ≤ ‖v + z− − z‖ + 2
√
2M𝜆𝛥
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We now make three remarks about the GD framework. First, no termination cri-
terion is added to the GD framework so as to be able to discuss convergence rate 
results about its generated sequence. A discussion of how to terminate it is given 
after Proposition 2.2 below. Second, step 1 should be viewed as an oracle in that it 
does not specify how to compute the triple (�k, zk, vk) . Third, Corollary 2.5 below 
shows that if the stepsize �k is chosen so that the prox subproblem (1.6) is a strongly 
convex composite problem, i.e., �k ∈ (0, 1∕m) where m is as in (2.2), the point zk is 
chosen as its unique optimal solution, and vk is set to zero, then the triple (�k, zk, vk) 
satisfies (2.9) and (2.10) with � = 2 and � = 0 . Thus, when (�, �) ∈ [2,∞) × [0,∞) , 
we conclude that: (i) there always exists a triple satisfying (2.9) and (2.10); and, (ii) 
the GD framework can be viewed as an IPP method. Fourth, the R-AIPP of Sect. 4, 
being a special instance of the GD framework, can also be viewed as an IPP method 
which chooses (�, �) in the open rectangle (2,∞) × (0,∞) and applies an ACG vari-
ant, such as the one described in Sect. 3, to problem (1.6) in order to obtain a triple 
(�k, zk, vk) satisfying (2.9) and (2.10).

The following result shows an important property about the sequence of iterates 
{(𝜆k, ẑk, v̂k)}.

Proposition 2.2  The sequences of stepsizes {�k} and iterate pairs {(ẑk, v̂k)} satisfy

for every k ≥ 1 , where �k ∶=
∑k

i=1
�i.

Proof  Let k ≥ 1 be fixed. The inclusion in (2.11) follows from Proposition 2.1 with 
(ẑ, v̂) = (ẑk, v̂k) and the definitions of ẑk and v̂k in step 1 of the GD framework. To 
show the inequality in (2.11), first observe that (2.9) and the definition of �∗ in (1.4) 
implies that

(2.11)v̂k ∈ ∇g(ẑk) + 𝜕h(ẑk), min
i≤k

‖v̂i‖2 ≤ 𝜃
�
1 + 2

√
𝜏
�2 [𝜙(z0) − 𝜙∗]

𝛬k

,
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Now, let i ≥ 1 be arbitrary. In view of step  1 of the GD framework 
we have (ẑi, v̂i,𝛥i) = RP(𝜆i, zi−1, zi, vi) . Hence Proposition  2.1 with 
(𝜆, z−, z, v, v̂) = (𝜆i, zi−1, zi, vi, v̂i) and (2.10) with k = i imply that

The inequality in (2.11) now follows by combining (2.12) and (2.13). 	�  ◻

We now make three remarks about the GD framework in light of Proposition 2.2. 
First, if the GD framework stops when a pair (ẑk, v̂k) such that ‖v̂k‖ ≤ 𝜌̂ is found, 
then it follows from (2.3) and the inclusion in (2.11) that (ẑk, v̂k) is a 𝜌̂–approxi-
mate stationary point of (1.4). Second, if the sequence of stepsizes {�i} satisfies 
limk→∞ �k = ∞ , then it follows from the inequality in (2.11) and assumption (A3) 
that the GD framework indeed stops according to the above termination criterion. 
Third, (2.11) indicates that the larger the stepsizes �k are, the faster the quantity 
mini≤k ‖v̂i‖ approaches zero.

For the remainder of this section, our goal is to show that the GD framework can 
be seen as a relaxation of the GIPP framework studied in [15]. The proof of this fact 
is not essential in establishing any results pertaining to the R-AIPP method in Sect. 4 
or the R-QP-AIPP method in Sect. 5 and may skipped without any loss of continuity.

Recall that, for a given z0 ∈ dom h and � ∈ [0, 1) , the GIPP framework in [15] 
considers a sequence {(𝜆k, zk, vk, 𝜀k)} ⊆ ℜ++ × dom𝜙 ×ℜn ×ℜ+ satisfying

for every k ≥ 1 . We now state a simple technical result which will not only be used 
in this section but also later in the analysis of the R-ACG algorithm (see Sect. 3).

Lemma 2.3  Assume that � ≥ 0 and (�, z−, z, v) ∈ ℜ++ ×ℜn × dom h ×ℜn satisfy

Then, the quantity � defined in (2.7) satisfies � ≤ �.

Proof  Let (ẑ,𝛥) be computed as in (2.5) and (2.7). It follows from (1.8) and (2.15) that

Considering the above inequality at the point z� = ẑ , along with some algebraic 
manipulation, we have

(2.12)

�(z0) − �∗ ≥

k�
i=1

[�(zi−1) − �(zi)] ≥

k�
i=1

‖vi + zi−1 − zi‖2
��i

≥
�k

�
min
i≤k

1

�2
i

‖vi + zi−1 − zi‖2.

(2.13)‖v̂i‖ ≤

�
1 + 2

√
𝜏
�‖vi + zi−1 − zi‖

𝜆i
.

(2.14)
vk ∈ ��k

�
�k� +

1

2
‖ ⋅ −zk−1‖2

�
(zk), ‖vk‖2 + 2�k ≤ �‖vk + zk−1 − zk‖2,

(2.15)v ∈ ��

�
�� +

1

2
‖ ⋅ −z−‖2

�
(z).

��(z�) +
1

2
‖z� − z−‖2 ≥ ��(z) +

1

2
‖z − z−‖2 + ⟨v, z� − z⟩ − � ∀z� ∈ ℜ

n.
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where the last equality is due to the definitions of � and � given in (1.4) and (2.7), 
respectively. 	�  ◻

The following result shows the relationship between the GIPP framework of [15] 
and the GD framework of this section.

Proposition 2.4  If, for some zk−1 ∈ dom h , constant � ∈ [0, 1) , and index k ≥ 1 , the 
quadruple (�k, zk, vk, �k) satisfies (2.14), then (�k, zk, vk) satisfies (2.9) and (2.10) for 
any � ≥ 2∕(1 − �) and � ≥ �(�kM + 1) . As a consequence, if sup{𝜆k ∶ k ≥ 1} < ∞ , 
then every instance of the GIPP framework is an instance of the GD framework for 
any (�, �) satisfying

Proof  The proof that (�k, zk, vk) satisfies (2.9) with � = 2∕(1 − �) can be found 
in [15, Proposition 5(a)]. Now, let k ≥ 1 and observe that from Lemma  2.3 with 
(�, z−, z, v) = (�k, zk−1, zk, vk) and � = �k we have � ≤ �k . It follows from the last 
inequality and the inequality in (2.14) that 2� ≤ �‖vk + zk−1 − zk‖2 . Combining 
the previous inequality with the assumption on � now shows that (�k, zk, vk) satisfies 
(2.10). The second part of the proposition follows immediately from the first part 
and condition (2.16). 	�  ◻

The above proposition shows that if {�k} is bounded and the parameter triple 
(�, �, �) satisfies (2.16), then the condition for finding an iterate (�k, zk, vk) in the GD 
framework is more relaxed than the condition for finding an iterate (�k, zk, vk, �k) 
in the GIPP framework. As a consequence, under the conditions in (2.16), an opti-
mization algorithm (such as the R-ACG algorithm of Sect.  3) applied to (1.6) is 
expected to find the triple (�k, zk, vk) for the GD framework faster than the quadruple 
(�k, zk, vk, �k) for the GIPP framework.

The following corollary justifies the third remark following the GD framework.

Corollary 2.5  Let zk−1 ∈ dom h and �k ∈ (0, 1∕m) be given, where m 
is as in (2.2). Then, (1.6) has a unique global minimum zk and the triple 
(�k, zk, vk) ∈ ℜ++ × dom h ×ℜn where vk = 0 satisfies (2.9) and (2.10) with � = 2 
and � = 0.

Proof  The existence and unique uniqueness of zk follows from the fact that 
� + ‖ ⋅ −zk−1‖2∕�k is strongly convex. Moreover, the fact that zk is the unique global 
minimum of (1.6) implies that the quadruple (�k, zk, vk, �k) , where (vk, �k) = (0, 0) , 
satisfies (2.14) with � = 0 . The conclusion of the corollary now follows immediately 
from the first part of Proposition 2.4 with � = 0 . 	�  ◻

𝜀 ≥

�
𝜆𝜙(z) +

1

2
‖z − z−‖2 − ⟨v, z⟩

�
−
�
𝜆𝜙(ẑ) +

1

2
‖ẑ − z−‖2 − ⟨v, ẑ⟩

�
= 𝛥

(2.16)� ≥
2

1 − �
, � ≥ sup

{
�(�kM + 1) ∶ k ≥ 1

}
.
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3 � A relaxed accelerated composite gradient algorithm

This section presents and analyzes an ACG variant, namely, the R-ACG algorithm, 
which is used as an important tool in the development of the R-AIPP method of 
Sect. 4. More specifically, the R-AIPP method can be viewed as a special instance 
of the GD framework where step 1 is implemented by repeatedly calling the ACG 
variant of this section.

Before describing the variant, we consider its assumptions as well as the problem 
that it solves. First, we describe the assumptions. Let �̃ ∶ ℜn

→ (−∞,∞] be given 
and assume that it can be decomposed as �̃ = �̃(s) + �̃(n) where: 

	(B1)	 �̃(n) ∈ Conv(ℜn);
	(B2)	 �̃(s) is a differentiable function on dom �̃(n) such that for some �M > 0 , 

We now describe our problem of interest in this section.

Problem A: Given �̃ ∶ ℜn
→ (−∞,+∞] satisfying the above assumptions, a point 

x0 ∈ ℜn , and a pair of parameters (�, �) ∈ (2,∞) × (0,∞) , the problem is to find a 
triple (x, u, �) ∈ ℜn ×ℜn ×ℜ+ such that

The following simple result shows how the ability to solve Problem A allows us to 
implement the “step 1” oracle in the GD framework.

Proposition 3.1  Assume that � = g + h satisfies conditions (A1) and (A2), and let 
zk−1 ∈ dom h be given. Then the following statements hold:

(a)	 if (x, u) satisfies (3.1) with (�̃, M̃, x0) = (��, �M, zk−1) for some 𝜆 > 0 , then the 
triple (�k, zk, vk) ∶= (�, x, u) satisfies (2.9);

(b)	 if (x, u, �) solves Problem A with input (�̃, M̃, x0) = (��, �M, zk−1) for some 𝜆 > 0 , 
then the triple (�k, zk, vk) = (�, x, u) solves step 1 of the GD framework.

Proof 

(a)	 Assume that (x, u) satisfies (3.1). It follows from the fact that (�, x, u) = (�k, zk, vk) 
and the definition of �̃  that 

�̃(s)(u) ≤ ��̃(s) (u;x) +
M̃

2
‖u − x‖2 ∀u, x ∈ dom� (n).

(3.1)‖x0 − x + u‖2 ≤ �
�
�̃(x0) − �̃(x)

�
,

(3.2)u ∈ ��

�
�̃ +

1

2
‖ ⋅ −x0‖2

�
(x), 2

�
M̃ + 1

�
� ≤ �‖x0 − x + u‖2.

‖‖zk−1 − zk + vk
‖‖2 ≤ �

[
�̃(zk−1) − �̃(zk)

]
= ��k

[
�(zk−1) − �(zk)

]
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 and thus the triple (�k, zk, vk) satisfies (2.9).
(b)	 Assume that (x, u, �) satisfies (3.2) and define � ∶= � and (z−, z, v) ∶= (x0, x, u) . 

Moreover, let � be computed as in (2.7) with ẑ as in (2.5). It follows from 
Lemma 2.3, the definition of �̃  , the fact that � = � , and the inclusion in (3.2) 
that � ≤ � . Using the inequality in (3.2) and the fact that (x0, x, u) = (zk−1, zk, vk) 
gives 2(M̃ + 1)� ≤ �‖zk−1 − zk + vk‖2 and thus the pair (zk, vk) satisfies (2.10) in 
view of the definition of M̃ . As a consequence, the triple (�k, zk, vk) solves step 1 
of the GD framework. 	�  ◻

The R-ACG algorithm presented below, which is a modified ACG variant 
for minimizing the function � ∶= �̃ + ‖ ⋅ −x0‖2∕2 , solves Problem A under the 
assumption that � is convex (see Proposition 3.2(c) below). As a consequence, it 
can be used to implement step 1 of the GD framework whenever �k is sufficiently 
small. More specifically, since �k� + ‖ ⋅ −zk−1‖2∕2 is clearly convex whenever �k 
is chosen in (0, 1∕m] , where m is as in (2.2), we can use the R-ACG algorithm to 
solve problem A with �̃ = �k� and x0 = zk−1 , and hence the “step 1” oracle in the 
GD framework in view of Proposition 3.1(b). In fact, the AIPP method developed in 
[15] is an instance of the GIPP framework (and hence an instance of the GD frame-
work) in which, given an upper bound m on m , it chooses �k = 1∕(2m) for all k and 
in which step 1 is implemented with a single call to the R-ACG algorithm presented 
below.

However, our main goal in this paper is the development of an instance of the GD 
framework which aggressively chooses �k (possibly) much larger than 1∕m since, 
according to Proposition 2.2, this strategy can potentially reduce its number of itera-
tions. In this regard, the R-ACG algorithm presented below accepts as input a func-
tion �̃  of the form �̃ = �� for some 𝜆 > 0 in which �̃ + ‖ ⋅ −x0‖2∕2 is not necessar-
ily convex, and terminates with either failure or by finding a triple (x, u, �) satisfying 
(3.1) within O(M̃1∕2 log+

1
M̃) iterations (see statements (a) and (b) of Proposition 3.2 

below). Clearly, in the second case, the triple (�k, zk, vk) = (�, x, u) is guaranteed to 
satisfy (2.9) but not necessarily (2.10) (see Proposition 3.1(a)). If (2.10) is satisfied 
then the R-ACG algorithm clearly provides a solution of the “step 1” oracle of the 
GD framework; otherwise, the stepsize � is considered large. The R-AIPP method of 
Sect. 4 is an instance of the GD framework which attempts to provide a solution of 
its “step 1” oracle in this manner and adaptively reduces � whenever it is found to be 
large.
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Some comments about the above algorithm are in order. First, step 1 is essen-
tially a standard step of an ACG variant (see, for example, [13, 15]) applied to the 
problem min{�̃(x) + ‖x − x0‖2∕2 ∶ x ∈ ℜn} with the exception that it also com-
putes in (3.9) the quantities uj and �j which, together with xj , determine the termi-
nation criteria for the method. Second, it is shown in [15, Lemma 9] that a sim-
plified version of the above algorithm, namely, one that does not include the two 
tests performed in step 2 and stops whenever the inequality in (2.14) is satisfied 
with (zk−1, zk, vk, �k) = (x0, xj, uj, �j) , implements step 1 of the GIPP framework in 
[15]. Finally, it is well-known (see, for example, [13, Proposition 2.3]) that the 
scalar Aj updated according to (3.5) satisfies
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The next result establishes the iteration-complexity bound and some properties of 
the R-ACG algorithm.

Proposition 3.2  The R-ACG algorithm satisfies the following statements:

(a)	 it stops (either with success or failure) in at most 

iterations, where

(b)	 if it stops with success then its output (x, u, �) satisfies

(c)	 if �̃(s) + ‖ ⋅ −x0‖2∕4 is convex then it always terminates with success and its 
output (x, u, �) solves Problem A.

Proof 

(a)	 See “Appendix 2”.
(b)	 This follows from the fact that when the R-ACG algorithm stops with success, 

the last iterate (x, u) = (xj, uj) satisfies (3.13).
(c)	 It follows from [15, Proposition 8(c)] that if �̃(s) + ‖ ⋅ −x0‖2∕4 is convex, then 

t he  i t e ra t e  (xj, uj, �j,Aj) s a t i s f i e s  (3 .10)  and  t he  inc lus ion 
uj ∈ ��j (�̃ + ‖ ⋅ −x0‖2∕2)(xj) for every j ≥ 1 . Hence, since the aforementioned 
inclusion and the definition of � in (3.3) imply (3.11), we conclude that the 
R-ACG algorithm does not terminate with failure (see step 2). As a consequence, 
it follows from statement (a) that it must terminate with success. It then follows 
from the previous inclusion, and the fact that the last iterate (x, u, �) ∶= (xj, uj, �j) 
satisfies (3.12), that � fulfills (3.2). 	�  ◻

(3.14)Aj ≥
1

L̃
max

{
j2

4
,

(
1 +

√
�

4L̃

)2(j−1)
}

∀j ≥ 1.

(3.15)
⌈
1 +

(
2

√
2M̃ + 1

)
log+

1

(
C
[
2M̃ + 1

])⌉

(3.16)C ∶= max

⎧⎪⎨⎪⎩

⎡
⎢⎢⎣
1 +

�
M̃ + 1

�

⎤⎥⎥⎦

2

,

�
1 +

�
�

� − 2

�2⎫⎪⎬⎪⎭
;

(3.17)‖x0 − x + u‖2 ≤ �
�
�̃(x0) − �̃(x)

�
;
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4 � A relaxed accelerated inexact proximal point method

This section states and analyzes a relaxed variant of the AIPP method proposed in 
[15], namely, the R-AIPP method, for computing an approximate stationary point of 
(1.4) as in (2.3).

The R-AIPP method stated below is an instance of the GD framework which 
implements its step 1 by repeatedly invoking the ACG variant in Sect. 3 and thereby 
generates the method’s iteration sequence. More specifically, if zk−1 denotes the pre-
vious iterate in the GD framework and � ∶= �k then the R-ACG algorithm is invoked 
to attempt to solve Problem A with curvature M̃ , function pair (�̃(s), �̃(n)) , and initial 
point x0 given by

If it succeeds, it obtains a pair (x, u) which will satisfy condition (3.1) of Problem 
A. Consequently, if the triple (�k, zk, vk) = (�, x, u) satisfies (2.10), then it is a solu-
tion of step 1 of the GD framework. If the R-ACG algorithm declares failure or the 
triple does not satisfy (2.10), then the stepsize � is reduced and the above procedure 
is repeated. 

We now give some comments about the above method. First, it performs two 
types of iterations, namely, the outer iterations which are indexed by k and the 
inner ones which are performed by the R-ACG algorithm every time it is called 
in step 1. Second, if the call to the R-ACG algorithm in step 1 does not stop with 
failure then, by Proposition  3.2(b), the triple (x, u, �) output by the R-ACG algo-
rithm together with the stepsize � will satisfy (3.17) where �̃ = �(g + h) . Hence, by 

M̃ = �M, �̃(s) = �g, �̃(n) = �h, x0 = zk−1.
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Proposition 3.1(a), the triple (�k, zk, vk) ∶= (�, x, u) will satisfy (2.9). If � is also not 
halved in step 2 then the definition of M̃ and Proposition 3.1(b) imply that the triple 
(�k, zk, vk) also satisfies (2.10). As a consequence, a single iteration of the R-AIPP 
method implements step 1 of the GD framework. Third, the termination condition 
(4.2) and Proposition 2.1, with (�, z−, z, v) = (�k, zk−1, zk, vk) , imply that the required 
solution, i.e., a pair (ẑ, v̂) satisfying (2.3), is obtained when the R-AIPP method ter-
minates. Fourth, since the R-AIPP iterates implement step 1 of GD framework, and 
the sequence {�k} is bounded below (see Lemma  4.1(b) below), Proposition  2.2 
implies that the sequence {v̂k} generated by the R-AIPP method has a subsequence 
approaching zero, and thus the method must terminate in step 3. Fifth, although the 
R-AIPP method does not necessarily generate proximal subproblems with convex 
objective functions, it is shown in Proposition  4.2 below that it has an iteration-
complexity similar to that of the AIPP method of [15]. Finally, in contrast to the 
aforementioned AIPP method, the R-AIPP neither requires an upper bound on the 
quantity m in (2.2) as part of its input nor does it place any restriction on the initial 
stepsize �0.

Each iteration of the R-AIPP method may call the R-ACG algorithm multiple 
times (possibly just one time). Invocations of the R-ACG algorithm that stop with 
success are said to be of type S while the other invocations are said to be of type 
O. Let KS (resp., KO ) denote the total number of R-ACG calls of type S (resp., type 
O). The following technical result provides some basic facts about KS , KO and the 
sequence of stepsizes {�k}.

Lemma 4.1  The following statements hold for the R-AIPP method:

(a)	 if the stepsize 𝜆k̄ ≤ 1∕(2m) for some k̄ ≥ 1 , then every iteration k ≥ k̄ is of type 
S and, as a consequence, 𝜆k = 𝜆k̄ for every k > k̄;

(b)	 KO can be bounded as 2KO ≤ max{1, 4�0m};
(c)	 {�k} is non-increasing and satisfies 1∕�k ≤ max{1∕�0, 4m} for all k ≥ 1.

Proof 

(a)	 Since 𝜆k̄ ≤ 1∕(2m) , the definition of m in (2.2) implies that �̃(s) + ‖ ⋅ −zk−1‖2∕2 is 
convex, where �̃(s) is as defined in (4.1) with 𝜆 ∶= 𝜆k̄ . Hence, Proposition 3.2(c) 
together with Proposition 3.1(b) imply that step 1 and step 2 do not halve � 
at the k̄th iteration, which is to say that this iteration is of type S. Since {�k} is 
clearly nonincreasing, the same conclusion holds true for every iteration k ≥ k̄ . 
Moreover, as � is not halved for subsequent iterations following k̄ , it follows that 
𝜆k = 𝜆k̄ for every k > k̄.

(b)	 Using the fact that immediately before each iteration of type O, the stepsize � 
is halved, we see that the condition 𝜆k̄ ≤ 1∕(2m) in part (a) would eventually be 
satisfied for some iteration k̄ ≥ 1 , and hence KO is finite. Now, note that if KO = 0 
then the inequality in part (b) follows immediately. Assume then that KO ≥ 1 . 
It now follows from part (a) and the definition of KO that 𝜆0∕2KO−1 > 1∕(2m) , 
which clearly implies the inequality in part (b).
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(c)	 The first statement follows trivially from the update rule of �k in the R-AIPP 
method. Now, note that the definition of KO together with the update rule for �k 
imply, for every k ≥ 1 , that �0∕2KO ≤ �k. The inequality in part (c) then follows 
from the inequality in part (b).

	�  ◻

In view of Lemma 4.1(a), choosing an initial stepsize �0 satisfying �0 ≤ 1∕(2m) 
results in an R-AIPP variant with constant stepsize, which resembles the AIPP 
method described in [15].

The next proposition presents a worst-case iteration complexity bound on the 
number of inner iterations of the R-AIPP method with respect to the inputs M, �0, 
and z0 , the quantity m in (2.2), and the tolerance 𝜌̂.

Proposition 4.2  Defining �0 ∶= max{1∕�0, 4m} , the R-AIPP method outputs a 𝜌̂
–approximate stationary point (ẑ, v̂) of (1.4) in at most

inner iterations.

Proof  Let TIS (resp. TIO ) denote the total number of inner iterations performed 
during all calls of type S (resp. type O) (see the paragraph preceding Lemma 4.1). 
Clearly, the total number of inner iterations is TI ∶= TIS + TIO . We now bound each 
one of the quantities TIS and TIO separately by using the fact that assumption (A2), 
(4.1), and Proposition  3.2(a) imply that the number of inner iterations performed 
during each call to the R-ACG algorithm is bounded by

where � is the value of � just before the call and C is as in (3.16) with �M = 𝜆̄M.
We first consider TIO . Note that Lemma  4.1(b) implies that KO is finite. 

Since TIO = 0 when KO = 0 , we may assume without loss of generality that 
KO ≥ 1 . Note that the values of � just before the KO calls of type O are exactly 
�0, �0∕2,… , �0∕2

KO−1 . Hence, we conclude that

(4.3)O

�√
M + 𝜉0

�√
𝜉0
�
𝜙(z0) − 𝜙∗

�
𝜌̂2

+
√
𝜆0

�
log+

1

�
𝜆0
�
M + 𝜉0

���

�
2
√
2�M + 1 log+

1
(C[2�M + 1])

�
,

TIO ≤ 2

KO�
i=1

��
2�0M

2i−1
+ 1

�
log+

1

�
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�
2�0M
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��
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�
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log+

1
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��
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�
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��
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log+

1

�
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where the second inequality is due the fact that Lemma  4.1(b) implies 
2i−1 ≤ 2KO−1 ≤ 2�0�0 for every i ≤ KO.

Thus, we obtain

We now bound TIS . Suppose that KS > 1 and observe that the termination criterion 
(4.2) is not satisfied in the first KS − 1 iterations. Since the R-AIPP method is an 
instance of the GD framework, it follows from Proposition 2.2 that

Using the fact that Lemma 4.1(c) implies 1∕𝜆j ≤ max{1∕𝜆0, 4m̄} = 𝜉0 and �j ≤ �0 
for every j ≥ 1 , we obtain

Hence, we conclude that

It can be easily seen that the bound in (4.6) trivially holds when KS ≤ 1 in view of 
the last term in it. Indeed, to prove this, just assume that 

∑KS−1

j=1
�j = 0 in the above 

argument bounding TIS . Now, since TI = TIO + TIS , the bound in (4.3) follows by 
adding (4.4) and (4.6).

The last statement of the proposition follows due to Proposition 2.1 and the ter-
mination condition in step 3 of the R-AIPP method. 	�  ◻

Observe that, unless �0 is large or m is small, the first term in (4.3) dominates the 
second one.

The numerical experiments in Sect. 6 consider three variants of the R-AIPP method, 
two of which are R-AIPP instances with different choices of �0 . More specifically, 
given an upper bound m on m , one of the R-AIPP instances chooses �0 = 0.9∕(2m) 

(4.4)TIO = O

(√
�0
(
M + �0

)
log+

1

(
�0
[
M + �0

]))
.
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while the other one chooses �0 = 1 . For the problem instances considered, the former 
choice of �0 is relatively small, while the latter choice is relatively large.

We now end this section by discussing some possible choices of the initial step-
size �0 and how the corresponding R-AIPP instances compare to the AIPP method 
of [15]. First, the AIPP method requires knowledge of an upper bound m on m such 
that m = O(M) , and, as a consequence of a more general iteration complexity bound 
derived in [15, Corollary 14], its inner iteration complexity can be shown to be

Now, if m as above is also known to the R-AIPP and the input �0 is set to 1/(4m), 
then its inner iteration complexity (4.3) reduces to

which is the same as (4.7) up to a logarithmic factor. On the other hand, if �0 is cho-
sen so that 1∕�0 = O(m) then (4.3) reduces to

whose dominant first term is as good as the dominant first term in (4.7) whenever √
m log+

1
(�0M) = O(

√
m).

5 � A relaxed quadratic penalty AIPP method

This section presents the R-QP-AIPP method for solving a class of line-
arly–set–constrained nonconvex composite optimization problems. Similar to the 
QP-AIPP method of [15], the R-QP-AIPP method is a quadratic penalty–based 
method that solves a sequence of penalized subproblems, for increasing values 
of the penalty parameter, using the R-AIPP method of Sect. 4. The section con-
tains two subsections. The first one describes the main problem of interest, its 
underlying assumptions, and the notion of a corresponding approximate station-
ary point which R-QP-AIPP method will provably obtain, and briefly outlines a 
cold–started quadratic penalty–based method for obtaining such a point. The sec-
ond one presents a warm–started quadratic penalty–based method, namely, the 
R-QP-AIPP method, for obtaining the desired stationary point and establishes its 
ACG iteration complexity.
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5.1 � The linearly–set–constrained problem

This subsection describes the main problem of interest in this section, namely, 
the linearly–set–constrained nonconvex composite optimization problem (5.1), its 
underlying assumptions, and a notion of an approximate stationary point of it. 
Moreover, it describes the quadratic penalty subproblem (parameterized a penalty 
parameter) associated with (5.1) and discusses the relationship between their cor-
responding approximate stationary points. It then outlines a (static and dynamic) 
cold–started quadratic penalty–based method and its corresponding iteration-
complexity bound, which turns out to be larger than that of the QP-AIPP method 
of [15].

The main problem of interest for this section is the linearly–set–constrained 
nonconvex composite optimization problem

where closed convex set S ⊆ ℜp , linear operator A ∶ ℜn
↦ ℜp , and functions 

f , h ∶ ℜn
↦ (−∞,∞] , satisfy the following assumptions: 

	(C1)	 h ∈ Conv(ℜn) and its diameter 

 is finite;
	(C2)	 A ≠ 0 and F ∶= {z ∈ dom h ∶ Az ∈ S} ≠ �;
	(C3)	 f is a nonconvex differentiable function on dom h and there exist a scalar L > 0 

such that 

	(C4)	 𝜑∗
0
∶= inf{𝜑(z) ∶ z ∈ ℜn} > −∞.

We make two remarks about the above assumptions. First, Lemma 1 in “Appen-
dix 3” shows that (C1), (C3), and the additional assumption that f be lower semi-
continuous on cl (dom h) imply (C4). Second, denoting m as the quantity (2.2) 
with g = f  , assumption (C3) implies that m ∈ (0, L] . Moreover, it is shown in 
Theorem 5.3 below that the smaller m is, the better the iteration complexity of the 
R-QP-AIPP method becomes.

We now discuss a notion of approximate stationary point for (5.1). Clearly, 
(5.1) is equivalent to the problem

Moreover, a necessary condition for a point (ẑ, ŝ) ∈ dom h × S to be a local mini-
mum to the above problem is that there exists a multiplier q̂ ∈ ℜp such that

(5.1)�∗ ∶= min {�(z) ∶= f (z) + h(z) ∶ Az ∈ S, z ∈ ℜ
n},

(5.2)Dh ∶= sup{‖z − z�‖ ∶ z, z� ∈ dom h}

(5.3)‖∇f (z) − ∇f (u)‖ ≤ L‖z − u‖ ∀u, z ∈ dom h;

(5.4)min {f (z) + h(z) ∶ Az − s = 0, s ∈ S, z ∈ ℜ
n}.

(5.5)0 ∈ ∇f (ẑ) + 𝜕h(ẑ) + A∗q̂, Aẑ − ŝ = 0, q̂ ∈ NS(ŝ), ŝ ∈ S.
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Given a tolerance pair (𝜌̂, 𝜂̂) ∈ ℜ2
++

 , a triple ([ẑ, ŝ], q̂, v̂) ∈ [dom h × S] ×ℜp ×ℜn is 
said to be a (𝜌̂, 𝜂̂)–approximate stationary point of (1.1) if it satisfies

Clearly, a (𝜌̂, 𝜂̂)–approximate stationary point ([ẑ, ŝ], q̂, v̂) of (5.1) when (𝜌̂, 𝜂̂) = (0, 0) 
means that the pair (ẑ, ŝ) and the multiplier q̂ satisfy (5.5).

We now describe the quadratic penalty subproblem (parameterized by a pen-
alty parameter) with respect to (5.1). Defining the quadratic penalty function 
pS ∶ ℜp

↦ ℜ+ as

where

for every x ∈ ℜp , the quadratic penalty subproblem parameterized by a penalty 
parameter c > 0 with respect to (5.1) is

We now make four remarks regarding (5.9). First, (1.3) is an instance of (5.9) in 
which S = {b} . Second, when c = 0 , the optimal value of (5.9) coincides with �∗

0
 in 

(C4), and hence there is no abuse of notation made here. Third, it is easily seen that

where �∗ is as in (5.1). Finally, (5.9) is a penalty subproblem involving only the 
original variable z of formulation (5.1) rather than the one associated with (5.4) 
(constructed as in Sect. 1 with Az = b replaced by Az − s = 0 ), which involves the 
pair of variables (z, s).

The following result shows how a 𝜌̂–approximate stationary point of (5.9) 
yields a (𝜌̂, 𝜂̂)–approximate stationary point of (5.1) when the penalty parameter c 
is sufficiently large.

Proposition 5.1  Let (𝜌̂, 𝜂̂) ∈ ℜ2
++

 and c ≥ 0 be given and suppose that (ẑ, v̂) is a 𝜌̂
–approximate stationary point of (5.9) as in (2.3) with g = f + c ⋅ (pS◦A) . Moreover, 
let m be as in (2.2) with g = f  and define

where �∗ and �∗
0
 are as in (5.1) and (C4), respectively. Then, the following state-

ments hold:

(5.6)
v̂ ∈ ∇f (ẑ) + 𝜕h(ẑ) + A∗q̂, ‖v̂‖ ≤ 𝜌̂, ‖Aẑ − ŝ‖ ≤ 𝜂̂, q̂ ∈ NS(ŝ), ŝ ∈ S.

(5.7)pS(x) ∶=
1

2
‖x −�S(x)‖2

(5.8)�S(x) ∶= arg min{‖u − x‖ ∶ u ∈ S}

(5.9)�∗
c
∶= min

{
�c(z) ∶= �(z) + c ⋅ pS(Az) ∶ z ∈ ℜ

n
}
.

(5.10)𝜑∗ ≥ 𝜑∗
c̄
≥ 𝜑∗

c
∀c̄ > c ≥ 0,

(5.11)gc ∶= f + c ⋅ (pS◦A), Mc ∶= L + c‖A‖2,

(5.12)ŝ ∶= 𝛱S(Aẑ), q̂ ∶= c(Aẑ − ŝ), T ∶= 2
(
𝜑∗ − 𝜑∗

0
+ 𝜌̂Dh

)
+ mD2

h
,
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(a)	 for every u, z ∈ dom h , the pair (g,M) = (gc,Mc) satisfies (2.1);
(b)	 the triple ([ẑ, ŝ], q̂, v̂) satisfies the inclusions and the first inequality of (5.6) and

(c)	 if, in addition, the penalty parameter c satisfies

 then ‖Aẑ − ŝ‖ ≤ 𝜂̂ , and hence ([ẑ, ŝ], q̂, v̂) is a (𝜌̂, 𝜂̂)–approximate stationary 
point of (5.1).

Proof  Throughout this proof, we will make use of the well known fact (see, for 
example, [1, Theorems 6.39 & 6.60]) that pS is convex, differentiable, its gradient 
is 1–Lipschitz, and, for every x ∈ ℜp,

(a)	 This follows immediately from the definition of gc in (5.11), assumption (C3), 
and the fact that ∇pS is 1–Lipschitz continuous.

(b)	 Using the definitions of q̂ and ŝ given in (5.12), and the fact that (5.15) at x = Aẑ 
implies c∇pS(Aẑ) = q̂ , observe that: (i) c∇(pS◦A)ẑ = cA∗∇pS(Aẑ) = A∗q̂ ; and 
(ii) q̂ ∈ NS(ŝ) . It now follows from the definition of a 𝜌̂–approximate stationary 
point of (5.9) with g = f + c ⋅ (pS◦A) and the previous observations that 

 Hence, with the additional fact that ‖v̂‖ ≤ 𝜌̂ from (2.3), it follows that the 
inclusions and first inequality of (5.6) hold. Next, observe that the convexity of 
pS and the first inclusion in (5.16) imply that v̂ ∈ ∇f (ẑ) + 𝜕

[
h + c ⋅ (pS◦A)

]
(ẑ) 

or equivalently, 

 Considering (5.17) at any u ∈ F  and using the fact that pS(Au) = 0 for any 
u ∈ F  , the definition of m in (2.2), and the definitions of pS and ŝ , we conclude 
that 

 Taking the infimum over u ∈ F  immediately implies (5.13).

(5.13)
c

2
‖Aẑ − ŝ‖2 ≤ 𝜑∗ − 𝜑(ẑ) + 𝜌̂Dh +

1

2

�
mD2

h

�
;

(5.14)c ≥
T

𝜂̂2
,

(5.15)∇pS(x) = x −�S(x) ∈ NS

(
�S(x)

)
.

(5.16)
v̂ ∈ ∇f (ẑ) + 𝜕h(ẑ) + c∇(pS◦A)ẑ = ∇f (ẑ) + 𝜕h(ẑ) + A∗q̂

⊆ ∇f (ẑ) + 𝜕h(ẑ) + A∗NS(ŝ).

(5.17)
h(u) + c ⋅ pS(Au) ≥ h(ẑ) + c ⋅ pS(Aẑ) + ⟨v̂ − ∇f (ẑ), u − ẑ⟩ ∀u ∈ dom h.

c

2
‖Aẑ − ŝ‖2 ≤ h(u) − h(ẑ) + ⟨∇f (ẑ), u − ẑ⟩ − ⟨v̂, u − ẑ⟩

≤ (f + h)(u) − (f + h)(ẑ) + ‖v̂‖‖u − ẑ‖ + 1

2

�
m‖u − ẑ‖2�

≤ 𝜑(u) − 𝜑(ẑ) + 𝜌̂Dh +
1

2

�
mD2

h

�
.
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(c)	 Using (5.14), the fact that 𝜑(ẑ) ≥ 𝜑∗
0
 , and the definition of T, it follows from part 

(b) that 

	�  ◻

In view of the above proposition, we now outline a static penalty method for 
obtaining a (𝜌̂, 𝜂̂)–approximate stationary point of (5.1). First, let z0 ∈ dom h be 
given and select a penalty parameter c = O(𝜂̂−2) satisfying (5.14). Second, obtain 
a 𝜌̂–approximate stationary point (ẑ, v̂) of (5.9) using the R-AIPP method of Sect. 4 
with starting point z0 and inputs M = Mc and (g, h) = (gc, h) , which satisfy assump-
tions (A1)–(A3) in view of Proposition  5.1(a) and assumptions (C1) and (C3). 
Finally, compute the pair (ŝ, q̂) according to (5.12) and output the triple ([ẑ, ŝ], q̂, v̂) , 
which is a (𝜌̂, 𝜂̂)–approximate stationary point of (5.1) in view of Proposition 5.1(c). 
Using (5.11) with (c, c̄) = (0, c) , the definitions in (5.11), the fact that c = O(𝜂̂−2) , 
and the complexity bound for the R-AIPP method described in Proposition 4.2 with 
M = Mc , it is easy to see that the ACG iteration complexity of the outlined method 
is

where �0 ∶= max{1∕�0, 4m} and the last quantity ignores any constants aside from 
the tolerances. A drawback of this static penalty method is that it requires in its first 
step the selection of a single parameter c, which is generally difficult to obtain. This 
issue can be circumvented by considering a dynamic cold–started penalty method 
in which the static penalty method is repeated for a sequence of increasing values 
of c and common starting point z0 . It can be shown that the resulting cold–started 
dynamic penalty method has an ACG iteration complexity that is still on the same 
order as (5.18). Note that the bound (5.18) is actually O(𝜌̂−2𝜂̂−1 log+

1
𝜂̂−1) when 

z0 ∈ F  (see (C2)) but our interest lies in the case where z0 ∉ F  since an initial point 
z0 ∈ F  is generally not known.

The QP-AIPP method of [15] is a modified cold–started dynamic penalty method 
like the one just outlined, but which replaces the R-AIPP method called in step 2 of 
the static penalty method with the AIPP method of [15]. It has been shown in [15, 
Theorem 18] that its ACG iteration complexity bound for finding a (𝜌̂, 𝜂̂)–approxi-
mate stationary point of (1.1) is O(𝜌̂−2𝜂̂−1) . This bound is established without 
assuming that dom h is bounded and is clearly better than the one in (5.18).

The next subsection considers a warm–started dynamic penalty method, similar 
to the one described immediately after Proposition 5.1, in which the input z0 to the 
R-AIPP call for solving the next penalty subproblem is chosen to be the output ẑ 
from the R-AIPP call for solving the current one. It is shown in Theorem  5.3 of 
Sect. 5.2 that its ACG iteration complexity is O(𝜌̂−2𝜂̂−1 log+

1
𝜂̂−1) , which is the same 

as the one for the QP-AIPP method up to a logarithmic factor. As a side remark, 

‖Aẑ − ŝ‖2 ≤ 1

c

�
2
�
𝜑∗ − 𝜑∗

0
+ 𝜌̂Dh

�
+ mD2

h

�
=

T

c
≤ 𝜂̂2.

(5.18)

O

�√
Mc + 𝜉0

�√
𝜉0
�
𝜑c(z0) − 𝜑∗

0

�
𝜌̂2

+
√
𝜆0

�
log+

1

�
𝜆0
�
Mc + 𝜉0

���
= O

�
𝜌̂−2𝜂̂−3 log+

1
𝜂̂−1

�
,
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we note that although a warm–started version of the QP-AIPP method in [15] can 
be also considered, the aforementioned O(𝜌̂−2𝜂̂−1) ACG iteration complexity bound 
was derived for its cold–started version.

5.2 � The R‑QP‑AIPP method

The goal of this subsection is to describe the R-QP-AIPP method, i.e., the 
warm–started dynamic penalty method mentioned at the end of Sect. 5.1, and estab-
lish its corresponding ACG iteration complexity.

We start by describing the R-QP-AIPP method.

Before giving some remarks about the above method, we discuss its general 
structure. Every loop of the R-QP-AIPP method invokes in its step 1 the R-AIPP 
method of Sect. 4 to compute a 𝜌̂-approximate stationary point of the current penalty 
subproblem (5.9). The latter method in turn uses the R-ACG algorithm of Sect. 3 
as a subroutine in its implementation (see step 1 of the R-AIPP method). Moreover, 
step 1 of the R-QP-AIPP implements a warm–start strategy, namely, the input point 
z0 of the current R-AIPP call is set to be the output point ẑl−1 of the previous R-AIPP 
call.

We now make three remarks about the R-QP-AIPP method. First, it follows from 
Proposition 5.1(b) that, for every l ≥ 1 , the triple ([ẑ, ŝ], q̂, v̂) = ([ẑl, ŝl], q̂l, v̂l) satisfies 
the inclusions and the first inequality in (5.6). Second, since every loop of the R-QP-
AIPP method doubles c, the condition (5.14) will be eventually satisfied. Hence, 
in view of Proposition 5.1(c), the pair (ẑ, ŝ) corresponding to this c will satisfy the 
condition ‖Aẑ − ŝ‖ ≤ 𝜂̂ and the R-QP-AIPP method will stop in view of its stopping 
criterion in step 2. Finally, in view of the first and second remarks, we conclude that 
the R-QP-AIPP method outputs a triple ([ẑ, ŝ], q̂, v̂) satisfying (5.6).
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Before deriving the ACG iteration complexity of the R-QP-AIPP method, we 
note that the number of ACG iterations needed in the (l + 1)th execution of its step 1 
depends on the quantity 𝜑cl

(ẑl) − 𝜑∗
cl
 (see the left–hand–side of (5.18) with 

(c, z0) = (cl, ẑl) ). The result below shows that the warm–start strategy in step 1 of the 
method together with the boundedness of dom h imply that the aforementioned 
quantity has an upper bound that is independent of the size of the parameter cl.

Lemma 5.2  Let c0 and ẑ0 be as in step 0 and the input of the R-QP-AIPP method, 
respectively, and define

where �∗
c
 and T are as in (5.9) and (5.12), respectively. Then, for every l ≥ 0 , we 

have

Proof  The case in which l = 0 follows trivially from the definition of S0 in (5.19). 
Consider now the case in which l ≥ 1 . Remark that cl = 2cl−1 due to step 2 of R-QP-
AIPP and (5.9) and that (ẑl, v̂l) is a 𝜌̂–approximate stationarsy point of (5.9) with 
c = cl−1 due to the warm–start strategy in step 1 of the R-QP-AIPP method. It now 
follows from the aforementioned remarks, the last inequality in (5.10) with c = cl , 
and Proposition 5.1(b) with (ẑ, c) = (ẑl, cl−1) , that

Grouping terms in the last expression together, using the definition of Q0 given in 
(5.19), and the fact that 𝜑(ẑl) ≥ 𝜑∗

0
 , we conclude that

Combining (5.21) and (5.22) yields (5.20). 	�  ◻

The following result establishes the iteration complexity of the R-QP-AIPP method 
with respect to the inputs L, �0, and z0 , the quantity m in (2.2) with g = f  , and the toler-
ance pair (𝜌̂, 𝜂̂).

Theorem 5.3  Given a tolerance pair (𝜌̂, 𝜂̂) ∈ ℜ2
+
 , define

where T is given in (5.12). Then, defining �0 ∶= max{1∕�0, 4m} , the R-QP-AIPP 
method outputs a (𝜌̂, 𝜂̂)–approximate stationary point ([ẑ, ŝ], q̂, v̂) of (5.1) in at most

(5.19)S0 ∶= 𝜑c0
(ẑ0) − 𝜑∗

c0
, Q0 ∶= T + S0,

(5.20)𝜑cl
(ẑl) − 𝜑∗

cl
≤ Q0.

(5.21)
𝜑cl

(ẑl) − 𝜑∗
cl
≤ 𝜑cl

(ẑl) − 𝜑∗
0
= 𝜑(ẑl) + 2

�cl−1
2

‖Aẑl − ŝl‖2
�
− 𝜑∗

0

≤ 𝜑(ẑl) + 2
�
𝜑∗ − 𝜑(ẑl) + 𝜌̂Dh +

1

2

�
mD2

h

��
− 𝜑∗

0
.

(5.22)
𝜑(ẑl) + 2

[
𝜑∗ − 𝜑(ẑl) + 𝜌̂Dh +

1

2

(
mD2

h

)]
− 𝜑∗

0
≤ 2

(
𝜑∗ − 𝜑∗

0
+ 𝜌̂Dh

)
+ mD2

h
= T ≤ Q0.

(5.23)𝛯𝜂̂ ∶= L +
T‖A‖2
𝜂̂2

,
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ACG iterations, where Q0 is as in (5.19).

Proof  Define T𝜂̂ ∶= T∕𝜂̂2 and let l̄ be the smallest index such that cl̄−1 ≥ T𝜂̂ . Since 
the R-QP-AIPP invokes the R-AIPP method with (M, g) = (Mcl−1

, gcl−1) , it follows 
from Lemma 5.2 and Proposition 4.2, with M = Mcl−1

 , that the total number of ACG 
iterations at the lth iteration of the R-QP-AIPP method is on the order of

Hence, the R-QP-AIPP method stops in a total number of ACG iterations bounded 
above by the sum of the quantity in (5.25) over l = 1,… , l̄.

We now focus on simplifying some of the quantities in the aforementioned sum. 
Using the fact that L = c0‖A‖2 , we obtain the bound

Now, if ̄l = 1 , then the above inequality implies that Mcl̄−1
≤ 2c0‖A‖2 = 2L = O

�
𝛯𝜂̂

�
 . 

Assume then that l̄ ≥ 2 . Observe that the definition of l̄ implies that 2l̄−1c0 ≤ 2T𝜂̂ or, 
equivalently, 

√
c0

√
2
l̄

≤ 2
√
T𝜂̂  . Combining the previous inequality with (5.26), we 

conclude that

and also

It now follows from (5.25), (5.27), and (5.28) that the R-QP-AIPP method stops in a 
total number of ACG iterations bounded by the quantity in (5.24).

The statement that ([ẑ, ŝ], q̂, v̂) is a (𝜌̂, 𝜂̂)–approximate stationary point follows 
from Proposition 5.1(b) and the termination condition in step 2 of the R-QP-AIPP 
method. 	� ◻

We now make three remarks about the complexity bound in (5.24). First, in 
terms of the tolerance pair (𝜌̂, 𝜂̂) , it is O(𝜌̂−2𝜂̂−1 log+

1
𝜂̂−1) , which improves upon the 

(5.24)O

⎛
⎜⎜⎝

��
1 +

𝜉0

L

�
Ξ𝜂̂

�√
𝜉0Q0

𝜌̂2
+
√
𝜆0

�
log+

1

�
𝜆0
�
𝛯𝜂̂ + 𝜉0

��⎞⎟⎟⎠
,

(5.25)O

��
Mcl−1

+ 𝜉0

�√
𝜉0Q0

𝜌̂2
+
√
𝜆0

�
log+

1

�
𝜆0
�
Mcl−1

+ 𝜉0
���

.

(5.26)
Mcl−1

= L + cl−1‖A‖2 = L + 2l−1c0‖A‖2 ≤ 2l−1
�
L + c0‖A‖2

�
= 2lc0‖A‖2.

(5.27)

l̄�
k=1

�
Mcl−1

+ 𝜉0 ≤

l̄�
k=1

�
2lc0‖A‖2 + 𝜉0 ≤

√
2
l̄�
1 +

√
2
��

2c0‖A‖2 + 𝜉0

≤ 8

��
‖A‖2 + 𝜉0

c0

�
T𝜂̂ = 8

��
1 +

𝜉0

L

�
‖A‖2T𝜂̂ = O

⎛⎜⎜⎝

��
1 +

𝜉0

L

�
Ξ𝜂̂

⎞⎟⎟⎠
.

(5.28)
log+

1

�
Mcl−1

+ 𝜉0
�
≤ log+

1

�
2l̄c0‖A‖2 + 𝜉0

�
≤ log+

1

�
4T𝜂̂‖A‖2 + 𝜉0

�
= O

�
log+

1

�
𝛯𝜂̂ + 𝜉0

��
.
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complexity in (5.18) by a 𝛩(𝜂̂−2) factor. Second, unless �0 is large or m is small, the 
first term in (5.24) dominates the second one.

We now end this section by discussing some possible choices of the initial step-
size �0 and how the corresponding R-QP-AIPP instances compare to the QP-AIPP 
method of [15]. First, recall that the QP-AIPP method requires the knowledge of an 
upper bound m on m such that m = O(L) , and remark that, under the same assump-
tions of this paper, it can be shown using [15, Theorem 18] that its ACG iteration 
complexity is

Now, if m as above is also known to the R-AIPP and the input �0 is set to 1/(4m), 
then the ACG iteration complexity (5.24) reduces to

which is the same as (5.24) up to a logarithmic factor. On the other hand, if �0 is 
chosen so that 1∕�0 = O(m) then (5.24) reduces to

whose dominant first term is as good as the dominant first term in (5.29) when √
m log+

1
(𝜆0𝛯𝜂̂) = O(

√
m).

6 � Numerical experiments

This section presents computational results that highlight the performance of the 
R-AIPP and R-QP-AIPP methods. It contains three subsections. The first subsec-
tion compares three variants of the R-AIPP method against three state-of-the-art 
nonconvex composite optimization algorithms. The second subsection uses the 
six algorithms in the first subsection as subroutines in a quadratic penalty method 
similar to the one in Sect. 5. More specifically, given an algorithm A out of the 
six algorithms in the first subsection, a corresponding quadratic penalty method is 
considered in which steps 0–2 of the R-QP-AIPP method in Sect. 5 are executed 
with algorithm A replacing the R-AIPP method. The third subsection presents a 
summary of the numerical experiments.

We first describe the three different R-AIPP variants considered. While the 
second variant does not assume knowledge of an upper bound m on the quantity 
m in (2.2), the first and third variants do in order to determine their initial step-
size �0 . More specifically, the first variant, referred to as R-AIPPc, is the R-AIPP 
method with initial stepsize chosen to be �0 = 0.9∕(2m) . As opposed to the two 

(5.29)O

��
𝛯𝜂̂

�√
mQ0

𝜌̂2
+

�
1

m
log+

1

�
𝛯𝜂̂

m

���
.

(5.30)O

��
𝛯𝜂̂

�√
mQ0

𝜌̂2
+

�
1

m

�
log+

1

�
𝛯𝜂̂

m

��
,

(5.31)O

��
𝛯𝜂̂

�√
mQ0

𝜌̂2
+
√
𝜆0

�
log+

1

�
𝜆0𝛯𝜂̂

��
,
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algorithms explained below, which can adaptively change �k between iterations, 
this algorithm is a constant stepsize method (see Lemma 4.1 and the paragraph 
following it). The second variant, referred to as R-AIPPv1, is the R-AIPP method 
with initial stepsize chosen to be �0 = 1 . Since �0 is relatively large in the experi-
ments considered, � is halved in some of its outer iterations. The third variant, 
referred to as R-AIPPv2, is a variant of the R-AIPP method with initial stepsize 
chosen to be �0 = 1∕(5m) . This variant modifies the R-AIPP method by adding 
conditions that allow the stepsize � to increase between subproblems. More spe-
cifically, the R-AIPPv2 method doubles the value of � at the end of iteration k 
when: (a) � has never been halved in step 1 or 2 and (b) the number of inner itera-
tions performed by the R-ACG algorithm in step 1 is less than 250. All R-AIPP 
variants are run with � = 4 , a problem–specific value of � , and adaptively esti-
mate the constant M̃ that is used in each iteration of the R-ACG algorithm.

We now make three remarks about the above R-AIPP variants and the AIPP 
method of [15]. First, while both the R-AIPPc and AIPP method choose the step-
sizes {�k} to be constant, the former method differs from the latter one in that 
it uses a more relaxed criterion, i.e., (2.9) and (2.10), for solving the kth prox 
subproblem (1.6). Moreover, the limited numerical experiments in “Appendix 4” 
show that this relaxation drastically improves upon the efficiency of the AIPP 
method, regardless of the magnitude of the ratio M/m. As we believe that this 
effect would be observed in the other problem instances of this section, we choose 
not to include the AIPP method as part of our suite of benchmark algorithms for 
the sake of brevity. Second, the R-AIPPv1 and R-AIPPv2 methods differ from the 
R-AIPPc method in that they permit the stepsizes {�k} to be significantly larger 
than the constant ones chosen for the R-AIPPc method. As will be observed in 
the numerical experiments below, this can drastically improve the efficiency of 
the adaptive stepsize R-AIPP variants. Third, in view of the descriptions of the 
R-AIPP variants in the previous paragraph, both the R-AIPPc and R-AIPPv1 
methods are instances of the R-AIPP method while the R-AIPPv2 method is not. 
However, the R-AIPPv2 method is clearly an instance of the GD framework, and 
hence a similar analysis to the one in Sect. 4 may be used to establish its ACG 
iteration complexity. For sake of brevity we omit its analysis in this paper.

We now describe the three other nonconvex composite optimization algo-
rithms considered. The first algorithm is an implementation of the unified 
problem-parameter free accelerated gradient (UPFAG) method that is pro-
posed and analyzed in [10]. The particular implementation considered is the 
UPFAG-fullBB method, which utilizes a Barzilai–Borwein type stepsize selec-
tion strategy and is described in [10, Section  4]. Its input parameters include 
(�1, �2, �3) = (0.4, 0.4, 1.0) and (�, �) = (10−2, 10−10) . The second algorithm is an 
implementation of the NC-FISTA method in [20]. The particular implementation 
considered uses input parameters (�, �) = (1.05m, 0.99∕M) . The third algorithm is 
an implementation of the accelerated gradient (AG) method that is proposed and 
analyzed in [9]. The particular implementation considered is Algorithm 2, which 
is described in [9, Section 2].

Finally, we state some additional details about the numerical experiments. First, 
for each linearly–set–constrained problem of the form given in (5.1), the quadratic 
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penalty method used to solve it starts with the initial penalty parameter chosen to 
be c0 = max{10−10, (1000m − L)∕‖A‖2} . Second, each algorithm is run with a time 
limit of 4000 s. If an algorithm does not terminate with a solution for a particular 
problem instance, we do not report any details about its iteration count or function 
value at the point of termination and the runtime for that instance is marked with a 
[*] symbol. Third, the iterations listed in the tables this section include backtracking 
iterations if a parameter line search method is used as part of the algorithm. Finally, 
all algorithms described at the beginning of this section are implemented in MAT-
LAB 2019a and are run on Linux 64-bit machines each containing Xeon E5520 pro-
cessors and at least 8 GB of memory.

6.1 � Unconstrained problems

This subsection examines the performance of the R-AIPP method as a nonconvex 
composite optimization solver for solving problems of the form given in (1.4). Given 
a function pair (g, h) satisfying assumptions (A1)–(A3) with � = g + h , tolerance 
𝜌̂ > 0 , and an initial point z0 ∈ dom h , each algorithm seeks a pair (ẑ, v̂) satisfying

Two problems are considered, namely: (1) the quadratic matrix problem; and (2) the 
support vector machine problem in [10].

All methods that terminated within 4000 s converged to the same objective value, 
which, for each table in this subsection, is given in a column labeled 𝜙(ẑ) . The bold 
numbers in each of the aforementioned tables highlight the algorithm that performed 
the most efficiently in terms of iteration count or total runtime.

6.1.1 � Quadratic matrix problem

Given a pair of dimensions (l, n) ∈ ℕ
2 , scalar pair (�1, �2) ∈ ℜ2

++
 , linear opera-

tors B ∶ Sn
+
↦ ℜn and C ∶ Sn

+
↦ ℜl defined by

(6.1)v̂ ∈ ∇g(ẑ) + 𝜕h(ẑ),
‖v̂‖

‖∇g(z0)‖ + 1
≤ 𝜌̂.

[B(z)]j =
�
Bj, z

�
F
, [C(z)]i = ⟨Ci, z⟩F,

Table 1   Iteration counts for QM problems with fixed m 

M m 𝜙(ẑ) Iteration count

UPFAG NC-FISTA AG R-AIPPc R-AIPPv1 R-AIPPv2

102 100 – 1.74E–02 3892 2045 8670 8266 7627 1093
104 100 3.67E–01 9809 8642 7064 3250 3691 1185
106 100 3.84E+01 23388 11861 7039 1270 1268 1174
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for matrices {Bj}
n
j=1

, {Ci}
l
i=1

⊆ ℜn×n , positive diagonal matrix D ∈ ℜn×n , and vector 
d ∈ ℜl , this sub–subsection considers the following quadratic matrix (QM) 
problem:

where Pn = {z ∈ Sn
+
∶ tr z = 1} denotes the n–dimensional spectraplex.

We now describe the experiment parameters for the instances considered. 
First, the dimensions were set to be (l, n) = (50, 200) and only 2.5% of the entries 
of the submatrices Bj and Ci being nonzero. Second, the entries of Bj,Ci , and d 
(resp., D) are generated by sampling from the uniform distribution U[0, 1] (resp., 
U[1, 1000] ). Third, the initial starting point is z0 = In∕n , where In is the n-dimen-
sional identity matrix. Fourth, with respect to the termination criterion (6.1), the 
inputs, for every z ∈ Sn

+
 , are

min
z

�1

2
‖C(z) − d‖2 − �2

2
‖DB(z)‖2

s.t. z ∈ Pn,

Table 2   Runtimes for QM problems with fixed m 

M m 𝜙(ẑ) Runtime (s)

UPFAG NC-FISTA AG R-AIPPc R-AIPPv1 R-AIPPv2

102 100 – 1.74E–02 511.91 151.58 880.19 935.50 981.49 119.87
104 100 3.67E–01 1304.09 683.95 687.16 287.37 334.41 106.54
106 100 3.84E+01 2804.38 774.74 615.91 100.27 102.29 94.16

Table 3   Iteration counts for QM problems with m = M

M m 𝜙(ẑ) Iteration count

UPFAG NC-FISTA AG R-AIPPc R-AIPPv1 R-AIPPv2

102 102 − 2.06E+01 18 38 79 161 10 20

104 104 − 2.06E+03 19 39 80 217 7 21

106 106 − 2.06E+05 19 39 80 175 8 20

Table 4   Runtimes for QM problems with m = M

M m 𝜙(ẑ) Runtime (s)

UPFAG NC-FISTA AG R-AIPPc R-AIPPv1 R-AIPPv2

102 102 − 2.06E+01 1.73 1.71 4.80 16.07 1.23 2.20

104 104 − 2.06E+03 1.68 1.91 4.89 19.67 0.70 2.35

106 106 − 2.06E+05 2.06 2.06 4.73 16.32 0.57 2.08
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Fifth, the R-AIPP variants used a parameter value of � = 10000 . Finally, each 
problem instance considered is based on a specific curvature pair (m,M) ∈ ℜ2

++
 

for which the scalar pair (�1, �2) ∈ ℜ2
++

 is selected so that M = �max(∇
2g) and 

−m = �min(∇
2g).

We now present the numerical tables for this set of problem instances. We 
start with instances in which m is fixed (Tables 1, 2). 

We now present instances where m = M (Tables 3, 4).

6.1.2 � Support vector machine problem

Given a pair of dimensions (n, k) ∈ ℕ
2 , matrix U ∈ ℜn×k, and vector 

v ∈ {−1,+1}n, this sub–subsection considers the following (sigmoid) support 
vector machine (SVM) problem

where ui denotes the ith column of U.
We now describe the experiment parameters for the instances considered. First, 

the entries of U are generated by sampling from the uniform distribution U[0, 1] , 
with only 5% of the entries being nonzero, and v = sgn(UTx) where the entries of 
x are sampled from the uniform distribution over the k–dimensional ball centered 

g(z) =
𝛼1

2
‖C(z) − d‖2 − 𝛼2

2
‖DB(z)‖2, h(z) = 𝛿Pn

(z), 𝜌̂ = 10−7.

min
z

1

k

k�
i=1

�
1 − tanh

�
vi⟨ui, z⟩

��
+

1

2k
‖z‖2,

Table 5   Iteration counts for SVM problems

n k 𝜙(ẑ) Iteration count

UPFAG NC-FISTA AG R-AIPPc R-AIPPv1 R-AIPPv2

1000 500 2.37E–01 82 3025 783 8234 889 57
2000 1000 1.61E–01 197 8361 1192 22706 1227 85
4000 2000 1.05E–01 1128 – 1347 – 1651 97
8000 4000 6.67E–02 372 – 1647 – – 148

Table 6   Runtimes for SVM problems

n k 𝜙(ẑ) Runtime (s)

UPFAG NC-FISTA AG R-AIPPc R-AIPPv1 R-AIPPv2

1000 500 2.37E–01 3.58 49.00 12.80 389.39 35.21 1.74
2000 1000 1.61E–01 29.05 473.67 65.79 3626.51 164.56 7.73
4000 2000 1.05E–01 1076.09 4000.00* 437.80 4000.00* 1059.98 47.75
8000 4000 6.67E–02 1118.84 4000.00* 1975.18 4000.00* 4000.00* 177.03
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at 0 with radius 50. Second, the initial starting point is z0 = 0 . Third, the curva-
ture parameters for each problem instance are m = M = (4

√
3‖U‖2

F
)∕(9k) + 1∕k. 

Fourth, with respect to the termination criterion (6.2), the inputs, for every 
z ∈ ℜn , are

Fifth, the R-AIPP variants used a parameter value of � = 5000 . Finally, each prob-
lem instance considered is based on a specific dimension pair (n, k) ∈ ℕ

2.
We now present the numerical tables for this set of problem instances (Tables 5, 

6).

6.2 � Linearly constrained problems

This subsection examines the performance of the R-QP-AIPP method as a noncon-
vex linearly–set–constrained composite optimization solver for solving problems of 
the form given in (5.1). Given a linear operator A, convex set S, function pair (f, h) 
satisfying assumptions (C1)–(C3), tolerance pair (𝜌̂, 𝜂̂) ∈ ℜ2

++
 , and an initial point 

z0 ∈ dom h , each algorithm seeks a triple ([ẑ, ŝ], p̂, v̂) satisfying

Three problems are considered, namely: (1) the linearly–constrained quadratic 
matrix problem; (2) the sparse principal component analysis problem in [11]; and 
(3) the bounded matrix completion problem in [35].

The bold numbers in each of the tables in this subsection highlight the algo-
rithm that performed the most efficiently in terms of function value, iteration 
count, or total runtime. It is worth mentioning that the methods that terminated 
within 4000 s did not all converge to points with the same objective value. This 
can be attributed to: (1) the fact that the tolerances 𝜌̂ and 𝜂̂ in this subsection are 
relatively large compared to the tolerance 𝜌̂ in Sect. 6.1; and (2) the possibility 
that each method balances the feasibility of its solution against the stationarity 
of its solution differently.

6.2.1 � Linearly–constrained quadratic matrix problem

Given a pair of dimensions (l, n) ∈ ℕ
2 , scalar pair (�1, �2) ∈ ℜ2

++
 , linear opera-

tors A ∶ Sn
+
↦ ℜl , B ∶ Sn

+
↦ ℜn , and C ∶ Sn

+
↦ ℜl defined by

g(z) =
1

k

k�
i=1

�
1 − tanh

�
vi⟨ui, z⟩

��
+

1

2k
‖z‖2, h(z) = 0, 𝜌̂ = 10−3.

(6.2)
v̂ ∈ ∇f (ẑ) + 𝜕h(ẑ) + A∗p̂,

‖v̂‖
‖∇f (z0)‖ + 1

≤ 𝜌̂,

‖Aẑ − ŝ‖ ≤ 𝜂̂, p̂ ∈ NS(ŝ).

[A(z)]i = ⟨Ai, z⟩F, [B(z)]j =
�
Bj, z

�
F
, [C(z)]i = ⟨Ci, z⟩F,
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for matrices {Ai}
l
i=1

, {Bj}
n
j=1

, {Ci}
l
i=1

⊆ ℜn×n , positive diagonal matrix D ∈ ℜn×n , 
and vector pair (b, d) ∈ ℜl ×ℜl , this sub–subsection considers the following line-
arly–constrained quadratic matrix (LCQM) problem:

where Pn = {z ∈ Sn
+
∶ tr z = 1} denotes the n–dimensional spectraplex.

We now describe the experiment parameters for the instances considered. 
First, the dimensions were set to be (l, n) = (50, 200) and only 1.0% of the 
entries of the submatrices Ai,Bj, and Ci being nonzero. Second, the entries of 
Ai,Bj,Ci, b , and d (resp., D) were generated by sampling from the uniform distri-
bution U[0, 1] (resp., U[1, 1000] ). Third, the initial starting point z0 was chosen to 
be a random point in Sn

+
 . More specifically, three unit vectors �1, �2, �3 ∈ ℜn and 

three scalars e1, e2, e2 ∈ ℜ+ are first generated by sampling vectors �̃i ∼ U
n[0, 1] 

and scalars d̃i ∼ U[0, 1] and setting �i = �̃i∕‖�̃i‖ and ei = ẽi∕(
∑3

j=1
ẽi) for i = 1, 2, 3 . 

min
z

�1

2
‖C(z) − d‖2 − �2

2
‖DB(z)‖2

s.t. A(z) ∈ {b}, z ∈ Pn,

Table 7   Function values for LCQM problems

L m Function value

UPFAG NC-FISTA AG R-AIPPc R-AIPPv1 R-AIPPv2

101 100 2.259E−01 2.259E−01 2.259E−01 2.260E−01 2.260E−01 2.259E−01

102 100 2.258E+00 2.258E+00 2.258E+00 2.258E+00 2.258E+00 2.258E+00

103 100 2.258E+01 2.258E+01 2.258E+01 2.258E+01 2.258E+01 2.258E+01

Table 8   Iteration counts for LCQM problems

L m Iteration count

UPFAG NC-FISTA AG R-AIPPc R-AIPPv1 R-AIPPv2

101 100 2148 12758 8739 1797 1675 998
102 100 1615 8957 5253 1206 1103 1153

103 100 3967 26383 5926 1570 1489 1555

Table 9   Runtimes for LCQM problems

L m Runtime (s)

UPFAG NC-FISTA AG R-AIPPc R-AIPPv1 R-AIPPv2

101 100 274.13 958.47 883.50 205.48 192.35 103.60
102 100 218.05 684.10 531.88 124.45 117.54 117.32
103 100 481.51 1997.85 615.14 165.38 156.69 164.04
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The initial iterate for the first subproblem is then set to z0 =
∑3

i=1
ei�i�

T
i

 . Fourth, 
with respect to the termination criterion (6.2), the inputs, for every z ∈ Sn

+
 , are

Fifth, the R-AIPP variants used a parameter value of � = 5000. Finally, each problem 
instance considered is based on a specific curvature pair (m,M) ∈ ℜ2

++
 for which the 

scalar pair (�1, �2) ∈ ℜ2
++

 is selected so that M = �max(∇
2f ) and −m = �min(∇

2f ).
We now present the numerical tables for this set of problem instances 

(Tables 7, 8, 9).

6.2.2 � Sparse principal component analysis problem

Given integer k, positive scalar pair (�, b) ∈ ℜ2
++

 , and matrix � ∈ Sn
+
 , this sub–subsec-

tion considers the following sparse principal component analysis (PCA) problem:

where Fk = {z ∈ Sn
+
∶ 0 ⪯ z ⪯ I, trM = k} denotes the k–Fantope and q� is the min-

imax concave penalty (MCP) function given by

f (z) =
𝛼1

2
‖C(z) − d‖2 − 𝛼2

2
‖DB(z)‖2, h(z) = 𝛿Pn

(z),

A(z) = A(z), S = {b}, 𝜌̂ = 10−3, 𝜂̂ = 10−3.

min
� ,�

⟨�,�⟩F +

n�
i,j=1

q�(�ij) + �

n�
i,j=1

��ij�

s.t. � −� = 0, (� ,�) ∈ F
k ×ℜ

n×n

Table 10   Function values for sparse PCA problems

s k Function value

UPFAG NC-FISTA AG R-AIPPc R-AIPPv1 R-AIPPv2

5 1 – 1.484E+02 1.484E+02 1.484E+02 1.484E+02 1.484E+02
10 1 – 1.487E+02 1.486E+02 1.486E+02 1.486E+02 1.486E+02
15 1 – 1.488E+02 1.488E+02 1.488E+02 1.488E+02 1.488E+02

Table 11   Iteration counts for sparse PCA problems

s k Iteration count

UPFAG NC-FISTA AG R-AIPPc R-AIPPv1 R-AIPPv2

5 1 – 21979 34584 4511 5735 6071
10 1 – 23574 34712 4954 5960 5745
15 1 – 27944 32560 5197 5867 5822
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We now describe the experiment parameters for the instances considered. First, 
the scalar parameters are chosen to be (�, b) = (100, 100, 0.1) . Second, the matrix 
� is generated according to an eigenvalue decomposition � = P�PT , based on a 
parameter pair (s, k), where k is as in the problem description and s is a positive 
integer. In particular, we choose � = (100, 1,… , 1) , the first column of P to be a 
sparse vector whose first s entries are 1∕

√
s , and the other entries of P to be sampled 

randomly from the standard Gaussian distribution. Third, the initial starting point 
is (�0,�0) = (Dk, 0) where Dk is a diagonal matrix whose first k entries are 1 and 
whose remaining entries are 0. Fourth, the curvature parameters for each problem 
instance are m = M = 1∕b. Fifth, with respect to the termination criterion (6.2), the 
inputs, for every (� ,�) ∈ Sn

+
×ℜn×n , are

Sixth, the R-AIPP variants used a parameter value of � = 100,000 . Finally, each 
problem instance considered is based on a specific parameter pair (s, k) ∈ ℕ

2 where 
s is part of the process of generating � (see the second description above).

We now present the numerical tables for this set of problem instances 
(Tables 10, 11, 12).

6.2.3 � Bounded matrix completion problem

Given a dimension pair (p, q) ∈ ℕ
2 , positive scalar triple (�,�, �) ∈ ℜ3

++
 , scalar 

pair (u, l) ∈ ℜ2 , matrix A ∈ ℜp×q , and indices � , this sub–subsection considers 
the following bounded matrix completion (BMC) problem:

q𝜈(t) ∶=

{
−t2∕(2b), if |t| ≤ b𝜈,

b𝜈2∕2 − 𝜈|t|, if |t| > b𝜈,
∀t ∈ ℜ.

f (𝛱 ,𝛷) = ⟨𝛴,𝛱⟩F +

n�
i,j=1

q𝜈(𝛷ij), h(𝛱 ,𝛷) = 𝛿Fk (𝛱) + 𝜈

n�
i,j=1

�𝛷ij�,

A(𝛱 ,𝛷) ∶= 𝛱 −𝛷, S = {0}, 𝜂̂ = 10−3, 𝜌̂ = 10−6.

Table 12   Runtimes for sparse PCA problems

s k Runtime (s)

UPFAG NC-FISTA AG R-AIPPc R-AIPPv1 R-AIPPv2

5 1 4000.00* 142.11 349.87 67.32 83.23 87.99
10 1 4000.00* 153.18 353.59 72.72 86.98 83.67
15 1 4000.00* 180.27 328.69 75.37 85.56 84.55
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where ‖ ⋅ ‖∗ denotes the nuclear norm, the function P� is the linear operator that 
zeros out any entry not in � , the function �i(X) denotes the ith largest singular value 
of X, and

min
X

1

2
‖P�(X − A)‖2 + �

min{p,q}�
i=1

�
�(�i(X)) − �0�i(X)

�
+ ��0‖X‖∗

s.t. l ≤ Xij ≤ u ∀(i, j) ∈ {1,… , p} × {1,… , q},

�0 ∶=
�

�
, �(t) ∶= � log

(
1 +

|t|
�

)
∀t ∈ ℜ.

Table 13   Function values for BMC problems

� � � Function value

UPFAG NC-FISTA AG R-AIPPc R-AIPPv1 R-AIPPv2

1/2
√
2 2 2.07E+03 – 3.42E+03 2.77E+03 2.79E+03 1.84E+03

1
√
2 2 4.51E+03 – 5.22E+03 4.86E+03 4.60E+03 4.93E+03

2
√
2 2 7.97E+03 – – 8.61E+03 8.64E+03 8.88E+03

Table 14   Iteration counts for BMC problems

� � � Iteration count

UPFAG NC-FISTA AG R-AIPPc R-AIPPv1 R-AIPPv2

1/2
√
2 2 73 – 229 21 16 131

1
√
2 2 132 – 324 73 77 70

2
√
2 2 76 – – 210 356 83

Table 15   Runtimes for BMC problems

� � theta Runtime (s)

UPFAG NC-FISTA AG R-AIPPc R-AIPPv1 R-AIPPv2

1/2
√
2 2 1515.79 4000.00* 2498.02 283.48 254.04 1305.06

1
√
2 2 2619.55 4000.00* 3754.03 881.60 900.00 801.55

2
√
2 2 1938.81 4000.00* 4000.00* 2435.49 3657.56 943.33
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We now describe the experiment parameters for the instances considered. First, the 
matrix A is the user–movie ratings data matrix of the MovieLens 100K dataset,1 
the index set � is the set of nonzero entries in A, and the dimension pair is set to 
be (p, q) = (610, 9724) . Second, the initial starting point was chosen to be X0 = 0 . 
Third, the curvature parameters for each problem instance are m = 2��∕�2 and 
M = max {1,m} and the bounds are set to (l, u) = (0, 5) . Fourth, with respect to the 
termination criterion (6.2), the inputs, for every X ∈ ℜn×n , are

Fifth, the R-AIPP variants used a parameter value of � = 1000 . Finally, each prob-
lem instance considered is based on a specific parameter triple (�,�, �) ∈ ℜ3

++
.

We now present the numerical tables for this set of problem instances (Tables 13, 
14, 15).

6.3 � Summary of the numerical experiments

All three variants of the R-AIPP method perform well (relative to the other meth-
ods) in the numerical experiments of this section. The R-AIPPv2 method, in par-
ticular, is the best performing method in a large proportion of both the uncon-
strained and constrained problem instances. A potential explanation is that the 
stepsizes {�k} generated by this method may become significantly larger than the 
initial stepsize parameters �0 = 1 and �0 = 0.9∕(2m) used in the R-AIPPv1 and 
R-AIPPc methods, respectively, which in view of the third remark following 
Proposition 2, speeds up the convergence of the quantity mini≤k ‖v̂i‖ to zero.

Moreover, the adaptive stepsize R-AIPP variants, namely, the R-AIPPv1 and 
R-AIPPv2 methods, have been shown to perform well regardless of the size of the 
ratio M/m (see, for example, Tables 1–4). This is a significant improvement over 
the AIPP method of [15] which has only been shown to perform well when the 
ratio M/m is large (see, for example, Table 16).

7 � Concluding remarks

Observing the arguments used in the proofs of Proposition 5.1, Lemma 5.2, and 
Theorem  5.3, it is straightforward to see that the assumption of dom h being 
bounded can be relaxed to assuming that the iterates {ẑl} generated by R-QP-
AIPP method of Sect. 5 be bounded. Explicitly assuming that the iterates satisfy 

f (X) =
1

2
‖P𝛺(X − A)‖2 + 𝜇

min{p,q}�
i=1

�
𝜅(𝜎i(X)) − 𝜅0𝜎i(X)

�
, h(X) = 𝜇𝜅0‖X‖∗,

A(X) =X, S =
�
Z ∈ ℜ

p×q ∶ l ≤ Zij ≤ u, (i, j) ∈ {1,… , p} × {1,… , q}
�
,

𝜂̂ =10−2, 𝜌̂ = 5 × 10−2.

1  See the MovieLens 100K dataset containing 610 users and 9724 movies, which is found in https​://
group​lens.org/datas​ets/movie​lens/.

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
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‖ẑl‖ ≤ B , for every l ≥ 1 and some B > 0 , the resulting ACG iteration complexity 
of R-QP-AIPP method is (5.24) with Q0 replaced by the quantity

where c0 is as in step 0 of the method, d0 ∶= inf{‖u − ẑ0‖ ∶ z ∈ F} , the quantity m 
is as in (2.2) with g = f  , and the quantities ẑ0,𝜑c, and �∗

c
 are from the input of the 

R-QP-AIPP method and (5.9). It should be noted however that we were not able to 
show that the iterates {ẑl} is bounded. Hence, it is still an open problem to establish 
the iteration complexity of R-QP-AIPP when dom h is unbounded.

Note that the description of the R-AIPP (resp. R-QP-AIPP) method of Sect. 4 
(resp. Sect. 5) does not actually require knowledge of an upper bound m on the 
parameter m in (2.2). This is in contrast to the AIPP (resp. QP-AIPP) method of 
[15], which requires m in order to establish its validity and iteration complexity. 
In addition, one could consider a R-AIPP (resp. R-QP-AIPP) variant in which 
the quantity M (resp. L) is adaptively inferred from its iterates rather than requir-
ing knowledge of its value beforehand. While for the sake of brevity we omit the 
formal description and analysis of such a variant in this paper, we conjecture 
that the iteration complexity of the R-AIPP (resp. R-QP-AIPP) variant is as in 
(4.3) (resp. (5.24)) with M (resp. L) replaced with a quantity that lower bounds 
it, e.g., the maximum of the lower estimates of M (resp. L) which are inferred by 
the generated iterates.
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Appendix

This appendix contains proofs and statements of several technical results used in the 
main body of the paper. It contains three subsections. The first subsection consists 
of proofs about the refinement procedure of Sect. 2; the second subsection consists 
of proofs about the R-ACG algorithm of Sect. 3; and the third subsection consists of 
technical results related to Sect. 5.

Properties of the refinement procedure

Proof of Proposition 2.1  It follows from [15, Lemma 19] with (f , h, L) = (f�, h�,M�) 
that � ≥ 0 and

Dividing by � and rearranging terms yields

𝜑c0
(ẑ0) − 𝜑∗

c0
+ 2

(
𝜑∗ − 𝜑∗

0
+ 𝜌̂

[
d0 + 2B

]
+ m

[
d2
0
+ 4B2

])
,

M𝜆(z − ẑ) ∈ ∇f𝜆(z) + 𝜕h𝜆(ẑ) = 𝜆∇g(z) + (z − z− − v) + 𝜆𝜕h(ẑ).
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Adding ∇g(ẑ) to both sides and using the definition of v̂ gives

which is the inclusion in (2.8).
We now bound 𝜆‖v̂‖ . Since [15, Lemma 19] implies that ‖z − ẑ‖ ≤

�
2M−1

𝜆
𝛥 and 

∇g is M–Lipschitz continuous then

which is the inequality in (2.8). 	�  ◻

Properties of the R‑ACG algorithm

Proof of Proposition 3.2(a)  Let � denote the quantity in (3.15). Assume that the 
R-ACG algorithm has performed �-iterations without declaring failure. In view of 
step 2 of the R-ACG algorithm, it follows that both (3.10) and (3.11) hold for every 
1 ≤ j ≤ � . We will show that it must stop successfully at the end of the �th iteration, 
and hence that the conclusion of the lemma holds. Indeed, note that (3.14), (3.15), 
and the fact that log(1 + t) ≥ t∕2 for all t ∈ [0, 1] implies that

Combining the triangle inequality, (3.10), the fact that 2∕A
�
≤ 1∕C and 

(2∕A
�
)2 < 2∕A

�
< 1 from (A.1), and the relation (a + b)2 ≤ 2(a2 + b2) for all 

a, b ∈ ℜ , we obtain

On the other hand, using the triangle inequality and the fact that 
(a + b)2 ≤ (1 + s)a2 + (1 + 1∕s)b2 for every (a, b, s) ∈ ℜ ×ℜ × R++ (under the 
choice of s = 1∕(

√
C − 1) ), we obtain

1

𝜆

[
M𝜆(z − ẑ) + (v + z− − z)

]
− ∇g(z) ∈ 𝜕h(ẑ).

v̂ =
1

𝜆

[
M𝜆(z − ẑ) + (v + z− − z)

]
+ ∇g(ẑ) − ∇g(z) ∈ ∇g(ẑ) + 𝜕h(ẑ),

𝜆‖v̂‖ ≤ ‖M𝜆(z − ẑ)‖ + ‖v + z− − z‖ + 𝜆‖∇g(ẑ) − ∇g(z)‖
≤
√
2M𝜆𝛥 + ‖v + z− − z‖ + 𝜆M‖ẑ − z‖ ≤

√
2M𝜆𝛥 + ‖v + z− − z‖ +M𝜆‖ẑ − z‖

≤
√
2M𝜆𝛥 + ‖v + z− − z‖ +M𝜆

�
2M−1

𝜆
𝛥 = ‖v + z− − z‖ + 2

√
2M𝜆𝛥,

(A.1)A
�
≥

2

1 + 2�M

(
1 +

1

2

√
1

1 + 2�M

)2(�−1)

≥ 2C > 2.

‖u
�
‖2 + 2�

�
≤ max{1∕A2

�
, 1∕(2A

�
)}(‖A

�
u
�
‖2 + 4A

�
�
�
)

≤ max{1∕A2
�
, 1∕(2A

�
)}(2‖A

�
u
�
+ x

�
− x0‖2 + 2‖x

�
− x0‖2 + 4A

�
�
�
)

≤ max{(2∕A
�
)2, 2∕A

�
}‖x

�
− x0‖2 ≤ 1

C
‖x

�
− x0‖2.
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Combining the previous estimates, we then conclude that

which, after a simple algebraic manipulation, easily implies that

Using the first term in the maximum of (3.16) together with the second inequality of 
(A.3) immediately implies that (3.12) holds with j = � . To show that (3.13) holds 
at j = � , observe that the definition of � in (3.3), (3.11) with j = � , the second ine-
quality of (A.3), and the second term in the maximum of (3.16) imply that

	�  ◻

Results related to Sect. 5

Lemma A.1  Assume that f , h ∶ ℜn
↦ (−∞,∞] satisfy assumptions (C1) and (C3) 

in Sect.  5, and that, in addition, f is lower semicontinuous on cl (dom h) . Then, 
� ∶= f + h is a proper lower semicontinuous function which has a global minimum 
over ℜn.

Proof  Suppose z̄ ∈ ℜn�cl (dom h) . Since cl (dom h) is closed, there exists 𝜀 > 0 
such that h(u) = ∞ for every u ∈ ℜn�cl (dom h) satisfying ‖u − z̄‖ < 𝜀 . Hence, 
lim infu→z̄ 𝜑(u) = ∞ = 𝜑(z̄) . Now suppose z̄ ∈ cl (dom h) . By the lower semiconti-
nuity of f and h we have

and, since f is differentiable on dom h , the function � is proper lower semicontinuous 
with dom� = dom h . The last statement of the lemma follows from the well known 
fact that infimum of a lower semicontinuous function over a bounded set, namely, 
dom� , is always attained. 	� ◻

‖x
�
− x0‖2 ≤

√
C√

C − 1
‖x0 − x

�
+ u

�
‖2 +

√
C‖u

�
‖2.

(A.2)‖u
�
‖2 + 2�

�
≤

1

C −
√
C
‖x0 − x

�
+ u

�
‖2 + 1√

C
‖u

�
‖2,

(A.3)

1√
C − 1

‖x0 − x
�
+ u

�
‖2 ≥ 2

√
C�

�
+
�√

C − 1
�
‖u

�
‖2 ≥

�√
C − 1

��‖u
�
‖2 + 2�

�

�
.

�̃(x0) − �̃(x
�
) ≥ ⟨u

�
, x0 − x

�
⟩ + �

�
+

1

2
‖x

�
− x0‖2 = 1

2

�‖x0 − x
�
+ u

�
‖2 − �‖u

�
‖2 + 2�

�

��

≥
1

2

�
1 +

�√
C − 1

�−2
�
‖x0 − x

�
+ u

�
‖2 ≥ 1

�
‖x0 − x

�
+ u

�
‖2.

lim inf
u→z̄

𝜑(u) ≥ lim inf
u→z̄

f (u) + lim inf
u→z̄

h(u) ≥ f (z̄) + h(z̄) = 𝜑(z̄)
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Comparison with the AIPP method

This subsection presents some computational results that compare the AIPP method 
of [15] with the R-AIPPc method described at the beginning of Sect. 6. The main 
problem of interest for this sub-subsection is the quadratic matrix problem described 
in Sect. 6.1.1.

We now describe the particular implementation of the AIPP method used in 
this sub-subsection, which differs from its description in [15] in two ways. First, its 
innermost subroutine, namely, the ACG method, stops immediately when a quad-
ruple (�k, zk, vk, �k) satisfying (2.14) is found. Second, for each iteration k of the 
method, a triple (ẑ, v̂,𝛥) is generated from the refinement procedure in Section 2 by 
assigning (ẑ, v̂,𝛥) = RP(𝜆k, zk−1, zk, vk) , and the method stops with the desired output 
when v̂ satisfies condition (6.1).

All experiment parameters for the R-AIPPc method and the problem instances 
are as described in Sect.  6.1.1 below, while the AIPP uses a parameter input of 
(�, �) = (0.3, 1∕(2m)) for its results.

We now present the numerical tables for this set of problem instances (Table 16).
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