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Abstract. This paper presents smoothing schemes for obtaining approximate stationary points4
of unconstrained or linearly-constrained composite nonconvex-concave min-max (and hence non-5
smooth) problems by applying well-known algorithms to composite smooth approximations of the6
original problems. More specifically, in the unconstrained (resp. constrained) case, approximate7
stationary points of the original problem are obtained by applying, to its composite smooth approx-8
imation, an accelerated inexact proximal point (resp. quadratic penalty) method presented in a9
previous paper by the authors. Iteration complexity bounds for both smoothing schemes are also10
established. Finally, numerical results are given to demonstrate the efficiency of the unconstrained11
smoothing scheme.12
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1. Introduction. The first goal of this paper is to present and study the com-16
plexity of an accelerated inexact proximal point smoothing (AIPP-S) scheme for fin-17
ding approximate stationary points of the (potentially nonsmooth) min-max compos-18
ite nonconvex optimization (CNO) problem19

(1.1) min
x∈X
{p̂(x) := p(x) + h(x)}20

where h is a proper lower-semicontinuous convex function, X is a nonempty convex21
set, and p is a max function given by22

(1.2) p(x) := max
y∈Y

Φ(x, y) ∀x ∈ X,23

for some nonempty compact convex set Y and function Φ which, for some scalar24
m > 0 and open set Ω ⊇ X, is such that: (i) Φ is continuous on Ω × Y ; (ii) the25
function −Φ(x, ·) : Y 7→ R is lower-semicontinuous and convex for every x ∈ X; and26
(ii) for every y ∈ Y , the function Φ(·, y) +m‖ · ‖2/2 is convex, differentiable, and its27
gradient is Lipschitz continuous on X×Y . Here, the objective function is the sum of a28
convex function h and the pointwise supremum of (possibly nonconvex) differentiable29
functions which is generally a (possibly nonconvex) nonsmooth function.30

When Y is a singleton, the max term in (1.1) becomes smooth and (1.1) is a31
smooth CNO problem for which many algorithms have been developed for in the32
literature. In particular, accelerated inexact proximal points (AIPP) methods, i.e.33
methods which use an accelerated composite gradient variant to approximately solve a34
generated sequence of prox subproblems, have been developed for it (see, for example,35
[4,15]). When Y is not a singleton, (1.1) can no longer be directly solved by an AIPP36
method due to the nonsmoothness of the max term. The AIPP-S scheme smooths37
the max term in (1.1) and solves the resulting CNO problem by an AIPP method.38
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Throughout our presentation, it is assumed that oracles for evaluating the quan-39
tities Φ(x, y), ∇xΦ(x, y), and h(x) and for obtaining exact solutions of the problems40

(1.3) min
x∈X

{
λh(x) + 1

2‖x− x0‖2
}
, max

y∈Y

{
λΦ(x0, y)− 1

2‖y − y0‖2
}

41

for any (x0, y0) and λ > 0, are available. Throughout this paper, the terminology42
“oracle call” is used to refer to a collection of the above oracles of size O(1) where43
each of them appears at least once. We refer to the computation of the solution of44
the first problem above as a h-resolvent evaluation. In this manner, the computation45
of the solution of the second one is a [−Φ(x0, ·)]-resolvent evaluation.46

We first develop an AIPP-S scheme that obtains a stationary point based on a47
primal-dual formulation of (1.1). More specifically, given a tolerance pair (ρx, ρy) ∈48
R2

++, it is shown that an instance of this scheme obtains (ū, v̄, x̄, ȳ) such that49

(1.4)
(
ū
v̄

)
∈
(
∇xΦ(x̄, ȳ)

0

)
+
(

∂h(x̄)
∂ [−Φ(x̄, ·)] (ȳ)

)
, ‖ū‖ ≤ ρx, ‖v̄‖ ≤ ρy50

in O(ρ−2
x ρ
−1/2
y ) oracle calls, where ∂φ(z) is the subdifferential of a convex function φ51

at a point z (see (1.9) with ε = 0). We then show that another instance of this scheme52
can obtain an approximate stationary point based on the directional derivative of p̂.53
More specifically, given a tolerance δ > 0, this instance computes x ∈ X such that54

(1.5) ∃x̂ ∈ X s.t. inf
‖d‖≤1

p̂′(x̂; d) ≥ −δ, ‖x̂− x‖ ≤ δ,55

in O(δ−3) oracle calls, where p̂′(x; d) is the directional derivative of p̂ at the point x56
along the direction d (see (1.10)).57

The second goal of this paper is to develop a quadratic penalty AIPP-S (QP-58
AIPP-S) scheme for finding approximate stationary points of a linearly-constrained59
version of (1.1), namely60

min
x∈X

{p(x) + h(x) : Ax = b}(1.6)61
62

where p is as in (1.2), A is a linear operator, and b ∈ A(X). The scheme is a penalty-63
type method which approximately solves a sequence of subproblems of the form64

(1.7) min
x∈X

{
p(x) + h(x) + c

2‖Ax− b‖
2
}

65

for an increasing sequence of positive penalty parameters c. Similar to the approach66
used for the first goal of this paper, the method considers a perturbed variant of67
(1.7) in which the objective function is replaced by a smooth approximation and68
the resulting problem is solved by the quadratic-penalty AIPP (QP-AIPP) method69
proposed in [15]. For a given tolerance triple (ρx, ρy, η) ∈ R3

++, it is shown that the70
method computes a quintuple (ū, v̄, x̄, ȳ, r̄) satisfying71

(1.8)

(
ū
v̄

)
∈
(
∇xΦ(x̄, ȳ) +A∗r̄

0

)
+
(

∂h(x̄)
∂ [−Φ(x̄, ·)] (ȳ)

)
,

‖ū‖ ≤ ρx, ‖v̄‖ ≤ ρy, ‖Ax̄− b‖ ≤ η.

72

in O(ρ−2
x ρ
−1/2
y + ρ−2

x η−1) oracle calls.73
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Finally, it is worth mentioning that all of the above complexities are obtained un-74
der the mild assumption that the optimal value in each of the respective optimization75
problems, namely (1.1) and (1.6) is bounded below. Moreover, it is neither assumed76
that X be bounded nor that (1.1) or (1.6) has an optimal solution.77

78
Related Works. Since the case when Φ(·, ·) in (1.1) is convex-concave has been79

well-studied in the literature (see, for example, [1, 11, 13, 21, 22, 23, 27]), we will make80
no more mention of it here. Instead, we will focus on papers that consider (1.1) where81
Φ(·, y) is differentiable and nonconvex for every y ∈ Y and there are mild conditions82
on Φ(x, ·) for every x ∈ X.83

Letting δC denote the indicator function of a closed convex set C ⊆ X (see Sub-84
section 1.1), Conv(X ) denote the set of proper lower semicontinuous convex functions85
on X , and ρ := min{ρx, ρy}, Tables 1.1 and 1.2 compare the assumptions and itera-86
tion complexities obtained in this work with corresponding ones derived in the earlier87
papers [24,26] and the subsequent works [17,25,30]. Note that the above works con-88
sider termination conditions that are slightly different than the ones in this paper. In89
Subsection 2.1, we show that they are actually equivalent to the ones in this paper90
up to multiplicative constants that are independent of the tolerances, i.e., ρx, ρy, δ.91

Algorithm Oracle Complexity
Use Cases

Dh =∞ h ≡ 0 h ≡ δC h ∈ Conv(X )
PGSF [24] O(ρ−3) % ! ! %

Minimax-PPA [17] O(ρ−2.5 log2(ρ−1)) % ! ! %

FNE Search [25] O(ρ−2
x ρ−1/2

y log(ρ−1)) ! ! ! %

AIPP-S O(ρ−2
x ρ−1/2

y ) ! ! ! !

Table 1.1
Comparison of iteration complexities based on (1.4) with ρ := min{ρx, ρy}.

Algorithm Oracle Complexity
Use Cases

Dh =∞ h ≡ 0 h ≡ δC h ∈ Conv(X )
PG-SVRG [26] O(δ−6 log δ−1) % ! ! !

Minimax-PPA [17] O(δ−3 log2(δ−1)) % ! ! %

Prox-DIAG [30] O(δ−3 log2(δ−1)) ! ! % %

AIPP-S O(δ−3) ! ! ! !

Table 1.2
Comparison of iteration complexities based on (1.5).

To the best of our knowledge, this work is the first one to analyze the complexity92
of a smoothing scheme for finding approximate stationary points of (1.6).93

94
Organization of the paper. Subsection 1.1 presents notation and some basic defi-95

nitions that are used in this paper. Subsection 1.2 presents several motivating appli-96
cations that are of the form in (1.1). Section 2 is divided into two subsections. The97
first one precisely states the assumptions underlying problem (1.1) and discusses four98
notions of stationary points. The second one presents a smooth approximation of the99
function p in (1.1). Section 3 is divided into two subsections. The first one reviews100
the AIPP method in [15] and its iteration complexity. The second one presents the101
AIPP-S scheme its iteration complexities for finding approximate stationary points102
as in (1.4) and (1.5). Section 4 is also divided into two subsections. The first one103
reviews the QP-AIPP method in [15] and its iteration complexity. The second one104
presents the QP-AIPP-S scheme its iteration complexity for finding points satisfying105
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(1.8). Section 5 presents some computational results. Section 6 gives some conclud-106
ing remarks. Finally, several appendices at the end of this paper contain proofs of107
technical results needed in our presentation.108

1.1. Notation and basic definitions. The set of real numbers is denoted by R.109
The set of non-negative real numbers and the set of positive real numbers is denoted110
by R+ and R++ respectively. The set of natural numbers is denoted by N. For111
t > 0, define log+

1 (t) := max{1, log(t)}. Let Rn denote a real–valued n–dimensional112
Euclidean space with standard norm ‖ · ‖. Given a linear operator A : Rn 7→ Rp, the113
operator norm of A is denoted by ‖A‖ := sup{‖Az‖/‖z‖ : z ∈ Rn, z 6= 0}.114

The following are for a Euclidean space Z with inner product 〈·, ·〉 and norm ‖ · ‖.115
The effective domain of a function ψ : Z 7→ (−∞,∞] is denoted as domψ := {z ∈ Z :116
ψ(z) < ∞} and ψ is said to be proper if domψ 6= ∅. The set of proper, lower semi-117
continuous, convex functions is denoted by Conv(Z). Moreover, for convex Z ⊆ Z,118
we denote Conv(Z) to be set of functions in Conv(Z) whose effective domain is equal119
to Z. For ε ≥ 0, the ε-subdifferential of ψ ∈ Conv(Z) at z ∈ domψ is denoted by120

(1.9) ∂εψ(z) := {w ∈ Rn : ψ(z′) ≥ ψ(z) + 〈w, z′ − z〉 − ε,∀z′ ∈ Z} ,121

and we denote ∂ψ ≡ ∂0ψ. The directional derivative of ψ at z ∈ Z in the direction122
d ∈ Z is denoted by123

(1.10) ψ′(z; d) := lim
t→0

ψ(z + td)− ψ(z)
t

.124

It is well-known that if ψ is differentiable at z ∈ domψ, then for a given direction125
d ∈ Z we have ψ′(z; d) = 〈∇ψ(z), d〉.126

For a given Z ⊆ Z, the indicator function of Z, denoted by δZ , has value 0 if127
z ∈ Z and value ∞ if z /∈ Z. The closure, interior, and relative interior of Z are128
denoted by clZ, intZ, and riZ, respectively. The support function of Z at a point z129
is denoted by σZ(z) := supz′∈Z 〈z, z′〉.130

1.2. Motivating applications. This subsection lists motivating applications131
that are of the form in (1.1). In Section 5, we examine the performance of our132
proposed smoothing scheme on some special instances of these applications.133

1.2.1. Maximum of a finite number of nonconvex functions. Given a134
family of functions {fi}ki=1 that are continuously differentiable everywhere with Lip-135
schitz continuous gradients and a closed convex set C ⊆ Rn. The problem of interest136
is the minimization of max1≤i≤k fi over the set C, i.e.,137

min
x∈C

max
1≤i≤k

fi(x),138

which is clearly an instance of (1.1) where Y = {y ∈ Rk+ :
∑k
i=1 yi = 1}, Φ(x, y) =139 ∑k

i=1 yifi(x), and h(x) = δC(x).140

1.2.2. Robust regression. Given a set of observations σ := {σi}ni=1 and a141
compact convex set Θ ∈ Rk, let {`θ(·|σ)}θ∈Θ be a family of nonconvex loss functions142
in which: (i) `θ(x|σ) is concave in θ for every x ∈ Rn; and (ii) `θ(x|σ) is continuously143
differentiable in x with Lipschitz continuous gradient for every θ ∈ Θ. The problem144
of interest is to minimize the worst-case loss in Θ, i.e.,145

min
x∈Rn

max
θ∈Θ

`θ(x|σ),146

which is clearly an instance of (1.1), where Y = Θ, Φ(x, y) = `y(x|σ), and h(x) = 0.147
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1.2.3. Min-max games with an adversary. Let {Uj(x1, ..., xk, y)}kj=1 be a148
set of utility functions in which: (i) Uj is nonconvex and continuously differentiable149
in its first k arguments, but concave in its last argument; (ii) ∇xi

Uj(x1, ..., xk, y) is150
Lipschitz continuous for every 1 ≤ i ≤ k. Given input constraint sets {Bi}ki=1 and151
By, the problem of interest is to maximize the total utility of the players (indices 1152
to k) given that the adversary (index k + 1) seeks to maximize his own utility, i.e.,153

min
x1,...,xk

max
y

{
−

k∑
i=1
Uj(x1, ..., xk, y) : xi ∈ Bi, i = 0, ..., k

}
,154

155

which is clearly an instance of (1.1) where x = (x1, ..., xk), Y = By, Φ(x, y) =156
−
∑k
i=1 Uj(x1, ..., xk, y), and h(x) = δB1×...×Bk

(x).157

2. Preliminaries. We first present some preliminary material in two parts. The158
first one describes the assumptions and various notions of stationary points for prob-159
lem (1.1) and briefly compares two approaches for obtaining them. The second one160
presents an approximation of the max function p in (1.1) and of its properties.161

2.1. Assumptions and notions of stationary points. We present four no-162
tions of stationarity for (1.1). Two of these notions appear in the complexity results163
of of Section 3, while the remaining two appear in related works. For the sake of164
comparison, the relationships between all four are discussed in this subsection.165

Throughout our presentation, we let X and Y be Euclidean spaces. We also make166
the following assumptions on problem (1.1):167

(A0) X ⊂ X and Y ⊂ Y are nonempty convex sets, and Y is also compact;168
(A1) there exists an open set Ω ⊇ X such that Φ(·, ·) is finite and continuous on169

Ω× Y ; moreover, ∇xΦ(x, y) exists and is continuous at every (x, y) ∈ Ω× Y ;170
(A2) h ∈ Conv(X) and −Φ(x, ·) ∈ Conv(Y ) for every x ∈ Ω;171
(A3) there exist scalars (Lx, Ly) ∈ R2

++ and m ∈ (0, Lx] such that, for every172
x, x′ ∈ X and y, y′ ∈ Y , we have173

Φ(x, y)− [Φ(x′, y) + 〈∇xΦ(x′, y), x− x′〉] ≥ −m2 ‖x− x
′‖2,(2.1)174

‖∇xΦ(x, y)−∇xΦ(x′, y′)‖ ≤ Lx‖x− x′‖+ Ly‖y − y′‖;(2.2)175176

(A4) p̂∗ := infx∈X p̂(x) is finite, where p̂ is as in (1.1);177
We make three remarks about the above assumptions. First, it is well-known that178

condition (2.2) implies that179

(2.3) Φ(x′, y)− [Φ(x, y) + 〈∇xΦ(x, y), x′ − x〉] ≤ Lx
2 ‖x

′ − x‖2,180

for every (x′, x, y) ∈ X ×X × Y . Second, functions satisfying (2.1) are often referred181
to as weakly-convex functions (see, for example, [5,6,7,8]). Third, the aforementioned182
weak convexity condition implies that, for any y ∈ Y , the function Φ(·, y) +m‖ · ‖2/2183
is convex, and hence p+m‖ · ‖2/2 is as well. Note that while p̂ is generally nonconvex184
and nonsmooth, it has the nice property that p̂+m‖ · ‖2/2 is convex.185

We now discuss two stationarity conditions of (1.1) under assumptions (A0)–(A3).186
First, denoting187

(2.4) Φ̂(x, y) := Φ(x, y) + h(x) ∀(x, y) ∈ X × Y,188
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it is well-known that (1.1) is related to the saddle-point problem which consists of189
finding a pair (x∗, y∗) ∈ X × Y such that190

(2.5) Φ̂(x∗, y) ≤ Φ̂(x∗, y∗) ≤ Φ̂(x, y∗),191

for every (x, y) ∈ X × Y . More specifically, (x∗, y∗) satisfies (2.5) if and only if x∗192
is an optimal solution of (1.1), y∗ is an optimal solution of the dual of (1.1), and193
there is no duality gap between the two problems. Using the composite structure194
described above for Φ̂, it can be shown that a necessary condition for (2.5) to hold is195
that (x∗, y∗) satisfy the stationarity condition196

(2.6)
(

0
0

)
∈
(
∇xΦ(x∗, y∗)

0

)
+
(

∂h(x∗)
∂ [−Φ(x∗, ·)] (y∗)

)
.197

When m = 0, the above condition also becomes sufficient for (2.5) to hold. Second,198
it can be shown that p′(x∗; d) is well-defined for every d ∈ X and that a necessary199
condition for x∗ ∈ X to be a local minimum of (1.1) is that it satisfies200

(2.7) inf
‖d‖≤1

p̂′(x∗; d) ≥ 0.201

When m = 0, the above condition also becomes sufficient for x∗ to be a global202
minimum of (1.1). Moreover, in view of Lemma 19 in Appendix D with (ū, v̄, x̄, ȳ) =203
(0, 0, x∗, y∗), it follows that x∗ satisfies (2.7) if and only if there exists y∗ ∈ Y such204
that (x∗, y∗) satisfies (2.6).205

Note that finding points that satisfy (2.6) or (2.7) exactly is generally difficult.206
Hence, in this section and the next one, we only consider their approximate versions,207
which are (1.4) and (1.5). For ease of future reference, we say that:208

(i) a quadruple (ū, v̄, x̄, ȳ) is a (ρx, ρy)–primal-dual stationary point of (1.1)209
if (1.4) holds;210

(ii) a point x̂ is a δ–directional stationary point of (1.1) if the first inequality211
in (1.5) holds.212

It is worth mentioning that (1.5) is generally hard to verify for a given point x ∈213
X. This is primarily because the definition requires checking an infinite number of214
directional derivatives for a (potentially) nonsmooth function at points x̂ near x̄. In215
contrast, the definition of an approximate primal-dual stationary point is generally216
easier to verify because the quantities ‖ū‖ and ‖v̄‖ can be measured directly, and the217
inclusions in (1.4) are easy to verify when the prox oracles for h and Φ(x, ·), for every218
x ∈ X, are readily available.219

The next result, whose proof is given in Appendix D, shows that a (ρx, ρy)–primal-220
dual stationary point, for small enough ρx and ρy, yields a point x satisfying (1.5).221
Its statement makes use of the diameter of Y defined as222

(2.8) Dy := sup
y,y′∈Y

‖y − y′‖.223

224

Proposition 1. If the quadruple (ū, v̄, x̄, ȳ) is a (ρx, ρy)–primal-dual stationary225
point of (1.1), then there exists a point x̂ ∈ X such that226

inf
‖d‖≤1

p̂′(x̂; d) ≥ −ρx − 2
√

2mDyρy, ‖x̄− x̂‖ ≤
√

2Dyρy
m

.227
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The iteration complexities in this paper (see Section 3) are stated with respect to228
the two notions of stationary points (1.4) and (1.5). However, it is worth discussing229
below two other notions of stationary points that are common in the literature as well230
as some results that relate all four notions.231

Given (λ, ε) ∈ R2
++, a point x is said to be a (λ, ε)-prox stationary point of (1.1)232

if the function p̂+ ‖ · ‖2/(2λ) is strongly convex and233

(2.9) 1
λ
‖x− xλ‖ ≤ ε, xλ = argmin

u∈X

{
P̂λ(u) := p̂(u) + 1

2λ‖u− x‖
2
}
.234

The above notion is considered, for example, in [17, 26, 30]. The result below, whose235
proof is given in Appendix D, shows how it is related to (1.5).236

Proposition 2. For any given λ ∈ (0, 1/m), the following statements hold:237
(a) for any ε > 0, if x ∈ X satisfies (1.5) and238

(2.10) 0 < δ ≤ λ3ε

λ2 + 2(1− λm)(1 + λ) ,239

then x is a (λ, ε)-prox stationary point;240
(b) for any δ > 0, if x ∈ X is a (λ, ε)-prox stationary point for some ε ≤241

δ ·min{1, 1/λ}, then x satisfies (1.5) with x̂ = xλ, where xλ is as in (2.9).242

Note that for a fixed λ ∈ (0, 1/m) such that max{λ−1, (1 − λm)−1} = O(1), the243
largest δ in part (a) is O(ε). Similarly, for part (b), if λ−1 = O(1) then largest ε in244
part (b) is O(δ). Combining these two observations, it follows that (2.9) and (1.5)245
are equivalent (up to a multiplicative factor) under the assumption that δ = Θ(ε).246

Given (ρx, ρy) ∈ R2
++, a pair (x̄, ȳ) is said to be a (ρx, ρy)-first-order Nash equi-247

librium point of (1.1) if248

(2.11) inf
‖dx‖≤1

S ′ȳ(x̄; dx) ≥ −ρx, sup
‖dy‖≤1

S ′x̄(ȳ; dy) ≤ ρy,249

where Sȳ := Φ(·, ȳ) + h(·) and Sx̄ := Φ(x̄, ·). The above notion is considered, for250
example, in [17, 24, 25]. The next result, whose proof is given in Appendix D, shows251
that (2.11) is equivalent to (1.4).252

Proposition 3. A pair (x̄, ȳ) is a (ρx, ρy)-first-order Nash equilibrium point if253
and only if there exists (ū, v̄) ∈ X × Y such that (ū, v̄, x̄, ȳ) satisfies (1.4).254

We now end this subsection by briefly discussing some approaches for finding255
approximate stationary points of (1.1). One approach is to apply a proximal descent256
type method directly to problem (1.1), but this would lead to subproblems with257
nonsmooth convex composite functions. A second approach is based on first applying258
a smoothing method to (1.1) and then using a prox-convexifying descent method such259
as the one in [15] to solve the perturbed unconstrained smooth problem. An advantage260
of the second approach, which is the one pursued in this paper, is that it generates261
subproblems with smooth convex composite objective functions. The next subsection262
describes one possible way to smooth the (generally) nonsmooth function p in (1.1).263

2.2. Smooth approximation. We present an approximation of p in (1.1).264
For every ξ > 0, consider the smoothed function pξ defined by265

pξ(x) := max
y∈Y

{
Φξ(x, y) := Φ(x, y)− 1

2ξ ‖y − y0‖2
}
∀x ∈ X,(2.12)266

267

for some y0 ∈ Y . The following proposition presents the properties of pξ.268
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Proposition 4. Let ξ > 0 be given and assume that the function Φ satisfies269
conditions (A0)–(A3). Let pξ(·) and Φξ(·, ·) be as defined in (2.12) and define270

(2.13)
Qξ := ξLy +

√
ξ(Lx +m), Lξ := LyQξ + Lx ≤

(
Ly
√
ξ +

√
Lx

)2
,

yξ(x) := argmax
y′∈Y

Φξ(x, y′),
271

for every x ∈ X. Then, the following properties hold:272
(a) yξ(·) is Qξ–Lipschitz continuous on X;273
(b) pξ(·) is continuously differentiable on X and ∇pξ(x) = ∇xΦ(x, yξ(x)) for274

every x ∈ X;275
(c) ∇pξ(·) is Lξ–Lipschitz continuous on X;276
(d) for every x, x′ ∈ X, we have277

(2.14) pξ(x)− [pξ(x′) + 〈∇pξ(x′), x− x′〉] ≥ −
m

2 ‖x− x
′‖2;278

Proof. First, the inequality in (2.13) follows from (a), the bound m ≤ Lx, and279

Lξ = Ly

[
ξLy +

√
ξ(Lx +m)

]
+ Lx ≤ ξL2

y + 2
√
ξLx + Lx =

(
Ly
√
ξ +

√
Lx

)2
.280

The other conclusions of (a)–(c) follow from Lemma 13 and Proposition 14 in Appen-281
dix B with (Ψ, q, y) = (Φξ, pξ, yξ). We now show that the conclusion of (d) is true.282
Indeed, if we consider (2.1) at (y, x′) = (yξ(x′), x′), the definition of Φξ, and use the283
definition of ∇pξ in (b), then284

− m

2 ‖x− x
′‖2 ≤ Φ(x′, yξ(x))− [Φ(x, yξ(x)) + 〈∇xΦ(x, yξ(x)), x′ − x〉]285

= Φξ(x′, yξ(x))− [pξ(x) + 〈∇pξ(x), x′ − x〉] ≤ pξ(x′)− [pξ(x) + 〈∇pξ(x), x′ − x〉] ,286287

where the last inequality follows from the optimality of y.288

We now make two remarks about the above properties. First, the Lipschitz con-289
stants of yξ and ∇pξ depend on the value of ξ while the weak convexity constant m in290
(2.14) does not. Second, as ξ →∞, it holds that pξ → p pointwise and Qξ, Lξ →∞.291
These remarks are made more precise in the next result.292

Lemma 5. For every ξ > 0, it holds that −∞ < p(x) −D2
y/(2ξ) ≤ pξ(x) ≤ p(x)293

for every x ∈ X, where Dy is as in (2.8).294

Proof. The fact that p(x) > −∞ follows immediately from assumption (A4). To295
show the other bounds, observe that for every y0 ∈ Y , we have296

Φ(x, y) + h(x) ≥ Φ(x, y)− 1
2ξ ‖y − y0‖2 + h(x) ≥ Φ(x, y)−

D2
y

2ξ + h(x)297

for every (x, y) ∈ X × Y . Taking the supremum of the bounds over y ∈ Y and using298
the definitions of p and pξ yields the remaining bounds.299

3. Unconstrained min-max optimization. We present the AIPP-S scheme300
for (1.1) in two parts. The first one reviews an AIPP method for solving CNO prob-301
lems, while the second one presents the AIPP-S scheme and its complexity bounds.302
Throughout, X is a Euclidean space.303
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Before proceeding, we briefly outline the idea of the AIPP-S scheme. Essentially,304
it applies the AIPP method described in the next subsection to the CNO problem305

(3.1) min
x∈X
{p̂ξ(x) := pξ(x) + h(x)} ,306

where pξ is as in (2.12) and ξ is a positive scalar that will depend on the tolerances307
in (1.4) and (1.5). The above smoothing approximation scheme is similar to the one308
used in [23]; the approximation function pξ used in both schemes is smooth, but309
the one here is nonconvex while the one in [23] is convex. Moreover, while [23] uses310
an accelerated composite gradient (ACG) variant to approximately solve (3.1), the311
AIPP-S scheme uses the AIPP method discussed below for this purpose.312

3.1. AIPP method for smooth CNO problems. We first describe the prob-313
lem of interest. Consider smooth CNO problem314

(3.2) φ∗ := inf
x∈X

[φ(x) := f(x) + h(x)]315

where h : X 7→ (−∞,∞] and function f satisfy the following assumptions:316
(P1) h ∈ Conv(X ) and f is differentiable on dom h;317
(P2) for some M ≥ m > 0 and every x, x′ ∈ dom h, the function f satisfies318

−m2 ‖x
′ − x‖2 ≤ f(x′)− [f(x) + 〈∇f(x), x′ − x〉] ,(3.3)319

‖∇f(x′)−∇f(x)‖ ≤M‖x′ − x‖;(3.4)320321

(P3) φ∗ defined in (3.2) is finite.322
We now make four remarks about the above assumptions. First, it is well-known323
that a necessary condition for x∗ ∈ dom h to be a local minimum of (3.2) is that x∗324
is a stationary point of φ, i.e. 0 ∈ ∇f(x∗) + ∂h(x∗). Second, it is well-known that325
(3.4) implies that (3.3) holds for any m ∈ [−M,M ]. Third, it is easy to see from326
Proposition 4 that pξ in (2.12) satisfies assumption (P2) with (M,f) = (Lξ, pξ) where327
Lξ is as in (2.13). Fourth, it is also easy to see that the function pξ in (2.12) satisfies328
assumption (P3) with φ∗ = infx∈X p̂ξ(x) in view of assumption (A4) and Lemma 5.329

For the purpose of discussing future complexity results, we consider the following330
notion of an approximate stationary point of (3.2): given a tolerance ρ̄ > 0, a pair331
(x̄, ū) ∈ dom h×X is said to be a ρ̄–approximate stationary point of (3.2) if332

(3.5) ū ∈ ∇f(x̄) + ∂h(x̄), ‖ū‖ ≤ ρ̄.333

We now state the AIPP method for finding a pair (x̄, ū) satisfying (3.5).334

AIPP method
335

Input: a function pair (f, h), a scalar pair (m,M) ∈ R2
++ satisfying (P2), scalars336

λ ∈ (0, 1/(2m)] and σ ∈ (0, 1), an initial point x0 ∈ dom h, and a tolerance ρ̄ > 0;337

Output: a pair (x̄, ū) ∈ dom h×X satisfying (3.5);338

(0) set k = 1 and define ρ̂ := ρ̄/4, ε̂ := ρ̄2/[32(M + λ−1)], and Mλ := M + λ−1;339
(1) call the ACG method in Appendix A with inputs z0 = xk−1, (µ,L) =340

(1/2, λM + 1/2), ψs = λf + ‖ · −xk−1‖2/4, and ψn = λh+ ‖ · −xk−1‖2/4 in341
order to obtain a triple (x, u, ε) ∈ X × X × R+ satisfying342

(3.6) u ∈ ∂ε
(
λφ+ 1

2‖ · −xk−1‖2
)

(x), ‖u‖2 + 2ε ≤ σ‖xk−1 − x+ u‖2;343
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(2) if ‖xk−1−x+u‖ ≤ λρ̂/5, then go to (3); otherwise set (xk, ũk, ε̃k) = (x, u, ε),344
increment k = k + 1 and go to (1);345

(3) restart the previous call to the ACG method in step 1 to find a triple (x̃, ũ, ε̃)346
such that ε̃ ≤ ε̂λ and (x, u, ε) = (x̃, ũ, ε̃) satisfies (3.6);347

(4) compute348

x̄ := argmin
x′∈X

{
〈∇f(x), x′ − x〉+ h(x′) + Mλ

2 ‖x
′ − x‖2

}
,(3.7)349

ū := Mλ(x− x̄) +∇f(x̄)−∇f(x),(3.8)350351

where Mλ is as in step 0, and output the pair (x̄, ū).352
353

We now make four remarks about the above AIPP method. First, at the kth354
iteration of the method, its step 1 invokes an ACG method, whose description is given355
in Appendix A, to approximately solve the strongly convex proximal subproblem356

(3.9) min
x∈X

{
λφ(x) + 1

2‖x− xk−1‖2
}

357

according to (3.6). Second, Lemma 12 shows that every ACG iterate (z, u, ε) satisfies358
the inclusion in (3.6), and hence, only the inequality in (3.6) needs to be verified.359
Third, equation (3.4) implies that the gradient ∇ψs is (λM + 1/2)–Lipschitz contin-360
uous. Hence, Lemma 12 with L = λM + 1/2 implies that the triple (z, u, ε) obtained361
in step 1 requires O(

√
[λM + 1]/σ) ACG iterations.362

Note that the above method differs slightly from the one presented in [15] in that363
it adds step 4 in order to directly output a ρ̄–approximate stationary point as in (3.5).364
The justification for the latter claim follows from [15, Lemma 12], [15, Theorem 13],365
and [15, Corollary 14], which also imply the following complexity result.366

Proposition 6. The AIPP method outputs a ρ̄–approximate stationary point of367
(3.2) in368

(3.10) O
(√

λM + 1
[

R(φ;λ)√
σ(1− σ)2λ2ρ̄2 + log+

1 (λM)
])

369

ACG iterations, where370

(3.11) R(φ;λ) = inf
x′

{
1
2‖x0 − x′‖2 + λ [φ(x′)− φ∗]

}
.371

Note that scaling R(φ;λ) by 1/λ and then shifting by φ∗ results in the λ-Moreau372
envelope1 of φ. Moreover, R(φ;λ) admits the upper bound373

(3.12) R(φ;λ) ≤ min
{

1
2d

2
0, λ [φ(x0)− φ∗]

}
374

where d0 := inf {‖x0 − x∗‖ : x∗ is an optimal solution of (3.2)}.375

3.2. AIPP-S scheme for min-max CNO problems. We are now ready to376
state the AIPP-S scheme for finding approximate stationary points of the uncon-377
strained min-max CNO problem (1.1).378

1See [28, Chapter 1.G] for an exact definition.

10

This manuscript is for review purposes only.



It is stated in a incomplete manner in the sense that it does not specify how the379
parameter ξ and the tolerance ρ used in its step 2 are chosen. Two invocations of380
this method, with different choices of ξ and ρ, are considered in Propositions 8 and381
9, which describe the iteration complexities for finding approximate stationary points382
as in (1.4) and (1.5), respectively.383

AIPP-S scheme
384

Input: a triple (m,Lx, Ly) ∈ R3
++ satisfying (A3), a smoothing constant ξ > 0, an385

initial point (x0, y0) ∈ X × Y , and a tolerance ρ > 0;386

Output: a pair (x, u) ∈ X ×X ;387

(0) set Lξ as in (2.13), σ = 1/2, λ = 1/(4m), and define pξ as in (2.12);388
(1) apply the AIPP method with inputs (m,Lξ), (pξ, h), λ, σ, x0, and ρ to obtain389

a pair (x, u) satisfying390

(3.13) u ∈ ∇pξ(x) + ∂h(x), ‖u‖ ≤ ρ;391

(2) output the pair (x, u).392
393

We now give four remarks about the above method. First, the AIPP method394
invoked in step 2 terminates due to [15, Theorem 13] and the third and fourth remarks395
following assumptions (P1)–(P3). Second, since the AIPP-S scheme is a one-pass396
method2, the complexity of the AIPP-S scheme is essentially that of the AIPP method.397
Third, similar to the smoothing scheme of [23] which assumes m = 0, the AIPP-S398
scheme is also a smoothing scheme for the case in which m > 0. On the other hand,399
in contrast to the algorithm of [23] which uses an ACG variant, AIPP-S invokes the400
AIPP method to solve (3.1) due to its nonconvexity. Finally, while the AIPP method401
in step 2 is called with (σ, λ) = (1/2, 1/(4m)), it can also be called with any σ ∈ (0, 1)402
and λ ∈ (0, 1/(2m)) to establish the desired termination of the AIPP-S scheme.403

Our goal now is to show that a careful selection of the scalars ξ and ρ allows the404
AIPP-S method to output approximate stationary points as in (1.4) and (1.5). We405
first present a bound on the quantity R(p̂ξ;λ) in terms of the data in problem (1.1).406
Its importance derives from the fact that the AIPP method applied to the smoothed407
problem (3.1) yields the bound (3.10) with φ = p̂ξ.408

Lemma 7. For every ξ > 0 and λ ≥ 0, it holds that409

(3.14) R(p̂ξ;λ) ≤ R(p̂;λ) +
λD2

y

2ξ ,410

where R(·, ·) and Dy are as in (3.11) and (2.8), respectively.411

Proof. Using Lemma 5 and the definitions of p̂ and p̂ξ, it holds that412

(3.15) p̂ξ(x)− inf
x′
p̂ξ(x′) ≤ p̂(x)− inf

x′
p̂(x′) +

D2
y

2ξ , ∀x ∈ X.413

Multiplying the above expression by (1 − σ)λ and adding the quantity ‖x0 − x‖2/2414
yields the inequality415

1
2‖x0 − x‖2 + (1− σ)λ

[
p̂ξ(x)− inf

x′
p̂ξ(x′)

]
416

2As opposed to an iterative method.
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≤ 1
2‖x0 − x‖2 + (1− σ)λ

[
p̂(x)− inf

x̃
p̂(x′)

]
+ (1− σ)

λD2
y

2ξ ∀x ∈ X,(3.16)417
418

Taking the infimum of the above expression, and using the definition of R(·; ·) in419
(3.11) yields the desired conclusion.420

We now show how the AIPP-S scheme generates a (ρx, ρy)–primal-dual stationary421
point of (1.1), i.e., a quadruple (ū, v̄, x̄, ȳ) satisfying (1.4).422

Proposition 8. For a given tolerance pair (ρx, ρy) ∈ R2
++, let (x, u) be the pair423

output by the AIPP-S scheme with input parameter ξ and tolerance ρ satisfying ξ ≥424
Dy/ρy and ρ = ρx. Moreover, define425

(3.17) (ū, v̄) :=
(
u,
y0 − yξ(x)

ξ

)
, (x̄, ȳ) := (x, yξ(x)),426

where yξ is as in (2.13). Then, the following statements hold:427
(a) the AIPP-S scheme performs428

(3.18) O

(
Ωξ

[
m2R(p̂; 1/(4m))

ρ2
x

+
mD2

y

ξρ2
x

+ log+
1 (Ωξ)

])
429

oracle calls, where R(·; ·) and Dy are as in (3.11) and (2.8), respectively, and430

(3.19) Ωξ := 1 +
√
ξLy +

√
Lx√

m
;431

(b) the quadruple (ū, v̄, x̄, ȳ) is a (ρx, ρy)–primal-dual stationary point of (1.1).432

Proof. (a) Using the inequality in (2.13), it holds that433 √
Lξ
4m + 1 ≤ 1 +

√
Lξ
4m ≤ 1 +

√
ξLy +

√
Lx

2
√
m

= Θ(Ωξ).(3.20)434
435

Moreover, using Proposition 6 with (φ,M) = (p̂ξ, Lξ), Lemma 7, and bound (3.20),436
it follows that the number of ACG iterations performed by the AIPP-S scheme is on437
the order given by (3.18). Since step 1 of the AIPP invokes once the ACG variant in438
Appendix A with a pair (ψs, ψn) of the form439

ψs = λpξ + 1
4‖ · −z̃‖

2, ψn = λh+ 1
4‖ · −z̃‖

2440

for some z̃ and each iteration of this ACG variant performs O(1) gradient evaluations441
of ψs, O(1) function evaluations of ψs and ψn, and O(1) ψn-resolvent evaluations, it442
follows from Proposition 4(b) and the definition of an “oracle call” in the paragraph443
containing (1.3) that each one of the above ACG iterations requires O(1) oracle calls.444
Statement (a) now follows from the above two conclusions.445

(b) It follows from the definitions of pξ, tolerance ρ, and (ȳ, ū) in (2.12), the choice446
of ξ and ρ, and (3.17), respectively, Proposition 4(b), and the inclusion in (3.13) that447
‖ū‖ ≤ ρx and448

ū ∈ ∇pξ(x̄) + ∂h(x̄) = ∇xΦ(x̄, yξ(x̄)) + ∂h(x̄) = ∇xΦ(x̄, ȳ) + ∂h(x̄).449
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Hence, we conclude that the top inclusion and the upper bound on ‖ū‖ in (1.4) hold.450
Next, the optimality condition of ȳ = yξ(x̄) as a solution to (2.12) and the definition451
of v̄ in in (2.12) give452

(3.21) 0 ∈ ∂ [−Φ(x̄, ·)] (ȳ) + ȳ − y0

ξ
= ∂ [−Φ(x̄, ·)] (ȳ)− v̄453

Moreover, the definition of ξ implies that ‖v̄‖ = ‖ȳ − y0‖/ξ ≤ Dy/(Dy/ρy) = ρy.454
Hence, combining (3.21) and the previous identity, we conclude that the bottom455
inclusion and the upper bound on ‖v̄‖ in (1.4) hold.456

We now make three remarks about Proposition 8. First, recall that R(p̂; 1/(4m))457
in the complexity (3.18) can be majorized by the rightmost quantity in (3.12) with458
(φ, λ) = (p̂, 1/(4m)). Second, under the assumption that ξ = Dy/ρy, the complexity459
of AIPP-S scheme reduces to460

(3.22) O

(
m3/2 ·R(p̂; 1/(4m)) ·

[
L

1/2
x

ρ2
x

+ LyD
1/2
y

ρ2
xρ

1/2
y

])
461

under the reasonable assumption that the O(ρ−2
x +ρ−2

x ρ
−1/2
y ) term in (3.18) dominates462

the other terms. Third, recall from the last remark following the previous proposition463
that when Y is a singleton, (1.1) is a special instance of (3.2) and the AIPP-S scheme464
is equivalent to the AIPP method of Subsection 3.1. It similarly follows that the465
complexity in (3.22) reduces to O(ρ−2

x ) and, hence, the O(ρ−2
x ρ
−1/2
y ) term in (3.22)466

is attributed to the (possible) nonsmoothness in (1.1).467
We next show how the AIPP-S scheme generates a point that is near a δ–468

directional stationary point of (1.1), i.e., a point x̂ satisfying the first inequality in469
(1.5).470

Proposition 9. Let a tolerance pair δ > 0 be given and consider the AIPP-S471
scheme with input parameter ξ and tolerance ρ satisfying ξ ≥ Dy/τ and ρ = δ/2 for472
some τ ≤ min

{
mδ2/2Dy, δ

2/32mDy

}
. Then, the following statements hold:473

(a) the AIPP-S scheme performs474

(3.23) O

(
Ωξ

[
R(p̂;λ)
λ2δ2 +

D2
y

λξδ2 + log+
1 (Ωξ)

])
475

oracle calls where Ωξ, R(·; ·), and Dy are as in (3.19), (3.11), and (2.8);476
(b) the first argument x in the pair output by the AIPP-S scheme satisfies (1.5).477

Proof. (a) Using Proposition 8 with (ρx, ρy) = (δ/2, τ) and the bound on τ it478
follows that the number of ACG iterations needed by AIPP-S is as in (3.23).479

(b) Let (x, u) be the ρ̄–approximate stationary point of (3.1) generated by the480
AIPP-S scheme (see step 2) under the given assumption on ξ and ρ̄. Defining (v̄, ȳ)481
as in (3.17), it follows from Proposition 8 with (ρx, ρy) = (δ/2, τ) that (u, v̄, x, ȳ) is482
a (δ/2, τ)–primal-dual stationary point of (1.1). As a consequence, it follows from483
Proposition 1 with (ρx, ρy) = (δ/2, τ) that there exists a point x̂ satisfying484

‖x̂− x‖ ≤
√

2Dyτ

m
, inf
‖d‖≤1

p̂′(x̂; d) ≥ −δ2 − 2
√

2mDyτ .(3.24)485
486

Combining the above bounds with our assumption on τ yields the desired conclusion487
in view of (1.5).488
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We now give four remarks about the above result. First, recall that R(p̂; 1/(4m)) in489
the complexity (3.23) is majorized by the rightmost quantity in (3.12) with (φ, λ) =490
(p̂, 1/(4m)). Second, Proposition 9(b) states that while x not a stationary point itself,491
it is near a δ–directional stationary point x̂. Third, under the assumption that the492
bounds on ξ and τ in Proposition 9 hold at equality, the complexity of the AIPP-S493
scheme is494

(3.25) O

(
m3/2 ·R(p̂; 1/(4m)) ·

[
L

1/2
x

δ2 + LyDy

δ3

])
495

under the reasonable assumption that the O(δ−2 + δ−3) term in (3.23) dominates the496
other O(δ−1) terms. Fourth, when Y is a singleton, it is easy to see that (1.1) is a497
special instance of (3.2), the AIPP-S scheme is equivalent to the AIPP method of498
Subsection 3.1, and the complexity in (3.25) is O(δ−2). In view of the last remark,499
the O(δ−3) term in (3.25) is attributed to the (possible) nonsmoothness in (1.1).500

4. Linearly-constrained min-max optimization. We present the QP-AIPP-501
S scheme for (1.6) in two parts. The first one reviews a QP-AIPP method for linearly-502
constrained CNO problems, while the second presents the QP-AIPP-S scheme and its503
complexity bound. Throughout, X ,Y, and U are Euclidean spaces.504

Before proceeding, we give the relevant assumptions and relevant notion of sta-505
tionarity. For problem (1.6) suppose that assumptions (A0)–(A3) hold and that the506
linear operator A : X 7→ U and vector b ∈ U satisfy:507

(A5) A 6≡ 0 and F := {x ∈ X : Ax = b} 6= ∅;508
(A6) there exists ĉ ≥ 0 such that infx∈X

{
p̂(x) + ĉ‖Ax− b‖2/2

}
> −∞.509

Note that (A4) in Subsection 2.1 is replaced by (A6) which is required by the QP-510
AIPP method of the next subsection.511

It is known that if (x∗, y∗) satisfies (2.5) for every (x, y) ∈ F × Y and Φ̂ as in512
(2.4), then there exists a multiplier r∗ ∈ U such that513

(4.1)
(

0
0

)
∈
(
∇xΦ(x∗, y∗) +A∗r∗

0

)
+
(

∂h(x∗)
∂ [−Φ(x∗, ·)] (y∗)

)
,514

holds. Hence, in view of the third remark in the paragraph following (2.7), we only515
consider the approximate version of (4.1) which is (1.8).516

We now briefly outline the idea of the QP-AIPP-S scheme. The main idea is to517
apply the QP-AIPP method described in the next subsection to the smooth linearly-518
constrained CNO problem519

(4.2) min
x∈X
{pξ(x) + h(x) : Ax = b} ,520

where pξ is as in (1.2) and ξ is a positive scalar that will depend on the tolerances521
in (1.8). This idea is similar to the one in Section 3 in that it applies an accelerated522
solver to a perturbed version of the problem of interest.523

4.1. QP-AIPP method for constrained smooth CNO problems. We first524
describe the problem of interest. Consider the linearly-constrained CNO problem525

(4.3) φ̂∗ := inf
x∈X
{φ(x) := f(x) + h(x) : Ax = b}526

where h : X 7→ (−∞,∞] and a function f satisfy assumptions (P1)–(P3), the operator527
A : X 7→ U is linear, b ∈ U , and the following additional assumptions hold:528
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(Q1) A 6≡ 0 and F := {x ∈ dom h : Ax = b} 6= ∅;529
(Q2) there exists ĉ ≥ 0 such that φ̂ĉ > −∞ where530

(4.4) φ̂c := inf
x∈X

{
φc(x) := φ(x) + c

2‖Ax− b‖
2
}
, ∀c ≥ 0.531

We now give some remarks about the above assumptions. First, similar to problem532
(3.2), it is well-known that a necessary condition for x∗ ∈ dom h to be a local minimum533
of (4.3) is that x∗ satisfies 0 ∈ ∇f(x∗) + ∂h(x∗) +A∗r∗ for some r∗ ∈ U . Second, it534
is easy to see that (p, h,A, b) in (1.6) satisfy (Q1)–(Q2) in view of assumptions (A5)–535
(A6). Third, since every feasible solution of (4.3) is also a feasible solution of (4.4),536
it follows from assumptions (Q2) that φ̂∗ ≥ φ̂ĉ > −∞. Fourth, if infx∈X φ(x) > −∞537
(e.g., dom h is compact) then (Q2) holds with ĉ = 0.538

Our interest in this subsection is in finding an approximate stationary point of539
(4.3) in the following sense: given a tolerance pair (ρ̄, η̄) ∈ R2

++, a triple (x̄, ū, r̄) ∈540
dom h×X × U is said to be a (ρ̄, η̄)–approximate stationary point of (4.3) if541

(4.5) ū ∈ ∇f(x̄) + ∂h(x̄) +A∗r̄, ‖ū‖ ≤ ρ̄, ‖Ax̄− b‖ ≤ η̄.542

We now state the QP-AIPP method for finding (x̄, ū, r̄) satisfying (4.5).543

QP-AIPP method
544

Input: a function pair (f, h), a scalar pair (m,M) ∈ R2
++ satisfying (3.3), scalars545

λ ∈ (0, 1/(2m)] and σ ∈ (0, 1), a scalar ĉ satisfying assumption (Q2), an initial point546
x0 ∈ dom h, and a tolerance pair (ρ̄, η̄) ∈ R2

++;547

Output: a triple (x̄, ū, r̄) ∈ dom h×X × U satisfying (4.5);548

(0) set c = ĉ+M/‖A‖2;549
(1) define the quantities550

(4.6) Mc := M + c‖A‖2, fc := f + c

2‖A(·)− b‖2, φc = fc + h,551

and apply the AIPP method with inputs (m,Mc), (fc, h), λ, σ, x0, and ρ̄ to552
obtain a ρ̄–approximate stationary point (x̄, ū) of (3.2) with f = fc;553

(2) if ‖Ax̄ − b‖ > η̄ then set c = 2c and go to (1); otherwise, set r̄ = c (Ax̄− b)554
and output the triple (x̄, ū, r̄).555

556
We now give two remarks about the above method. First, it terminates due to557

the results in [15, Section 4]. Second, in view of Proposition 6 with (φ,M) = (φc,Mc),558
the number of ACG iterations executed in step 1 at any iteration of the method is559

(4.7) O
(√

λMc + 1
[

R(φc;λ)√
σ(1− σ)2λ2ρ̄2 + log+

1 (λMc)
])

560

and the pair (x̄, ū) in step 1 satisfies the inclusion and the first inequality in (4.5).561
We now focus on the iteration complexity of the QP-AIPP method. Before pro-562

ceeding, we first define the useful quantity563

(4.8) Rc(φ;λ) := inf
x′

{
1
2‖x0 − x′‖2 + λ

[
φ(x′)− φ̂c

]
: x′ ∈ F

}
,564

for every c ≥ ĉ, where φc is as defined in (4.4). The quantity in (4.8) plays an analogous565
role as (3.11) in (3.10) and, similar to the discussion following Proposition 6, it is a566
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scaled and shifted λ-Moreau envelope of φ+ δF . Moreover, due to [15, Lemma 16], it567
also admits the upper bound568

(4.9) Rc(φ;λ) ≤ Rĉ(φ;λ) ≤ min
{

1
2 d̂

2
0, λ

[
φ̂∗ − φ̂ĉ

]}
569

where φ̂∗ is as defined in (4.3) and570

d̂0 := inf {‖x0 − x∗‖ : x∗ is an optimal solution of (4.3)} .571

We now state the iteration complexity of the QP-AIPP method, whose proof572
follows from [15, Lemma 12] and [15, Theorem 18].573

Proposition 10. Let a ĉ as in (Q2), scalar σ ∈ (0, 1), curvature pair (m,M) ∈574
R2

++, and a tolerance pair (ρ̄, η̄) ∈ R2
+ be given. Moreover, define575

(4.10) Tη̄ := 2Rĉ(φ;λ)
η̄2(1− σ)λ + ĉ, Θη̄ := M + Tη̄‖A‖2.576

Then, the QP-AIPP method outputs a triple (x̄, ū, r̄) satisfying (4.5) in577

(4.11) O
(√

λΘη̄ + 1
[

Rĉ(φ;λ)√
σ(1− σ)2λ2ρ̄2 + log+

1 (λΘη̄)
])

578

ACG iterations.579

4.2. QP-AIPP-S scheme for constrained min-max CNO problems. We580
are now ready to state the QP-AIPP smoothing scheme for finding an approximate581
primal-dual stationary point of the linearly-constrained min-max CNO problem (1.6).582

QP-AIPP-S scheme
583

Input: a triple (m,Lx, Ly) ∈ R2
++ as in (A3), a scalar ĉ as in (A6), a scalar ξ ≥ Dy/ρy,584

an initial point (x0, y0) ∈ X × Y , and a tolerance triple (ρx, ρy, η) ∈ R3
++;585

Output: a triple (ū, v̄, x̄, ȳ, r̄) satisfying (1.8);586

(0) set Lξ as in (2.13), σ = 1/2, λ = 1/(4m), and define pξ as in (2.12);587
(1) apply the QP-AIPP method of Subsection 4.1 with inputs (m,Lξ), (pξ, h), λ,588

σ, ĉ, x0, and (ρx, η) to obtain a triple (ū, x̄, r̄) satisfying589

(4.12) ū ∈ ∇pξ(x̄) + ∂h(x̄) +A∗r̄, ‖ū‖ ≤ ρx, ‖Ax̄− b‖ ≤ η.590

(2) define (v̄, ȳ) as in (3.17) and output the quintuple (ū, v̄, x̄, ȳ, r̄).591
592

Some remarks about the above method are in order. First, the QP-AIPP method593
invoked in step 1 terminates due to the remarks following assumptions (Q1)–(Q2)594
and the results in Subsection 4.1. Second, since the QP-AIPP-S scheme is a one-595
pass algorithm3, the complexity of the QP-AIPP-S scheme is essentially that of the596
QP-AIPP method. Finally, while the QP-AIPP method in step 2 is called with597
(σ, λ) = (1/2, 1/(4m)), it can also be called with any σ ∈ (0, 1) and λ ∈ (0, 1/(2m))598
to establish the desired termination of the QP-AIPP-S scheme.599

We now show that the output of the QP-AIPP-S scheme satisfies (1.8).600

3As opposed to an iterative algorithm.
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Proposition 11. Let a tolerance triple (ρx, ρx, η) ∈ R3
++ be given and let the601

quadruple (ū, v̄, x̄, ȳ, r̄) be the output obtained by the QP-AIPP-S scheme. Then the602
following properties hold:603

(a) the QP-AIPP-S scheme terminates in604

(4.13) O

(
Ωξ,η

[
m2Rĉ(p̂; 1/(4m))

ρ2
x

+
mD2

y

ξρ2
x

+ log+
1 (Ωξ,η)

])
605

oracle calls, where606

(4.14) Ωξ,η := Ωξ +
(
Rĉ(p̂; 1/(4m)) +

D2
y

mξ

)1/2
‖A‖
η

607

and Ωξ, R(·; ·), and Dy are as in (3.19), (3.11), and (2.8), respectively;608
(b) the quintuple (ū, v̄, x̄, ȳ, r̄) satisfies (1.8).609

Proof. (a) Let Θη be as in (4.10) with M = Lξ. Using the same arguments as610
in Lemma 7, it is easy to see that Rĉ(p̂ξ; 1/(4m)) ≤ Rĉ(p̂; 1/(4m)) +D2

y/(8mξ), and611
hence, using (3.20), we have612 √

Θη

4m + 1 ≤ 1 +
√
Lξ
4m +

√
4Rĉ(p̂ξ; 1/(4m))‖A‖2

η2613

≤ 1 +
√
ξLy +

√
Lx

2
√
m

+ 2
(
Rĉ(p̂; 1/(4m)) +

D2
y

8mξ

)1/2
‖A‖
η

= Θ(Ωξ,η).(4.15)614
615

Bound (4.13) now follows from (4.15) and Proposition 10 with (φ, f,M) = (p, pξ, Lξ).616
(b) The top inclusion and bounds involving ‖ū‖ and ‖Ax̄−b‖ in (1.8) follow from617

Proposition 4(b), the definition of ȳ in step 2 of the algorithm, and Proposition 10618
with f = pξ. The bottom inclusion and bound involving ‖v̄‖ follow from similar619
arguments given for Proposition 8(b).620

We now make three remarks about the above complexity bound. First, recall that621
Rĉ(p; 1/(4m)) in the complexity (11) can be majorized by the rightmost quantity in622
(4.9) with λ = 1/(4m). Second, under the assumption that ξ = Dy/ρy, the complexity623
of the QP-AIPP-S scheme reduces to624

(4.16) O
(
m3/2 ·Rĉ(p̂; 1/(4m)) ·

[
L

1/2
x

ρ2
x

+ LyD
1/2
y

ρ
1/2
y ρ2

x

+ m1/2‖A‖R1/2
ĉ (p; 1/(4m))
ηρ2
x

])
,625

under the reasonable assumption that the O(ρ−2
x +η−1ρ−2

x +ρ
−1/2
y ρ−2

x ) term in (4.13)626
dominates the other terms. Third, when Y is a singleton, it is easy to see that (1.6)627
is a special instance of the linearly-constrained smooth CNO problem (4.3), the QP-628
AIPP-S of this subsection is equivalent to the QP-AIPP method of Subsection 4.1, and629
the complexity in (4.16) is O(η−1ρ−2

x ). In view of the last remark, the O(ρ−2
x ρ
−1/2
y )630

term in (4.16) is attributed to the (possible) nonsmoothness in (1.6).631
Let us now conclude this section with a remark about the penalty subproblem632

(4.17) min
x∈X

{
pξ(x) + h(x) + c

2‖Ax− b‖
2
}
,633
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which is what the AIPP method considers every time it is called in the QP-AIPP-S634
scheme (see step 1). First, observe that (1.6) can be equivalently reformulated as635

(4.18) min
x∈X

max
y∈Y,r∈U

[Ψ(x, y, r) := Φ(x, y) + h(x) + 〈r,Ax− b〉] .636

Second, it is straightforward to verify that problem (4.17) is equivalent to637

(4.19) min
x∈X
{p̂c,ξ(x) := pc,ξ(x) + h(x)} ,638

where the function pc,ξ : X 7→ R is given by pc,ξ(x) := maxy∈Y,r∈U{Ψ(x, y, r) −639
‖r‖2/(2c)− ‖y − y0‖2/(2ξ)}, for every x ∈ X, and Ψ as in (4.18). As a consequence,640
problem (4.19) is similar to (3.1) in that a smooth approximate is used in place of the641
nonsmooth component of the underlying saddle function Ψ.642

On the other hand, observe that we cannot directly apply the smoothing scheme643
developed in Subsection 3.2 to (4.19) as the set U is generally unbounded. One644
approach that avoids this problem is to invoke the AIPP method of Subsection 3.1 to645
solve a sequence subproblems of the form in (4.19) for increasing values of c. However,646
in view of the equivalence of (4.17) and (4.19), this is exactly the approach taken by647
the QP-AIPP-S scheme of this section.648

5. Numerical experiments. We present numerical results that illustrate the649
computational efficiency of the our smoothing scheme in three parts. Each part650
presents computational results for a specific min-max optimization problem.651

Each unconstrained problem considered in this section is of the form in (1.1) and652
is such that the computation of the function yξ in (2.13) is easy. Moreover, for a653
given initial point x0 ∈ X, three algorithms are run for each problem instance until a654
quadruple (ū, v̄, x̄, ȳ) satisfying the inclusion of (1.4) and655

‖ū‖
‖∇pξ(z0)‖+ 1 ≤ ρx, ‖v̄‖ ≤ ρy,(5.1)656

657

is obtained, where ξ = Dy/ρy.658
We now describe the three nonconvex-concave min-max methods that are being659

compared in this section, namely: (i) the R-AIPP-S method (abbr. RA-S); (ii) the660
accelerated gradient smoothing (AG-S) scheme; and (iii) the projected gradient step661
framework (PGSF). Both the AG-S and RA-S schemes are modifications of the AIPP-662
S scheme which, instead of using the AIPP method in its step 1, use the AG method663
of [10] and R-AIPP method of [16], respectively. The PGSF is a simplified variant664
of Algorithm 2 of [24, Subsection 4.1] which explicitly evaluates the argmax function665
α∗(·) in [24, Section 4] instead of applying an ACG variant to estimate its evaluation.666

Regarding the penalty solvers, the AG method is in [10, Algorithm 2] while the667
R-AIPP method is as in [14, Section 5.3].668

Note that, like the AIPP method, the R-AIPP similarly: (i) invokes at each of its669
outer iterations an ACG method to inexactly solve the proximal subproblem (3.9);670
and (ii) outputs a ρ̄–approximate stationary point of (3.2). However, the R-AIPP671
method is more efficient due to three practical improvements over the AIPP method,672
namely: (i) it allows the stepsize λ to be significantly larger than the 1/(2m) upper673
bound in the AIPP method using adaptive estimates of m; (ii) it uses a weaker ACG674
termination criterion compared to the one in (3.6); and (iii) it does not prespecify the675
minimum number of ACG iterations as the AIPP method does in its step 1.676

We next state some additional details about the numerical experiments. First,677
each algorithm is run with a time limit of 4000 seconds. Second, the bold numbers in678
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each of the computational tables in this section highlight the algorithm that performed679
the most efficiently in terms of iteration count or total runtime. Moreover, each of680
tables contain a column labeled p̂ξ(x̄) that contains the smallest obtained value of the681
smoothed function in (3.1), across all of the tested algorithms. Third, the description682
of yξ and choice of the constantsm,Lx, and Ly for each of the considered optimization683
problems can be found in [14, Appendix I]. Fourth, y0 is chosen to be 0 for all of684
the experiments. Finally, all algorithms described at the beginning of this section are685
implemented in MATLAB 2019a and are run on Linux 64-bit machines each containing686
Xeon E5520 processors and at least 8 GB of memory.687

Before proceeding, it is worth mentioning that the code for generating the results688
of this section is available online4.689

5.1. Maximum of a finite number of nonconvex quadratic forms. Given690
a dimension triple (n, l, k) ∈ N3, a set of parameters {(αi, βi)}ki=1 ⊆ R2

++, a set691
of vectors {di}ki=1 ⊆ Rl, a set of diagonal matrices {Di}ki=1 ⊆ Rn×n, and matrices692
{Ci}ki=1 ⊆ Rl×n and {Bi}ki=1 ⊆ Rn×n, the problem of interest is the quadratic vector693
minmax (QVM) problem694

min
x∈Rn

max
y∈Rk

{
δ∆n(x) +

k∑
i=1

yigi(x) : y ∈ ∆k

}
,695

where, for every index 1 ≤ i ≤ k, integer p ∈ N, and x ∈ Rn, we define gi(x) :=696
αi‖Cix− di‖2/2− βi‖DiBix‖2/2 and ∆p :=

{
z ∈ Rp+ :

∑p
i=1 zi = 1, z ≥ 0

}
.697

We now describe the experiment parameters for the instances considered. First,698
the dimensions are set to be (n, l, k) = (200, 10, 5) and only 5.0% of the entries of the699
submatrices Bi and Ci are nonzero. Second, the entries of Bi, Ci, and di (resp., Di)700
are generated by sampling from the uniform distribution U [0, 1] (resp., U [1, 1000]).701
Third, the initial starting point is z0 = In/n, where In is the n–dimensional identity702
matrix. Fourth, with respect to the termination criterion, the inputs, for every (x, y) ∈703
Rn × Rk, are Φ(x, y) =

∑k
i=1 yigi(x), h(x) = δ∆n(x), ρx = 10−2,ρy = 10−1, and704

Y = ∆k. Finally, each problem instance considered is based on a specific curvature705
pair (m,M) satisfying m ≤ M , for which each scalar pair (αi, βi) ∈ R2

++ is selected706
so that M = λmax(∇2gi) and −m = λmin(∇2gi).707

We now present the results in Table 5.1.708

M m p̂ξ(x̄)
Iteration Count Runtime

RA-S AG-S PGSF RA-S AG PGSF
100 100 2.85E-01 23 294 1591 0.66 5.72 22.60
101 100 2.88E+00 86 1371 14815 1.37 25.96 209.62
102 100 2.85E+01 217 6270 150493 3.35 118.32 2122.93
103 100 2.85E+02 1417 28989 - 21.58 546.25 4000.00*

Table 5.1
Iteration counts and runtimes for QVM problems.

5.2. Truncated robust regression. Given a dimension pair (n, k) ∈ N2, a set709
of n data points {(aj , bj)}ni=1 ⊆ Rk × {1,−1} and a parameter α > 0, the problem of710

4See https://github.com/wwkong/nc_opt/tree/master/examples/minmax.
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interest is the truncated robust regression (TRR) problem711

min
x∈Rk

max
y∈Rn


n∑
j=1

yj(φα ◦ `j)(x) : y ∈ ∆n

712

where ∆n is as in Subsection 5.1 with p = n, φα(t) := α log (1 + t/α), and `j(x) :=713
log
(
1 + e−bj〈aj ,x〉

)
, for every (α, t, x) ∈ R++ × R++ × Rk,714

We now describe the experiment parameters for the instances considered. First,715
α is set to 10 and the data points {(ai, bi)} are taken from different datasets in716
the LIBSVM library5 for which each problem instance is based off of (see the “data717
name” column in the table below, which corresponds to a particular LIBSVM dataset).718
Second, the initial starting point is z0 = 0. Third, with respect to the termination719
criterion, the inputs, for every (x, y) ∈ Rk × Rn, are Φ(x, y) =

∑n
j=1 yj(φα ◦ `j)(x),720

h(x) = 0, ρx = 10−5, ρy = 10−3, and Y = ∆n.721
We now present the results in Table 5.2.722

data name p̂ξ(x̄)
Iteration Count Runtime

RA-S AG-S PGSF RA-S AG PGSF
heart 6.70E-01 425 1747 6409 6.37 15.54 32.76

diabetes 6.70E-01 852 1642 3718 8.61 24.12 52.77
ionosphere 6.70E-01 1197 8328 54481 8.26 63.82 320.72

sonar 6.70E-01 45350 96209 - 461.52 580.37 4000.00*
breast-cancer 1.11E-03 46097 - - 476.59 4000.00* 4000.00*

Table 5.2
Iteration counts and runtimes for TRR problems

It is worth mentioning that [26] also presents a min-max algorithm for obtaining723
a stationary point as in (5.1). However, its iteration complexity, which is O(ρ−6)724
when ρ = ρx = ρy, is significantly worse than the other algorithms considered in this725
section and, hence, we choose not to include this algorithm in our benchmarks.726

5.3. Power control in the presence of a jammer. Given a dimension pair727
(N,K) ∈ N2, a pair of parameters (σ,R) ∈ R2

++, a 3D tensor A ∈ RK×K×N+ , and a728
matrix B ∈ RK×N+ , the problem of interest is the power control (PC) problem729

min
X∈RK×N

max
y∈RN

{
K∑
k=1

N∑
n=1

fk,n(X, y) : 0 ≤ X ≤ R, 0 ≤ y ≤ N

2 ,
}
,730

where, for every (X, y) ∈ RK×N × RN ,731

fk,n(X, y) := − log
(

1 + Ak,k,nXk,n

σ2 +Bk,nyn +
∑K
j=1,j 6=kAj,k,nXj,n

)
.732

We now describe the experiment parameters for the instances considered. First,733
the scalar parameters are set to be (σ,R) = (1/

√
2,K1/K) and the quantities A and734

B are set to be the squared moduli of the entries of two Gaussian sampled complex–735
valued matrices H ∈ CK×K×N and P ∈ CK×N . More precisely, the entries of H736
and P are sampled from the standard complex Gaussian distribution CN (0, 1) with737

5See https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.
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Aj,k,n = |Hj,k,n|2 and Bk,n = |Pk,n|2 for every (j, k, n). Second, the initial starting738
point is z0 = 0. Third, with respect to the termination criterion, the inputs, are739
Φ(X, y) =

∑K
k=1

∑N
n=1 fk,n(X, y), h(X) = δQK×N

R
(X), ρx = 10−1, ρy = 10−1, and740

Y = QN×1
N/2 , for every (X, y) ∈ RK×N × RN and (U, V ) ∈ N2, where QU×VT := {z ∈741

Rp×q : 0 ≤ z ≤ T} for every T > 0. Fourth, each problem instance considered is742
based on a specific dimension pair (N,K).743

We now present the results in Table 5.3.744

N K p̂ξ(x̄)
Iteration Count Runtime

RA-S AG-S PGSF RA-S AG PGSF
5 5 -3.64E+00 37 322832 - 0.96 2371.27 4000.00*
10 10 -2.82E+00 54 33399 - 0.75 293.60 4000.00*
25 25 -4.52E+00 183 - - 9.44 4000.00* 4000.00*
50 50 -4.58E+00 566 - - 40.89 4000.00* 4000.00*

Table 5.3
Iteration counts and runtimes for PC problems.

It is worth mentioning that [18] also presents a min-max algorithm for obtaining745
stationary points for the aforementioned problem. However, its notion of stationarity746
is significantly different than what is being considered in this paper and, hence, we747
choose not to its algorithm in our benchmarks.748

6. Concluding Remarks. We first make a final remark about the AIPP-S749
smoothing scheme. Recall that the main idea of AIPP-S is to call the AIPP method750
to obtain a pair satisfying (3.13), or equivalently6,751

(6.1) inf
‖d‖≤1

(p̂ξ)′(x; d) ≥ −ρ.752

Moreover, using Proposition 8 with (ρx, ρy) = (ρ,Dy/ξ), it straightforward to see753
that that the number of oracle calls, in terms of (ξ, ρ), is O(ρ−2ξ1/2), which reduces754
to O(ρ−2.5) if ξ is chosen so as to satisfy ξ = Θ(ρ−1). The latter complexity bound755
improves upon the one obtained for an algorithm in [24] which obtains a point x756
satisfying (6.1) with ξ = Θ(ρ−1) in O(ρ−3) oracle calls.757

We now discuss some possible extensions of this paper. First, it is worth investi-758
gating whether complexity results for the AIPP-S method can be derived for the case759
where Y is unbounded. Second, it is worth investigating if the notions of stationary760
points in Subsection 2.1 are related to first-order stationary points7 of the related761
mathematical program with equilibrium constraints:762

min
(x,y)∈X×Y

{Φ(x, y) + h(y) : 0 ∈ ∂[−Φ(·, y)](x)} .763

Finally, it remains to be seen if a similar prox-type smoothing scheme can be developed764
for the case in which assumption (A2) is relaxed to the condition that there exists765
my > 0 such that −Φ(x, ·) is my-weakly convex for every x ∈ X.766

Appendix A. This appendix contains a description and a result about an ACG767
variant used in the analysis of [15].768

Part of the input of the ACG variant, which is described below, consists of a pair769
of functions (ψs, ψn) satisfying:770

6See Lemma 15 with f = pξ.
7See, for example, [19, Chapter 3].
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(i) ψn ∈ Conv(Z) is µ–strongly convex for some µ ≥ 0;771
(ii) ψs is a convex differentiable function on domψn whose gradient is L–Lipschitz772

continuous for some L > 0.773
774

ACG method775
776

Input: a scalar pair (µ,L) ∈ R2
++, a function pair (ψn, ψs), and an initial point777

z0 ∈ domψn;778

(0) set y0 = z0, A0 = 0, Γ0 ≡ 0 and j = 0;779
(1) compute780

Aj+1 = Aj +
µAj + 1 +

√
(µAj + 1)2 + 4L(µAj + 1)Aj

2L ,781

z̃j = Aj
Aj+1

zj + Aj+1 −Aj
Aj+1

yj ,782

Γj+1(y) = Aj
Aj+1

Γj(y) + Aj+1 −Aj
Aj+1

[ψs(z̃j) + 〈∇ψs(z̃j), y − z̃j〉] ∀y,783

yj+1 = argmin
y

{
Γj+1(y) + ψn(y) + 1

2Aj+1
‖y − y0‖2

}
,784

zj+1 = Aj
Aj+1

zj + Aj+1 −Aj
Aj+1

yj+1;785
786

(2) compute787

uj+1 = y0 − yj+1

Aj+1
,788

εj+1 = ψ(zj+1)− Γj+1(yj+1)− ψn(yj+1)− 〈uj+1, zj+1 − yj+1〉;789790

(3) increment j = j + 1 and go to (1).791
792

We now discuss some implementation details of the ACG method. First, a single793
iteration requires the evaluation of two distinct types of oracles, namely: (i) the eval-794
uation of the functions ψn, ψs, ∇ψs at any point in domψn; and (ii) the computation795
of the exact solution of subproblems of the form miny

{
ψn(y) + ‖y − a‖2/(2α)

}
for796

any a ∈ Z and α > 0. In particular, the latter is needed in the computation of yj+1.797
Second, because Γj+1 is affine, an efficient way to store it is in terms of a normal798
vector and a scalar intercept that is updated recursively at every iteration. Indeed, if799
Γj = αj + 〈·, βj〉 for some (αj , βj) ∈ R× Z, then step 1 of the ACG method implies800
that Γj+1 = αj+1 + 〈·, βj+1〉 where801

αj+1 := Aj
Aj+1

αj + Aj+1 −Aj
Aj+1

[ψs(z̃j)− 〈∇ψj(z̃j), z̃j〉] ,802

βj+1 := Aj
Aj+1

βj + Aj+1 −Aj
Aj+1

[∇ψs(z̃j)] .803
804

The following result, given in [15, Lemma 9], is used to establish the work needed805
to obtain (z, u, ε) in step 1 of the AIPP method of Subsection 3.1.806
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Lemma 12. Let {(Aj , zj , uj , εj)} be the sequence generated by the ACG method.807
Then, for any σ > 0, the ACG method obtains a triple (z, u, ε) satisfying808

(A.1) u ∈ ∂ε(ψs + ψn)(z) ‖u‖2 + 2ε ≤ σ‖z0 − z + u‖2809

in at most
⌈
2
√

2L(1 +
√
σ)/
√
σ
⌉
iterations.810

Appendix B. This appendix contains results about functions that can be de-811
scribed be as the maximum of a family of differentiable functions.812

The technical lemma below, which is a special case of [9, Theorem 10.2.1], presents813
a key property about max functions.814

Lemma 13. Assume that the triple (X,Y,Ψ) satisfies (A0)–(A1) in Subsection 2.1815
with Φ = Ψ. Moreover, define816

(B.1) q(x) := sup
y∈Y

Ψ(x, y), Y (x) := {y ∈ Y : Ψ(x, y) = q(x)}, ∀x ∈ X.817

Then, for every (x, d) ∈ X ×X , it holds that818

q′(x; d) = max
y∈Y (x)

〈∇xΨ(x; y), d〉 .819

Moreover, if Y (x) reduces to a singleton, say Y (x) = {y(x)}, then q is differentiable820
at x and ∇q(x) = ∇xΨ(x, y(x)).821

Under assumptions (A0)–(A3) in Subsection 2.1, the next result establishes Lip-822
schitz continuity of ∇q. It is worth mentioning that it generalizes related results823
in [2, Theorem 5.26] (which covers the case where Ψ is bilinear) and [20, Proposition824
4.1] (which makes the stronger assumption that Ψ(·, y) is convex for every y ∈ Y ).825

Proposition 14. Assume that the triple (X,Y,Ψ) satisfies (A0)–(A3) in Sub-826
section 2.1 with Φ = Ψ and that, for some µ > 0, the function Ψ(x, ·) is µ-strongly827
concave on Y for every x ∈ X, and define828

Qµ := Ly
µ

+

√
Lx +m

µ
, Lµ := LyQµ + Lx, y(x) := argmax

y∈Y
Ψ(x, y)(B.2)829

830

for every x ∈ X. Then, the following properties hold:831
(a) y(·) is Qµ–Lipschitz continuous on X;832
(b) ∇q(·) is Lµ–Lipschitz continuous on X where q is as in (B.1).833

Proof. (a) Let x, x̃ ∈ X be given and denote (y, ỹ) = (y(x), y(x̃)). Define α(u) :=834
Ψ(u, y) − Ψ(u, ỹ) for every u ∈ X, and observe that the optimality conditions of y835
and ỹ imply that α(x) ≥ µ‖y − ỹ‖2/2 and −α(x̃) ≥ µ‖y − ỹ‖2/2. Using the previous836
inequalities, (2.1), (2.2), (2.3), and the Cauchy-Schwarz inequality, we conclude that837

µ‖y − ỹ‖2 ≤ α(x)− α(x̃) ≤ 〈∇xΨ(x, y)−∇xΨ(x, ỹ), x− x̃〉+ Lx +m

2 ‖x− x̃‖2838

≤ ‖∇xΨ(x, y)−∇xΨ(x, ỹ)‖ · ‖x− x̃‖+ Lx +m

2 ‖x− x̃‖2839

≤ Ly‖y − ỹ‖ · ‖x− x̃‖+ Lx +m

2 ‖x− x̃‖2.840
841

Considering the above as a quadratic inequality in ‖ỹ − y‖ yields the bound842

‖y − ỹ‖ ≤ 1
2µ

[
Ly‖x− x̃‖+

√
L2
y‖x− x̃‖2 + 4µ(Lx +m)‖x− x̃‖2

]
843
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≤

[
Ly
µ

+

√
Lx +m

µ

]
‖x− x̃‖ = Qµ‖x− x̃‖844

845

which is the conclusion of (a).846
(b) Let x, x̃ ∈ X be given and denote (y, ỹ) = (y(x), y(x̃)). Using part (a),847

Lemma 13, and (2.2) we have that848

‖∇q(x)−∇q(x̃)‖ = ‖∇xΨ(x, y)−∇xΨ(x̃, ỹ)‖849

≤ ‖∇xΨ(x, y)−∇xΨ(x, ỹ)‖+ ‖∇xΨ(x, ỹ)−∇xΨ(x̃, ỹ)‖850

≤ Ly‖y − ỹ‖+ Lx‖x− x̃‖ ≤ (LyQµ + Lx)‖x− x̃‖ = Lµ‖x− x̃‖,851852

which is the conclusion of (b).853

Appendix C. The main goal of this appendix is to prove Propositions 17 and854
18, which are used in the proofs of Propositions 1, 2, and 3 given in Appendix D.855

The following well-known result presents an important property about the direc-856
tional derivative of a composite function f + h.857

Lemma 15. Let h : X 7→ (−∞,∞] be a proper convex function and let f be a858
differentiable function on dom h. Then, for any x ∈ dom h, it holds that859

(C.1) inf
‖d‖≤1

(f + h)′(x; d) = inf
‖d‖≤1

[
〈∇f(x), d〉+ σ∂h(x)(d)

]
= − inf

u∈∇f(x)+∂h(x)
‖u‖.860

The proof of Lemma 15 can be found for example in [28, Exercise 8.8(c)]. An861
alternative and more direct proof is given in [14, Lemma F.1.2]. It is also worth862
mentioning that if we further assumed that dom h = X , then the above result would863
follow from [3, Lemma 5.1].864

The next technical lemma, which can be found in [29, Corollary 3.3], presents a865
well-known min-max identity.866

Lemma 16. Let a convex set D ⊆ X and compact convex set Y ⊆ Y be given.867
Moreover, let ψ : D × Y 7→ R be such that ψ(·, y) is convex lower semicontinuous for868
every y ∈ Y and ψ(d, ·) is concave upper semicontinuous for every d ∈ D. Then,869

inf
d∈X

sup
y∈Y

ψ(d, y) = sup
y∈Y

inf
d∈X

ψ(d, y).870

The next result establishes an identity similar to Lemma 15 but for the case where871
f is a max function.872

Proposition 17. Assume the quadruple (Ψ, h,X, Y ) satisfies assumptions (A0)–873
(A3) of Subsection 2.1 with Φ = Ψ. Moreover, suppose that Ψ(·, y) is convex for every874
y ∈ Y , and let q and Y (·) be as in Lemma 13. Then, for every x̄ ∈ X, it holds that875

(C.2) inf
‖d‖≤1

(q + h)′(x̄; d) = − inf
u∈Q(x̄)

‖u‖876

where Q(x̄) := ∂h(x̄) +
⋃
y∈Y (x̄). Moreover, if ∂h(x̄) is nonempty, then the infimum877

on the right-hand side of (C.2) is achieved.878

Proof. Let x̄ ∈ X and define879

(C.3) ψ(d, y) := (Ψy + h)′(x̄; d), ∀(d, x, y) ∈ X × Ω× Y.880
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We claim that ψ in (C.3) satisfies the assumptions on ψ in Lemma 16 with Y = Y (x̄)881
and D given by882

D := {d ∈ Z : ‖d‖ ≤ 1, d ∈ FX(x̄)} ,883

where FX(x̄) := {t(x − x̄) : x ∈ X, t ≥ 0} is the set of feasible directions at x̄.884
Before showing this claim, we use it to show that (C.2) holds. First observe that (A1)885
and Lemma 13 imply that q′(x̄; d) = supy∈Y Ψ′y(x̄; d) for every d ∈ X . Using then886
Lemma 16 with Y = Y (x̄), Lemma 15 with (f, x) = (Ψȳ, x̄) for every ȳ ∈ Y (x̄), and887
the previous observation, we have that888

inf
‖d‖≤1

(q + h)′(x̄; d) = inf
d∈D

(q + h)′(x̄; d) = inf
d∈D

sup
y∈Y (x̄)

(Ψy + h)′(x̄; d)889

= inf
d∈D

sup
y∈Y (x̄)

ψ(d, y) = sup
y∈Y (x̄)

inf
d∈D

ψ(d, y) = sup
y∈Y (x̄)

inf
‖d‖≤1

(Ψy + h)′(x̄; d)890

= sup
y∈Y (x̄)

[
− inf
u∈∇xΦ(x̄,y)+∂h(x̄)

‖u‖
]

=
[
− inf
u∈Q(x̄)

‖u‖
]
.(C.4)891

892

Let us now assume that ∂h(x̄) is nonempty, and hence, Q(x̄) is nonempty as well. Note893
that continuity of the function ∇xΨ(x̄, ·) from assumption (A1) and the compactness894
of Y (x̄) imply that Q is closed. Moreover, since ‖u‖ ≥ 0, it holds that any sequence895
{uk}k≥1 where limk→∞ ‖uk‖ = infu∈Q(x̄) ‖u‖ is bounded. Combining the previous896
two remarks with the Bolzano-Weierstrass Theorem, we conclude that infu∈Q(x̄) ‖u‖ =897
minu∈Q(x̄) ‖u‖, and hence (C.2) holds.898

To complete the proof, we now justify the first claim on ψ. First, for any y ∈ Y (x̄),899
it follows from [27, Theorem 23.1] with f(·) = Ψy(·) and the definitions of q and Y (x̄)900
that901

(C.5) ψ(d, ȳ) = Ψ′ȳ(x̄; d) = inf
t>0

Ψy(x̄+ td)− q(x̄)
t

∀d ∈ X .902

Since assumption (A2) implies that Ψ(x̄, ·) is upper semicontinuous and concave on903
Y , it follows from (C.5), [27, Theorem 5.5], and [27, Theorem 9.4] that ψ(d, ·) is upper904
semicontinuous and concave on Y for every d ∈ X . On the other hand, since Ψ(·, y)905
is assumed to be lower semicontinuous and convex on X for every y ∈ Y , it follows906
from (C.5), the fact that x̄ ∈ int Ω, and [27, Theorem 23.4], that ψ(·, y) is lower907
semicontinuous and convex on X , and hence D ⊆ X , for every y ∈ Y (x̄).908

The last technical result is a specialization of the one given in [12, Theorem 4.2.1].909

Proposition 18. Let a proper closed function φ : X 7→ (−∞,∞] and assume910
that φ + ‖ · ‖2/2λ is µ-strongly convex for some scalars µ, λ > 0. If a quadru-911
ple (x−, x, u, ε) ∈ X × domφ × X × R+ together with λ satisfy the inclusion u ∈912
∂ε
(
φ+ ‖ · −x−‖2/[2λ]

)
(x), then the point x̂ ∈ domφ given by913

(C.6) x̂ := argmin
x′

{
φλ(x′) := φ(x′) + 1

2λ‖x
′ − x−‖2 − 〈u, x′〉

}
914

satisfies915

(C.7) inf
‖d‖≤1

φ′(x̂; d) ≥ − 1
λ
‖x− − x+ λu‖ −

√
2ε
λ2µ

, ‖x̂− x‖ ≤
√

2ε
µ
.916

Proof. We first observe that the assumed inclusion implies that φλ(x′) ≥ φλ(x)−ε917
for every x′ ∈ X. Using the previous inequality at x′ = x̂, the optimality of x̂, and918
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the µ–strong convexity of φλ, we have that µ‖x̂ − x‖2/2 ≤ φλ(x) − φλ(x̂) ≤ ε from919
which we conclude that ‖x̂− x‖ ≤

√
2ε/µ, i.e., the second inequality in (C.7).920

To show the other inequality, let nλ := x− − x+ λu. Using the definition of φλ,921
the triangle inequality, and the previous bound on ‖x̂− x‖, we obtain922

0 ≤ inf
‖d‖≤1

φ′λ(x̂; d) = inf
‖d‖≤1

φ′(x̂; d)− 1
λ
〈d, nλ〉923

≤ inf
‖d‖≤1

φ′(x̂; d) + ‖nλ‖
λ

+ ‖x− x̂‖
λ

≤ inf
‖d‖≤1

φ′(x̂; d) + ‖nλ‖
λ

+
√

2ε
λ2µ

,(C.8)924
925

which clearly implies the first inequality in (C.7).926

Appendix D. This appendix presents the proofs of Propositions 1, 2, and 3.927
The first technical result shows that an approximate primal-dual stationary point928

is equivalent to an approximate directional-stationary point of a perturbed version of929
problem (1.1).930

Lemma 19. Suppose the quadruple (Φ, h,X, Y ) satisfies assumptions (A0)–(A3)931
of Subsection 2.1 and let (x̄, ū, v̄) ∈ X × X × Y be given. Then, there exists ȳ ∈ Y932
such that the quadruple (ū, v̄, x̄, ȳ) satisfies the inclusion in (1.4) if and only if933

(D.1) inf
‖d‖≤1

(pū,v̄ + h)′(x̄; d) ≥ 0,934

where p
ū,v̄

:= maxy∈Y [Φ(x, y) + 〈v̄, y〉 − 〈ū, x〉] for every x ∈ Ω.935

Proof. Let (x̄, ū, v̄) ∈ X ×X × Y be given, define936

Ψ(x, y) := Φ(x, y) + 〈v̄, y〉 − 〈ū, x〉+m‖x− x̄‖2 ∀(x, y) ∈ Ω× Y,(D.2)937938

and let q and Y (·) be as in Lemma 13. It is easy to see that q = pū,v̄, the function939
Ψ satisfies the assumptions on Ψ in Proposition 17, and x̄ satisfies (D.1) if and only940
if inf‖d‖≤1(q + h)′(x̄; d) ≥ 0. The desired conclusion follows from Proposition 17, the941
previous observation, and the fact that ȳ ∈ Y (x̄) if and only if v̄ ∈ ∂[−Φ(x̄, ·)](ȳ).942

We are now ready to give the proof of Proposition 1.943

Proof of Proposition 1. Suppose (ū, v̄, x̄, ȳ) is a (ρx, ρy)–primal-dual stationary944
point of (1.1). Moreover, let Ψ, q, and Dy be as in (D.2), (B.1) and (2.8), respectively,945
and define946

q̂(x) := q(x) + h(x) ∀x ∈ X.947

Using Lemma 19, we first observe that inf‖d‖≤1 q̂(x̄; d) ≥ 0. Since q̂ is convex from948
assumption (A3), it follows from the previous bound and Lemma 15 with (f, h) =949
(0, q̂), that minu∈∂q̂(x̄) ‖u‖ ≤ 0, and hence, 0 ∈ ∂q̂(x̄). Moreover, using the Cauchy-950
Schwarz inequality, the second inequality in (1.4), the previous inclusion, and the951
definition of q and Ψ, it follows that for every x ∈ X ,952

p̂(x) +Dyρy − 〈ū, x〉+m‖x− x̄‖2 ≥ q̂(x) ≥ q̂(x̄) ≥ p̂(x̄)−Dyρy − 〈ū, x̄〉 ,953954

and hence that ū ∈ ∂ε(p̂ + m‖ · −x̄‖2)(x̄) where ε = 2Dyρy. Using now the first955
inequality in (1.4), Proposition 18 with (φ, x, x−, u) = (p̂, x̄, x̄, ū) and also (ε, λ, µ) =956
(Dyρy, 1/(2m),m), we conclude that there exists x̂ such that ‖x̂− x̄‖ ≤

√
2Dyρy/m957

and958
inf
‖d‖≤1

p̂′(x̂; d) ≥ −‖ū‖ − 2
√

2mDyρy ≥ −ρx − 2
√

2mDyρy.
959
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We next give the proof of Proposition 2.960

Proof of Proposition 2. (a) We first claim that P̂λ is α-strongly convex, where961
α = 1/λ−m. To see this, note that Φ(·, y) +m‖ · ‖2/2 is convex for every y ∈ Y from962
(A3). The claim now follows from (A2), the fact that the supremum of a collection963
of convex functions is also convex, and the definition of p̂ in (1.1).964

Suppose the pair (x, δ) satisfies (1.5) and (2.10). If x̂ = xλ in (1.5), then clearly965
the second inequality in (1.5), the fact that λ < 1/m, and (2.10) imply the inequality966
in (2.9), and hence, that x is a (λ, ε)-prox stationary point. Suppose now that x̂ 6= xλ.967

Using the convexity of P̂λ, we first have that P̂ ′λ(x̂; d) = inft>0

[
P̂λ(x̂+ td)− P̂λ(x̂)

]
/t968

for every d ∈ X . Denoting nλ := (xλ − x̂)/‖xλ − x̂‖, using both inequalities in (1.5)969
and the previous identity, we then have that970

P̂λ(xλ)− P̂λ(x̂)
‖xλ − x̂‖

≥ p̂′ (x̂;nλ) +
〈nλ
λ
, x̂− x

〉
≥ −δ − ‖x̂− x‖

λ
≥ −δ

(
1 + λ

λ

)
.971

972

Using the optimality of xλ, the α-strong convexity of P̂λ (see our claim on p̂ in the973
first paragraph), and the above bound, we conclude that974

1
2α‖x̂− xλ‖

2 ≤ P̂λ(x̂)− P̂λ(xλ) ≤ δ
(

1 + λ

λ

)
‖x̂− xλ‖.975

Thus, ‖x̂− xλ‖ ≤ 2αδ(1 + λ)/λ. Using the previous bound, the second inequality in976
(1.5), and (2.10) yields977

‖x− xλ‖ ≤ ‖x− x̂‖+ ‖x̂− xλ‖ ≤
(

1 + 2α
[

1 + λ

λ

])
δ ≤ λε,978

which implies (2.9), and hence, that x is a (λ, ε)-prox stationary point.979
(b) Suppose that the point x is a (λ, ε)-prox stationary point with ε ≤ δ ·980

min{1, 1/λ}. Then the optimality of xλ, the fact that P̂λ is convex (see the beginning981
of part (a)), the inequality in (2.9), and the Cauchy-Schwarz inequality imply982

0 ≤ inf
‖d‖≤1

[
p̂′(xλ; d) + 1

λ
〈d, xλ − x〉

]
≤ inf
‖d‖≤1

p̂′(xλ; d) + ε ≤ inf
‖d‖≤1

p̂′(xλ; d) + δ,983

which, together with the fact that λε ≤ δ, imply that x satisfies (1.5) with x̂ = xλ.984

Finally, we give the proof of Proposition 3.985

Proof of Proposition 3. This follows by using Lemma 15 with (f, h) = (Φ(·, ȳ), h)986
and (f, h) = (0,−Φ(x̄, ·)).987
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